JP4300810B2 - Discharge lamp lighting device - Google Patents

Discharge lamp lighting device Download PDF

Info

Publication number
JP4300810B2
JP4300810B2 JP2003025581A JP2003025581A JP4300810B2 JP 4300810 B2 JP4300810 B2 JP 4300810B2 JP 2003025581 A JP2003025581 A JP 2003025581A JP 2003025581 A JP2003025581 A JP 2003025581A JP 4300810 B2 JP4300810 B2 JP 4300810B2
Authority
JP
Japan
Prior art keywords
circuit
tube current
output
tube
pwm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003025581A
Other languages
Japanese (ja)
Other versions
JP2004235123A (en
Inventor
公祥 鈴木
和重 木田
貴久 幡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003025581A priority Critical patent/JP4300810B2/en
Publication of JP2004235123A publication Critical patent/JP2004235123A/en
Application granted granted Critical
Publication of JP4300810B2 publication Critical patent/JP4300810B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Description

【0001】
【発明の属する技術分野】
本発明は、光源として冷陰極線管を用いた映像機器(例えば液晶テレビ)において、特に調光制御をデジタル的に行う放電灯点灯装置の改良に関するものである。
【0002】
【従来の技術】
一般的に、液晶表示パネルの光源として冷陰極線管が用いられている。そして管に流れる電流(管電流)を制御することで、発光輝度を制御している。制御としては、電流ピーク値および電流平均値を、それぞれPWM制御により行なっている。
【0003】
具体的には、発振回路の電源を100kHz程度の周波数で断続してランプに流れる電流のピーク値を制御し、数百Hzの周波数で断続して平均電流を制御する。
【0004】
従来の管電流の制御方法の一つとして、開示されたものと類似の放電灯点灯回路の構成を図7に示す(特許文献1参照)。
【0005】
図7において、91は冷陰極線管、89はロイヤー回路により構成され高圧交流電圧を発生させるインバーター回路、87は前記インバーター回路の動作を断続させるためのスイッチ回路、90は負性抵抗である前記冷陰極線管91の動作を安定させる為のインピーダンスであるバラストコンデンサー、92は前記冷陰極線管に流れる交流電流を電圧値に変換し整流および平滑化を行う管電流検出部、88は前記管電流検出部92よりの信号をサンプリングおよびホールドを行うサンプリングホールド回路、86は管電流制御の基準となる基準電圧源、85は前記サンプルホールド回路よりの電圧と前記サンプルホールド回路88の信号の差を出力する演算増幅器、84は前記演算増幅器85の出力と輝度設定値を加算する加算器、81はPWM制御の基準となる三角波を発生させる三角波発生器、82は前記三角波発生器81と前記加算器84の出力を比較し前記スイッチ回路87と前記サンプルホールド回路を制御してバースト調光を行う為のPWMパルスを発生させる比較器である。
【0006】
従来例の動作を図8を用いて説明する。図8において(a)は三角波発生器の出力波形、(b)は放電管の発光輝度を設定するための輝度設定値、(c)は演算増幅器85の出力、(d)は加算器84の出力、(e)は比較器82の出力である。
【0007】
インバーター回路89は一次電源によって動作し、比較器82の出力によりスイッチ回路87にて動作を断続させられ、冷陰極線管91には(f)のような電流が流れ、電流検出部92によって電圧に変換、整流および平滑化される。サンプルホールド回路88は管電流検出部92の出力を比較器82の出力パルスでサンプルホールドする。
【0008】
演算増幅器85は管電流の基準値となる基準電源86とサンプルホールド回路の出力電圧の差をとり、基準電源86よりサンプルホールド回路の出力が大きければ出力値が大きく、逆に小さければ出力が小さくなり、加算器84の出力もそれに伴い増減する。この結果、輝度設定値より管電流が大きければインバーター回路89の動作時間が短くなり、逆に小さければ長くなる。このように冷陰極線管91に流れる平均電流を輝度設定値の応じた値に制御する事ができる。
【0009】
【特許文献1】
特開2002−43088号公報
【0010】
【発明が解決しようとする課題】
液晶TVにおいては表示画像に応じてバックライト輝度をリアルタイム制御する事が一般的に行なわれているが、管電流のピーク制御がアナログ回路によるものであったため、応答速度等を正確に管理するのが困難である。管電流を正確に管理する手段として制御のデジタル化が考えられるが、通常PWMの基準としてLCDパネル駆動用クロックが用いられ、一PWM周期はその整数分の1となる。
【0011】
一般的な例をあげると、パネルの駆動クロック周波数が30MHzであり、管電流制御PWMの周波数は100kHzであるため、Duty制御の分解能は300stepとなる。ランプの一般的な特性としてDuty比がある程度より小さい場合は管電流が不安定となり、ある程度大きくなると飽和するため、実際に制御を行なえる範囲は約Duty60%〜80%の間でありその間の分解能は前述の例の場合60step程度と粗くなってしまうという課題があった。
【0012】
本発明は前記課題に鑑み、管電流制御をデジタル化し、かつ高精度で行なえる、放電灯点灯装置を提供するものである。
【0013】
【課題を解決するための手段】
本発明は、上記課題に鑑み、光源として冷陰極線管を用いた映像機器において、放電管に流れる電流の制御をデジタル回路によるPWMパルスを用いて行い、前記PWMの基準となるクロックをPLL等の回路により逓倍する、または、前記PWMの分解能をビットリダクション回路にて拡大する、若しくは、前記PWMの周期を制御値に応じて可変し、ある一定以上のON期間を保証する事で解決する放電灯点灯装置を提供するものである。
【0014】
【発明の実施の形態】
本発明の請求項1に記載の放電灯点灯装置は、放電管に流れる電流のピーク値制御に用いるPWMの基準クロックとして、LCDパネル駆動クロックを整数倍した物を用いる事を特徴としたものである。
【0015】
本発明の請求項2に記載の放電灯点灯装置は、請求項1に記載した装置をより具体的な例で示したものである。
【0016】
本発明の請求項3に記載の放電灯点灯装置は、放電管に流れる電流のピーク値制御に用いるPWMの基準クロックとしてLCDパネル駆動クロックを用い、PWMパルスのDuty値をビットリダクション回路により、時間方向に分散させる事を特徴としたものである。
【0017】
本発明の請求項4に記載の放電灯点灯装置は、請求項3に記載した装置をより具体的な例で示したものである。
【0018】
本発明の請求項5に記載の放電灯点灯装置は、放電管に流れる電流のピーク値制御に用いるPWMの基準クロックとしてLCDパネル駆動クロックを用い、管電流制御値がnより大きいときは、PWM周期を一定のままON期間を増加させ、n以下の時はON期間を固定としOFF期間を増加させて周期を伸ばすよう制御する事を特徴としたものである。
【0019】
本発明の請求項6に記載の放電灯点灯装置は、請求項5に記載した装置をより具体的な例で示したものである。
【0020】
以下に、本発明の一実施の形態について、図1から図6を用いて説明する。
【0021】
(実施の形態1)
図1は本発明の第1の実施例を示し、図1において1は平均電流制御PWM回路、2は第1の管電流制御PWM回路、3はSW回路、4はAND回路、5は比較器、6はA/D変換器、7は自励発振回路、8はバラストコンデンサー、9は冷陰極線管、10は管電流検出回路、11はLPF回路である。また図2は本発明第1の実施の動作を示すタイミングチャートである。
【0022】
以下に具体的な動作を説明する。入力映像同期信号をもとに所望の輝度設定値の応じた形で平均電流制御PWM回路1よりPWMパルスが出力される。所望の輝度設定値とは例えばユーザーに開放したバックライトの明るさを制御するためのPWMのDuty比でありDuty0〜100%を任意に設定する。前記PWMパルスは通常映像信号のフレーム周波数とインバータとの干渉縞を防ぐため映像同期信号の垂直周波数に同期している。
【0023】
一方、管電流制御PWM回路2では液晶パネルを駆動するクロックを逓倍し、設定された管電流値に応じたPWMパルスが発生される。例えばパネルの駆動クロック周波数が30MHzであり、管電流制御PWMの周波数は100kHzの場合、Duty制御の分解能は300stepしかとれないが、パネルの駆動クロックを4逓倍することで、Duty制御の分解能は1200stepとれることになり、約Duty60%〜80%の間でもその間の分解能は240stepと十分実用範囲内となる。
【0024】
前記平均電流制御PWM回路1のPWM出力と前記管電流制御PWM回路2のPWM出力はAND回路4で演算され、SW3に供給される。SW3ではPWM信号をもとに電源電圧を制御し後段自励発振回路7を駆動し、バラストコンデンサ8を介して冷陰極線管9が発光する。また、冷陰極線管9を駆動する管電流は管電流検出回路10で検出され、LPF11で平滑化され後、平均電流制御PWMの周期に同期してA/D変換器6でデジタル化され、比較器5で管電流設定との差分をもとめ、その差分値を管電流設定値にフィードバックすることで安定な管電流を得ることができる。
【0025】
(実施の形態2)
図3は本発明の第2の実施例を示し、図3において12は第2の平均電流制御PWM回路である。また、図4は本発明第2の実施の動作を示すタイミングチャートである。以下に具体的な動作を説明する。第1の実施例では分解能を増やす為にクロックを逓倍することにより、PWMが動作するクロック周波数が高くしている。
【0026】
しかし半導体によっては逓倍器を内蔵させるのは困難な場合やコストアップに繋がる為、クロック周波数は液晶パネルの駆動クロックそのものを使いたい場合がある。そのために第2の実施例では制御する管電流PWMのDutyを変調させて、ビットリダクションさることにより見かけ上の分解能をUPさせている。
【0027】
すなわち図4に示すようにDuty50.25%を実現したい場合PWM周期は一定で、Dutyを50%、50%、50%、51%となるように制御する。そうすると平均Dutyは(50%+50%+50%+51%)/4=50.25%となり、分解能が増えたのと同じ効果を得ることができる。
【0028】
(実施の形態3)
図5は本発明の第3の実施例を示し、図5において13は第3の平均電流制御PWM回路である。また、図6は本発明第2の実施の動作を示すタイミングチャートである。以下に具体的な動作を説明する。第2の実施例ではみかけ上の分解能を増やす為に管電流PWMのDutyを変調させているが、第3の実施例では管電流PWMの周期を可変させる。
【0029】
すなわちPWMのHighの期間を固定にしてLowの期間を図6に示すように変調させる。図6において、c1はともともの管電流PWMの周期をあらわし、c2はLowの期間を変調させた場合を示す。このようにすることで第2の実施例と同様見かけ上の分解能を向上させることができる。Dutyを変調するか周期を変調するかはインバータ回路や液晶パネルなどの要因に応じてよりよい方式を選択して用いるとよい。
【0030】
【発明の効果】
以上のように本発明によれば、放電管に流れるピーク電流制御を、十分な精度を確保しつつデジタル化できるため、管電流値を正確に管理できる放電灯点灯装置を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態1による放電灯点灯装置の構成図
【図2】図1の動作を説明する波形図
【図3】本発明の実施の形態2による放電灯点灯装置の構成図
【図4】図2の動作を説明する波形図
【図5】本発明の実施の形態3による放電灯点灯装置の構成図
【図6】図5の動作を説明する波形図
【図7】従来の放電灯点灯装置の構成図
【図8】図7の動作を説明する波形図
【符号の説明】
1 平均電流制御PWM回路
2 第1の管電流制御PWM回路
3 SW回路
4 AND回路
5 比較器
6 A/D変換器
7 自励発振回路
8 バラストコンデンサー
9 冷陰極線管
10 管電流検出回路
11 LPF回路
12 第2の管電流制御PWM回路
13 第3の管電流制御PWM回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a discharge lamp lighting device that performs digital dimming control digitally in video equipment (for example, a liquid crystal television) using a cold cathode ray tube as a light source.
[0002]
[Prior art]
Generally, a cold cathode ray tube is used as a light source of a liquid crystal display panel. The light emission luminance is controlled by controlling the current flowing through the tube (tube current). As the control, the current peak value and the current average value are each performed by PWM control.
[0003]
Specifically, the power supply of the oscillation circuit is intermittently controlled at a frequency of about 100 kHz to control the peak value of the current flowing through the lamp, and the average current is controlled intermittently at a frequency of several hundred Hz.
[0004]
As one of the conventional tube current control methods, a configuration of a discharge lamp lighting circuit similar to that disclosed is shown in FIG. 7 (see Patent Document 1).
[0005]
In FIG. 7, 91 is a cold cathode ray tube, 89 is an inverter circuit configured by a Royer circuit and generates a high-voltage AC voltage, 87 is a switch circuit for intermittently operating the inverter circuit, and 90 is the negative resistance. A ballast capacitor which is an impedance for stabilizing the operation of the cathode ray tube 91, a tube current detection unit 92 which converts an alternating current flowing through the cold cathode ray tube into a voltage value, and performs rectification and smoothing, and 88 is the tube current detection unit A sampling and holding circuit that samples and holds the signal from 92, 86 is a reference voltage source that is a reference for tube current control, and 85 is an arithmetic operation that outputs the difference between the voltage from the sample and holding circuit and the signal from the sample and holding circuit 88 An amplifier, 84 is an adder for adding the output of the operational amplifier 85 and a luminance set value, and 81 is P A triangular wave generator 82 for generating a triangular wave serving as a reference for M control is for comparing the outputs of the triangular wave generator 81 and the adder 84 and controlling the switch circuit 87 and the sample hold circuit to perform burst dimming. It is a comparator which generates the PWM pulse.
[0006]
The operation of the conventional example will be described with reference to FIG. 8, (a) is an output waveform of the triangular wave generator, (b) is a luminance setting value for setting the light emission luminance of the discharge tube, (c) is an output of the operational amplifier 85, and (d) is an output of the adder 84. The output (e) is the output of the comparator 82.
[0007]
The inverter circuit 89 is operated by the primary power supply, and the operation is interrupted by the switch circuit 87 by the output of the comparator 82, the current as shown in (f) flows through the cold cathode ray tube 91, and the voltage is detected by the current detection unit 92. Converted, rectified and smoothed. The sample hold circuit 88 samples and holds the output of the tube current detector 92 with the output pulse of the comparator 82.
[0008]
The operational amplifier 85 takes the difference between the output voltage of the sample power supply circuit 86 and the reference power supply 86, which is the reference value of the tube current. If the output of the sample hold circuit is larger than that of the reference power supply 86, the output value is large. Accordingly, the output of the adder 84 also increases or decreases accordingly. As a result, if the tube current is larger than the luminance setting value, the operation time of the inverter circuit 89 is shortened. Thus, the average current flowing through the cold cathode ray tube 91 can be controlled to a value corresponding to the luminance setting value.
[0009]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-43088
[Problems to be solved by the invention]
In a liquid crystal TV, the backlight luminance is generally controlled in real time according to the display image. However, since the peak control of the tube current is based on an analog circuit, the response speed is accurately managed. Is difficult. As a means for accurately managing the tube current, digitization of control is conceivable. Usually, an LCD panel driving clock is used as a reference of PWM, and one PWM cycle is a fraction of that integer.
[0011]
As a general example, since the panel drive clock frequency is 30 MHz and the tube current control PWM frequency is 100 kHz, the duty control resolution is 300 steps. As a general characteristic of the lamp, the tube current becomes unstable when the duty ratio is smaller than a certain level, and saturates when the duty ratio increases to a certain level. Therefore, the actual controllable range is between about 60% and 80% duty, and the resolution between them. In the case of the above-described example, there is a problem that it becomes as rough as about 60 steps.
[0012]
In view of the above problems, the present invention provides a discharge lamp lighting device capable of digitizing tube current control and performing it with high accuracy.
[0013]
[Means for Solving the Problems]
In view of the above problems, the present invention performs control of a current flowing in a discharge tube using a PWM pulse by a digital circuit in a video device using a cold cathode ray tube as a light source, and a clock serving as a reference of the PWM is a PLL or the like. A discharge lamp that solves the problem by multiplying by a circuit, expanding the resolution of the PWM by a bit reduction circuit, or changing the period of the PWM in accordance with a control value and guaranteeing a certain ON period or more. A lighting device is provided.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The discharge lamp lighting device according to claim 1 of the present invention is characterized in that an LCD panel drive clock multiplied by an integer is used as a PWM reference clock used for peak value control of the current flowing in the discharge tube. is there.
[0015]
The discharge lamp lighting device according to claim 2 of the present invention is a more specific example of the device according to claim 1.
[0016]
According to a third aspect of the present invention, there is provided a discharge lamp lighting device using an LCD panel drive clock as a PWM reference clock used for controlling a peak value of a current flowing in a discharge tube, and setting a duty value of a PWM pulse to a time by a bit reduction circuit. It is characterized by being dispersed in the direction.
[0017]
A discharge lamp lighting device according to a fourth aspect of the present invention is a more specific example of the device according to the third aspect.
[0018]
The discharge lamp lighting device according to claim 5 of the present invention uses an LCD panel drive clock as a PWM reference clock used for peak value control of the current flowing in the discharge tube, and when the tube current control value is larger than n, the PWM The ON period is increased while keeping the period constant, and when it is less than or equal to n, the ON period is fixed and the OFF period is increased so as to extend the period.
[0019]
A discharge lamp lighting device according to a sixth aspect of the present invention is a more specific example of the device according to the fifth aspect.
[0020]
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
[0021]
(Embodiment 1)
FIG. 1 shows a first embodiment of the present invention. In FIG. 1, 1 is an average current control PWM circuit, 2 is a first tube current control PWM circuit, 3 is a SW circuit, 4 is an AND circuit, and 5 is a comparator. , 6 is an A / D converter, 7 is a self-excited oscillation circuit, 8 is a ballast capacitor, 9 is a cold cathode ray tube, 10 is a tube current detection circuit, and 11 is an LPF circuit. FIG. 2 is a timing chart showing the operation of the first embodiment of the present invention.
[0022]
A specific operation will be described below. A PWM pulse is output from the average current control PWM circuit 1 in a form corresponding to a desired luminance setting value based on the input video synchronization signal. The desired luminance setting value is, for example, a duty ratio of PWM for controlling the brightness of the backlight that is open to the user, and arbitrarily sets Duty 0 to 100%. The PWM pulse is synchronized with the vertical frequency of the video synchronization signal in order to prevent interference fringes between the frame frequency of the normal video signal and the inverter.
[0023]
On the other hand, the tube current control PWM circuit 2 multiplies the clock for driving the liquid crystal panel, and generates a PWM pulse corresponding to the set tube current value. For example, when the panel drive clock frequency is 30 MHz and the tube current control PWM frequency is 100 kHz, the duty control resolution can be only 300 steps. However, by multiplying the panel drive clock by four, the duty control resolution is 1200 steps. Therefore, even between about 60% and 80% duty, the resolution during that time is 240 steps, which is sufficiently within the practical range.
[0024]
The PWM output of the average current control PWM circuit 1 and the PWM output of the tube current control PWM circuit 2 are calculated by the AND circuit 4 and supplied to SW3. In SW 3, the power supply voltage is controlled based on the PWM signal to drive the post-stage self-excited oscillation circuit 7, and the cold cathode ray tube 9 emits light through the ballast capacitor 8. The tube current that drives the cold cathode ray tube 9 is detected by the tube current detection circuit 10, smoothed by the LPF 11, and then digitized by the A / D converter 6 in synchronization with the period of the average current control PWM for comparison. A stable tube current can be obtained by obtaining the difference from the tube current setting with the device 5 and feeding back the difference value to the tube current set value.
[0025]
(Embodiment 2)
FIG. 3 shows a second embodiment of the present invention. In FIG. 3, reference numeral 12 denotes a second average current control PWM circuit. FIG. 4 is a timing chart showing the operation of the second embodiment of the present invention. A specific operation will be described below. In the first embodiment, the clock frequency at which the PWM operates is increased by multiplying the clock to increase the resolution.
[0026]
However, depending on the semiconductor, it may be difficult to incorporate a multiplier, or the cost may be increased. Therefore, the clock frequency may be the drive clock of the liquid crystal panel itself. Therefore, in the second embodiment, the apparent resolution is increased by modulating the duty of the tube current PWM to be controlled and performing bit reduction.
[0027]
That is, as shown in FIG. 4, when it is desired to realize Duty 50.25%, the PWM cycle is constant, and the Duty is controlled to be 50%, 50%, 50%, and 51%. Then, the average duty becomes (50% + 50% + 50% + 51%) / 4 = 50.25%, and the same effect as the increase in resolution can be obtained.
[0028]
(Embodiment 3)
FIG. 5 shows a third embodiment of the present invention. In FIG. 5, reference numeral 13 denotes a third average current control PWM circuit. FIG. 6 is a timing chart showing the operation of the second embodiment of the present invention. A specific operation will be described below. In the second embodiment, the duty of the tube current PWM is modulated in order to increase the apparent resolution, but in the third embodiment, the cycle of the tube current PWM is varied.
[0029]
That is, the PWM High period is fixed and the Low period is modulated as shown in FIG. In FIG. 6, c1 represents the period of the original tube current PWM, and c2 represents a case where the Low period is modulated. By doing so, the apparent resolution can be improved as in the second embodiment. Whether to modulate the duty or the period may be selected and used according to factors such as the inverter circuit or the liquid crystal panel.
[0030]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a discharge lamp lighting device capable of accurately managing the tube current value because the peak current control flowing through the discharge tube can be digitized while ensuring sufficient accuracy. Become.
[Brief description of the drawings]
1 is a configuration diagram of a discharge lamp lighting device according to a first embodiment of the present invention. FIG. 2 is a waveform diagram for explaining the operation of FIG. 1. FIG. 3 is a configuration of a discharge lamp lighting device according to a second embodiment of the present invention. 4 is a waveform diagram for explaining the operation of FIG. 2. FIG. 5 is a block diagram of a discharge lamp lighting device according to Embodiment 3 of the present invention. FIG. 6 is a waveform diagram for explaining the operation of FIG. Configuration diagram of conventional discharge lamp lighting device [FIG. 8] Waveform diagram for explaining the operation of FIG.
DESCRIPTION OF SYMBOLS 1 Average current control PWM circuit 2 1st tube current control PWM circuit 3 SW circuit 4 AND circuit 5 Comparator 6 A / D converter 7 Self-excited oscillation circuit 8 Ballast capacitor 9 Cold cathode ray tube 10 Tube current detection circuit 11 LPF circuit 12 Second tube current control PWM circuit 13 Third tube current control PWM circuit

Claims (3)

表示機器に用いる放電灯点灯装置であって、
入力映像同期信号をトリガとして所望の輝度設定値に応じた輝度を得るためにPWMパルスを発生する平均電流制御PWM回路と、
液晶パネルを駆動するクロックを逓倍し設定された管電流設定レジスタの値に応じてPWMパルスを出力する管電流制御PWM回路と、
前記平均電流PWMパルスと前記管電流PWMパルスの出力のANDを演算するAND回路と、
前記AND回路の出力信号をもとに電源電圧を制御するSW回路と、
前記SW回路の出力をもとにインバータを構成する自励発振回路と、
前記自励発信回路に動作安定のためのバラスとコンデンサーを介して接続された冷陰極管と、
冷陰極線管を駆動する管電流を検出するための管電流検出回路と、
前記管電流値を平滑するLPF回路と
前記LPF回路によって平滑化された前記管電流をデジタル化するA/D変換器と、
所望の管電流設定値と前記A/D変換器の出力を比較し両者が同じになるように前記管電流設定レジスタに値をセットし前記管電流制御PWM回路の出力を制御する比較器と、
を備えたことを特徴とする放電灯点灯装置。
A discharge lamp lighting device used for a display device,
An average current control PWM circuit that generates a PWM pulse to obtain a luminance according to a desired luminance setting value using an input video synchronization signal as a trigger;
A tube current control PWM circuit that outputs a PWM pulse according to the value of the tube current setting register set by multiplying the clock for driving the liquid crystal panel;
An AND circuit that calculates an AND of the average current PWM pulse and the output of the tube current PWM pulse;
A SW circuit for controlling a power supply voltage based on an output signal of the AND circuit;
A self-oscillation circuit that constitutes an inverter based on the output of the SW circuit;
A cold-cathode tube connected to the self-excited oscillation circuit via a ballast and a capacitor for stable operation;
A tube current detection circuit for detecting a tube current for driving the cold cathode ray tube;
An LPF circuit for smoothing the tube current value, and an A / D converter for digitizing the tube current smoothed by the LPF circuit;
A comparator that compares a desired tube current setting value with the output of the A / D converter, sets the value in the tube current setting register so that both are the same, and controls the output of the tube current control PWM circuit;
A discharge lamp lighting device comprising:
表示機器に用いる放電灯点灯装置であって、
入力映像同期信号をトリガとして所望の輝度設定値に応じた輝度を得るためにPWMパルスを発生する平均電流制御PWM回路と、
液晶パネルを駆動するクロックをクロックとして設定された管電流設定レジスタの値をもとにDutyを変調させたPWMパルスを出力する管電流制御PWM回路と、
前記平均電流PWMパルスと前記管電流PWMパルスの出力のANDを演算するAND回路と、
前記AND回路の出力信号をもとに電源電圧を制御するSW回路と、
前記SW回路の出力をもとにインバータを構成する自励発振回路と、
前記自励発信回路に動作安定のためのバラスとコンデンサーを介して接続された冷陰極管と、
前記冷陰極線管を駆動する管電流を検出するための管電流検出回路と、
前記管電流値を平滑するLPF回路と
前記LPF回路によって平滑化された管電流をデジタル化するA/D変換器と、
所望の管電流設定値と前記A/D変換器の出力を比較し両者が同じになるように前記管電流設定レジスタに値をセットし前記管電流制御PWM回路の出力を制御する比較器と、
を備えたことを特徴とする放電灯点灯装置。
A discharge lamp lighting device used for a display device,
An average current control PWM circuit that generates a PWM pulse to obtain a luminance according to a desired luminance setting value using an input video synchronization signal as a trigger;
A tube current control PWM circuit for outputting a PWM pulse obtained by modulating the duty based on the value of the tube current setting register set with the clock for driving the liquid crystal panel as a clock;
An AND circuit that calculates an AND of the average current PWM pulse and the output of the tube current PWM pulse;
A SW circuit for controlling a power supply voltage based on an output signal of the AND circuit;
A self-oscillation circuit that constitutes an inverter based on the output of the SW circuit;
A cold-cathode tube connected to the self-excited oscillation circuit via a ballast and a capacitor for stable operation;
A tube current detection circuit for detecting a tube current for driving the cold cathode ray tube;
An LPF circuit for smoothing the tube current value, and an A / D converter for digitizing the tube current smoothed by the LPF circuit;
A comparator that compares a desired tube current setting value with the output of the A / D converter, sets the value in the tube current setting register so that both are the same, and controls the output of the tube current control PWM circuit;
A discharge lamp lighting device comprising:
表示機器に用いる放電灯点灯装置であって、
入力映像同期信号をトリガとして所望の輝度設定値に応じた輝度を得るためにPWMパルスを発生する平均電流制御PWM回路と、
液晶パネルを駆動するクロックをクロックとして設定された管電流設定レジスタの値をもとに管電流の制御周期を変調させたPWMパルスを出力する管電流制御PWM回路と、
前記平均電流PWMパルスと前記管電流PWMパルスの出力のANDを演算するAND回路と、
前記AND回路の出力信号をもとに電源電圧を制御するSW回路と、
前記SW回路の出力をもとにインバータを構成する自励発振回路と、
前記自励発信回路に動作安定のためのバラスとコンデンサーを介して接続された冷陰極管と、
前記冷陰極線管を駆動する管電流を検出するための管電流検出回路と、
前記管電流値を平滑するLPF回路と
前記LPF回路によって平滑化された管電流をデジタル化するA/D変換器と、
所望の管電流設定値と前記A/D変換器の出力を比較し両者が同じになるように前記管電流設定レジスタに値をセットし前記管電流制御PWM回路の出力を制御する比較器と、
を備えたことを特徴とする放電灯点灯装置。
A discharge lamp lighting device used for a display device,
An average current control PWM circuit that generates a PWM pulse to obtain a luminance according to a desired luminance setting value using an input video synchronization signal as a trigger;
A tube current control PWM circuit that outputs a PWM pulse obtained by modulating the control period of the tube current based on the value of the tube current setting register set with the clock for driving the liquid crystal panel as a clock;
An AND circuit that calculates an AND of the average current PWM pulse and the output of the tube current PWM pulse;
A SW circuit for controlling a power supply voltage based on an output signal of the AND circuit;
A self-oscillation circuit that constitutes an inverter based on the output of the SW circuit;
A cold-cathode tube connected to the self-excited oscillation circuit via a ballast and a capacitor for stable operation;
A tube current detection circuit for detecting a tube current for driving the cold cathode ray tube;
An LPF circuit for smoothing the tube current value, and an A / D converter for digitizing the tube current smoothed by the LPF circuit;
A comparator that compares a desired tube current setting value with the output of the A / D converter, sets the value in the tube current setting register so that both are the same, and controls the output of the tube current control PWM circuit;
A discharge lamp lighting device comprising:
JP2003025581A 2003-02-03 2003-02-03 Discharge lamp lighting device Expired - Fee Related JP4300810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003025581A JP4300810B2 (en) 2003-02-03 2003-02-03 Discharge lamp lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003025581A JP4300810B2 (en) 2003-02-03 2003-02-03 Discharge lamp lighting device

Publications (2)

Publication Number Publication Date
JP2004235123A JP2004235123A (en) 2004-08-19
JP4300810B2 true JP4300810B2 (en) 2009-07-22

Family

ID=32953822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003025581A Expired - Fee Related JP4300810B2 (en) 2003-02-03 2003-02-03 Discharge lamp lighting device

Country Status (1)

Country Link
JP (1) JP4300810B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797511B2 (en) 2005-08-23 2011-10-19 日本電気株式会社 Cold cathode tube lighting device, tube current control method, and integrated circuit
JP4811126B2 (en) * 2006-05-24 2011-11-09 パナソニック電工株式会社 Lighting system
JP5159895B2 (en) * 2008-12-19 2013-03-13 三菱電機株式会社 Lighting device for in-vehicle light source
JP5834236B2 (en) * 2011-05-12 2015-12-16 パナソニックIpマネジメント株式会社 Solid light source lighting device and lighting apparatus using the same
EP2833540B1 (en) * 2012-03-30 2017-05-17 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device
CN104221271B (en) * 2012-03-30 2017-10-24 东芝三菱电机产业系统株式会社 Power conversion device
US20170280523A1 (en) * 2014-08-18 2017-09-28 National University Of Singapore Single-stage multi-string led driver with dimming

Also Published As

Publication number Publication date
JP2004235123A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
KR100322513B1 (en) Control circuit and method for piezoelectric transformer
US6815907B2 (en) Pulse-width modulation for operating high pressure lamps
US7528818B2 (en) Digitally synchronized integrator for noise rejection in system using PWM dimming signals to control brightness of light source
JP4168660B2 (en) Discharge lamp lighting device
JP4300810B2 (en) Discharge lamp lighting device
JP2004241136A (en) Discharge lamp lighting device and display device having the same
US7521877B2 (en) Dimmer circuit for a discharge lighting apparatus
JP2002043088A (en) Electric current control method for discharge lamp, discharge lamp lighting circuit and liquid crystal backlight using the same
KR100704357B1 (en) Dischrge lamp lighting device
JP4331762B2 (en) Power supply unit for light source and control method thereof
KR20090113322A (en) Method and device for driving a gas discharge lamp
JP2006039345A (en) Device for dimming backlight
JP4686901B2 (en) Backlight dimmer
JP2001166278A (en) Back-light control device for liquid crystal display device
JP2000223297A (en) Discharge tube lighting circuit and discharge tube lighting method
JP3559161B2 (en) How to indicate when to replace the backlight lamp
WO2009130861A1 (en) Inverter device
JP2004170639A (en) Image display controlling apparatus and method, imaging apparatus, and viewfinder device
US7429830B2 (en) Power control of a fluorescent lamp
JP3681851B2 (en) Piezoelectric transformer control circuit
WO2006003626A1 (en) Method and circuit for driving back a light emitter of a display apparatus
JP2586451B2 (en) Discharge tube drive circuit
JPH1187085A (en) Lighting device
JPH1075576A (en) Control circuit for piezoelectric transformer
JP2010177115A (en) Rare gas discharge lamp lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051031

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees