JP4304307B2 - Medical instruments - Google Patents

Medical instruments Download PDF

Info

Publication number
JP4304307B2
JP4304307B2 JP2004094390A JP2004094390A JP4304307B2 JP 4304307 B2 JP4304307 B2 JP 4304307B2 JP 2004094390 A JP2004094390 A JP 2004094390A JP 2004094390 A JP2004094390 A JP 2004094390A JP 4304307 B2 JP4304307 B2 JP 4304307B2
Authority
JP
Japan
Prior art keywords
coating layer
alloy
magnetic metal
surgical blade
surgical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004094390A
Other languages
Japanese (ja)
Other versions
JP2005278753A (en
Inventor
美喜男 岩佐
光雄 外池
博志 山下
宏 早川
直人 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Toyo Tanso Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Toyo Tanso Co Ltd
Priority to JP2004094390A priority Critical patent/JP4304307B2/en
Publication of JP2005278753A publication Critical patent/JP2005278753A/en
Application granted granted Critical
Publication of JP4304307B2 publication Critical patent/JP4304307B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Surgical Instruments (AREA)

Description

本発明は、電子的に画像化された患部を観察しつつ手術を行うに際して使用される医療用器具に関する。   The present invention relates to a medical instrument used when performing an operation while observing an affected part electronically imaged.

近年、MRI、X線CTなどの電子的画像化装置(以下主に「MRI装置」を代表例として説明を行う)により電子的に画像化された患部を観察しつつ、手術を行う事例が多くなっている。すなわち、これらの画像化装置は、手術部位である生体組織の微細画像を正確に表示することができるので、手術時の極めて重要な補助手段となりつつある。   In recent years, there are many cases in which surgery is performed while observing the affected area electronically imaged by an electronic imaging device such as MRI or X-ray CT (hereinafter, mainly described as "MRI device"). It has become. That is, these imaging devices can accurately display a fine image of a living tissue that is a surgical site, and are thus becoming an extremely important auxiliary means during surgery.

しかしながら、ステンレススチールなどの強磁性体金属材料からなる医療用器具(以下「手術用メス」を代表例として説明を行う)は、その磁性のためにMRI磁石に吸い寄せられる危険性があるとともに、マイクロ波で誘起された渦電流による磁場の攪乱によってMRI画像の歪みを生じやすい。また、X線CTを使用する場合には、金属製のメスの影が患部画像に重なって、観察の妨げとなる。   However, a medical instrument made of a ferromagnetic metal material such as stainless steel (hereinafter referred to as “surgical knife” as a representative example) has a risk of being attracted to an MRI magnet due to its magnetism. MRI image distortion is likely to occur due to disturbance of the magnetic field due to eddy currents induced by waves. In addition, when X-ray CT is used, the shadow of a metal knife overlaps the affected area image and obstructs observation.

特許文献1は、炭素繊維とポリマーとからなる複合材料に少量の鉄酸化物(セラミック材料)などをドーピングすることにより、人体の磁化率と合致させた医療用器具(メス、生検針など)を提案している。この医療用器具は、歪みのない良好な画像を与えるとされている。しかしながら、この文献で提案されているセラミックをドープした複合材料を、例えば、メスとして使用する場合には、X線を透過させないので、患部の観察が妨げられるという問題点がある。さらに、メスの刃先は、分散硬質セラミックとそれを保持する軟質複合材料により構成されており、鋭い刃先が形成できないので、使用初期からの切れ味が低く、また、時間の経過とともにさらに切れ味が低下するので、医療用器具に求められる機能は十分に達成されない。
特開平10-14924号公報
Patent Document 1 discloses a medical device (scalpel, biopsy needle, etc.) that matches the magnetic susceptibility of the human body by doping a composite material composed of carbon fiber and polymer with a small amount of iron oxide (ceramic material). is suggesting. This medical instrument is supposed to give a good image without distortion. However, when the composite material doped with ceramic proposed in this document is used as, for example, a scalpel, there is a problem that observation of an affected area is hindered because X-rays are not transmitted. Furthermore, the knife edge of the knife is composed of a dispersed hard ceramic and a soft composite material that holds it, and since a sharp edge cannot be formed, the sharpness from the initial stage of use is low, and the sharpness is further lowered with the passage of time. Therefore, the function required for the medical instrument is not sufficiently achieved.
Japanese Patent Laid-Open No. 10-14924

従って、本発明は、電子的に画像化された患部を観察しつつ手術を行うに際して使用される医療用器具であって、画質を低下させることがなく、かつ良好な特性を持続的に発揮し得る医療用器具を提供することを主な目的とする。   Therefore, the present invention is a medical instrument used for performing an operation while observing an affected part imaged electronically, and does not deteriorate image quality and continuously exhibits good characteristics. The main purpose is to provide a medical device to be obtained.

本発明者は、上記の課題を解決するために、鋭意研究を行った結果、炭素質材料基材上に非磁性金属材料からなる被覆層を形成する場合には、その目的を達成しうることを見出した。   As a result of intensive studies to solve the above problems, the present inventor can achieve the object when a coating layer made of a nonmagnetic metal material is formed on a carbonaceous material substrate. I found.

すなわち、本発明は、下記の医療用器具を提供する。
1.電子的に画像化された患部を観察しつつ手術を行うに際して使用される医療用器具であって、炭素質材料基材表面に非磁性材料被覆層を設けた医療用器具。
2.炭素質材料基材が、炭素繊維強化複合材料、黒鉛およびガラス状炭素から選ばれた少なくとも1種からなる上記項1に記載の医療用器具。
3.非磁性材料被覆層が、非磁性金属系材料からなる上記項1に記載の医療用器具。
4.非磁性金属被覆層が、電解メッキ法あるいは無電解メッキ法から選ばれた少なくとも1つの方法により形成されてなる上記項3に記載の医療用器具。
5.非磁性金属系材料が、Ni-P系合金および/またはセラミック粒子を分散するNi-P系合金からなる上記項4に記載の医療用器具。
6.非磁性金属系材料が、Ni-P系合金からなる上記項5に記載の医療用器具。
7.Ni-P系合金中のPの含有量が、8〜15wt%である上記項6に記載の医療用器具。
8.炭素質材料と非磁性金属被覆層との間に軟質非磁性金属中間層が形成されている上記項1〜7のいずれかに記載の医療用器具。
9.医療用器具が、手術用具である上記項1〜8のいずれかに記載の医療用器具。
10.手術用具が、刃物である上記項9に記載の医療用器具。
11.刃物が、メス、ランセットまたはハサミである上記項10に記載の医療用器具。
12.刃物の片面側に非磁性金属被覆層からなる刃部分が設けられており、その反対面に軟質非磁性金属被覆層からなる応力緩和層が設けられている上記項9〜11のいずれかに記載の医療用器具。
That is, the present invention provides the following medical instruments.
1. A medical instrument used for performing an operation while observing an affected part imaged electronically, wherein the medical instrument is provided with a nonmagnetic material coating layer on the surface of a carbonaceous material substrate.
2. Item 2. The medical device according to Item 1, wherein the carbonaceous material base material comprises at least one selected from a carbon fiber reinforced composite material, graphite, and glassy carbon.
3. Item 2. The medical device according to Item 1, wherein the nonmagnetic material coating layer is made of a nonmagnetic metal material.
4). Item 4. The medical instrument according to Item 3, wherein the nonmagnetic metal coating layer is formed by at least one method selected from an electrolytic plating method or an electroless plating method.
5. Item 5. The medical device according to Item 4, wherein the non-magnetic metal material is a Ni-P alloy and / or a Ni-P alloy in which ceramic particles are dispersed.
6). Item 6. The medical instrument according to Item 5, wherein the nonmagnetic metal material is a Ni-P alloy.
7). Item 7. The medical device according to Item 6, wherein the content of P in the Ni-P alloy is 8 to 15 wt%.
8). Item 8. The medical device according to any one of Items 1 to 7, wherein a soft nonmagnetic metal intermediate layer is formed between the carbonaceous material and the nonmagnetic metal coating layer.
9. Item 9. The medical instrument according to any one of Items 1 to 8, wherein the medical instrument is a surgical instrument.
10. Item 10. The medical instrument according to Item 9, wherein the surgical tool is a blade.
11. Item 11. The medical instrument according to Item 10, wherein the blade is a knife, a lancet or a scissor.
12 The blade part which consists of a nonmagnetic metal coating layer is provided in the single side | surface side of a cutter, and the stress relaxation layer which consists of a soft nonmagnetic metal coating layer is provided in the opposite surface in any one of said claim | item 9-11. Medical instruments.

本発明によれば、以下の様な効果が達成される。
MRI、X線CTなどによる生体組織の電子的画像作成を妨げることのない医療用器具が得られる。
According to the present invention, the following effects are achieved.
Medical instruments that do not interfere with the creation of electronic images of biological tissues by MRI, X-ray CT, etc. can be obtained.

特に、MRIとX線CTとを併用する複合電子画像化装置において、MRIマイクロ波とX線の透過を阻害しないので、顕著な効果を発揮する。
本発明による手術用メスは、基材上の被覆層を形成する硬質非磁性材料の硬度が高いので、その刃先としての切れ味に優れている。
In particular, in a composite electronic imaging apparatus using MRI and X-ray CT in combination, the MRI microwave and X-ray transmission are not inhibited, so that a remarkable effect is exhibited.
The surgical knife according to the present invention is excellent in sharpness as a cutting edge because the hardness of the hard non-magnetic material forming the coating layer on the substrate is high.

また、刃先部分の摩耗により、切れ味が低下した場合には、研ぎ直しを行うことにより、当初と同様の切れ味に戻すことができる。   In addition, when the sharpness is reduced due to wear of the cutting edge portion, it is possible to return to the same sharpness as the original by performing sharpening.

被覆層のみならず、基材の耐熱性も高いので、高温度でオートクレーブ処理を行うことが可能である。   Since the heat resistance of not only the coating layer but also the base material is high, autoclaving can be performed at a high temperature.

以下、本発明の代表的な実施形態を概略的に示す断面図を参照しつつ、本発明による医療用器具についてより詳細に説明する。   Hereinafter, the medical device according to the present invention will be described in more detail with reference to cross-sectional views schematically showing typical embodiments of the present invention.

図1は、本発明による医療用メスの代表的な実施態様を模式的に示す側面図である。   FIG. 1 is a side view schematically showing a typical embodiment of a medical knife according to the present invention.

図1-(a)は、炭素質材料からなる基材の片面側に硬質非磁性金属材料からなる被覆層を設けた第1の実施態様を示す。   FIG. 1- (a) shows a first embodiment in which a coating layer made of a hard nonmagnetic metal material is provided on one side of a base material made of a carbonaceous material.

基材を構成する炭素質材料としては、公知の炭素繊維強化複合材料、黒鉛、ガラス状炭素などが使用できる。これらの材料は、(1)非磁性である、(2)医療用器具殺菌のために行なわれる120℃以上でのオートクレーブ処理においても耐えて、溶融或いは変形しない、(3)MRIのマイクロ波を阻害しない、(4)X線透過性に優れているなどの点で、基材として好適である。   As the carbonaceous material constituting the substrate, a known carbon fiber reinforced composite material, graphite, glassy carbon, or the like can be used. These materials are (1) non-magnetic, (2) resistant to autoclaving at 120 ° C or higher, which is performed for sterilization of medical instruments, and do not melt or deform. (3) MRI microwaves It is suitable as a substrate in that it does not inhibit, and (4) it has excellent X-ray permeability.

炭素繊維強化複合材料としては、特に制限されるものではないが、(1)炭素繊維が一方向に配列したシート体の複数枚を繊維方向が直交する様に相互に積層し、ピッチ或いは樹脂を含浸した後、焼成して得た材料、(2)炭素繊維織物のシート体の複数枚を積層し、ピッチ或いは樹脂を含浸した後、焼成して得た材料、(3)炭素繊維不織布にピッチ或いは樹脂を含浸した後、焼成して得た材料、(3)フェルト状炭素繊維にピッチ或いは樹脂を含浸した後、焼成して得た材料などが例示される。基材は、後述する非磁性材料被覆層を形成するに先立ち、所定の製品形状にほぼ相当する形状に予め加工しておいても良い。或いは、基材上に非磁性材料被覆層を形成した後、所定の製品形状に加工しても良い。
黒鉛或いはガラス状炭素を基材として使用する場合にも、同様に硬質非磁性金属材料被覆層を形成するに先立ち、所定の製品形状にほぼ相当する形状に予め加工しておく。
炭素質材料基材としては、靱性に優れている、被覆層との密着性に優れているなどの理由により、炭素繊維強化複合材料がより好ましい。
The carbon fiber reinforced composite material is not particularly limited, but (1) a plurality of sheets of carbon fibers arranged in one direction are laminated to each other so that the fiber directions are orthogonal to each other, and a pitch or resin is used. Material obtained by impregnation and firing, (2) Material obtained by laminating a plurality of carbon fiber woven sheet bodies and impregnating with pitch or resin, and firing, (3) Pitch on carbon fiber nonwoven fabric Or a material obtained by impregnating a resin and then firing, (3) a material obtained by impregnating a felt-like carbon fiber with a pitch or resin and then firing the material. Prior to forming the nonmagnetic material coating layer described later, the base material may be processed in advance into a shape substantially corresponding to a predetermined product shape. Or after forming a nonmagnetic material coating layer on a base material, you may process into a predetermined product shape.
Similarly, when graphite or glassy carbon is used as the base material, it is processed in advance into a shape substantially corresponding to a predetermined product shape prior to forming the hard nonmagnetic metal material coating layer.
As the carbonaceous material base material, a carbon fiber reinforced composite material is more preferable for reasons such as excellent toughness and adhesion to the coating layer.

図1-(a)に示す医療用メスにおいては、基材上の所要部分に、刃部分となる硬質非磁性金属材料被覆層が直接形成されている。この被覆層の先端部が刃先としての機能を発揮する。   In the medical knife shown in FIG. 1- (a), a hard nonmagnetic metal material coating layer serving as a blade portion is directly formed on a required portion on a base material. The tip of the coating layer functions as a cutting edge.

硬質非磁性金属材料としては、Ni-P合金(P含有量=8〜15重量%程度、より好ましくは10〜12重量%程度)、Ni-W-P合金(W含有量=10〜50重量%程度、より好ましくは20〜30重量%程度:P含有量=8〜15重量%程度、より好ましくは10〜12重量%程度)などのNi-P系合金が例示される。Wを併せて含有するNi-W-P合金は、Ni-P合金に比して、より優れた耐摩耗性を発揮する。Ni-P合金は、P含有量が8〜15重量%の範囲において、非磁性であり、高硬度(Hv=500〜1000程度)と良好な靱性を発揮する。   Hard non-magnetic metal materials include Ni-P alloys (P content = about 8-15% by weight, more preferably about 10-12% by weight), Ni-WP alloys (W content = about 10-50% by weight) And more preferably about 20 to 30% by weight: P content = about 8 to 15% by weight, more preferably about 10 to 12% by weight). The Ni-W-P alloy containing W together exhibits better wear resistance than the Ni-P alloy. The Ni-P alloy is non-magnetic when the P content is in the range of 8 to 15% by weight, and exhibits high hardness (about Hv = 500 to 1000) and good toughness.

炭素質材料からなる基材に対する被覆層の形成は、公知の電解メッキ法あるいは無電解メッキ法などにより行うことができる。さらに、例えば、常法に従って、基材に対して無電解メッキを行った後、電解メッキを行うこともできる。   Formation of the coating layer on the substrate made of the carbonaceous material can be performed by a known electrolytic plating method or electroless plating method. Furthermore, for example, after electroless plating is performed on the substrate according to a conventional method, electroplating can also be performed.

これらの方法による被覆層形成時の条件などは、医療用器具の形状および種類、基材の種類、硬質非磁性金属材料の種類などに応じて、適宜選択すれば良い。メッキ操作に先立って通常行う表面洗浄、表面粗化、触媒金属の付与なども、常法に従って行えばよい。
また、硬質非磁性金属材料被覆層は、上記のNi-P系合金中にTiO2、SiC、Al2O3、ZrO2、WC、ダイヤモンドなどの硬質材料微粒子を分散させた複合メッキ層として形成しても良い。複合メッキ層は、常法に従って、基本メッキ浴中に硬質材料微粒子を分散させたメッキ浴を使用することにより、容易に形成することができる。複合メッキ層を使用する場合には、医療用器具としての耐久性、切れ味などを改善することができる。
The conditions for forming the coating layer by these methods may be appropriately selected according to the shape and type of the medical device, the type of the base material, the type of the hard nonmagnetic metal material, and the like. The surface cleaning, surface roughening, and application of a catalyst metal that are usually performed prior to the plating operation may be performed according to conventional methods.
The hard nonmagnetic metal material coating layer may be formed as a composite plating layer in which hard material fine particles such as TiO2, SiC, Al2O3, ZrO2, WC, and diamond are dispersed in the Ni-P alloy. The composite plating layer can be easily formed by using a plating bath in which hard material fine particles are dispersed in a basic plating bath according to a conventional method. When a composite plating layer is used, durability as a medical instrument, sharpness, etc. can be improved.

硬質非磁性金属被覆層の厚さおよび巾は、MRI或いはX線CTによる画像形成を阻害しない限り特に限定されず、医療用メスとしての切れ味、耐久性、研ぎ直し回数、形成コストなどを勘案して定めれば良いが、通常5〜30μm程度、巾は3〜5mm程度である。被覆層の厚さが薄すぎる場合には、研磨による刃先の形成が困難となるのに対し、厚すぎる場合には、MRIのマイクロ波或いはX線の透過を妨げて、メスの影が形成されることがある。被覆層の巾が狭すぎる場合には研ぎ直し回数が減り、広すぎる場合には半影部分が大きくなり視認性に不便を来す。被覆層の厚さおよび巾を適切に選択する場合には、MRIのマイクロ波或いはX線が被覆層を部分的に透過するので、患部に接する刃先輪郭がモニター上で認識できる様になり、好適である。   The thickness and width of the hard non-magnetic metal coating layer are not particularly limited as long as they do not interfere with image formation by MRI or X-ray CT, taking into consideration the sharpness, durability, number of reshaping, formation cost, etc. as a medical knife However, the width is usually about 5 to 30 μm and the width is about 3 to 5 mm. If the coating layer is too thin, it will be difficult to form the cutting edge by polishing, whereas if it is too thick, the MRI microwave or X-ray will be blocked and a shadow of the knife will be formed. Sometimes. When the width of the coating layer is too narrow, the number of re-sharpening is reduced, and when it is too wide, the penumbra portion becomes large and inconvenience is caused. When the thickness and width of the coating layer are properly selected, MRI microwaves or X-rays partially penetrate the coating layer, so that the contour of the cutting edge in contact with the affected area can be recognized on the monitor, which is preferable. It is.

図1-(a)に示す形態の医療用メスは、基材表面の一部を所定の刃部分に対応する形状となる様に加工した後、残りの表面部をマスキングした状態でメッキ操作を行うことにより、加工部分の表面にのみ被覆層を形成させて、製造することが好ましい。   The medical knife of the form shown in FIG. 1- (a) is processed in such a manner that a part of the surface of the base material has a shape corresponding to a predetermined blade part, and then the remaining surface part is masked. By carrying out, it is preferable to produce the coating layer only on the surface of the processed part.

次いで、基材表面の所定の箇所に被覆層を備えた中間的製品を研ぎ上げることにより、所定形状を有する手術用メスが得られる。   Next, a surgical knife having a predetermined shape is obtained by sharpening an intermediate product provided with a coating layer at a predetermined position on the surface of the substrate.

なお、本発明による手術用メスは、一体型構造としても良く、或いは把持部に実質的なメス部を取付ける分離型構造としても良い。後者の場合には、破損或いは劣化したメス部を適宜取り替えることにより、手になじんだ把持部を長期にわたり使用することができる。   Note that the surgical knife according to the present invention may have an integral structure, or may have a separate structure in which a substantial knife part is attached to a gripping part. In the latter case, the gripped part familiar to the hand can be used for a long time by appropriately replacing the damaged or deteriorated female part.

図1-(b)は、炭素質材料からなる基材の片面側に、柔軟非磁性金属からなる中間層を介して、硬質非磁性金属材料からなる被覆層を設けた第2の実施態様を示す。   FIG. 1- (b) shows a second embodiment in which a coating layer made of a hard nonmagnetic metal material is provided on one side of a base material made of a carbonaceous material via an intermediate layer made of a flexible nonmagnetic metal. Show.

中間層を形成する柔軟非磁性金属としては、基材および被覆層に対する密着性に優れたCu、Zn、Sn、Pdなどが例示される。中間層は、基材と硬質非磁性金属材との密着性を向上させるだけでなく、刃先の応力分散機能をも発揮する。
柔軟非磁性金属からなる中間層も、公知の湿式のメッキ手法により形成することができる。中間層の厚さは、その機能を達成する限り特に限定されるものではないが、MRIのマイクロ波およびX線の部分的な透過を可能とするために、通常1μm程度までとすることが好ましい。
Examples of the flexible nonmagnetic metal that forms the intermediate layer include Cu, Zn, Sn, and Pd that are excellent in adhesion to the base material and the coating layer. The intermediate layer not only improves the adhesion between the base material and the hard non-magnetic metal material, but also exhibits a stress distribution function of the cutting edge.
The intermediate layer made of a flexible nonmagnetic metal can also be formed by a known wet plating method. The thickness of the intermediate layer is not particularly limited as long as it achieves its function, but it is usually preferably about 1 μm or less in order to allow partial transmission of MRI microwaves and X-rays. .

さらに、図1-(b)に示す実施態様の変形例(第3の実施態様)として、硬質非磁性金属材料からなる被覆層を挟んで、中間層(内側)の反対側の表面に第2の柔軟非磁性金属からなる最外層を設けることができる。最外層は、刃先の応力を分散させる機能を発揮する。最外層を形成する柔軟非磁性金属としては、中間層を形成するものと同様の金属を使用することができる。最外層の厚さも、その機能を達成する限り特に限定されるものではないが、通常1μm程度までとする。硬質非磁性金属材料からなる被覆層外表面に位置する最外層も、公知の湿式のメッキ手法により形成することができる。
第2の実施態様或いは第3の実施態様により得られた中間的製品からも、最終的に刃先を研ぎ上げることにより、所定形状を有する手術用メスが得られる。
Further, as a modified example (third embodiment) of the embodiment shown in FIG. 1- (b), a second layer is formed on the surface opposite to the intermediate layer (inner side) with a coating layer made of a hard nonmagnetic metal material interposed therebetween. An outermost layer made of a flexible nonmagnetic metal can be provided. The outermost layer exhibits a function of dispersing the stress of the cutting edge. As the flexible non-magnetic metal forming the outermost layer, the same metal as that forming the intermediate layer can be used. The thickness of the outermost layer is not particularly limited as long as the function is achieved, but it is usually about 1 μm. The outermost layer located on the outer surface of the coating layer made of a hard nonmagnetic metal material can also be formed by a known wet plating method.
From the intermediate product obtained by the second embodiment or the third embodiment, a surgical knife having a predetermined shape can be obtained by finally sharpening the cutting edge.

なお、本発明技術は、MRI、X線CTなどの電子的画像化装置による的確な患部観察を円滑に行うことを可能とするので、図示したメスに限ることなく、他の種々の医療用器具にも適用できる。
特に、MRIとX線CTとを併用する複合電子画像化装置において、顕著な効果を発揮する。
The technique of the present invention enables smooth accurate observation of an affected area using an electronic imaging apparatus such as MRI or X-ray CT, and is not limited to the illustrated knife, and various other medical instruments It can also be applied to.
In particular, a remarkable effect is exhibited in a composite electronic imaging apparatus using both MRI and X-ray CT.

以下に実施例を示し、本発明の特徴とするところをより一層明らかにする。
[実施例1]
市販の炭素繊維強化複合材料(炭素繊維が同方向に配列したフェノール樹脂含浸シート体の複数枚を繊維方向が直交する様に相互に加圧積層し、次いでピッチ含浸と焼成とを繰り返して得た材料:かさ密度1.61g/cm3、曲げ強度95MPa、厚さ2mm)を10mm×50mmの長片状に切り出して、基材とした。
この基材を(塩化第1スズと塩化パラジウムを含む)キャタリスト(奥野製薬(株)製)を蒸留水で40ml/lに希釈した液に浸漬して、次いで硫酸処理を行った後、市販のNi-P合金メッキ浴(荏原ユージライト社製)を用いて、温度90℃で無電解メッキを行うことにより、膜厚20〜25μmのNi-P合金メッキ被覆層(P含有量=10重量%)を形成させた。なお、予め、基材の片面をテープによりマスキングしておいて、他の片面に被覆層が形成される様にした。
次いで、図1-(a)に示す形状に刃先を研ぎ上げて、試験用のメス(刃先角度=約10度)を作成した。
[試験例1]
実施例1で得られた試験用メスを被験者の胸部に貼り付けた後、X線照射を行ったところ、X線画像上には、メス刃先の輪郭が認められたが、全体としては、メス基材部の影は認められなかった。このことから、本発明による手術用メスを用いて、電子化画像を観察しつつ、手術を行う場合には、メス刃先の位置は明確に示されるが、メス基材部の影による手術に対する障害は生じないものと推測される。
[試験例2]
実施例1で得られた試験用メスを被験者の前頭部に貼り付けた後、頭部のMRI画像を観察したところ、画像の歪みなどは認められず、メスの輪郭を示しつつ、鮮明な断層像が得られた。このことから、本発明による手術用メスを用いて、MRI画像を観察しつつ、手術を行う場合には、メスの影による手術に対する障害は、生じないものと推測される。
[試験例3]
通常の手術用メスと実施例1で得られた試験用メスとをそれぞれ用いて、鶏もも肉および豚ヘレ肉を筋肉組織の直角方向に切り目を入れた。
Examples will be shown below to further clarify the features of the present invention.
[Example 1]
Commercially available carbon fiber reinforced composite material (obtained by repeatedly pressing and laminating a plurality of phenol resin impregnated sheet bodies in which carbon fibers are arranged in the same direction so that the fiber directions are orthogonal to each other, and then repeating pitch impregnation and firing. Material: Bulk density 1.61 g / cm 3 , bending strength 95 MPa, thickness 2 mm) was cut into a long piece of 10 mm × 50 mm and used as a substrate.
This base material (including stannous chloride and palladium chloride) was dipped in a solution diluted to 40 ml / l with distilled water (produced by Okuno Pharmaceutical Co., Ltd.), then treated with sulfuric acid, and then commercially available. Ni-P alloy plating bath (manufactured by Sakakibara Eugelite Co., Ltd.) is used to perform electroless plating at a temperature of 90 ° C., so that a Ni-P alloy plating coating layer with a film thickness of 20 to 25 μm (P content = 10 weight) %) Was formed. Note that one side of the base material was previously masked with a tape so that a coating layer was formed on the other side.
Next, the cutting edge was sharpened to the shape shown in FIG. 1- (a) to create a test knife (cutting edge angle = about 10 degrees).
[Test Example 1]
When the test knife obtained in Example 1 was attached to the chest of the subject and then X-ray irradiation was performed, the outline of the knife edge was observed on the X-ray image. The shadow of the base material part was not recognized. Therefore, when performing an operation while observing an electronic image using the scalpel according to the present invention, the position of the scalpel blade edge is clearly shown, but an obstacle to the operation due to the shadow of the scalpel base part It is presumed that will not occur.
[Test Example 2]
After the test scalpel obtained in Example 1 was attached to the subject's forehead, the MRI image of the head was observed. As a result, no distortion of the image was observed and the scalpel contour was shown clearly. A tomographic image was obtained. From this, it is presumed that when the operation is performed while observing the MRI image using the surgical scalpel according to the present invention, there is no obstacle to the operation due to the shadow of the scalpel.
[Test Example 3]
Using a normal surgical scalpel and a test scalpel obtained in Example 1, chicken thigh and pork fillet were cut in a direction perpendicular to the muscle tissue.

いずれの場合にも、切れ味および切り目の外観に相違は認められなかった。このことから、本発明による手術用メスは、既存の手術用メスと同等の機能を発揮するものと推測される。   In either case, there was no difference in sharpness and cut appearance. From this, it is estimated that the surgical knife according to the present invention exhibits the same function as an existing surgical knife.

本発明による試験的な手術用メスの実施形態の概要を示す側面図である。1 is a side view showing an overview of an embodiment of a test surgical scalpel according to the present invention. FIG.

Claims (7)

電子的に画像化された患部を観察しつつ手術を行うに際して使用される手術用刃物であって、炭素繊維強化複合材料、黒鉛およびガラス状炭素から選ばれた少なくとも1種からなる非磁性の炭素質材料基材の表面に非磁性金属系材料からなる非磁性金属被覆層を5〜30μmの厚さで設け、該非磁性金属系材料がNi-P系合金および/またはセラミック粒子を分散するNi-P系合金からなる手術用刃物。 A surgical blade used for performing an operation while observing an affected area electronically imaged, and comprising nonmagnetic carbon made of at least one selected from a carbon fiber reinforced composite material, graphite, and glassy carbon A non-magnetic metal coating layer made of a non-magnetic metal material is provided on the surface of the base material with a thickness of 5 to 30 μm, and the non-magnetic metal material disperses Ni-P alloy and / or ceramic particles. Surgical blade made of P alloy. 非磁性金属被覆層が、電解メッキ法あるいは無電解メッキ法から選ばれた少なくとも1つの方法により形成されてなる請求項1に記載の手術用刃物。 The surgical blade according to claim 1, wherein the nonmagnetic metal coating layer is formed by at least one method selected from an electrolytic plating method and an electroless plating method. 非磁性金属系材料が、Ni-P系合金からなる請求項1または2に記載の手術用刃物。 The surgical blade according to claim 1 or 2, wherein the non-magnetic metal material is made of a Ni-P alloy. Ni-P系合金中のPの含有量が、8〜15wt%である請求項3に記載の手術用刃物。 The surgical blade according to claim 3, wherein the content of P in the Ni-P alloy is 8 to 15 wt%. 前記炭素質材料基材と非磁性金属被覆層との間に軟質非磁性金属中間層が形成されている請求項1〜4のいずれかに記載の手術用刃物。 The surgical blade according to claim 1, soft magnetic metal intermediate layer is formed between the carbonaceous material substrate and a non-magnetic metal coating layer. 刃物が、メス、ランセットまたはハサミである請求項1〜5のいずれかに記載の手術用刃物。 The surgical blade according to any one of claims 1 to 5, wherein the blade is a knife, lancet, or scissors. 刃物の片面側に非磁性金属被覆層からなる刃部分が設けられており、その反対面に軟質非磁性金属被覆層からなる応力緩和層が設けられている請求項1〜6のいずれかに記載の手術用刃物。 The blade part which consists of a nonmagnetic metal coating layer is provided in the single side | surface side of a cutter, and the stress relaxation layer which consists of a soft nonmagnetic metal coating layer is provided in the opposite surface. Surgical tools.
JP2004094390A 2004-03-29 2004-03-29 Medical instruments Expired - Lifetime JP4304307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004094390A JP4304307B2 (en) 2004-03-29 2004-03-29 Medical instruments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004094390A JP4304307B2 (en) 2004-03-29 2004-03-29 Medical instruments

Publications (2)

Publication Number Publication Date
JP2005278753A JP2005278753A (en) 2005-10-13
JP4304307B2 true JP4304307B2 (en) 2009-07-29

Family

ID=35177791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004094390A Expired - Lifetime JP4304307B2 (en) 2004-03-29 2004-03-29 Medical instruments

Country Status (1)

Country Link
JP (1) JP4304307B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9364293B2 (en) 2006-04-28 2016-06-14 Biosense Webster, Inc. Reduced field distortion in medical tools
JP2014522273A (en) * 2011-05-20 2014-09-04 ユニヴァーシティ オブ セントラル フロリダ リサーチ ファウンデーション,インコーポレーテッド Surface modifier for electromagnetic field response adjustment
CN106667550A (en) * 2015-11-06 2017-05-17 林惠花 Graphene scalpel
CN112427276B (en) * 2020-11-26 2022-05-03 南通大学 Preparation process method of graphene-coated surgical blade
CN113122831A (en) * 2020-12-28 2021-07-16 上海锐力医疗器械有限公司 Al for operation electrode2O3Ni-P-PTFE doped medical composite coating and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770286A (en) * 1980-10-22 1982-04-30 Dainippon Printing Co Ltd Plating bath composition and plating method
JPS628778A (en) * 1985-07-04 1987-01-16 住友電気工業株式会社 Diamond knife
JPH0533805A (en) * 1991-07-30 1993-02-09 Nippon Steel Corp Very hard and corrosion resistant drilling tapping screw
JPH06340961A (en) * 1993-03-24 1994-12-13 Sumitomo Metal Mining Co Ltd Member for medical use
US6330750B1 (en) * 1996-01-11 2001-12-18 Molecular Metallurgy, Inc. Scapel blade having high sharpness and toughness
US5705014A (en) * 1996-03-22 1998-01-06 General Electric Company Carbon fiber magnetic resonance compatible instruments
US6675033B1 (en) * 1999-04-15 2004-01-06 Johns Hopkins University School Of Medicine Magnetic resonance imaging guidewire probe
JP3253902B2 (en) * 1997-10-30 2002-02-04 中小企業総合事業団 Lifesaving cutting machine

Also Published As

Publication number Publication date
JP2005278753A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
Chan et al. An ultrasonographic and histological study of intraneural injection and electrical stimulation in pigs
Soares et al. Eight ball, corner pocket: the optimal needle position for ultrasound-guided supraclavicular block
JP4304307B2 (en) Medical instruments
Thompson et al. Mammographic localization and biopsy of nonpalpable breast lesions: a 5-year study
JPH1014924A (en) Apparatus intended to be used for specimen within magnetic field and method of building the same intended to be used within the magnetic field
O'Hara et al. Ulnar neuropathy at the wrist associated with aberrant flexor carpi ulnaris insertion
Islam A new bone marrow biopsy needle with core securing device.
US6001113A (en) Disposable curette and method of manufacturing the same
Levin et al. Incidence of otosclerosis
Isogai et al. Laminar configuration of the transverse carpal ligament
JP2007181638A (en) Ceramic-coated puncture needle giving smaller pains when piercing into the skin and presenting clear ultrasonic images, as well as method of manufacturing the same
JP2016510667A (en) Bone cutting device
Lu et al. Calculating the electric field in real human head by transcranial magnetic stimulation with shield plate
Bisiach et al. Unilateral neglect and space constancy during passive locomotion
CN101711700B (en) Magnetic resonance imaging (MRI) compatible needle knife
JPH0559738B2 (en)
EP1948063B1 (en) Marker for marking an area in body tissue
JP4193597B2 (en) Method for manufacturing a ceramic-coated medical device
Voit et al. Presurgical ultrasound-guided anchor-wire marking of soft tissue metastases in stage III melanoma patients
Goldenberg et al. Clinical experience with a new specimen capturing bone marrow biopsy needle
Islam A new bone marrow aspiration needle to overcome the sampling errors inherent in the technique of bone marrow aspiration.
CN221691241U (en) Triangular needle with all-dimensional digital identification function and plated diamond-like carbon coating
Novak Position-controlled needle aspiration biopsy at mammography
CN205758665U (en) A kind of high-quality scalpel
CN210541739U (en) Surgical knife

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090318

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090407

R150 Certificate of patent or registration of utility model

Ref document number: 4304307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term