JP4301702B2 - Apparatus and method for removing suspended particulate matter in exhaust gas - Google Patents

Apparatus and method for removing suspended particulate matter in exhaust gas Download PDF

Info

Publication number
JP4301702B2
JP4301702B2 JP2000194300A JP2000194300A JP4301702B2 JP 4301702 B2 JP4301702 B2 JP 4301702B2 JP 2000194300 A JP2000194300 A JP 2000194300A JP 2000194300 A JP2000194300 A JP 2000194300A JP 4301702 B2 JP4301702 B2 JP 4301702B2
Authority
JP
Japan
Prior art keywords
exhaust gas
collecting
collecting means
fine particles
particulates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000194300A
Other languages
Japanese (ja)
Other versions
JP2002013410A (en
Inventor
稔彦 瀬戸口
祐一 藤岡
頼聡 大久保
昭典 安武
経二郎 田山
敬古 小林
晃 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000194300A priority Critical patent/JP4301702B2/en
Publication of JP2002013410A publication Critical patent/JP2002013410A/en
Application granted granted Critical
Publication of JP4301702B2 publication Critical patent/JP4301702B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば船舶用、陸上走行用,陸上定置用の例えばディーゼルエンジン等の内燃機関、からの排ガス中に含まれる浮遊微粒子(SPM)を分解除去する排ガス中の浮遊微粒子除去装置及び除去方法に関する。
【0002】
【背景技術】
従来、船舶用、陸上走行用、陸上定置用ディーゼルからの排ガス中に含まれる浮遊微粒子(SPM、以下単に「微粒子」ともいう。)を分解するには、セラミックス製のハニカムフィルタ等によるDPF(Diesel Particulate Filter)が提案されており、該DPFに微粒子を捕集し、堆積量が増えると排気抵抗が増大するので、これを燃焼除去し再生している。
【0003】
この再生方法としては、スロットリングにより排気温度を向上させる方法やヒータ加熱方法、或いは追い焚き方法等によって排気ガス温度を上昇させて、捕集微粒子中の未燃焼分を燃焼させていた。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の微粒子分解処理方法では、以下のような問題がある。
(1) 再生時における熱衝撃の繰返によりハニカム状のセラミックスフィルタの破損が生じるという問題がある。
(2) 異常燃焼の発生により、フィルタ材の耐熱性、耐熱衝撃性が不足し、損傷が生じるという問題がある。
(3) ヒータ加熱や追い焚き用の装置及び燃料等のユーティリティー費用が必要となので、処理コストの低減を図るという要望がある。
(4) 燃焼が十分でない場合には、圧損が増大し、使用不能となり、その結果当該フィルタ自身を交換する必要がある。
【0005】
本発明は、上記問題に鑑み、従来のようなヒータ等の加熱手段を用いることなくしかも低温で排ガス中の浮遊微粒子を分解することのできる排ガス中の浮遊微粒子除去装置及び除去方法を提供することを課題とする。
【0006】
【課題を解決するための手段】
前記課題を解決する本発明の[請求項1]の排ガス中の浮遊微粒子除去装置の発明は、
排ガス中の浮遊微粒子を除去する排ガス中の浮遊微粒子除去装置であって、
上記微粒子を捕集する少なくとも2基からなる捕集手段と、
上記捕集手段で捕集した微粒子表面に触媒溶液を付着させる触媒付着手段と
上記捕集手段へ冷却空気を供給すると共に、当該捕集手段を乾燥させる冷却・乾燥手段とを備えてなり、
上記捕集手段で排ガス中の浮遊微粒子を交互に捕集し、一方の捕集手段に排ガスを通気し浮遊微粒子を捕集するとともに排ガスの持つ熱により微粒子を燃焼させている間に、他方の捕集手段を上記冷却・乾燥手段により冷却して100℃以下にし、当該他方の捕集手段で捕集した微粒子に上記触媒付着手段により触媒溶液を付着し、続いて上記冷却・乾燥手段により乾燥させ、その後ふたたび粒子を捕集する際に触媒が付着した微粒子を触媒燃焼分解する
ことを特徴とする。
【0007】
[請求項2]の発明は、
内燃機関から排出される排ガス中の浮遊微粒子を除去する排ガス中の浮遊微粒子除去装置であって、
上記微粒子を捕集する少なくとも2基からなる捕集手段と、
上記捕集手段で捕集した微粒子表面に触媒溶液を付着させる触媒付着手段と
上記捕集手段へ冷却空気を供給すると共に、当該捕集手段を乾燥させる冷却・乾燥手段とを備えてなり、
上記捕集手段で排ガス中の浮遊微粒子を交互に捕集し、一方の捕集手段に排ガスを通気し浮遊微粒子を捕集するとともに排ガスの持つ熱により微粒子を燃焼させている間に、他方の捕集手段を上記冷却・乾燥手段により冷却して100℃以下にし、当該他方の捕集手段で捕集した微粒子に上記触媒付着手段により触媒溶液を付着し、続いて上記冷却・乾燥手段により乾燥させ、その後ふたたび粒子を捕集する際に触媒が付着した微粒子を触媒燃焼分解する
ことを特徴とする。
【0008】
[請求項3]の発明は、請求項1又は2において、上記触媒溶液がアルカリ金属或いはアルカリ土類金属の少なくとも1種を含む触媒水溶液、海水、又は上記アルカリ金属或いはアルカリ土類金属の少なくとも1種を添加した海水であることを特徴とする。
【0009】
[請求項4]の発明は、請求項1乃至3のいずれか一項において、触媒燃焼分解する熱源が、新たに微粒子を捕集する間に通気する排ガスの持つ熱又は外部熱源であることを特徴とする。
【0010】
[請求項5]の排ガス中の浮遊微粒子除去方法の発明は、
排ガス中の浮遊微粒子を除去する排ガス中の浮遊微粒子除去方法であって、
上記微粒子を捕集する捕集手段を少なくとも2基設け、
上記捕集手段で排ガス中の浮遊微粒子を交互に捕集し、一方の捕集手段に排ガスを通気し浮遊微粒子を捕集するとともに排ガスの持つ熱により微粒子を燃焼させている間に、他方の捕集手段へ冷却空気を供給し当該他方の捕集手段を冷却して100℃以下にし、当該他方の捕集手段で捕集した微粒子に触媒溶液を付着し、続いて冷却空気を供給して乾燥させ、その後ふたたび粒子を捕集する際に触媒が付着した微粒子を触媒燃焼分解する
ことを特徴とする。
【0011】
[請求項6]の発明は、
内燃機関から排出される排ガス中の浮遊微粒子を除去する排ガス中の浮遊微粒子除去方法であって、
上記微粒子を捕集する捕集手段を少なくとも2基設け、
上記捕集手段で排ガス中の浮遊微粒子を交互に捕集し、一方の捕集手段に排ガスを通気し浮遊微粒子を捕集するとともに排ガスの持つ熱により微粒子を燃焼させている間に、他方の捕集手段へ冷却空気を供給し当該他方の捕集手段を冷却して100℃以下にし、当該他方の捕集手段で捕集した微粒子に触媒溶液を付着し、続いて冷却空気を供給して乾燥させ、その後ふたたび粒子を捕集する際に触媒が付着した微粒子を触媒燃焼分解する
ことを特徴とする。
【0012】
[請求項7]の発明は、内燃機関から排出される排ガスを浄化する排ガス処理システムであって、内燃機関の排ガスの煙道に介装され、排ガス中の浮遊微粒子を分解処理する請求項1乃至4のいずれか一項の浮遊微粒子除去装置を有することを特徴とする。
【0013】
[請求項8]の発明は、請求項7において、上記微粒子除去装置の後流側に排ガス中の窒素酸化物を分解処理する脱硝装置を有することを特徴とする。
【0014】
【発明の実施の形態】
以下、本発明の実施形態を説明するが、本発明はこれに限定されるものではない。
【0015】
[第1の実施の形態]
図1は本実施の形態の排ガス中の浮遊微粒子除去装置の概略図である。
図1に示すように、本実施の形態の排ガス中の浮遊微粒子除去装置100は、例えばジーゼルエンジン等の内燃機関10から排出される排ガス11中の浮遊微粒子12を除去する装置であって、上記排気ガス11を排出する排気管13が第1の排気管13Aと第2の排気管13Bとに分枝されてなり、上記第1の排気管13Aに介装され、上記微粒子12を内部に設けたフィルタ14で捕集する第1の捕集手段15Aと、上記排気管13Bに介装され、上記微粒子12を捕集する第2の捕集手段15Bと、上記捕集手段15A,15Bへ触媒タンク16より触媒溶液17をポンプ18を介して供給する触媒供給手段と、上記捕集手段14A,14Bへ冷却空気19を供給すると共にフィルタ14面を乾燥させる冷却・乾燥手段20と、上記第1の捕集手段15Aと第2の捕集手段15Bとに排ガス11の排出流路を交互に切替える複数の切替弁21A〜25A,21B〜25Bと制御装置(図示せず)とからなる排出ガス切替手段とを備えてなるものである。なお、捕集効率を向上させるためには、複数の同様な装置を並列して設けるようにしてもよい。
ここで、本発明で排ガス11とは例えばディーゼルエンジン等の内燃機関、又はガス化炉等から排出される排ガスをいい、特に限定されるものではく、該排ガス中に浮遊する浮遊微粒子(SPM)を含むガスをいう。
【0016】
本実施の形態では、第1の捕集手段15Aと第2の捕集手段15Bとで排ガス11中の浮遊微粒子12を交互に捕集し、一方の捕集手段15Aのフィルタで浮遊微粒子を捕集している間に、他方の微粒子除去手段で捕集した浮遊微粒子に触媒溶液を付着して乾燥させ、その後触媒が付着した微粒子を触媒燃焼分解するようにしている。
【0017】
切替のマップを図2に示す。図2に示すように、第1の捕集手段15Aで排ガス11中の浮遊微粒子12捕集するには、約300℃の排気ガス11を通気させる(S−200)。
その間、第2捕集手段15Bでは、それ以前において捕集した浮遊微粒子12に触媒溶液17を付着させるために、先ず触媒溶液17を供給する。この触媒溶液17の供給の前に通気しているときには排ガスは高温(約300℃)であるので、一度、冷却させる(S−201)。
その後100℃以下になったら、触媒溶液17を供給する(S−202)。
そして、触媒溶液17を排出し(S−203)、冷却・乾燥手段20により、乾燥する(S−204)。
【0018】
ここで、上記冷却・乾燥手段20はブロワ等に特に限定されるものではなく、例えば過給機等からの空気を一部バイパスさせるようにしてもよい。
【0019】
この操作を繰返すことにより、一定時間経過した後、フィルタで付着した浮遊微粒子に触媒を付着させ、その後、排気ガス11の顕熱により触媒燃焼させることで、排ガス中の浮遊微粒子を分解除去することができる。
なお、排ガスの代わりに必要に応じて別途ヒータ等の外部熱源を用いることもできる。
【0020】
切替のタイミングは、あらかじめ決められたフィルタの圧力損失に達した場合に切替える方法や、ある一定時間排ガスを通過させた後に、切替える方法等があるが、特に限定されるものではない。
【0021】
一例として第1の捕集手段15Aで排ガス11中の浮遊微粒子を捕集する場合について説明する。
図3(A)は捕集手段で排ガス中の微粒子を捕集している状態を示し、図2(B)は捕集手段内に触媒溶液を供給している状態を示している。
図1及び図3(A)の状態においては、排ガス11は第1の排気管13Aを通過して第1の捕集手段15Aへ導入され、ここで内部に設けられたフィルタ14で浮遊微粒子12が捕集されており、第2の排気管13Bに介装されたバルブ23Bと24Bとが閉塞されている。
【0022】
一方、図3(B)の状態では、第2の捕集手段15Bのフィルタ14内には、既に捕集された浮遊微粒子12が付着しており、この浮遊微粒子12に触媒タンク16より触媒溶液17を供給して、捕集手段15B内を充満させ、浮遊微粒子12の周囲に触媒を付着させる。
【0023】
上記捕集された微粒子12は、その付着・分解の概念を示す図4に示すように、触媒溶液17によりその表面が覆われており、別途冷却空気19が供給されて乾燥が進行すると触媒が浮遊微粒子12の細孔中にも浸透する。
また、浮遊微粒子12の内部に侵入した触媒溶液も乾燥し、触媒活性を示す成分が微粒子内部に均一に残留する。
その後、排ガス11を切替ることにより、排ガス11の温度(約300℃)でゆっくり触媒燃焼が進行することになる。
この触媒燃焼により浮遊微粒子12の表面のみならず内部においても触媒作用が働き、浮遊微粒子12の完全燃焼が可能となる。
【0024】
この結果、従来のようにヒータ等を用いることなく、しかも低温領域(300℃程度)において、当該微粒子中の未燃焼分(スート,タール等)を分解することができることになる。よって、排ガス中の浮遊微粒子12が捕集され触媒燃焼がなされるので連続的に処理することができ、清浄化されたクリーン排ガス23を排出することができる。
【0025】
ここで、本発明で触媒とは、炭酸カリウム,炭酸ナトリウム等のNa,K等のアルカリ金属,アルカリ土類金属のうち少なくとも一種を含むものである。また、アルカリ触媒として海水を利用することもできる。また、上記アルカリ金属或いはアルカリ土類金属の少なくとも1種を海水中に添加するようにしてもよい。
【0026】
本発明ではアルカリ触媒溶液を用いて浮遊微粒子の表面を覆うように噴霧等することにより、当該触媒を均一に配置させることができ、この結果、触媒燃焼場を均一化させることができると共に、従来のヒータ等による燃焼温度(400℃以上)よりもより低温側(300℃以下)において触媒燃焼を可能とすることができる。
【0027】
このため微粒子を燃焼する際に従来のような高温度の異常燃焼を防ぐと共に、燃焼温度によっては触媒溶液の噴霧量を制御する(触媒溶液の噴霧量・噴霧時間等の調整)ことにより燃焼温度を制御することができる。
【0028】
上記捕集手段15のフィルタ14は、排ガス11中の浮遊微粒子12を十分に捕集できる機能を有するものであり、フィルタ材質としては、触媒燃焼と触媒溶液の堆積がなされるので、耐熱衝撃性に優れる材料を用いる必要がある。耐熱衝撃性のフィルタとしては、金属製のフィルタ、耐熱処理されたセラミックスフィルタ等を例示することができる。
【0029】
また、その構造は特に限定されるものではないが、例えばフィルタ強度を保持する支持層の上に金属フィルタを積層してなる積層金属メッシュ型フィルタや、フィルタ強度を保持する支持層の上に金属不織布を積層してなる積層金属不織布型フィルタ等を例示することができる。
【0030】
なお、上述した実施の形態では、図3に示すように、フィルタ14としては、例えば支持層31の上面側にセラミックス層32を配し、該セラミックス層32を保護する保護メッシュ層33からなる積層型セラミックスフィルタを用いて、捕集効率を向上させるようにしている。
【0031】
また、本実施の形態では、上記触媒溶液タンク16内には、触媒溶液であるアルカリ金属触媒溶液(K2 CO3 又は海水)が貯蔵タンク41からポンプ42を介して供給され、貯蔵されている。
【0032】
上記触媒溶液タンク16内には、上記浸漬した後の触媒溶液17が戻されるようになっている。
【0033】
なお、船舶用の燃料では硫黄(S)分が含有しているので、K2 SO4 となり、触媒活性が低下するので、必要に応じて触媒溶液の純度を維持するように、所定期間毎にS分を含む触媒溶液を廃棄し、新規な触媒溶液17を追加するようにしている。
【0034】
また、触媒液の付着後、排ガスを通気すると、ガス中のSOx分が残存する液滴に吸収され、触媒の活性が低下する可能性が高くなるので、排ガス11の通気前に空気により十分に乾燥するようにすればよい。
【0035】
本発明では、排ガス中の浮遊微粒子を分解処理することができ、内燃機関の種類を何ら特定するものではない。
例えば船舶用、陸上走行用、陸上定置用ディーゼルや発電機等の内燃機関からの排ガス中に含まれる浮遊微粒子(SPM)の未燃焼分を低温で分解処理することができる。また、内燃機関から排出される排ガス中の浮遊微粒子を分解除去するのみならず、例えば都市ゴミ焼却炉,産業廃棄物焼却炉,汚泥焼却炉等の各種焼却炉、熱分解炉、溶融炉等から排ガス中の浮遊微粒子も除去することができる。
【0036】
以下、上述したような本発明の種々の排ガス中の浮遊微粒子除去装置を備えた排ガス浄化システムについての一例を説明するが、本発明はこれらのシステムに限定されるものではない。
【0037】
[第2の実施の形態]
図5は第2の実施の形態にかかる排ガス浄化システムの概略図である。
図5に示すように、本実施の形態にかかる排ガス浄化システムは、内燃機関から排出される排ガスを浄化する排ガス処理システムであって、内燃機関である船舶用大型のディーゼルエンジン101からの排ガスの煙道に介装され、排ガス11中の浮遊微粒子を分解処理する微粒子除去装置100を備えてなるものであり、該微粒子除去装置100の後流側には脱硝装置103を設けて、微粒子の除去及び窒素酸化物等の有害物質を除去したクリーンなガス104を煙突105から排出するようにしている。
【0038】
[第3の実施の形態]
図6は第3の実施の形態にかかる排ガス浄化システムの概略図である。
図6に示すように、本実施の形態にかかる排ガス浄化システムは、内燃機関から排出される排ガスを浄化する排ガス処理システムであって、内燃機関である船舶用大型のディーゼルエンジン101からの排ガスの煙道に介装され、排ガス11中の浮遊微粒子を分解処理する微粒子除去装置100を備えてなるものであり、ディーゼルエンジン101からの排ガスの一部(約3割り程度)を再びディーゼルエンジン101へ還流循環させてなるものであり、微粒子の除去した排ガスを還流する排ガス再循環装置(EGR)としたものである。
【0039】
これにより燃焼温度を下げる排ガスは微粒子を除去したクリーンなものを供給することになるので、長期に亙って全体としての排ガス中の窒素酸化物の生成量を低減することができる。
本システムは特に船舶用以外の陸上ディーゼル用に適用することが可能である。
【0040】
[第4の実施の形態]
図7は第4の実施の形態にかかる排ガス浄化システムの概略図である。
図7に示すように、本実施の形態にかかる排ガス浄化システムは、内燃機関(例えばトラック,バス,ローラー,フォークリフト,シャベルカー等の陸上走行用内燃機関やコンプレッサー,発電機等のような陸上固定用内燃機関)から排出される排ガスを浄化する排ガス処理システムであって、内燃機関であるディーゼルエンジン101からの排ガスの煙道に介装され、排ガス11中の浮遊微粒子を分解処理する微粒子除去装置100を備えてなるものであり、該微粒子除去装置100の後流側には脱硝装置103を設けて、微粒子の除去及び窒素酸化物等の有害物質を除去したクリーンなガス104を外気へ排出するようにしている。
【0041】
[第5の実施の形態]
図8は第5の実施の形態にかかる排ガス浄化システムの概略図である。
図8に示すように、本実施の形態にかかる排ガス浄化システムは、コージェネレーションシステムに対応するものであり、電力を出力するディーゼルエンジン発電機111からの排ガス11の煙道に介装され、排ガス11中の浮遊微粒子を分解処理する微粒子除去装置100を備えてなるものである。本システムでは、該微粒子除去装置100の後流側には脱硝装置103を設けて、微粒子の除去及び窒素酸化物等の有害物質を除去したクリーンなガス104を外気へ排出する際に、熱回収ボイラ112により温水として熱を回収し、エネルギー利用効率の向上を図るようにしている。
【0042】
このように本発明によれば、例えば船舶用、陸上走行用、陸上定置用ディーゼル等の内燃機関からの排ガス中に含まれる浮遊微粒子(SPM)の未燃焼分を低温で分解処理することができるシステムを構築することが可能となる。
【0043】
[第6の実施の形態]
図9は第6の実施の形態にかかる排ガス浄化システムの概略図である。
図9に示すように、本実施の形態にかかる排ガス浄化システムは、ガス化炉から排出される排ガスを浄化する排ガス処理システムであって、ガス化炉121からの排ガスの煙道に介装され、排ガス11中の浮遊微粒子を分解処理する微粒子除去装置100を備えてなるものであり、該微粒子除去装置100の後流側にはガスタービン燃焼器およびガスタービン106を設置し発電するとともに,その下流側には脱硝装置103を設けて、微粒子の除去及び窒素酸化物等の有害物質を除去したクリーンなガス104を煙突105から排出するようにしている。
【0044】
このように、本発明では、内燃機関から排出される排ガス中の浮遊微粒子を分解除去するのみならず、例えば都市ゴミ焼却炉,産業廃棄物焼却炉,汚泥焼却炉等の各種焼却炉、熱分解炉、溶融炉等から排ガス中の浮遊微粒子も除去することができる。
【0045】
【発明の効果】
以上、説明したように本発明の[請求項1]の排ガス中の浮遊微粒子除去装置の発明によれば、排ガス中の浮遊微粒子を除去する排ガス中の浮遊微粒子除去装置であって、上記微粒子を捕集する少なくとも2基からなる捕集手段と、上記捕集手段で捕集した微粒子表面に触媒溶液を付着させる触媒付着手段と、上記捕集手段へ冷却空気を供給すると共に、当該捕集手段を乾燥させる冷却・乾燥手段とを備えてなり、上記捕集手段で排ガス中の浮遊微粒子を交互に捕集し、一方の捕集手段に排ガスを通気し浮遊微粒子を捕集するとともに排ガスの持つ熱により微粒子を燃焼させている間に、他方の捕集手段を上記冷却・乾燥手段により冷却して100℃以下にし、当該他方の捕集手段で捕集した微粒子に上記触媒付着手段により触媒溶液を付着し、続いて上記冷却・乾燥手段により乾燥させ、その後ふたたび粒子を捕集する際に触媒が付着した微粒子を触媒燃焼分解するので、低温で効率的に微粒子の除去が連続して可能となる。
【0046】
[請求項2]の発明によれば、内燃機関から排出される排ガス中の浮遊微粒子を除去する排ガス中の浮遊微粒子除去装置であって、上記微粒子を捕集する少なくとも2基からなる捕集手段と、上記捕集手段で捕集した微粒子表面に触媒溶液を付着させる触媒付着手段と、上記捕集手段へ冷却空気を供給すると共に、当該捕集手段を乾燥させる冷却・乾燥手段とを備えてなり、上記捕集手段で排ガス中の浮遊微粒子を交互に捕集し、一方の捕集手段に排ガスを通気し浮遊微粒子を捕集するとともに排ガスの持つ熱により微粒子を燃焼させている間に、他方の捕集手段を上記冷却・乾燥手段により冷却して100℃以下にし、当該他方の捕集手段で捕集した微粒子に上記触媒付着手段により触媒溶液を付着し、続いて上記冷却・乾燥手段により乾燥させ、その後ふたたび粒子を捕集する際に触媒が付着した微粒子を触媒燃焼分解するので、低温で例えばディーゼルエンジン等の内燃機関からの排ガス中の浮遊微粒子の除去が連続して可能となる。
【0047】
[請求項3]の発明によれば、請求項1又は2において、上記触媒溶液がアルカリ金属或いはアルカリ土類金属の少なくとも1種を含む触媒水溶液、海水、又は上記アルカリ金属或いはアルカリ土類金属の少なくとも1種を添加した海水であるので、触媒費用が廉価であると共に、噴霧した後の触媒溶液を再利用することができる。
【0048】
[請求項4]の発明は、請求項1乃至3のいずれか一項において、触媒燃焼分解する熱源が、新たに微粒子を捕集する間に通気する排ガスの持つ熱又は外部熱源であるので、効率的に燃焼することができる。
【0049】
[請求項5]の発明によれば、排ガス中の浮遊微粒子を除去する排ガス中の浮遊微粒子除去方法であって、上記微粒子を捕集する捕集手段を少なくとも2基設け、上記捕集手段で排ガス中の浮遊微粒子を交互に捕集し、一方の捕集手段に排ガスを通気し浮遊微粒子を捕集するとともに排ガスの持つ熱により微粒子を燃焼させている間に、他方の捕集手段へ冷却空気を供給し当該他方の捕集手段を冷却して100℃以下にし、当該他方の捕集手段で捕集した微粒子に触媒溶液を付着し、続いて冷却空気を供給して乾燥させ、その後ふたたび粒子を捕集する際に触媒が付着した微粒子を触媒燃焼分解するので、低温で効率的に微粒子の除去が連続して可能となる。
【0050】
[請求項6]の発明によれば、内燃機関から排出される排ガス中の浮遊微粒子を除去する排ガス中の浮遊微粒子除去方法であって、上記微粒子を捕集する捕集手段を少なくとも2基設け、上記捕集手段で排ガス中の浮遊微粒子を交互に捕集し、一方の捕集手段に排ガスを通気し浮遊微粒子を捕集するとともに排ガスの持つ熱により微粒子を燃焼させている間に、他方の捕集手段へ冷却空気を供給し当該他方の捕集手段を冷却して100℃以下にし、当該他方の捕集手段で捕集した微粒子に触媒溶液を付着し、続いて冷却空気を供給して乾燥させ、その後ふたたび粒子を捕集する際に触媒が付着した微粒子を触媒燃焼分解するので、低温で例えばディーゼルエンジン等の内燃機関からの排ガス中の浮遊微粒子の除去が連続して可能となる。
【0051】
[請求項7]の発明によれば、内燃機関から排出される排ガスを浄化する排ガス処理システムであって、内燃機関の排ガスの煙道に介装され、排ガス中の浮遊微粒子を分解処理する請求項1乃至3のいずれか一項の微粒子除去装置を有するので、浮遊微粒子の除去したクリーンなガスを排出するようにしている。
【0052】
[請求項8]の発明によれば、請求項7において、上記微粒子除去装置の後流側に排ガス中の窒素酸化物を分解処理する脱硝装置を有するので、浮遊微粒子の除去及び窒素酸化物等の有害物質を除去したクリーンなガスを外気へ排出することができる。
【図面の簡単な説明】
【図1】第1の実施の形態にかかる排ガス中の浮遊微粒子除去装置の概略図である。
【図2】排ガス処理のマップであるる。
【図3】排ガス中の浮遊微粒子を捕集している状態(A)及び触媒溶液を浸漬している状態(B)の概略図である。
【図4】浮遊微粒子に触媒が付着している状態を示す概略図である。
【図5】第2の実施の形態にかかる排ガス浄化システムの概略図である。
【図6】第3の実施の形態にかかる排ガス浄化システムの概略図である。
【図7】第4の実施の形態にかかる排ガス浄化システムの概略図である。
【図8】第5の実施の形態にかかる排ガス浄化システムの概略図である。
【図9】第6の実施の形態にかかる排ガス浄化システムの概略図である。
【符号の説明】
10 内燃機関
11 排ガス
12 浮遊微粒子
13,13A,13B 排気管
14 フィルタ
15A 第1の捕集手段
15B 第2の捕集手段
16 触媒タンク
17 触媒溶液
18 ポンプ
19 冷却空気
20 冷却・乾燥手段
21A〜25A,21B〜25B 切替弁
31 支持層
32 セラミックス層
33 保護メッシュ層
34 積層型セラミックスフィルタ
41 貯蔵タンク
42 ポンプ
100 微粒子除去装置
101 ディーゼルエンジン
103 脱硝装置
104 クリーンガス
105 煙突
106 ボイラ
111 ディーゼルエンジン発電機
112 熱回収ボイラ
121 ガス化炉
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus and a method for removing suspended particulates in exhaust gas for decomposing and removing suspended particulates (SPM) contained in exhaust gas from, for example, an internal combustion engine such as a diesel engine for marine use, land traveling, and stationary on land. About.
[0002]
[Background]
Conventionally, DPF (Diesel) using a ceramic honeycomb filter or the like has been used to decompose suspended particulates (SPM, hereinafter also simply referred to as “particulates”) contained in exhaust gas from marine, onshore, and stationary diesel. Particulate Filter) has been proposed, and particulate resistance is collected in the DPF, and exhaust resistance increases as the amount of deposition increases.
[0003]
As this regeneration method, the exhaust gas temperature is increased by a method of improving the exhaust temperature by throttling, a heater heating method, or a reheating method, and the unburned portion in the collected particulates is burned.
[0004]
[Problems to be solved by the invention]
However, the conventional fine particle decomposition method has the following problems.
(1) There is a problem that the honeycomb ceramic filter is damaged due to repeated thermal shocks during regeneration.
(2) Due to abnormal combustion, there is a problem that the heat resistance and thermal shock resistance of the filter material are insufficient and damage occurs.
(3) There is a need to reduce the processing cost because utility costs such as heater heating and reheating equipment and fuel are necessary.
(4) If the combustion is not enough, the pressure loss will increase and it will become unusable, and as a result, the filter itself needs to be replaced.
[0005]
In view of the above problems, the present invention provides an apparatus and method for removing suspended particulates in exhaust gas that can decompose suspended particulates in exhaust gas at a low temperature without using a conventional heating means such as a heater. Is an issue.
[0006]
[Means for Solving the Problems]
The invention of the apparatus for removing suspended particulate matter in exhaust gas according to [Claim 1] of the present invention that solves the above-mentioned problems
A device for removing suspended particulate matter in exhaust gas that removes suspended particulate matter in exhaust gas,
A collecting means comprising at least two groups for collecting the fine particles;
Catalyst adhering means for adhering the catalyst solution to the surface of the fine particles collected by the collecting means ;
Supplying cooling air to the collecting means, and a cooling / drying means for drying the collecting means,
While collecting the suspended particulates in the exhaust gas alternately by the collecting means, and passing the exhaust gas through one collecting means to collect the suspended particulates and burning the particulates by the heat of the exhaust gas, The collecting means is cooled by the cooling / drying means to 100 ° C. or lower, the catalyst solution is attached to the fine particles collected by the other collecting means by the catalyst attaching means , and then dried by the cooling / drying means. After that, when the particles are collected again, catalytic combustion decomposition is performed on the fine particles to which the catalyst has adhered.
[0007]
The invention of [Claim 2]
An apparatus for removing suspended particulate matter in exhaust gas that removes suspended particulate matter in exhaust gas discharged from an internal combustion engine,
A collecting means comprising at least two groups for collecting the fine particles;
Catalyst adhering means for adhering the catalyst solution to the surface of the fine particles collected by the collecting means ;
Supplying cooling air to the collecting means, and a cooling / drying means for drying the collecting means,
While collecting the suspended particulates in the exhaust gas alternately by the collecting means, and passing the exhaust gas through one collecting means to collect the suspended particulates and burning the particulates by the heat of the exhaust gas, The collecting means is cooled by the cooling / drying means to 100 ° C. or lower, the catalyst solution is attached to the fine particles collected by the other collecting means by the catalyst attaching means , and then dried by the cooling / drying means. After that, when the particles are collected again, catalytic combustion decomposition is performed on the fine particles to which the catalyst has adhered.
[0008]
[Claim 3] The invention according to [Claim 3] is that, in Claim 1 or 2, the catalyst solution is an aqueous catalyst solution containing at least one alkali metal or alkaline earth metal, seawater, or at least one of the alkali metal or alkaline earth metal. It is characterized by seawater with added seeds.
[0009]
[Claim 4] The invention according to [Claim 4] is that in any one of Claims 1 to 3, the heat source for catalytic combustion decomposition is the heat of the exhaust gas that is ventilated while newly collecting particulates or an external heat source. Features.
[0010]
The invention of the method for removing suspended particulate matter in exhaust gas according to [Claim 5]
A method for removing suspended particulate matter in exhaust gas, which removes suspended particulate matter in exhaust gas,
Provide at least two collection means for collecting the fine particles,
While collecting the suspended particulates in the exhaust gas alternately by the collecting means, and passing the exhaust gas through one collecting means to collect the suspended particulates and burning the particulates by the heat of the exhaust gas , Cooling air is supplied to the collecting means, the other collecting means is cooled to 100 ° C. or lower, the catalyst solution is attached to the fine particles collected by the other collecting means, and then the cooling air is supplied. The method is characterized by catalytic combustion decomposition of fine particles to which the catalyst has adhered when drying and then collecting the particles again.
[0011]
The invention of [Claim 6]
A method for removing suspended particulate matter in exhaust gas that removes suspended particulate matter in exhaust gas discharged from an internal combustion engine,
Provide at least two collection means for collecting the fine particles,
While collecting the suspended particulates in the exhaust gas alternately by the collecting means, and passing the exhaust gas through one collecting means to collect the suspended particulates and burning the particulates by the heat of the exhaust gas , Cooling air is supplied to the collecting means, the other collecting means is cooled to 100 ° C. or lower, the catalyst solution is attached to the fine particles collected by the other collecting means, and then the cooling air is supplied. The method is characterized by catalytic combustion decomposition of fine particles to which the catalyst has adhered when drying and then collecting the particles again.
[0012]
The invention of [Claim 7] is an exhaust gas treatment system for purifying exhaust gas discharged from an internal combustion engine, and is disposed in the flue of the exhaust gas of the internal combustion engine to decompose suspended particulates in the exhaust gas. It has the suspended particulate removal apparatus of any one of thru | or 4 characterized by the above-mentioned.
[0013]
[Claim 8] The invention according to claim 8 is characterized in that, in claim 7, a denitration device for decomposing nitrogen oxides in the exhaust gas is provided on the downstream side of the particulate removing device.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, although embodiment of this invention is described, this invention is not limited to this.
[0015]
[First Embodiment]
FIG. 1 is a schematic diagram of an apparatus for removing suspended particulate matter in exhaust gas according to the present embodiment.
As shown in FIG. 1, the suspended particulate removal device 100 in the exhaust gas according to the present embodiment is a device that removes suspended particulate 12 in the exhaust gas 11 discharged from an internal combustion engine 10 such as a diesel engine, for example. An exhaust pipe 13 for exhausting the exhaust gas 11 is branched into a first exhaust pipe 13A and a second exhaust pipe 13B, and is interposed in the first exhaust pipe 13A so that the fine particles 12 are provided inside. A first collecting means 15A for collecting by the filter 14, a second collecting means 15B for collecting the fine particles 12 interposed in the exhaust pipe 13B, and a catalyst to the collecting means 15A, 15B. Catalyst supply means for supplying the catalyst solution 17 from the tank 16 via the pump 18, cooling / drying means 20 for supplying the cooling air 19 to the collecting means 14A and 14B and drying the surface of the filter 14, and the first Exhaust gas switching comprising a plurality of switching valves 21A-25A, 21B-25B and a control device (not shown) for alternately switching the exhaust flow path of the exhaust gas 11 between the collecting means 15A and the second collecting means 15B. Means. In order to improve the collection efficiency, a plurality of similar devices may be provided in parallel.
Here, in the present invention, the exhaust gas 11 refers to an exhaust gas discharged from an internal combustion engine such as a diesel engine or a gasification furnace, and is not particularly limited, and suspended fine particles (SPM) suspended in the exhaust gas. A gas containing
[0016]
In the present embodiment, the floating particles 12 in the exhaust gas 11 are alternately collected by the first collecting means 15A and the second collecting means 15B, and the suspended fine particles are collected by the filter of the one collecting means 15A. During the collection, the catalyst solution is attached to the suspended fine particles collected by the other fine particle removing means and dried, and then the fine particles to which the catalyst is adhered are decomposed by catalytic combustion.
[0017]
A map of switching is shown in FIG. As shown in FIG. 2, in order to collect the suspended fine particles 12 in the exhaust gas 11 by the first collecting means 15A, the exhaust gas 11 at about 300 ° C. is vented (S-200).
Meanwhile, in the second collecting means 15B, the catalyst solution 17 is first supplied in order to attach the catalyst solution 17 to the suspended fine particles 12 collected before that time. Since the exhaust gas is hot (about 300 ° C.) when it is vented before the catalyst solution 17 is supplied, it is once cooled (S-201).
Thereafter, when the temperature becomes 100 ° C. or lower, the catalyst solution 17 is supplied (S-202).
Then, the catalyst solution 17 is discharged (S-203) and dried by the cooling / drying means 20 (S-204).
[0018]
Here, the cooling / drying means 20 is not particularly limited to a blower or the like, and for example, a part of air from a supercharger or the like may be bypassed.
[0019]
By repeating this operation, after a lapse of a certain time, the catalyst is attached to the suspended fine particles adhered by the filter, and then the catalytic combustion is performed by sensible heat of the exhaust gas 11 to decompose and remove the suspended fine particles in the exhaust gas. Can do.
It should be noted that an external heat source such as a heater can be used separately as needed instead of the exhaust gas.
[0020]
The switching timing includes a method of switching when a predetermined pressure loss of the filter is reached, a method of switching after passing the exhaust gas for a certain period of time, but are not particularly limited.
[0021]
As an example, a case will be described in which suspended particulates in the exhaust gas 11 are collected by the first collecting means 15A.
FIG. 3 (A) shows a state in which fine particles in the exhaust gas are collected by the collecting means, and FIG. 2 (B) shows a state in which the catalyst solution is supplied into the collecting means.
In the state shown in FIGS. 1 and 3A, the exhaust gas 11 passes through the first exhaust pipe 13A and is introduced into the first collecting means 15A. Here, the suspended fine particles 12 are filtered by the filter 14 provided therein. Are collected, and the valves 23B and 24B interposed in the second exhaust pipe 13B are closed.
[0022]
On the other hand, in the state of FIG. 3B, the already collected suspended fine particles 12 are attached in the filter 14 of the second collecting means 15 </ b> B, and the catalyst solution is attached to the suspended fine particles 12 from the catalyst tank 16. 17 is supplied, the inside of the collection means 15B is filled, and a catalyst is made to adhere around the floating fine particles 12.
[0023]
As shown in FIG. 4 showing the concept of adhesion / decomposition, the collected fine particles 12 are covered with a catalyst solution 17. When the cooling air 19 is separately supplied and drying proceeds, the catalyst is separated. It also penetrates into the pores of the suspended fine particles 12.
Further, the catalyst solution that has entered the inside of the floating fine particles 12 is also dried, and the component showing the catalytic activity remains uniformly inside the fine particles.
Thereafter, by switching the exhaust gas 11, catalytic combustion proceeds slowly at the temperature of the exhaust gas 11 (about 300 ° C.).
Due to this catalytic combustion, the catalytic action works not only on the surface of the suspended fine particles 12 but also inside thereof, and the suspended fine particles 12 can be completely burned.
[0024]
As a result, unburned components (soot, tar, etc.) in the fine particles can be decomposed in the low temperature region (about 300 ° C.) without using a heater or the like as in the prior art. Therefore, since the suspended fine particles 12 in the exhaust gas are collected and catalytic combustion is performed, it can be continuously processed, and the cleaned clean exhaust gas 23 can be discharged.
[0025]
Here, the catalyst in the present invention includes at least one of alkali metals such as Na and K such as potassium carbonate and sodium carbonate, and alkaline earth metals. Seawater can also be used as an alkali catalyst. Moreover, you may make it add at least 1 sort (s) of the said alkali metal or alkaline-earth metal in seawater.
[0026]
In the present invention, by spraying so as to cover the surface of the suspended fine particles using an alkaline catalyst solution, the catalyst can be arranged uniformly, and as a result, the catalytic combustion field can be made uniform, It is possible to perform catalytic combustion at a lower temperature side (300 ° C. or lower) than the combustion temperature (400 ° C. or higher) by the heater or the like.
[0027]
For this reason, when burning fine particles, conventional abnormal combustion at high temperature is prevented, and depending on the combustion temperature, the spray amount of the catalyst solution is controlled (adjustment of the spray amount, spray time, etc. of the catalyst solution), so that the combustion temperature Can be controlled.
[0028]
The filter 14 of the collecting means 15 has a function of sufficiently collecting the suspended fine particles 12 in the exhaust gas 11, and as the filter material, catalytic combustion and deposition of a catalyst solution are performed. It is necessary to use a material that excels in the quality. Examples of the thermal shock resistant filter include a metal filter, a heat-treated ceramic filter, and the like.
[0029]
The structure is not particularly limited. For example, a laminated metal mesh filter obtained by laminating a metal filter on a support layer that retains filter strength, or a metal on a support layer that retains filter strength. A laminated metal nonwoven fabric type filter formed by laminating nonwoven fabrics can be exemplified.
[0030]
In the above-described embodiment, as shown in FIG. 3, as the filter 14, for example, a ceramic layer 32 is disposed on the upper surface side of the support layer 31, and a laminated structure including a protective mesh layer 33 that protects the ceramic layer 32. A collection ceramic filter is used to improve the collection efficiency.
[0031]
In the present embodiment, an alkali metal catalyst solution (K 2 CO 3 or seawater), which is a catalyst solution, is supplied from the storage tank 41 via the pump 42 and stored in the catalyst solution tank 16. .
[0032]
The catalyst solution 17 after the immersion is returned into the catalyst solution tank 16.
[0033]
In addition, since the fuel for ships contains sulfur (S), it becomes K 2 SO 4 and the catalytic activity is lowered. Therefore, the catalyst solution is maintained at a predetermined interval so as to maintain the purity of the catalyst solution as necessary. The catalyst solution containing S is discarded and a new catalyst solution 17 is added.
[0034]
Further, if the exhaust gas is ventilated after the catalyst solution is attached, the SOx content in the gas is absorbed in the remaining droplets, and the possibility that the activity of the catalyst is reduced is increased. What is necessary is just to make it dry.
[0035]
In the present invention, the suspended fine particles in the exhaust gas can be decomposed, and the type of the internal combustion engine is not specified at all.
For example, the unburned particulate matter (SPM) contained in the exhaust gas from an internal combustion engine such as a marine vessel, on-shore vehicle, or stationary diesel or generator can be decomposed at a low temperature. In addition to decomposing and removing suspended particulates in exhaust gas discharged from internal combustion engines, for example, from various incinerators such as municipal waste incinerators, industrial waste incinerators, sludge incinerators, pyrolysis furnaces, melting furnaces, etc. Airborne particulates in the exhaust gas can also be removed.
[0036]
Hereinafter, although an example about the exhaust gas purification system provided with the suspended particulate removal device in various exhaust gas of the present invention as mentioned above is explained, the present invention is not limited to these systems.
[0037]
[Second Embodiment]
FIG. 5 is a schematic view of an exhaust gas purification system according to the second embodiment.
As shown in FIG. 5, the exhaust gas purification system according to the present embodiment is an exhaust gas treatment system that purifies exhaust gas discharged from an internal combustion engine, and is an exhaust gas treatment system for a large-sized marine diesel engine 101 that is an internal combustion engine. A particulate removal device 100 that is disposed in the flue and decomposes suspended particulates in the exhaust gas 11 is provided. A denitration device 103 is provided on the downstream side of the particulate removal device 100 to remove particulates. A clean gas 104 from which harmful substances such as nitrogen oxides are removed is discharged from the chimney 105.
[0038]
[Third Embodiment]
FIG. 6 is a schematic view of an exhaust gas purification system according to the third embodiment.
As shown in FIG. 6, the exhaust gas purification system according to the present embodiment is an exhaust gas treatment system that purifies exhaust gas discharged from an internal combustion engine, in which exhaust gas from a large-sized marine diesel engine 101 that is an internal combustion engine is removed. A particulate removal device 100 that is disposed in the flue and decomposes suspended particulates in the exhaust gas 11 is provided. A part (about 30%) of the exhaust gas from the diesel engine 101 is again sent to the diesel engine 101. The exhaust gas recirculation device (EGR) is configured to recirculate the exhaust gas from which fine particles have been removed.
[0039]
As a result, the exhaust gas for lowering the combustion temperature is supplied with clean particles from which fine particles have been removed, so that the generation amount of nitrogen oxides in the exhaust gas as a whole can be reduced over a long period of time.
This system is particularly applicable to onshore diesel other than for ships.
[0040]
[Fourth Embodiment]
FIG. 7 is a schematic view of an exhaust gas purification system according to a fourth embodiment.
As shown in FIG. 7, the exhaust gas purification system according to the present embodiment is an internal combustion engine (for example, an internal combustion engine such as a truck, a bus, a roller, a forklift, a shovel car, etc., a land fixing such as a compressor, a generator, etc. An exhaust gas treatment system for purifying exhaust gas discharged from an internal combustion engine), which is disposed in a flue of exhaust gas from a diesel engine 101 which is an internal combustion engine and decomposes suspended particulates in the exhaust gas 11 100, and a denitration device 103 is provided on the downstream side of the fine particle removing device 100 so that a clean gas 104 from which fine particles are removed and harmful substances such as nitrogen oxides are removed is discharged to the outside air. I am doing so.
[0041]
[Fifth Embodiment]
FIG. 8 is a schematic view of an exhaust gas purification system according to the fifth embodiment.
As shown in FIG. 8, the exhaust gas purification system according to the present embodiment corresponds to a cogeneration system, and is interposed in a flue of exhaust gas 11 from a diesel engine generator 111 that outputs electric power. 11 is provided with a fine particle removing apparatus 100 for decomposing the suspended fine particles in No. 11. In this system, a denitration device 103 is provided on the downstream side of the particulate removal device 100 to recover heat when a clean gas 104 from which particulates are removed and harmful substances such as nitrogen oxides are discharged to the outside air. Heat is recovered as hot water by the boiler 112 to improve energy utilization efficiency.
[0042]
As described above, according to the present invention, for example, unburned particulate matter (SPM) contained in exhaust gas from an internal combustion engine such as a marine vessel, an on-shore diesel, and a stationary diesel can be decomposed at a low temperature. It becomes possible to construct a system.
[0043]
[Sixth Embodiment]
FIG. 9 is a schematic view of an exhaust gas purification system according to the sixth embodiment.
As shown in FIG. 9, the exhaust gas purification system according to the present embodiment is an exhaust gas treatment system that purifies exhaust gas discharged from a gasification furnace, and is interposed in an exhaust gas flue from the gasification furnace 121. And a particulate removing device 100 for decomposing suspended particulates in the exhaust gas 11. A gas turbine combustor and a gas turbine 106 are installed on the downstream side of the particulate removing device 100 to generate electric power. A denitration device 103 is provided on the downstream side, and a clean gas 104 from which particulates are removed and harmful substances such as nitrogen oxides are removed is discharged from the chimney 105.
[0044]
Thus, the present invention not only decomposes and removes suspended particulates in exhaust gas discharged from an internal combustion engine, but also various incinerators such as municipal waste incinerators, industrial waste incinerators, sludge incinerators, and pyrolysis Airborne particulates in the exhaust gas can also be removed from a furnace, a melting furnace or the like.
[0045]
【The invention's effect】
As described above, according to the invention of the suspended particulate removal device in the exhaust gas according to [Claim 1] of the present invention, the suspended particulate removal device in the exhaust gas for removing the suspended particulate in the exhaust gas, A collecting means comprising at least two groups to be collected; a catalyst attaching means for attaching a catalyst solution to the surface of the fine particles collected by the collecting means; and supplying cooling air to the collecting means, and the collecting means Cooling and drying means for drying the gas , and the above collecting means alternately collects the suspended fine particles in the exhaust gas. The exhaust gas is passed through one of the collecting means to collect the suspended fine particles and the exhaust gas has While the fine particles are burned by heat, the other collecting means is cooled to 100 ° C. or less by the cooling / drying means , and the catalyst adhering means is applied to the fine particles collected by the other collecting means. Adhere , Then dried by the cooling and drying means, since then again catalytic combustion decompose the particulates catalyst adhered to when collecting particulate, it is possible to continuously efficiently particulate removal at low temperatures.
[0046]
According to the invention of [Claim 2], it is an apparatus for removing suspended particulates in exhaust gas that removes suspended particulates in exhaust gas discharged from an internal combustion engine, and comprises at least two collecting means for capturing the particulates. And a catalyst attaching means for attaching a catalyst solution to the surface of the fine particles collected by the collecting means, and a cooling / drying means for supplying cooling air to the collecting means and drying the collecting means. becomes, while particulate is burned by the heat possessed by the exhaust gas with the suspended particulates in the exhaust gas collected alternately, to collect aeration suspended particulates exhaust gas to one of the collecting means in said collecting means, The other collecting means is cooled to 100 ° C. or less by the cooling / drying means , and the catalyst solution is attached to the fine particles collected by the other collecting means by the catalyst attaching means , and then the cooling / drying means Inui by It is allowed, since then again catalytic combustion decompose the particulates catalyst adhered to when collecting particulate, removal of airborne particulates in the exhaust gas from an internal combustion engine such as a low temperature, for example, a diesel engine is made possible continuously.
[0047]
According to the invention of [Claim 3], in Claim 1 or 2, the catalyst solution is an aqueous catalyst solution containing at least one alkali metal or alkaline earth metal, seawater, or the alkali metal or alkaline earth metal. Since it is seawater to which at least one kind is added, the catalyst cost is low and the catalyst solution after spraying can be reused.
[0048]
The invention of [Claim 4] is that in any one of claims 1 to 3, the heat source for catalytic combustion decomposition is the heat of the exhaust gas that is ventilated while newly collecting particulates or an external heat source. It can burn efficiently.
[0049]
According to the invention of [Claim 5], there is provided a method for removing suspended fine particles in exhaust gas for removing suspended fine particles in exhaust gas, wherein at least two collecting means for collecting the fine particles are provided, Collecting suspended fine particles in the exhaust gas alternately, venting the exhaust gas to one of the collecting means, collecting the suspended fine particles, and cooling to the other collecting means while burning the fine particles by the heat of the exhaust gas Air is supplied and the other collecting means is cooled to 100 ° C. or lower, the catalyst solution is attached to the fine particles collected by the other collecting means, and then cooled air is supplied and dried, and then again. Since the fine particles to which the catalyst is attached are collected by catalytic combustion when collecting the particles, the fine particles can be continuously removed efficiently at a low temperature.
[0050]
According to the invention of [Claim 6], there is provided a method for removing suspended particulate matter in exhaust gas for removing suspended particulate matter in exhaust gas discharged from an internal combustion engine, wherein at least two collecting means for collecting the particulate matter are provided. The trapping means collects suspended particulates in the exhaust gas alternately by the collecting means, and while the particulate matter is burned by the heat of the exhaust gas while passing the exhaust gas through one collecting means and collecting the suspended particulates, the other Cooling air is supplied to the other collecting means, the other collecting means is cooled to 100 ° C. or lower, the catalyst solution is attached to the fine particles collected by the other collecting means, and then the cooling air is supplied. dried Te, since then again catalytic combustion decompose the particulates catalyst adhered to when collecting particulate, removal of airborne particulates in the exhaust gas from an internal combustion engine such as a low temperature, for example, a diesel engine is made possible by continuously .
[0051]
According to the invention of [Claim 7], there is provided an exhaust gas treatment system for purifying exhaust gas discharged from an internal combustion engine, which is disposed in a flue of the exhaust gas of the internal combustion engine and decomposes suspended particulates in the exhaust gas. Since the particulate removing device according to any one of Items 1 to 3 is provided, clean gas from which suspended particulates are removed is discharged.
[0052]
According to the invention of [Eighth aspect], since the denitration apparatus for decomposing nitrogen oxides in the exhaust gas is provided on the downstream side of the fine particle removing apparatus according to the seventh aspect, removal of floating fine particles, nitrogen oxides, etc. Clean gas from which harmful substances are removed can be discharged to the outside air.
[Brief description of the drawings]
FIG. 1 is a schematic view of an apparatus for removing suspended particulate matter in exhaust gas according to a first embodiment.
FIG. 2 is a map of exhaust gas treatment.
FIG. 3 is a schematic view of a state (A) in which suspended particulates in exhaust gas are collected and a state (B) in which a catalyst solution is immersed.
FIG. 4 is a schematic view showing a state where a catalyst is attached to suspended fine particles.
FIG. 5 is a schematic view of an exhaust gas purification system according to a second embodiment.
FIG. 6 is a schematic view of an exhaust gas purification system according to a third embodiment.
FIG. 7 is a schematic view of an exhaust gas purification system according to a fourth embodiment.
FIG. 8 is a schematic view of an exhaust gas purification system according to a fifth embodiment.
FIG. 9 is a schematic view of an exhaust gas purification system according to a sixth embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Internal combustion engine 11 Exhaust gas 12 Floating particulates 13, 13A, 13B Exhaust pipe 14 Filter 15A 1st collection means 15B 2nd collection means 16 Catalyst tank 17 Catalyst solution 18 Pump 19 Cooling air 20 Cooling / drying means 21A-25A , 21B-25B Switching valve 31 Support layer 32 Ceramic layer 33 Protective mesh layer 34 Laminated ceramic filter 41 Storage tank 42 Pump 100 Particulate removal device 101 Diesel engine 103 Denitration device 104 Clean gas 105 Chimney 106 Boiler 111 Diesel engine generator 112 Heat Recovery boiler 121 gasifier

Claims (8)

排ガス中の浮遊微粒子を除去する排ガス中の浮遊微粒子除去装置であって、
上記微粒子を捕集する少なくとも2基からなる捕集手段と、
上記捕集手段で捕集した微粒子表面に触媒溶液を付着させる触媒付着手段と
上記捕集手段へ冷却空気を供給すると共に、当該捕集手段を乾燥させる冷却・乾燥手段とを備えてなり、
上記捕集手段で排ガス中の浮遊微粒子を交互に捕集し、一方の捕集手段に排ガスを通気し浮遊微粒子を捕集するとともに排ガスの持つ熱により微粒子を燃焼させている間に、他方の捕集手段を上記冷却・乾燥手段により冷却して100℃以下にし、当該他方の捕集手段で捕集した微粒子に上記触媒付着手段により触媒溶液を付着し、続いて上記冷却・乾燥手段により乾燥させ、その後ふたたび粒子を捕集する際に触媒が付着した微粒子を触媒燃焼分解する
ことを特徴とする排ガス中の浮遊微粒子除去装置。
A device for removing suspended particulate matter in exhaust gas that removes suspended particulate matter in exhaust gas,
A collecting means comprising at least two groups for collecting the fine particles;
Catalyst adhering means for adhering the catalyst solution to the surface of the fine particles collected by the collecting means ;
Supplying cooling air to the collecting means, and a cooling / drying means for drying the collecting means,
While collecting the suspended particulates in the exhaust gas alternately by the collecting means, and passing the exhaust gas through one collecting means to collect the suspended particulates and burning the particulates by the heat of the exhaust gas, The collecting means is cooled by the cooling / drying means to 100 ° C. or lower, the catalyst solution is attached to the fine particles collected by the other collecting means by the catalyst attaching means , and then dried by the cooling / drying means. And then removing the suspended fine particles in the exhaust gas by catalytic combustion decomposition of the fine particles adhering to the catalyst when the particles are collected again.
内燃機関から排出される排ガス中の浮遊微粒子を除去する排ガス中の浮遊微粒子除去装置であって、
上記微粒子を捕集する少なくとも2基からなる捕集手段と、
上記捕集手段で捕集した微粒子表面に触媒溶液を付着させる触媒付着手段と
上記捕集手段へ冷却空気を供給すると共に、当該捕集手段を乾燥させる冷却・乾燥手段とを備えてなり、
上記捕集手段で排ガス中の浮遊微粒子を交互に捕集し、一方の捕集手段に排ガスを通気し浮遊微粒子を捕集するとともに排ガスの持つ熱により微粒子を燃焼させている間に、他方の捕集手段を上記冷却・乾燥手段により冷却して100℃以下にし、当該他方の捕集手段で捕集した微粒子に上記触媒付着手段により触媒溶液を付着し、続いて上記冷却・乾燥手段により乾燥させ、その後ふたたび粒子を捕集する際に触媒が付着した微粒子を触媒燃焼分解する
ことを特徴とする排ガス中の浮遊微粒子除去装置。
An apparatus for removing suspended particulate matter in exhaust gas that removes suspended particulate matter in exhaust gas discharged from an internal combustion engine,
A collecting means comprising at least two groups for collecting the fine particles;
Catalyst adhering means for adhering the catalyst solution to the surface of the fine particles collected by the collecting means ;
Supplying cooling air to the collecting means, and a cooling / drying means for drying the collecting means,
While collecting the suspended particulates in the exhaust gas alternately by the collecting means, and passing the exhaust gas through one collecting means to collect the suspended particulates and burning the particulates by the heat of the exhaust gas, The collecting means is cooled by the cooling / drying means to 100 ° C. or lower, the catalyst solution is attached to the fine particles collected by the other collecting means by the catalyst attaching means , and then dried by the cooling / drying means. And then removing the suspended fine particles in the exhaust gas by catalytic combustion decomposition of the fine particles adhering to the catalyst when the particles are collected again.
請求項1又は2において、
上記触媒溶液がアルカリ金属或いはアルカリ土類金属の少なくとも1種を含む触媒水溶液、海水、又は上記アルカリ金属或いはアルカリ土類金属の少なくとも1種を添加した海水である
ことを特徴とする排ガス中の浮遊微粒子除去装置。
In claim 1 or 2,
Floating in exhaust gas, wherein the catalyst solution is an aqueous catalyst solution containing at least one of alkali metals or alkaline earth metals, seawater, or seawater to which at least one of the alkali metals or alkaline earth metals is added. Particulate removal device.
請求項1乃至3のいずれか一項において、
触媒燃焼分解する熱源が、新たに微粒子を捕集する間に通気する排ガスの持つ熱又は外部熱源である
ことを特徴とする排ガス中の浮遊微粒子除去装置。
In any one of Claims 1 thru | or 3,
An apparatus for removing suspended particulates in exhaust gas, wherein the heat source for catalytic combustion decomposition is the heat of the exhaust gas that is vented while newly collecting particulates or an external heat source.
排ガス中の浮遊微粒子を除去する排ガス中の浮遊微粒子除去方法であって、
上記微粒子を捕集する捕集手段を少なくとも2基設け、
上記捕集手段で排ガス中の浮遊微粒子を交互に捕集し、一方の捕集手段に排ガスを通気し浮遊微粒子を捕集するとともに排ガスの持つ熱により微粒子を燃焼させている間に、他方の捕集手段へ冷却空気を供給し当該他方の捕集手段を冷却して100℃以下にし、当該他方の捕集手段で捕集した微粒子に触媒溶液を付着し、続いて冷却空気を供給して乾燥させ、その後ふたたび粒子を捕集する際に触媒が付着した微粒子を触媒燃焼分解する
ことを特徴とする排ガス中の浮遊微粒子除去方法。
A method for removing suspended particulate matter in exhaust gas, which removes suspended particulate matter in exhaust gas,
Provide at least two collection means for collecting the fine particles,
While collecting the suspended particulates in the exhaust gas alternately by the collecting means, and passing the exhaust gas through one collecting means to collect the suspended particulates and burning the particulates by the heat of the exhaust gas , Cooling air is supplied to the collecting means, the other collecting means is cooled to 100 ° C. or lower, the catalyst solution is attached to the fine particles collected by the other collecting means, and then the cooling air is supplied. A method for removing suspended particulate matter in exhaust gas, comprising drying and then catalytically decomposing the particulates to which the catalyst has adhered when collecting the particles again.
内燃機関から排出される排ガス中の浮遊微粒子を除去する排ガス中の浮遊微粒子除去方法であって、
上記微粒子を捕集する捕集手段を少なくとも2基設け、
上記捕集手段で排ガス中の浮遊微粒子を交互に捕集し、一方の捕集手段に排ガスを通気し浮遊微粒子を捕集するとともに排ガスの持つ熱により微粒子を燃焼させている間に、他方の捕集手段へ冷却空気を供給し当該他方の捕集手段を冷却して100℃以下にし、当該他方の捕集手段で捕集した微粒子に触媒溶液を付着し、続いて冷却空気を供給して乾燥させ、その後ふたたび粒子を捕集する際に触媒が付着した微粒子を触媒燃焼分解する
ことを特徴とする排ガス中の浮遊微粒子除去方法。
A method for removing suspended particulate matter in exhaust gas that removes suspended particulate matter in exhaust gas discharged from an internal combustion engine,
Provide at least two collection means for collecting the fine particles,
While collecting the suspended particulates in the exhaust gas alternately by the collecting means, and passing the exhaust gas through one collecting means to collect the suspended particulates and burning the particulates by the heat of the exhaust gas , Cooling air is supplied to the collecting means, the other collecting means is cooled to 100 ° C. or lower, the catalyst solution is attached to the fine particles collected by the other collecting means, and then the cooling air is supplied. A method for removing suspended particulate matter in exhaust gas, comprising drying and then catalytically decomposing the particulates to which the catalyst has adhered when collecting the particles again.
内燃機関から排出される排ガスを浄化する排ガス処理システムであって、
内燃機関の排ガスの煙道に介装され、排ガス中の浮遊微粒子を分解処理する請求項1乃至4のいずれか一項の浮遊微粒子除去装置を有する
ことを特徴とする排ガス処理システム。
An exhaust gas treatment system for purifying exhaust gas discharged from an internal combustion engine,
An exhaust gas treatment system comprising the suspended particulate removal apparatus according to any one of claims 1 to 4, which is disposed in an exhaust gas flue of an internal combustion engine and decomposes suspended particulates in the exhaust gas.
請求項7において、
上記微粒子除去装置の後流側に排ガス中の窒素酸化物を分解処理する脱硝装置を有する
ことを特徴とする排ガス処理システム。
In claim 7,
An exhaust gas treatment system comprising a denitration device for decomposing nitrogen oxides in exhaust gas on the downstream side of the fine particle removing device.
JP2000194300A 2000-06-28 2000-06-28 Apparatus and method for removing suspended particulate matter in exhaust gas Expired - Fee Related JP4301702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000194300A JP4301702B2 (en) 2000-06-28 2000-06-28 Apparatus and method for removing suspended particulate matter in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000194300A JP4301702B2 (en) 2000-06-28 2000-06-28 Apparatus and method for removing suspended particulate matter in exhaust gas

Publications (2)

Publication Number Publication Date
JP2002013410A JP2002013410A (en) 2002-01-18
JP4301702B2 true JP4301702B2 (en) 2009-07-22

Family

ID=18693152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000194300A Expired - Fee Related JP4301702B2 (en) 2000-06-28 2000-06-28 Apparatus and method for removing suspended particulate matter in exhaust gas

Country Status (1)

Country Link
JP (1) JP4301702B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7043888B2 (en) 2018-02-28 2022-03-30 株式会社デンソー Linear position sensor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3570790B2 (en) * 1995-08-07 2004-09-29 三井化学株式会社 Ethylene-based copolymer rubber, method for producing the same, and vulcanizable rubber composition containing the copolymer rubber
JP2014055567A (en) * 2012-09-13 2014-03-27 Kawasaki Heavy Ind Ltd Exhaust emission control system and ship engine system
US10005016B2 (en) * 2015-12-28 2018-06-26 General Electric Company Hydrophobic filtration of tempering air
JP7199988B2 (en) * 2019-02-08 2023-01-06 日本碍子株式会社 Honeycomb structure manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7043888B2 (en) 2018-02-28 2022-03-30 株式会社デンソー Linear position sensor

Also Published As

Publication number Publication date
JP2002013410A (en) 2002-01-18

Similar Documents

Publication Publication Date Title
KR100418229B1 (en) Particle eliminater and eliminating method for exhaust gas
JP5759782B2 (en) Wet exhaust gas purification device
US20120031083A1 (en) Apparatus for treating diesel engine exhaust gas
JP4301702B2 (en) Apparatus and method for removing suspended particulate matter in exhaust gas
JP2001227332A (en) Exhaust gas denitrification system for ship
ES2265617T3 (en) APPARATUS TO PURIFY EXHAUST GAS AND METHOD TO PURIFY EXHAUST GAS.
JP2004105843A (en) Method of treating harmful substance in exhaust gas
JP2002219335A (en) Exhaust gas treating device
JP2002339731A (en) Method and device for treatment of engine exhaust emission
JP2002336628A (en) Apparatus for removing suspended particles in exhaust gas
JP4215994B2 (en) Apparatus and method for removing suspended particulate matter in exhaust gas
JP2002161728A (en) Device and method for removing suspended particulate matters in exhaust gas
JP4088467B2 (en) Apparatus and method for removing suspended particulate matter in exhaust gas
JP2002045653A (en) Device for removing suspended particulate in exhaust gas and method for removing the same
JP2006289203A (en) Using method of exhaust gas purification material
JP2002045629A (en) Filter for removing suspended fine particle in waste gas and device for removing suspended fine particle using the same
JPH04301115A (en) Filter for cleaning exhaust gas of internal combustion engine
JP2001227324A (en) Exhaust recirculating system furnished with particulate removal device
JP2002339729A (en) Removing device of suspended particulate in exhaust gas
JPH04301130A (en) Filter for cleaning exhaust gas of internal combustion engine
JP2003120262A (en) Removing device of suspended particulate in exhaust gas
JP2006329042A (en) Diesel exhaust emission control device and operation control method
JPH09184417A (en) Soot particles remover for diesel engine
JP2003074326A (en) System for disposing of harmful substance in exhaust gas
JP2002161729A (en) Device for removing suspended particulate matters/tar contained in exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090421

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees