JP4299360B2 - Piezoelectric element and liquid ejection apparatus using the same - Google Patents

Piezoelectric element and liquid ejection apparatus using the same Download PDF

Info

Publication number
JP4299360B2
JP4299360B2 JP2008209563A JP2008209563A JP4299360B2 JP 4299360 B2 JP4299360 B2 JP 4299360B2 JP 2008209563 A JP2008209563 A JP 2008209563A JP 2008209563 A JP2008209563 A JP 2008209563A JP 4299360 B2 JP4299360 B2 JP 4299360B2
Authority
JP
Japan
Prior art keywords
film
piezoelectric
piezoelectric element
plasma
element according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008209563A
Other languages
Japanese (ja)
Other versions
JP2009071295A (en
Inventor
隆満 藤井
崇幸 直野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008209563A priority Critical patent/JP4299360B2/en
Publication of JP2009071295A publication Critical patent/JP2009071295A/en
Application granted granted Critical
Publication of JP4299360B2 publication Critical patent/JP4299360B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1607Production of print heads with piezoelectric elements
    • B41J2/161Production of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1623Manufacturing processes bonding and adhesion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1626Manufacturing processes etching
    • B41J2/1628Manufacturing processes etching dry etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1632Manufacturing processes machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/164Manufacturing processes thin film formation
    • B41J2/1642Manufacturing processes thin film formation thin film formation by CVD [chemical vapor deposition]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/164Manufacturing processes thin film formation
    • B41J2/1646Manufacturing processes thin film formation thin film formation by sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/076Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/1051Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2047Membrane type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead based oxides
    • H10N30/8554Lead zirconium titanate based

Description

本発明はプラズマを用いる気相成長法により、基板上に電極を介して圧電膜が成膜されてなる圧電素子及びそれを用いた液体吐出装置に関する。   The present invention relates to a piezoelectric element in which a piezoelectric film is formed on a substrate via an electrode by a vapor phase growth method using plasma, and a liquid discharge apparatus using the piezoelectric element.

電界印加強度の増減に伴って伸縮する圧電性を有する圧電膜と、圧電膜に対して電界を印加する電極とを備えた圧電素子が、インクジェット式記録ヘッドに搭載されるアクチュエータ等として使用されている。各種電子部品の小型化、高性能化が求められる現在、インクジェット式記録ヘッドにおいても、より高画質化するためには圧電素子を小型化して高密度に実装可能とすることが求められている。   A piezoelectric element having a piezoelectric film having a piezoelectric property that expands and contracts as the electric field application intensity increases and decreases, and an electrode that applies an electric field to the piezoelectric film is used as an actuator mounted on an ink jet recording head. Yes. Currently, various types of electronic components are required to be smaller and have higher performance, and even in an ink jet recording head, it is required to reduce the size of piezoelectric elements so that they can be mounted at high density in order to achieve higher image quality.

圧電素子の小型化において、加工精度の関係から、圧電素子に用いられる圧電膜は、できるだけ膜厚が薄く且つ圧電性の良好なものであることが望ましいとされている。しかしながら、従来の焼結法により得られる圧電膜では、膜厚が薄くなるにつれて、圧電膜を構成する結晶粒の大きさに膜厚が近づくために結晶粒の大きさや形状による圧電性能への影響が無視できなくなり、性能のばらつきや劣化が起こりやすく、充分な性能を得ることが難しい。このような結晶粒の影響を回避するために、焼結法に代わる薄膜形成技術として、スパッタ法やPVD(物理蒸着法)等の気相成長法による圧電膜の薄型化が検討されている。   In miniaturization of a piezoelectric element, it is desirable that the piezoelectric film used for the piezoelectric element is as thin as possible and has good piezoelectricity because of processing accuracy. However, in the piezoelectric film obtained by the conventional sintering method, as the film thickness decreases, the film thickness approaches the size of the crystal grains constituting the piezoelectric film, so the influence of the crystal grain size and shape on the piezoelectric performance. Cannot be neglected, performance variations and deterioration are likely to occur, and it is difficult to obtain sufficient performance. In order to avoid the influence of such crystal grains, thinning of the piezoelectric film by a vapor phase growth method such as a sputtering method or PVD (physical vapor deposition method) has been studied as a thin film forming technique replacing the sintering method.

しかしながら、気相成長法による圧電膜の薄膜化においても、結晶粒界および結晶配向性の問題から、バルク焼結体に比して圧電性能のばらつきが大きく、充分な圧電性能を有する圧電膜を得ることが難しいため、結晶構造の最適化等が試みられている。   However, even when the piezoelectric film is thinned by the vapor phase growth method, due to the problem of crystal grain boundaries and crystal orientation, the piezoelectric performance varies greatly compared to the bulk sintered body, and a piezoelectric film having sufficient piezoelectric performance is obtained. Since it is difficult to obtain, attempts have been made to optimize the crystal structure.

特許文献1には、鉛含有圧電膜を構成する結晶粒の過半数の結晶粒が柱状構造を有し、且つ膜厚方向の構成元素の組成が連続的もしくは段階的に変化している構成とした圧電素子が開示されている。   In Patent Document 1, a majority of crystal grains constituting the lead-containing piezoelectric film have a columnar structure, and the composition of constituent elements in the film thickness direction is changed continuously or stepwise. A piezoelectric element is disclosed.

特許文献2には、圧電膜を2層構造の圧電体積層膜とし、圧電体積層膜の下層を下部電極と密着性の良好な配向制御層とした圧電素子が開示されている。
特許第3705089号公報 特開2005-203725号公報
Patent Document 2 discloses a piezoelectric element in which the piezoelectric film is a two-layered piezoelectric laminated film, and the lower layer of the piezoelectric laminated film is an orientation control layer having good adhesion to the lower electrode.
Japanese Patent No. 3705089 JP 2005-203725 A

特許文献1の圧電素子では、良好な圧電特性を有し、且つ小型化が可能であることが記載されているが、膜厚方向に圧電膜の組成を変化させるために精密な印加電圧の制御を行う等、成膜工程が複雑である。   Although it is described that the piezoelectric element of Patent Document 1 has good piezoelectric characteristics and can be reduced in size, precise control of applied voltage is required to change the composition of the piezoelectric film in the film thickness direction. The film formation process is complicated.

また、特許文献2の圧電素子は、密着性の高い配向制御層を設けたことにより大きな圧電特性と高い耐久性を有することが記載されているが、圧電膜を2層構造にしているためそれぞれの圧電膜に対応させてターゲット組成や成膜条件を変更する必要があり、プロセスが複雑である。   Moreover, although it is described that the piezoelectric element of patent document 2 has a large piezoelectric characteristic and high durability by providing an orientation control layer having high adhesion, each of the piezoelectric films has a two-layer structure. It is necessary to change the target composition and film formation conditions in accordance with the piezoelectric film, and the process is complicated.

本発明は上記事情に鑑みてなされたものであり、プラズマを用いる気相成長法により、基板上に電極を介して圧電膜が成膜されてなる圧電素子において、良好な圧電特性を有し、簡易なプロセスにて製造することが可能な圧電素子を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and has good piezoelectric characteristics in a piezoelectric element in which a piezoelectric film is formed on a substrate via an electrode by a vapor phase growth method using plasma, An object of the present invention is to provide a piezoelectric element that can be manufactured by a simple process.

本発明の圧電素子は、プラズマを用いる気相成長法により、基板上に電極を介して圧電膜が成膜されてなる圧電素子において、圧電膜が、下記一般式で表される1種又は複数種のペロブスカイト型酸化物(不可避不純物を含んでいてもよい)であって基板面に対して非平行方向に延びる多数の柱状結晶体からなる柱状構造膜からなり、柱状構造膜の表面において観測される多数の柱状結晶体の端面が、端面の最小の外接円の径が100nm以下から500nm以上に亘って分布する大きさを有しており、かつその外接円の径が100nm以下のものを20%以上、500nm以上のものを5%以上含むものであり、柱状構造膜の表面粗さRaが10nm以下であることを特徴とするものである。   The piezoelectric element of the present invention is a piezoelectric element in which a piezoelectric film is formed on a substrate via an electrode by a vapor phase growth method using plasma, and the piezoelectric film is one or more represented by the following general formula: It is a kind of perovskite type oxide (which may contain inevitable impurities) and consists of a columnar structure film consisting of a large number of columnar crystals extending in a non-parallel direction to the substrate surface, and is observed on the surface of the columnar structure film The end faces of a large number of columnar crystals have a size in which the diameter of the minimum circumscribed circle of the end faces is distributed from 100 nm or less to 500 nm or more, and the diameter of the circumscribed circle is 20 nm or less. % Or more and 5% or more of 500 nm or more, and the surface roughness Ra of the columnar structure film is 10 nm or less.

Pb(Ti,Zr,M)O
(上記式中、Mは、Sn,Nb,Ta,Mo,W,Ir,Os,Pd,Pt,Re,Mn,Co,Ni,V,及びFeからなる群より選択される少なくとも1種の金属元素であり、0<x<1,0<y<1,0≦z<1,x+y+z=1である。)
上記式において、PbはAサイト元素であり、Ti,Zr,MはBサイト元素である。本明細書において、Aサイト元素であるPbと酸素原子とのモル比、及びBサイト元素と酸素元素とのモル比は基本的に1:3であるが、ペロブスカイト構造を取り得る範囲内では1:3からずれてもよい。複数の元素からなるBサイトについては、酸素原子モル数を3とした時の、それぞれのBサイト元素のモル数の合計であるx+y+zは、1が標準であるが、ペロブスカイト構造を取り得る範囲内では1からずれてもよいことを意味している。
Pb (Ti x , Zr y , M z ) O 3
(In the above formula, M is at least one metal selected from the group consisting of Sn, Nb, Ta, Mo, W, Ir, Os, Pd, Pt, Re, Mn, Co, Ni, V, and Fe. Element, 0 <x <1, 0 <y <1, 0 ≦ z <1, x + y + z = 1.)
In the above formula, Pb is an A site element, and Ti, Zr, and M are B site elements. In this specification, the molar ratio of Pb, which is an A site element, and an oxygen atom, and the molar ratio of a B site element, to an oxygen element are basically 1: 3. : It may deviate from 3. For the B site composed of a plurality of elements, x + y + z, which is the sum of the number of moles of each B site element when the number of moles of oxygen atoms is 3, is standard, but within the range where a perovskite structure can be taken. Means that it may deviate from 1.

前記気相成長法は、成膜温度が550℃未満の条件で成膜するものであることが好ましく、また、成膜時のプラズマ中のプラズマ電位Vs(V)とフローティング電位Vf(V)との差であるVs−Vf(V)が、10V以上30V以下の条件で成膜するものであることが好ましい。
本明細書において、「成膜温度」は、成膜を行う基板の中心温度を意味するものとする。
The vapor phase growth method is preferably a method in which a film is formed at a film forming temperature of less than 550 ° C., and a plasma potential Vs (V) and a floating potential Vf (V) in the plasma during film formation It is preferable that the film is formed under the condition of Vs−Vf (V), which is a difference of 10V to 30V.
In this specification, the “film formation temperature” means the center temperature of the substrate on which film formation is performed.

また、前記気相成長法は、スパッタリング法、イオンプレーティング法、及びプラズマCVD法のうち、いずれかであることが好ましい。   The vapor phase growth method is preferably any one of a sputtering method, an ion plating method, and a plasma CVD method.

本発明の圧電素子において、前記柱状構造膜の膜厚は、1μm以上であることが好ましい。   In the piezoelectric element of the present invention, the columnar structure film preferably has a thickness of 1 μm or more.

本発明の液体吐出装置は、上記本発明の圧電素子と、該圧電素子の前記基板に一体的にまたは別体として設けられた液体吐出部材とを備え、該液体吐出部材は、液体が貯留される液体貯留室と、該液体貯留室から外部に前記液体が吐出される液体吐出口とを有するものであることを特徴とするものである。   A liquid discharge apparatus of the present invention includes the piezoelectric element of the present invention and a liquid discharge member provided integrally or separately on the substrate of the piezoelectric element. The liquid discharge member stores liquid. A liquid storage chamber and a liquid discharge port through which the liquid is discharged from the liquid storage chamber.

本発明の圧電素子において、圧電膜は、プラズマを用いる気相成長法により成膜され、上記一般式で表されるチタン酸ジルコン酸鉛系の1種又は複数種のペロブスカイト型酸化物(不可避不純物を含んでいてもよい)からなる柱状構造膜からなり、柱状構造膜の表面において観測される多数の柱状結晶体の端面が、端面の最小の外接円の径が100nm以下から500nm以上に亘って分布する大きさを有しており、かつその外接円の径が100nm以下のものを20%以上、500nm以上のものを5%以上含むものであり、柱状構造膜の表面粗さRaが10nm以下のものとしている。   In the piezoelectric element of the present invention, the piezoelectric film is formed by a vapor phase growth method using plasma, and one or more perovskite oxides (inevitable impurities) of the lead zirconate titanate system represented by the above general formula. The end faces of a large number of columnar crystals observed on the surface of the columnar structure film have a diameter of the minimum circumscribed circle of the end faces ranging from 100 nm or less to 500 nm or more. The diameter of the circumscribed circle is 20% or more and the diameter of the circumscribed circle is 20% or more and 500% or more, and the surface roughness Ra of the columnar structure film is 10 nm or less. It is supposed to be.

かかる構成によれば、表面粗さRaが小さいことから電界集中を生じにくく、電界集中による圧電体の劣化を抑制することができる。また、Raが小さい方がデバイス化の際の後工程でのパターニングの精度が良いため、面内の駆動均一性が良い。   According to such a configuration, since the surface roughness Ra is small, electric field concentration hardly occurs, and deterioration of the piezoelectric body due to electric field concentration can be suppressed. In addition, the smaller the Ra, the better the patterning accuracy in the subsequent process at the time of device fabrication, so the in-plane driving uniformity is good.

また、本発明の圧電素子の圧電膜は、結晶粒の粒径に幅広い分布を有しており、圧電膜全体としては不定形となる。粒径が大きい結晶は、圧電性が面内応力等により制限されやすいと考えられているが、本発明では粒径の小さい結晶と混在しており、応力が緩和されやすいため、圧電性能が制限されることがない。   In addition, the piezoelectric film of the piezoelectric element of the present invention has a wide distribution of crystal grain sizes, and the entire piezoelectric film is indefinite. Crystals with a large grain size are considered to be easily restricted in piezoelectricity by in-plane stress, etc., but in the present invention, they are mixed with crystals with a small grain size and the stress is easily relaxed, so the piezoelectric performance is limited. It will not be done.

更に、粒径を略均一にする必要がないため、膜厚方向に圧電膜の組成を変化させたり、配向制御層を設ける等の複雑なプロセスを必要としない。   Furthermore, since it is not necessary to make the particle size substantially uniform, a complicated process such as changing the composition of the piezoelectric film in the film thickness direction or providing an orientation control layer is not required.

従って、本発明によれば、プラズマを用いる気相成長法により、素子信頼性が高く、良好な圧電特性を有し、簡易なプロセスにて製造することが可能な圧電素子を提供することできる。   Therefore, according to the present invention, it is possible to provide a piezoelectric element that has high element reliability, good piezoelectric characteristics, and can be manufactured by a simple process by vapor phase growth using plasma.

「圧電素子」
図1を参照して、本発明に係る実施形態の圧電素子及びインクジェット式記録ヘッド(液体吐出装置)の構造について説明する。図1は、インクジェット式記録ヘッドの要部断面図である。視認しやすくするため、構成要素の縮尺は実際のものとは適宜異ならせてある。
"Piezoelectric element"
With reference to FIG. 1, the structure of a piezoelectric element and an ink jet recording head (liquid ejecting apparatus) according to an embodiment of the present invention will be described. FIG. 1 is a cross-sectional view of a main part of an ink jet recording head. In order to facilitate visual recognition, the scale of the constituent elements is appropriately changed from the actual one.

本実施形態のインクジェット式記録ヘッド(液体吐出装置)3は、概略、圧電アクチュエータ2の裏面に、インクが貯留されるインク室(液体貯留室)21及びインク室21から外部にインクが吐出されるインク吐出口(液体吐出口)22を有するインクノズル(液体貯留吐出部材)20が取り付けられたものである。
インクジェット式記録ヘッド3では、圧電素子1に印加する電界強度を増減させて圧電素子1を伸縮させ、これによってインク室21からのインクの吐出や吐出量の制御が行われる。
The ink jet recording head (liquid ejecting apparatus) 3 of the present embodiment roughly ejects ink to the outside from the ink chamber (liquid storing chamber) 21 in which ink is stored and the ink chamber 21 on the back surface of the piezoelectric actuator 2. An ink nozzle (liquid storage and discharge member) 20 having an ink discharge port (liquid discharge port) 22 is attached.
In the ink jet recording head 3, the electric field strength applied to the piezoelectric element 1 is increased / decreased to expand / contract the piezoelectric element 1, thereby controlling the ejection of the ink from the ink chamber 21 and the ejection amount.

圧電アクチュエータ2は、圧電素子1の基板11の裏面に、圧電膜13の伸縮により振動する振動板16が取り付けられたものである。圧電アクチュエータ2には、圧電素子1を駆動する駆動回路等の制御手段15も備えられている。   In the piezoelectric actuator 2, a vibration plate 16 that vibrates due to expansion and contraction of the piezoelectric film 13 is attached to the back surface of the substrate 11 of the piezoelectric element 1. The piezoelectric actuator 2 is also provided with a control means 15 such as a drive circuit for driving the piezoelectric element 1.

基板11とは独立した部材の振動板16及びインクノズル20を取り付ける代わりに、基板11の一部を振動板16及びインクノズル20に加工してもよい。例えば、基板11を裏面側からエッチングしてインク室21を形成し、基板自体の加工により振動板16とインクノズル20とを形成することができる。   Instead of attaching the diaphragm 16 and the ink nozzle 20 which are members independent of the substrate 11, a part of the substrate 11 may be processed into the diaphragm 16 and the ink nozzle 20. For example, the ink chamber 21 can be formed by etching the substrate 11 from the back side, and the diaphragm 16 and the ink nozzle 20 can be formed by processing the substrate itself.

圧電素子1は、基板11の表面に、下部電極層12と圧電膜13と上部電極層14とが順次積層された素子であり、圧電膜13は、下部電極層12と上部電極層14とにより膜厚方向に電界が印加されるようになっている。   The piezoelectric element 1 is an element in which a lower electrode layer 12, a piezoelectric film 13, and an upper electrode layer 14 are sequentially laminated on the surface of a substrate 11. The piezoelectric film 13 is composed of a lower electrode layer 12 and an upper electrode layer 14. An electric field is applied in the film thickness direction.

本実施形態の圧電素子1において、基板11としては特に制限なく、シリコン,ガラス,ステンレス(SUS),イットリウム安定化ジルコニア(YSZ),SrTiO,アルミナ,サファイヤ,及びシリコンカーバイド等の基板が挙げられる。基板11としては、シリコン基板上にSiO膜とSi活性層とが順次積層されたSOI基板等の積層基板を用いてもよい。また、基板11と下部電極層12との間に、格子整合性を良好にするためのバッファ層や、電極と基板との密着性を良好にするための密着層等を設けても構わない。 In the piezoelectric element 1 of this embodiment, the substrate 11 is not particularly limited, and examples thereof include silicon, glass, stainless steel (SUS), yttrium stabilized zirconia (YSZ), SrTiO 3 , alumina, sapphire, and silicon carbide. . As the substrate 11, a laminated substrate such as an SOI substrate in which a SiO 2 film and a Si active layer are sequentially laminated on a silicon substrate may be used. Further, a buffer layer for improving the lattice matching, an adhesion layer for improving the adhesion between the electrode and the substrate, or the like may be provided between the substrate 11 and the lower electrode layer 12.

下部電極12及び上部電極14の主成分としては特に制限なく、Au,Pt,Ir,IrO,RuO,LaNiO,及びSrRuO等の金属又は金属酸化物及びこれらの組合せ、また、Cr,W,Ti,Al,Fe,Mo,In,Sn,Ni,Cu,Co,Ta等の非貴金属及びこれらの合金からなる群より選ばれた少なくとも1種の金属を主成分とするもの、及びこれらの組合せ等が挙げられる。
下部電極12と上部電極14の厚みは特に制限なく、50〜500nmであることが好ましい。
The main components of the lower electrode 12 and the upper electrode 14 are not particularly limited, and metals or metal oxides such as Au, Pt, Ir, IrO 2 , RuO 2 , LaNiO 3 , and SrRuO 3 and combinations thereof, and Cr, W, Ti, Al, Fe, Mo, In, Sn, Ni, Cu, Co, and other non-noble metals such as Ta, and at least one metal selected from the group consisting of these alloys, and these And the like.
The thicknesses of the lower electrode 12 and the upper electrode 14 are not particularly limited and are preferably 50 to 500 nm.

圧電膜13は下記一般式で表されるペロブスカイト型酸化物からなる(不可避不純物を含んでいてもよい。)。
Pb(Ti,Zr,M)O
(上記式中、Mは、Sn,Nb,Ta,Mo,W,Ir,Os,Pd,Pt,Re,Mn,Co,Ni,V,及びFeからなる群より選択される少なくとも1種の金属元素であり、0<x<1,0<y<1,0≦z<1,x+y+z=1である。)
The piezoelectric film 13 is made of a perovskite oxide represented by the following general formula (may contain inevitable impurities).
Pb (Ti x , Zr y , M z ) O 3
(In the above formula, M is at least one metal selected from the group consisting of Sn, Nb, Ta, Mo, W, Ir, Os, Pd, Pt, Re, Mn, Co, Ni, V, and Fe. Element, 0 <x <1, 0 <y <1, 0 ≦ z <1, x + y + z = 1.)

上記一般式で表されるペロブスカイト型酸化物としては、チタン酸鉛、チタン酸ジルコン酸鉛(PZT)、ジルコニウム酸鉛、チタン酸ジルコン酸ニオブ酸鉛等が挙げられる。   Examples of the perovskite oxide represented by the above general formula include lead titanate, lead zirconate titanate (PZT), lead zirconate, lead zirconate titanate niobate, and the like.

本実施形態において、圧電膜13は、プラズマを用いる気相成長法により、基板11上に下部電極12を介して成膜されたものであり、基板面に対して非平行方向に延びる多数の柱状結晶体17からなる柱状構造膜である。   In this embodiment, the piezoelectric film 13 is formed on the substrate 11 via the lower electrode 12 by a vapor phase growth method using plasma, and has a number of columnar shapes extending in a non-parallel direction with respect to the substrate surface. It is a columnar structure film made of a crystal body 17.

図2(a)に、圧電膜13の構造を示す部分拡大斜視図(模式図)を示す。柱状構造膜(圧電膜)13は、表面13sの表面粗さRaが10nm以下であり、柱状構造膜13を形成する多数の柱状結晶体17が、表面13sにおいて観測される端面17sの最小の外接円の径r(図2(b))が100nm以下から500nm以上に亘って分布する大きさを有しており、かつその外接円の径が100nm以下のものを20%以上、500nm以上のものを5%以上含む不定形である構成としている(実施例1の図7,図8を参照)。   FIG. 2A shows a partially enlarged perspective view (schematic diagram) showing the structure of the piezoelectric film 13. The columnar structure film (piezoelectric film) 13 has a surface roughness Ra of the surface 13s of 10 nm or less, and a large number of the columnar crystal bodies 17 forming the columnar structure film 13 have the minimum circumscribing of the end face 17s observed on the surface 13s. The diameter r of the circle (FIG. 2 (b)) has a size distributed from 100 nm or less to 500 nm or more, and the circumscribed circle has a diameter of 100 nm or less and 20% or more and 500 nm or more. Is an indefinite shape including 5% or more (see FIGS. 7 and 8 of the first embodiment).

表面粗さRaは算術平均表面粗さであり、小さい方が好ましく、Raが10nmよりも大きな値となると、駆動時の電界の集中により、耐久性の劣化が生じたり、パターニングの際の精度が悪くなり、面内の駆動均一性が悪くなるなどの問題が生じる。Raは、好ましくは8nm以下であり、さらに好ましくは6nm以下である。   The surface roughness Ra is an arithmetic average surface roughness, and it is preferable that the surface roughness Ra be small. When Ra is a value larger than 10 nm, the durability is deteriorated due to the concentration of the electric field at the time of driving or the accuracy in patterning is increased. This causes problems such as worsening and in-plane driving uniformity. Ra is preferably 8 nm or less, and more preferably 6 nm or less.

一般に、ペロブスカイト型酸化物からなる膜は、膜表面を観測すると、(100)配向や(001)配向では正方形、(111)配向の場合は四角錐状、(110)配向では屋根のような形状となる(比較例1の図14を参照)。しかしながら、本実施形態の圧電膜(柱状構造膜)13の膜表面においては、上記したように多数の柱状結晶体17の端面形状は不定形であり、このような一般的なペロブスカイト酸化物膜で観測される粒形の柱状結晶体17は、全体の10%以下である。   In general, when a film made of a perovskite oxide is observed on the film surface, it has a square shape in the (100) orientation and (001) orientation, a quadrangular pyramid shape in the (111) orientation, and a roof shape in the (110) orientation. (See FIG. 14 of Comparative Example 1). However, on the film surface of the piezoelectric film (columnar structure film) 13 of the present embodiment, the end face shape of the many columnar crystal bodies 17 is indefinite as described above, and such a general perovskite oxide film is used. The observed columnar crystal 17 is 10% or less of the whole.

圧電膜13の成膜方法は、プラズマによる気相成長法であれば特に制限されず、スパッタリング法、イオンプレーティング法、及びプラズマCVD法等が挙げられる。   The method for forming the piezoelectric film 13 is not particularly limited as long as it is a vapor phase growth method using plasma, and examples thereof include a sputtering method, an ion plating method, and a plasma CVD method.

上記のような気相成長法により圧電膜13を成膜する場合、例えば成膜温度は400℃以上550℃未満であることが好ましい。400℃未満ではペロブスカイト結晶を安定的に成長させることが難しい。一方、上記したような多数の柱状結晶体17の端面が不定形である柱状構造膜からなる圧電膜13を得るためには、成膜温度は550℃未満であることが好ましい。550℃以上であっても、ペロブスカイト構造の圧電膜13を成膜することが可能であるが、成膜温度が高いと、その温度において安定的な構造をとる傾向にあることから、不定形とならず、粒径が揃いやすくなる。   When the piezoelectric film 13 is formed by the vapor phase growth method as described above, for example, the film formation temperature is preferably 400 ° C. or higher and lower than 550 ° C. Below 400 ° C., it is difficult to stably grow perovskite crystals. On the other hand, in order to obtain the piezoelectric film 13 composed of the columnar structure film in which the end surfaces of the many columnar crystals 17 are indefinite, the film formation temperature is preferably less than 550 ° C. Even when the temperature is 550 ° C. or higher, the perovskite structure piezoelectric film 13 can be formed. However, when the film formation temperature is high, the structure tends to be stable at that temperature. In other words, the particle diameters are easily aligned.

550℃以上で成膜する場合は、上記のように粒径が揃いやすくなるが、成膜温度が高いため表面粗さRaが大きくなりやすく、更に温度を高くするとPb抜けの問題や基板11と圧電膜13との熱膨張係数差に起因する応力により膜にクラック等が発生しやすくなる。従って特許文献1、2のように圧電膜の組成を膜厚方向で変化させるなどのプロセスを設けないと良好な圧電性能を有する膜とすることが難しい。   When the film is formed at 550 ° C. or higher, the particle diameters are likely to be uniform as described above. However, since the film formation temperature is high, the surface roughness Ra is likely to increase. Cracks and the like are likely to occur in the film due to the stress caused by the difference in thermal expansion coefficient with the piezoelectric film 13. Therefore, it is difficult to obtain a film having good piezoelectric performance unless a process for changing the composition of the piezoelectric film in the film thickness direction is provided as in Patent Documents 1 and 2.

圧電膜13の膜厚は特に制限されないが、薄型化という意味では薄い方が好ましく、薄すぎると基板と膜の界面からの応力の影響で十分な圧電性能を出すことができないため1μm以上であることが好ましい。   The film thickness of the piezoelectric film 13 is not particularly limited, but it is preferably thinner in terms of thickness reduction. If it is too thin, sufficient piezoelectric performance cannot be obtained due to the influence of stress from the interface between the substrate and the film. It is preferable.

本発明者は、スパッタ法等のプラズマを用いる気相成長法により圧電膜13を成膜する場合、成膜時のプラズマ中のプラズマ電位Vs(V)とフローティング電位Vf(V)との差であるVs−Vf(V)が10〜30Vの条件で成膜することが好ましいことを見出している。   In the case where the piezoelectric film 13 is formed by a vapor phase growth method using plasma such as a sputtering method, the present inventor determines the difference between the plasma potential Vs (V) in the plasma at the time of film formation and the floating potential Vf (V). It has been found that it is preferable to form a film under a condition where a certain Vs-Vf (V) is 10 to 30V.

本明細書において、「プラズマ電位Vs及びフローティング電位Vf」は、ラングミュアプローブを用い、シングルプローブ法により測定するものとする。フローティング電位Vfの測定は、プローブに成膜中の膜等が付着して誤差を含まないように、プローブの先端を基板近傍(基板から約10mm)に配し、できる限り短時間で行うものとする。
プラズマ電位Vsとフローティング電位Vfとの電位差Vs−Vf(V)はそのまま電子温度(eV)に変換することができる。電子温度1eV=11600K(Kは絶対温度)に相当する。
In this specification, the “plasma potential Vs and floating potential Vf” are measured by a single probe method using a Langmuir probe. The floating potential Vf is measured in as short a time as possible so that the tip of the probe is placed in the vicinity of the substrate (about 10 mm from the substrate) so as not to include errors due to the film being deposited on the probe. To do.
The potential difference Vs−Vf (V) between the plasma potential Vs and the floating potential Vf can be directly converted into the electron temperature (eV). This corresponds to an electron temperature of 1 eV = 11600 K (K is an absolute temperature).

図3は、本発明者がスパッタ法により成膜温度Ts及びVs−Vfを変えて、PZT(Pb1.3Zr0.52Ti0.48)又はNb−PZT(Pb1.3Zr0.43Ti0.44Nb0.13)のターゲットを用いて圧電膜の成膜を行い、圧電膜表面のSEM像から表面形状を観察した結果を示すものである。図3において、成膜温度Ts=525℃のプロットはNb−PZT膜であり、それ以外のプロットはPZT膜である。 FIG. 3 shows that the inventor changed the film formation temperature Ts and Vs−Vf by the sputtering method to obtain PZT (Pb 1.3 Zr 0.52 Ti 0.48 O 3 ) or Nb—PZT (Pb 1.3 Zr). 4 shows the result of observing the surface shape from the SEM image of the surface of the piezoelectric film by forming a piezoelectric film using a target of 0.43 Ti 0.44 Nb 0.13 O 3 ). In FIG. 3, the plot at the film formation temperature Ts = 525 ° C. is an Nb-PZT film, and the other plots are PZT films.

図3では、表面13sの表面粗さRaが10nm以下であり、表面13sにおいて観測される柱状結晶体17の端面17sの外接円の径が100nm以下から500nm以上に亘って分布する大きさを有しており、かつ外接円の径が100nm以下のものを20%以上、500nm以上のものを5%以上含む不定形であるものについてのみ●のプロットを記してある。   In FIG. 3, the surface roughness Ra of the surface 13s is 10 nm or less, and the diameter of the circumscribed circle of the end face 17s of the columnar crystal 17 observed on the surface 13s has a size distributed from 100 nm or less to 500 nm or more. In addition, the plots of ● are shown only for those that are indeterminate including those having a circumscribed circle diameter of 20% or more and 500 nm or more having a diameter of 100 nm or less and 5% or more.

図3には、PZT膜又はNb−PZT膜において、Vs−Vfが10V以上30V以下、及び成膜温度Tsが400℃以上550℃未満の条件で成膜されたものは、圧電膜13の表面13sにおいて観測される、多数の柱状結晶体17の端面17sが上記のような不定形となることが示されている。   FIG. 3 shows the surface of the piezoelectric film 13 in which the PZT film or the Nb-PZT film is formed under the conditions that Vs-Vf is 10 V or more and 30 V or less and the film formation temperature Ts is 400 ° C. or more and less than 550 ° C. It is shown that the end faces 17s of a large number of columnar crystals 17 observed at 13s are indefinite as described above.

一般的に、PZTのバルクセラミックスを焼結などの冶金学的な手法で形成する場合、その形成温度は800℃以上の高温となるが、スパッタ法などの非熱平衡なプラズマを用いることで形成温度が著しく下がることが知られている。このような低い形成温度においてはその結晶や内部の構造が従来の熱平衡状態ではなく、非熱平衡的な状態を取る可能性がある。上記のような550℃以下の温度で形成された膜は、冶金学的なバルクセラミックスとは異なる性質を持つものと思われる。   In general, when PZT bulk ceramics is formed by a metallurgical technique such as sintering, the formation temperature is 800 ° C. or higher, but the formation temperature can be increased by using non-thermal equilibrium plasma such as sputtering. Is known to drop significantly. At such a low formation temperature, there is a possibility that the crystal and the internal structure take a non-thermal equilibrium state instead of the conventional thermal equilibrium state. A film formed at a temperature of 550 ° C. or lower as described above is considered to have properties different from metallurgical bulk ceramics.

本実施形態の圧電素子1において、圧電膜13は、プラズマを用いる気相成長法により成膜され、上記一般式で表されるチタン酸ジルコン酸鉛系の1種又は複数種のペロブスカイト型酸化物(不可避不純物を含んでいてもよい)からなる柱状構造膜13からなり、柱状構造膜13の表面13sにおいて観測される多数の柱状結晶体17の端面17sが、端面17sの最小の外接円の径が100nm以下から500nm以上に亘って分布する大きさを有しており、かつ外接円の径が100nm以下のものを20%以上、500nm以上のものを5%以上含むものであり、柱状構造膜13の表面粗さRaが10nm以下のものとしている。   In the piezoelectric element 1 of the present embodiment, the piezoelectric film 13 is formed by a vapor phase growth method using plasma, and one or more perovskite oxides of the lead zirconate titanate type represented by the above general formula The end surface 17s of a large number of columnar crystals 17 observed on the surface 13s of the columnar structure film 13 is composed of a columnar structure film 13 (which may contain inevitable impurities), and the diameter of the minimum circumscribed circle of the end surface 17s. Having a size distributed over 100 nm or less to 500 nm or more, and the diameter of the circumscribed circle is 100 nm or less, including 20% or more, and 500 nm or more containing 5% or more. 13 has a surface roughness Ra of 10 nm or less.

かかる構成によれば、表面粗さRaが小さいことから電界集中を生じにくく、電界集中による圧電膜の劣化を抑制することができる。また、Raが小さい方がデバイス化の際の後工程でのパターニングの精度が良いため、面内の駆動均一性が良い。   According to such a configuration, since the surface roughness Ra is small, electric field concentration hardly occurs, and deterioration of the piezoelectric film due to electric field concentration can be suppressed. In addition, the smaller the Ra, the better the patterning accuracy in the subsequent process at the time of device fabrication, so the in-plane driving uniformity is good.

また、圧電素子1の圧電膜13は、結晶粒の粒径に幅広い分布を有しており、圧電膜全体としては不定形となる。粒径が大きい結晶は、圧電性が面内応力等により制限されやすいと考えられているが、本発明では粒径の小さい結晶と混在しており、応力が緩和されやすいため、圧電性能が制限されることがない。   In addition, the piezoelectric film 13 of the piezoelectric element 1 has a wide distribution of crystal grain sizes, and the entire piezoelectric film is indefinite. Crystals with a large grain size are considered to be easily restricted in piezoelectricity by in-plane stress, etc., but in the present invention, they are mixed with crystals with a small grain size and the stress is easily relaxed, so the piezoelectric performance is limited. It will not be done.

更に、粒径を略均一する必要がないため、膜厚方向に圧電膜13の組成を変化させたり、配向制御層を設ける等の複雑なプロセスを必要としない。   Furthermore, since it is not necessary to make the particle sizes substantially uniform, a complicated process such as changing the composition of the piezoelectric film 13 in the film thickness direction or providing an orientation control layer is not required.

従って、本発明によれば、プラズマを用いる気相成長法により、素子信頼性が高く、良好な圧電特性を有し、簡易なプロセスにて製造することが可能な圧電素子1を提供することできる。   Therefore, according to the present invention, it is possible to provide a piezoelectric element 1 having high element reliability, good piezoelectric characteristics, and capable of being manufactured by a simple process, by vapor phase growth using plasma. .

「インクジェット式記録装置」
図4及び図5を参照して、上記実施形態のインクジェット式記録ヘッド3を備えたインクジェット式記録装置の構成例について説明する。図4は装置全体図であり、図5は部分上面図である。
"Inkjet recording device"
With reference to FIG. 4 and FIG. 5, a configuration example of an ink jet recording apparatus including the ink jet recording head 3 of the above embodiment will be described. 4 is an overall view of the apparatus, and FIG. 5 is a partial top view.

図示するインクジェット式記録装置100は、インクの色ごとに設けられた複数のインクジェット式記録ヘッド(以下、単に「ヘッド」という)3K,3C,3M,3Yを有する印字部102と、各ヘッド3K,3C,3M,3Yに供給するインクを貯蔵しておくインク貯蔵/装填部114と、記録紙116を供給する給紙部118と、記録紙116のカールを除去するデカール処理部120と、印字部102のノズル面(インク吐出面)に対向して配置され、記録紙116の平面性を保持しながら記録紙116を搬送する吸着ベルト搬送部122と、印字部102による印字結果を読み取る印字検出部124と、印画済みの記録紙(プリント物)を外部に排紙する排紙部126とから概略構成されている。   The illustrated ink jet recording apparatus 100 includes a printing unit 102 having a plurality of ink jet recording heads (hereinafter simply referred to as “heads”) 3K, 3C, 3M, and 3Y provided for each ink color, and each head 3K, An ink storage / loading unit 114 that stores ink to be supplied to 3C, 3M, and 3Y, a paper feeding unit 118 that supplies recording paper 116, a decurling unit 120 that removes curling of the recording paper 116, and a printing unit An adsorption belt conveyance unit 122 that conveys the recording paper 116 while maintaining the flatness of the recording paper 116, and a print detection unit that reads a printing result by the printing unit 102. 124 and a paper discharge unit 126 that discharges printed recording paper (printed matter) to the outside.

印字部102をなすヘッド3K,3C,3M,3Yが、各々上記実施形態のインクジェット式記録ヘッド3である。   The heads 3K, 3C, 3M, and 3Y that form the printing unit 102 are the ink jet recording heads 3 of the above-described embodiment.

デカール処理部120では、巻き癖方向と逆方向に加熱ドラム130により記録紙116に熱が与えられて、デカール処理が実施される。
ロール紙を使用する装置では、図4のように、デカール処理部120の後段に裁断用のカッター128が設けられ、このカッターによってロール紙は所望のサイズにカットされる。カッター128は、記録紙116の搬送路幅以上の長さを有する固定刃128Aと、該固定刃128Aに沿って移動する丸刃128Bとから構成されており、印字裏面側に固定刃128Aが設けられ、搬送路を挟んで印字面側に丸刃128Bが配置される。カット紙を使用する装置では、カッター128は不要である。
In the decurling unit 120, heat is applied to the recording paper 116 by the heating drum 130 in the direction opposite to the curl direction, and the decurling process is performed.
In the apparatus using roll paper, as shown in FIG. 4, a cutter 128 is provided at the subsequent stage of the decurling unit 120, and the roll paper is cut into a desired size by this cutter. The cutter 128 includes a fixed blade 128A having a length equal to or larger than the conveyance path width of the recording paper 116, and a round blade 128B that moves along the fixed blade 128A. The fixed blade 128A is provided on the back side of the print. The round blade 128B is arranged on the print surface side with the conveyance path interposed therebetween. In an apparatus using cut paper, the cutter 128 is unnecessary.

デカール処理され、カットされた記録紙116は、吸着ベルト搬送部122へと送られる。吸着ベルト搬送部122は、ローラ131、132間に無端状のベルト133が巻き掛けられた構造を有し、少なくとも印字部102のノズル面及び印字検出部124のセンサ面に対向する部分が水平面(フラット面)となるよう構成されている。   The decurled and cut recording paper 116 is sent to the suction belt conveyance unit 122. The suction belt conveyance unit 122 has a structure in which an endless belt 133 is wound between rollers 131 and 132, and at least portions facing the nozzle surface of the printing unit 102 and the sensor surface of the printing detection unit 124 are horizontal ( Flat surface).

ベルト133は、記録紙116の幅よりも広い幅寸法を有しており、ベルト面には多数の吸引孔(図示略)が形成されている。ローラ131、132間に掛け渡されたベルト133の内側において印字部102のノズル面及び印字検出部124のセンサ面に対向する位置には吸着チャンバ134が設けられており、この吸着チャンバ134をファン135で吸引して負圧にすることによってベルト133上の記録紙116が吸着保持される。   The belt 133 has a width that is wider than the width of the recording paper 116, and a plurality of suction holes (not shown) are formed on the belt surface. An adsorption chamber 134 is provided at a position facing the nozzle surface of the printing unit 102 and the sensor surface of the print detection unit 124 inside the belt 133 that is stretched between the rollers 131 and 132. The recording paper 116 on the belt 133 is sucked and held by suctioning at 135 to make a negative pressure.

ベルト133が巻かれているローラ131、132の少なくとも一方にモータ(図示略)の動力が伝達されることにより、ベルト133は図4上の時計回り方向に駆動され、ベルト133上に保持された記録紙116は図4の左から右へと搬送される。   When the power of a motor (not shown) is transmitted to at least one of the rollers 131 and 132 around which the belt 133 is wound, the belt 133 is driven in the clockwise direction in FIG. 4 and is held on the belt 133. The recording paper 116 is conveyed from left to right in FIG.

縁無しプリント等を印字するとベルト133上にもインクが付着するので、ベルト133の外側の所定位置(印字領域以外の適当な位置)にベルト清掃部136が設けられている。
吸着ベルト搬送部122により形成される用紙搬送路上において印字部102の上流側に、加熱ファン140が設けられている。加熱ファン140は、印字前の記録紙116に加熱空気を吹き付け、記録紙116を加熱する。印字直前に記録紙116を加熱しておくことにより、インクが着弾後に乾きやすくなる。
Since ink adheres to the belt 133 when a borderless print or the like is printed, the belt cleaning unit 136 is provided at a predetermined position outside the belt 133 (an appropriate position other than the print region).
A heating fan 140 is provided on the upstream side of the printing unit 102 on the paper conveyance path formed by the suction belt conveyance unit 122. The heating fan 140 heats the recording paper 116 by blowing heated air onto the recording paper 116 before printing. Heating the recording paper 116 immediately before printing makes it easier for the ink to dry after landing.

印字部102は、最大紙幅に対応する長さを有するライン型ヘッドを紙送り方向と直交方向(主走査方向)に配置した、いわゆるフルライン型のヘッドとなっている(図5を参照)。各印字ヘッド3K,3C,3M,3Yは、インクジェット式記録装置100が対象とする最大サイズの記録紙116の少なくとも一辺を超える長さにわたってインク吐出口(ノズル)が複数配列されたライン型ヘッドで構成されている。   The printing unit 102 is a so-called full line type head in which line type heads having a length corresponding to the maximum paper width are arranged in a direction (main scanning direction) perpendicular to the paper feed direction (see FIG. 5). Each of the print heads 3K, 3C, 3M, and 3Y is a line-type head in which a plurality of ink discharge ports (nozzles) are arranged over a length exceeding at least one side of the maximum-size recording paper 116 targeted by the ink jet recording apparatus 100. It is configured.

記録紙116の送り方向に沿って上流側から、黒(K)、シアン(C)、マゼンタ(M)、イエロー(Y)の順に各色インクに対応したヘッド3K,3C,3M,3Yが配置されている。記録紙116を搬送しつつ各ヘッド3K,3C,3M,3Yからそれぞれ色インクを吐出することにより、記録紙116上にカラー画像が記録される。   Heads 3K, 3C, 3M, and 3Y corresponding to the respective color inks are arranged in the order of black (K), cyan (C), magenta (M), and yellow (Y) from the upstream side along the feeding direction of the recording paper 116. ing. A color image is recorded on the recording paper 116 by ejecting the color ink from each of the heads 3K, 3C, 3M, 3Y while conveying the recording paper 116.

印字検出部124は、印字部102の打滴結果を撮像するラインセンサ等からなり、ラインセンサによって読み取った打滴画像からノズルの目詰まり等の吐出不良を検出する。
印字検出部124の後段には、印字された画像面を乾燥させる加熱ファン等からなる後乾燥部142が設けられている。印字後のインクが乾燥するまでは印字面と接触することは避けた方が好ましいので、熱風を吹き付ける方式が好ましい。
The print detection unit 124 includes a line sensor that images the droplet ejection result of the print unit 102 and detects ejection defects such as nozzle clogging from the droplet ejection image read by the line sensor.
A post-drying unit 142 including a heating fan or the like for drying the printed image surface is provided at the subsequent stage of the print detection unit 124. Since it is preferable to avoid contact with the printing surface until the ink after printing is dried, a method of blowing hot air is preferred.

後乾燥部142の後段には、画像表面の光沢度を制御するために、加熱・加圧部144が設けられている。加熱・加圧部144では、画像面を加熱しながら、所定の表面凹凸形状を有する加圧ローラ145で画像面を加圧し、画像面に凹凸形状を転写する。   A heating / pressurizing unit 144 is provided downstream of the post-drying unit 142 in order to control the glossiness of the image surface. The heating / pressurizing unit 144 presses the image surface with a pressure roller 145 having a predetermined surface irregularity shape while heating the image surface, and transfers the irregular shape to the image surface.

こうして得られたプリント物は、排紙部126から排出される。本来プリントすべき本画像(目的の画像を印刷したもの)とテスト印字とは分けて排出することが好ましい。このインクジェット式記録装置100では、本画像のプリント物と、テスト印字のプリント物とを選別してそれぞれの排出部126A、126Bへと送るために排紙経路を切り替える選別手段(図示略)が設けられている。
大きめの用紙に本画像とテスト印字とを同時に並列にプリントする場合には、カッター148を設けて、テスト印字の部分を切り離す構成とすればよい。
インクジェット記記録装置100は、以上のように構成されている。
The printed matter obtained in this manner is outputted from the paper output unit 126. It is preferable that the original image to be printed (printed target image) and the test print are discharged separately. In the ink jet recording apparatus 100, there is provided sorting means (not shown) for switching the paper discharge path in order to select the print product of the main image and the print product of the test print and send them to the discharge units 126A and 126B. It has been.
When the main image and the test print are simultaneously printed on a large sheet of paper, the cutter 148 may be provided to separate the test print portion.
The ink jet recording apparatus 100 is configured as described above.

本発明に係る実施例及び比較例について説明する。
(実施例1)
6インチのSOI基板上に、スパッタ法にて、10nm厚のTi密着層と150nm厚のIr下部電極を基板温度350℃の条件で成膜した。次いで真空度0.5Pa、Ar/O混合雰囲気(O体積分率1.0%)、成膜温度480℃の条件下で、Pb1.3(Zr0.52Ti0.480.9Nb0.10のターゲットを用い、スパッタ法により4μm厚のNbドープPZTからなる圧電膜(Nb−PZT膜)の成膜を行った。このとき、基板を浮遊状態にして、ターゲットと基板との間ではない基板から離れたところにアースを配して成膜した。成膜時のプラズマ電位Vsとフローティング電位(基板近傍(=基板から約10mm)の電位)Vfを測定したところ、Vs−Vf(V)=約30であった。投入電力は500W、基板ターゲット間距離を60mmとした。
Examples and comparative examples according to the present invention will be described.
Example 1
A 10-nm thick Ti adhesion layer and a 150-nm thick Ir lower electrode were formed on a 6-inch SOI substrate by sputtering at a substrate temperature of 350 ° C. Next, Pb 1.3 (Zr 0.52 Ti 0.48 ) 0 under conditions of a degree of vacuum of 0.5 Pa, an Ar / O 2 mixed atmosphere (O 2 volume fraction of 1.0%), and a film formation temperature of 480 ° C. A piezoelectric film (Nb-PZT film) made of Nb-doped PZT having a thickness of 4 μm was formed by sputtering using a .9 Nb 0.10 O 3 target. At this time, the substrate was placed in a floating state, and a film was formed by arranging ground at a location apart from the substrate, not between the target and the substrate. When the plasma potential Vs and the floating potential (potential in the vicinity of the substrate (= about 10 mm from the substrate)) Vf during the film formation were measured, Vs−Vf (V) = about 30. The input power was 500 W, and the distance between the substrate targets was 60 mm.

得られた膜のX線回折(XRD)測定結果を図6に、表面SEM像を図7に示す。また、結晶粒を見やすくするために、EBSD(後方散乱電子回折パターン法)で測定した結晶粒のイメージパターンを図8に示す。図6からわかるように、得られた膜は、ペロブスカイト単相の(100)優先配向膜であった(配向率90%以上)。また、図7及び図8より、得られた膜の表面は略平滑であり、視野内の結晶粒の表面の大きさを測定したところ、結晶粒の最小の外周円の径が50nm〜1200nmのものまで広い範囲の大きさの結晶粒が観測された。外周円の径を粒径として得られた粒径分布を図9に示す。   The X-ray diffraction (XRD) measurement result of the obtained film is shown in FIG. 6, and the surface SEM image is shown in FIG. In addition, FIG. 8 shows an image pattern of crystal grains measured by EBSD (backscattered electron diffraction pattern method) in order to make the crystal grains easy to see. As can be seen from FIG. 6, the obtained film was a perovskite single phase (100) preferentially oriented film (orientation ratio 90% or more). 7 and 8, the surface of the obtained film is substantially smooth, and when the size of the surface of the crystal grain in the field of view is measured, the diameter of the smallest peripheral circle of the crystal grain is 50 nm to 1200 nm. A wide range of crystal grains was observed. The particle size distribution obtained with the diameter of the outer circumference circle as the particle size is shown in FIG.

また、得られた膜の膜厚方向の断面SEM写真を図10に示す。また、EBSDで測定した膜断面の結晶粒のイメージパターンを図11に示す。図10及び図11より、得られた膜の結晶粒は、柱状結晶体からなることが確認された。得られた膜のRaをJIS B0601−1994にもとづいて、表面段差計にて測定した。得られた膜のRaは5.3nmであり良好なものであった。   Moreover, the cross-sectional SEM photograph of the film thickness direction of the obtained film | membrane is shown in FIG. Moreover, the image pattern of the crystal grain of the film | membrane cross section measured by EBSD is shown in FIG. 10 and 11, it was confirmed that the crystal grains of the obtained film consisted of columnar crystals. Ra of the obtained film was measured with a surface level meter based on JIS B0601-1994. Ra of the obtained film | membrane was 5.3 nm and was favorable.

次いで、上記Nb−PZT圧電膜上にPt上部電極をスパッタリング法にて100nm厚で形成し、リフトオフによりパターニングし、更にSOI基板の裏面側をドライエッチングして500μm角のインク室を形成し、基板自体の加工により6μm厚の振動板とインク室及びインク吐出口を有するインクノズルとを形成して、本発明のインクジェット式記録ヘッドを得た。   Next, a Pt upper electrode is formed with a thickness of 100 nm on the Nb-PZT piezoelectric film by sputtering, patterned by lift-off, and further, the back side of the SOI substrate is dry-etched to form a 500 μm square ink chamber. A 6 μm-thick vibration plate and an ink nozzle having an ink chamber and an ink discharge port were formed by processing itself to obtain an ink jet recording head of the present invention.

これに対して電圧を印加して、バイポーラ分極−電界特性(P−Eヒステリシス特性)を測定した。周波数5Hzの条件で最大電界強度をV=170kV/cmに設定して、測定を実施した。P−Eヒステリシス曲線を図12に示す。図12より、良好な強誘電性を示していることが確認された。
次いで、圧電膜の変位をレーザドップラー振動計にて測定し、圧電定数をANSYSにて計算したところ(共振点から求めたヤング率は50MPaとした)、得られた圧電定数d31は260pm/Vと高く、良好であった。
On the other hand, a voltage was applied, and bipolar polarization-electric field characteristics (PE hysteresis characteristics) were measured. Measurement was performed with the maximum electric field strength set to V = 170 kV / cm under the condition of a frequency of 5 Hz. The PE hysteresis curve is shown in FIG. From FIG. 12, it was confirmed that good ferroelectricity was exhibited.
Next, when the displacement of the piezoelectric film was measured with a laser Doppler vibrometer and the piezoelectric constant was calculated with ANSYS (Young's modulus obtained from the resonance point was 50 MPa), the obtained piezoelectric constant d 31 was 260 pm / V. It was high and good.

さらにこの膜を40℃80%RH(相対湿度)にて長時間駆動テストを行った。1000億ドットの駆動において、変位の変化は全く見られず、良好な耐久性を有していた。   Further, this film was subjected to a long-term driving test at 40 ° C. and 80% RH (relative humidity). In the driving of 100 billion dots, no change in displacement was observed, and the durability was good.

(比較例1)
成膜温度を550℃とした以外は実施例1と同様にしてNb−PZT膜を成膜し、同様に得られた膜のXRD及び表面SEM像を測定して評価を行った。
(Comparative Example 1)
An Nb-PZT film was formed in the same manner as in Example 1 except that the film formation temperature was 550 ° C., and evaluation was performed by measuring XRD and surface SEM images of the film obtained in the same manner.

得られた膜のX線回折(XRD)測定結果を図13に、表面SEM像を図14に示す。図13からわかるように、得られた膜はペロブスカイト単相の(100)優先配向膜であった(配向率90%以上)。また、図14のSEM像では、一般的なペロブスカイト酸化物膜表面で観測される正方形や四角錐状、屋根形状の粒形の柱状結晶体が視野内において3〜5%程度観測された。   The X-ray diffraction (XRD) measurement result of the obtained film is shown in FIG. 13, and the surface SEM image is shown in FIG. As can be seen from FIG. 13, the obtained film was a perovskite single phase (100) preferentially oriented film (orientation ratio of 90% or more). Further, in the SEM image of FIG. 14, about 3 to 5% of a columnar crystal having a square shape, a quadrangular pyramid shape, or a roof shape grain shape observed on the surface of a general perovskite oxide film was observed.

また、視野内の結晶粒の表面の大きさを測定したところ、結晶粒の最小の外周円の径は20nm〜300nmの範囲の大きさであり、粒径分布は比較的狭範囲であった。また実施例1と同様にRaを測定したところ11nmであり、大きなものであった。   Further, when the size of the surface of the crystal grain in the field of view was measured, the diameter of the smallest outer circumference of the crystal grain was in the range of 20 nm to 300 nm, and the grain size distribution was relatively narrow. Further, when Ra was measured in the same manner as in Example 1, it was 11 nm, which was large.

次いで、実施例1と同様にして、Pt上部電極を備え、6μm厚の振動板と500μm角のインク室及びインク吐出口を有するインクノズルとを形成して、本発明のインクジェット式記録ヘッドを得た。   Next, in the same manner as in Example 1, an ink jet recording head according to the present invention was obtained by forming a 6 μm thick diaphragm, an ink chamber having a 500 μm square ink chamber, and an ink discharge port with a Pt upper electrode. It was.

これに対して実施例1と同様に、バイポーラ分極−電界特性(P−Eヒステリシス特性)を測定した。P−Eヒステリシス曲線を図15に示す。図15より、良好な強誘電性を示していることが確認された。   On the other hand, as in Example 1, bipolar polarization-electric field characteristics (PE hysteresis characteristics) were measured. The PE hysteresis curve is shown in FIG. From FIG. 15, it was confirmed that good ferroelectricity was exhibited.

次いで、圧電膜の変位をレーザドップラー振動計にて測定し、圧電定数をANSYSにて計算したところ(共振点から求めたヤング率は50MPaとした)、得られた圧電定数d31は160pm/Vと実施例1に比して低いものであった。 Next, when the displacement of the piezoelectric film was measured with a laser Doppler vibrometer and the piezoelectric constant was calculated with ANSYS (Young's modulus obtained from the resonance point was 50 MPa), the obtained piezoelectric constant d 31 was 160 pm / V. And lower than that of Example 1.

さらにこの膜を実施例1と同様に40℃80%RHにて駆動試験を行った。約200臆ドットから変位の低下が見られ、耐久性の低いものであった。   Further, this film was subjected to a driving test at 40 ° C. and 80% RH in the same manner as in Example 1. A drop in displacement was observed from about 200 mm dots, and the durability was low.

本発明の圧電素子は、インクジェット式記録ヘッド,磁気記録再生ヘッド,MEMS(Micro Electro-Mechanical Systems)デバイス,マイクロポンプ,超音波探触子等に搭載される圧電アクチュエータ、及び振動板等に好ましく利用できる。   The piezoelectric element of the present invention is preferably used for an ink jet recording head, a magnetic recording / reproducing head, a MEMS (Micro Electro-Mechanical Systems) device, a micro pump, an ultrasonic probe mounted on an ultrasonic probe, and a diaphragm. it can.

本発明に係る実施形態の圧電素子及びこれを備えたインクジェット式記録ヘッド(液体吐出装置)の構造を示す要部断面図1 is a cross-sectional view of a principal part showing the structure of a piezoelectric element according to an embodiment of the present invention and an ink jet recording head (liquid ejection apparatus) including the same (a)は本発明に係る実施形態の圧電膜の構造を示す部分拡大斜視図、(b)は、柱状結晶体の圧電膜表面における端面の外接円の径を示す図(A) is the elements on larger scale which show the structure of the piezoelectric film of embodiment which concerns on this invention, (b) is a figure which shows the diameter of the circumcircle of the end surface in the piezoelectric film surface of a columnar crystal body 成膜温度Tsを横軸にし、Vs−Vfを縦軸にして、圧電膜表面形状を観測した結果をプロットした図A graph plotting the results of observing the surface shape of the piezoelectric film with the film forming temperature Ts as the horizontal axis and Vs−Vf as the vertical axis 図1のインクジェット式記録ヘッドを備えたインクジェット式記録装置の構成例を示す図1 is a diagram illustrating a configuration example of an ink jet recording apparatus including the ink jet recording head of FIG. 図4のインクジェット式記録装置の部分上面図Partial top view of the ink jet recording apparatus of FIG. 実施例1で得られた主な圧電膜のXRDパターンXRD pattern of main piezoelectric film obtained in Example 1 図6の圧電膜の表面SEM像Surface SEM image of the piezoelectric film in FIG. 図6の圧電膜表面のEBSDによる結晶粒のイメージパターンImage pattern of crystal grains by EBSD on the piezoelectric film surface of FIG. 図7の表面SEM像から解析した圧電膜表面における粒径分布を示す図The figure which shows the particle size distribution in the piezoelectric film surface analyzed from the surface SEM image of FIG. 図6の圧電膜の膜厚方向の断面SEM写真Cross-sectional SEM photograph of the film thickness direction of the piezoelectric film of FIG. 図6の圧電膜断面のEBSDによる結晶粒のイメージパターンImage pattern of crystal grain by EBSD of the piezoelectric film cross section of FIG. 図6の圧電膜の分極−電界ヒステリシス曲線Polarization-electric field hysteresis curve of the piezoelectric film in FIG. 比較例1で得られた主な圧電膜のXRDパターンXRD pattern of main piezoelectric film obtained in Comparative Example 1 図13の圧電膜の表面SEM像Surface SEM image of the piezoelectric film of FIG. 図13の圧電膜の分極−電界ヒステリシス曲線Polarization-electric field hysteresis curve of the piezoelectric film in FIG.

符号の説明Explanation of symbols

1 圧電素子
2 圧電アクチュエータ
3、3K,3C,3M,3Y 液体吐出装置(インクジェット式記録ヘッド)
12、14 電極
13 圧電体膜(柱状構造膜)
13s 圧電体膜表面
17 柱状結晶体
17s 柱状結晶体端面
20 インクノズル(液体貯留吐出部材)
21 インク室(液体貯留室)
22 インク吐出口(液体吐出口)
100 インクジェット式記録装置
r 柱状結晶体の膜表面における端面の最小の外接円の径
DESCRIPTION OF SYMBOLS 1 Piezoelectric element 2 Piezoelectric actuator 3, 3K, 3C, 3M, 3Y Liquid discharge apparatus (inkjet recording head)
12, 14 Electrode 13 Piezoelectric film (columnar structure film)
13s surface of piezoelectric film 17 columnar crystal 17s end surface of columnar crystal 20 ink nozzle (liquid storage and discharge member)
21 Ink chamber (liquid storage chamber)
22 Ink ejection port (liquid ejection port)
100 Inkjet recording apparatus r The diameter of the minimum circumscribed circle of the end face on the film surface of the columnar crystal

Claims (9)

プラズマを用いる気相成長法により、基板上に電極を介して圧電膜が成膜されてなる圧電素子において、
前記圧電膜が、下記一般式で表される1種又は複数種のペロブスカイト型酸化物(不可避不純物を含んでいてもよい)であって前記基板面に対して非平行方向に延びる多数の柱状結晶体からなる柱状構造膜からなり、
該柱状構造膜の表面において観測される前記多数の柱状結晶体の端面が、該端面の最小の外接円の径が100nm以下から500nm以上に亘って分布する大きさを有しており、かつ該外接円の径が100nm以下のものを20%以上、500nm以上のものを5%以上含むものであり、
前記柱状構造膜の表面粗さRaが10nm以下であることを特徴とする圧電素子。
Pb(Ti,Zr,M)O
(上記式中、Mは、Sn,Nb,Ta,Mo,W,Ir,Os,Pd,Pt,Re,Mn,Co,Ni,V,及びFeからなる群より選択される少なくとも1種の金属元素であり、0<x<1,0<y<1,0≦z<1,x+y+z=1である。)
In a piezoelectric element in which a piezoelectric film is formed on a substrate via an electrode by a vapor phase growth method using plasma,
The piezoelectric film is one or a plurality of perovskite oxides (which may contain inevitable impurities) represented by the following general formula and extend in a non-parallel direction to the substrate surface It consists of a columnar structure film consisting of a body,
The end faces of the many columnar crystals observed on the surface of the columnar structure film have a size in which the diameter of the minimum circumscribed circle of the end faces is distributed from 100 nm or less to 500 nm or more, and The diameter of the circumscribed circle includes 20% or more of the diameter of 100 nm or less, and 5% or more of the diameter of 500 nm or more,
The piezoelectric element, wherein the columnar structure film has a surface roughness Ra of 10 nm or less.
Pb (Ti x , Zr y , M z ) O 3
(In the above formula, M is at least one metal selected from the group consisting of Sn, Nb, Ta, Mo, W, Ir, Os, Pd, Pt, Re, Mn, Co, Ni, V, and Fe. Element, 0 <x <1, 0 <y <1, 0 ≦ z <1, x + y + z = 1.)
前記圧電膜が結晶配向性を有することを特徴とする請求項1に記載の圧電素子。  The piezoelectric element according to claim 1, wherein the piezoelectric film has crystal orientation. 前記圧電膜が(100)配向の結晶配向性を有することを特徴とする請求項2に記載の圧電素子。  The piezoelectric element according to claim 2, wherein the piezoelectric film has a (100) -oriented crystal orientation. 前記気相成長法が、成膜温度が550℃未満の条件で成膜するものであることを特徴とする請求項1〜3のいずれかに記載の圧電素子。 The piezoelectric element according to any one of claims 1 to 3, wherein the vapor deposition method forms a film under a film forming temperature of less than 550 ° C. 前記気相成長法が、成膜時のプラズマ中のプラズマ電位Vs(V)とフローティング電位Vf(V)との差であるVs−Vf(V)が、10V以上30V以下の条件で成膜するものであることを特徴とする請求項1〜4のいずれかに記載の圧電素子。 In the vapor phase growth method, the film is formed under the condition that Vs−Vf (V), which is the difference between the plasma potential Vs (V) in the plasma during film formation and the floating potential Vf (V), is 10V to 30V. The piezoelectric element according to any one of claims 1 to 4, wherein the piezoelectric element is one. 前記気相成長法が、スパッタリング法、イオンプレーティング法、及びプラズマCVD法のうち、いずれかであることを特徴とする請求項1〜のいずれかに記載の圧電素子。 The vapor phase growth method, a sputtering method, an ion plating method, and among the plasma CVD method, a piezoelectric element according to any one of claims 1 to 5, characterized in that either. 前記柱状構造膜の膜厚が1μm以上であることを特徴とする請求項1〜のいずれかに記載の圧電素子。 The piezoelectric element according to any one of claims 1 to 6, wherein the thickness of the columnar structure film is 1μm or more. 請求項1〜に記載の圧電素子と、
該圧電素子の前記基板に一体的にまたは別体として設けられた液体吐出部材とを備え、
該液体吐出部材は、液体が貯留される液体貯留室と、該液体貯留室から外部に前記液体が吐出される液体吐出口とを有するものであることを特徴とする液体吐出装置。
The piezoelectric element according to claim 1-7,
A liquid ejection member provided integrally or separately on the substrate of the piezoelectric element,
The liquid ejection apparatus, wherein the liquid ejection member has a liquid storage chamber in which liquid is stored, and a liquid discharge port through which the liquid is discharged from the liquid storage chamber.
プラズマを用いる気相成長法を用いて、一般式Pb(TiUsing a vapor phase growth method using plasma, the general formula Pb (Ti x ,Zr, Zr y ,M, M z )O) O 3
(上記式中、Mは、Sn,Nb,Ta,Mo,W,Ir,Os,Pd,Pt,Re,Mn,Co,Ni,V,及びFeからなる群より選択される少なくとも1種の金属元素であり、0<x<1,0<y<1,0≦z<1,x+y+z=1である。)(In the above formula, M is at least one metal selected from the group consisting of Sn, Nb, Ta, Mo, W, Ir, Os, Pd, Pt, Re, Mn, Co, Ni, V, and Fe. Element, 0 <x <1, 0 <y <1, 0 ≦ z <1, x + y + z = 1.)
で表される1種又は複数種のペロブスカイト型酸化物(不可避不純物を含んでいてもよい)を含む圧電膜を製造する方法であって、A method for producing a piezoelectric film containing one or more perovskite oxides (which may contain inevitable impurities) represented by:
下記式(1)及び(2)を充足する条件で成膜することを特徴とする圧電膜の製造方法。A method for producing a piezoelectric film, characterized in that a film is formed under conditions satisfying the following formulas (1) and (2).
400≦Ts(℃)<550・・・(1)、400 ≦ Ts (° C.) <550 (1),
10≦Vs−Vf(V)≦30・・・(2)10 ≦ Vs−Vf (V) ≦ 30 (2)
(式(1)及び(2)中、Ts(℃)は成膜温度、Vs−Vf(V)はプラズマ中のプラズマ電位Vs(V)とフローティング電位Vf(V)との差である。)(In the formulas (1) and (2), Ts (° C.) is the film forming temperature, and Vs−Vf (V) is the difference between the plasma potential Vs (V) in the plasma and the floating potential Vf (V).)
JP2008209563A 2007-08-21 2008-08-18 Piezoelectric element and liquid ejection apparatus using the same Active JP4299360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008209563A JP4299360B2 (en) 2007-08-21 2008-08-18 Piezoelectric element and liquid ejection apparatus using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007214667 2007-08-21
JP2008209563A JP4299360B2 (en) 2007-08-21 2008-08-18 Piezoelectric element and liquid ejection apparatus using the same

Publications (2)

Publication Number Publication Date
JP2009071295A JP2009071295A (en) 2009-04-02
JP4299360B2 true JP4299360B2 (en) 2009-07-22

Family

ID=40130930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008209563A Active JP4299360B2 (en) 2007-08-21 2008-08-18 Piezoelectric element and liquid ejection apparatus using the same

Country Status (4)

Country Link
US (1) US7977853B2 (en)
EP (1) EP2028702B1 (en)
JP (1) JP4299360B2 (en)
CN (1) CN101373810B (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1653527A4 (en) * 2003-07-28 2009-12-23 Kyocera Corp Laminate type electronic component and production method therefor and laminate type piezoelectric element
WO2009034682A1 (en) * 2007-09-13 2009-03-19 Panasonic Corporation Angular velocity sensor
JP5265163B2 (en) * 2007-09-27 2013-08-14 富士フイルム株式会社 Piezoelectric device and liquid discharge head
JP5281786B2 (en) * 2007-11-14 2013-09-04 日本碍子株式会社 (Li, Na, K) (Nb, Ta) O3-based piezoelectric material and manufacturing method thereof
JP2010021512A (en) * 2008-01-30 2010-01-28 Ngk Insulators Ltd Piezoelectric/electrostrictive film element, and method of manufacturing the same
JP5475272B2 (en) * 2008-03-21 2014-04-16 日本碍子株式会社 Piezoelectric / electrostrictive membrane element
JP5011227B2 (en) * 2008-07-28 2012-08-29 日本碍子株式会社 (Li, Na, K, Bi) (Nb, Ta) O3-based piezoelectric material and manufacturing method thereof
JP4452752B2 (en) * 2008-09-30 2010-04-21 富士フイルム株式会社 Lead-containing piezoelectric film and manufacturing method thereof, piezoelectric element using lead-containing piezoelectric film, and liquid ejection apparatus using the same
JP5592104B2 (en) * 2009-02-17 2014-09-17 富士フイルム株式会社 Piezoelectric film, piezoelectric element including the same, and liquid ejection device
JP5681398B2 (en) * 2009-07-09 2015-03-04 富士フイルム株式会社 Perovskite oxide, ferroelectric composition, piezoelectric body, piezoelectric element, and liquid ejection device
JP2011181828A (en) * 2010-03-03 2011-09-15 Fujifilm Corp Piezoelectric film, method of manufacturing the same, piezoelectric element, and liquid ejection apparatus
US9254651B2 (en) * 2012-03-27 2016-02-09 Seiko Epson Corporation Liquid ejecting head, liquid ejecting apparatus, piezoelectric element, and methods of manufacturing liquid ejecting head, liquid ejecting apparatus, and piezoelectric element
JP6225544B2 (en) * 2013-07-31 2017-11-08 株式会社デンソー Method for manufacturing piezoelectric element
JP6183600B2 (en) * 2013-08-22 2017-08-23 セイコーエプソン株式会社 Piezoelectric element, liquid ejecting head, liquid ejecting apparatus, ultrasonic device, filter and sensor
WO2017082049A1 (en) * 2015-11-11 2017-05-18 コニカミノルタ株式会社 Ink jet head and method for manufacturing same, and ink jet recording apparatus
CN112853286A (en) * 2019-11-12 2021-05-28 应用材料公司 Physical vapor deposition of piezoelectric films
CN111553106A (en) * 2020-05-12 2020-08-18 杭州电子科技大学 ANSYS-based piezoelectric actuator motion process simulation method for GUI (graphical user interface)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2885349B2 (en) * 1989-12-26 1999-04-19 住友電気工業株式会社 Surface acoustic wave device
JP3379479B2 (en) * 1998-07-01 2003-02-24 セイコーエプソン株式会社 Functional thin film, piezoelectric element, ink jet recording head, printer, method of manufacturing piezoelectric element and method of manufacturing ink jet recording head,
JP3591316B2 (en) * 1998-08-12 2004-11-17 セイコーエプソン株式会社 Piezoelectric actuator, ink jet recording head, and printer
DE69934175T2 (en) * 1998-08-12 2007-03-08 Seiko Epson Corp. Piezoelectric actuator, ink jet head, printer, piezoelectric actuator manufacturing method, ink jet head manufacturing method
JP3705089B2 (en) 2000-07-24 2005-10-12 松下電器産業株式会社 Thin film piezoelectric element
JP4069578B2 (en) * 2000-09-08 2008-04-02 セイコーエプソン株式会社 Piezoelectric film and piezoelectric element provided with the same
JP2003119075A (en) * 2001-10-11 2003-04-23 Murata Mfg Co Ltd Method of producing pyroelectric ceramic composition, pyroelectric ceramic composition, and pyroelectric infrared sensor
JP2004205460A (en) * 2002-12-26 2004-07-22 Konica Minolta Holdings Inc Radiation image conversion panel, and manufacturing method for radiation image conversion panel
JP2004214308A (en) * 2002-12-27 2004-07-29 Canon Inc Piezoelectric element
JP2005098829A (en) * 2003-09-25 2005-04-14 Konica Minolta Medical & Graphic Inc Radiographic image conversion panel
JP4058018B2 (en) * 2003-12-16 2008-03-05 松下電器産業株式会社 Piezoelectric element and method for manufacturing the same, ink jet head including the piezoelectric element, ink jet recording apparatus, and angular velocity sensor
CN100533798C (en) * 2004-02-27 2009-08-26 佳能株式会社 Piezoelectric thin film manufacture method
JP4189504B2 (en) * 2004-02-27 2008-12-03 キヤノン株式会社 Method for manufacturing piezoelectric thin film
JP2006289838A (en) * 2005-04-12 2006-10-26 Seiko Epson Corp Liquid repellent member, nozzle plate, liquid injecting head using it, and liquid injecting apparatus
JP5088916B2 (en) * 2005-10-28 2012-12-05 富士フイルム株式会社 Manufacturing method of inorganic film substrate

Also Published As

Publication number Publication date
US7977853B2 (en) 2011-07-12
CN101373810A (en) 2009-02-25
EP2028702A3 (en) 2013-03-13
US20090072673A1 (en) 2009-03-19
EP2028702A2 (en) 2009-02-25
EP2028702B1 (en) 2014-03-12
CN101373810B (en) 2012-01-04
JP2009071295A (en) 2009-04-02

Similar Documents

Publication Publication Date Title
JP4299360B2 (en) Piezoelectric element and liquid ejection apparatus using the same
JP5329863B2 (en) Piezoelectric element, method for manufacturing piezoelectric element, and liquid ejection device
US7768178B2 (en) Piezoelectric device, piezoelectric actuator, and liquid discharge device having piezoelectric films
JP2008252071A (en) Piezoelectric device, method for manufacturing the same, and liquid discharge device
JP5265973B2 (en) Piezoelectric element and liquid ejection device
EP2287934B1 (en) Columnar structure film and method of forming same, piezoelectric element, liquid ejection apparatus and piezoelectric ultrasonic oscillator
US20170256700A1 (en) Piezoelectric film, piezoelectric element including the same, and liquid discharge apparatus
JP5088916B2 (en) Manufacturing method of inorganic film substrate
JP2008081802A (en) Piezoelectric film, process of manufacturing the same and piezoelectric element
JP5290610B2 (en) Method for forming piezoelectric film
JP2007314368A (en) Perovskite type oxide, ferroelectric element, piezoelectric actuator, and liquid discharge apparatus
JP6219535B2 (en) Method for manufacturing piezoelectric element and method for manufacturing actuator
JP5592104B2 (en) Piezoelectric film, piezoelectric element including the same, and liquid ejection device
JP2007281049A (en) Laminated element, piezoelectric element, and ink-jet recording head
JP5497405B2 (en) Piezoelectric film and film forming method, piezoelectric element, liquid ejection apparatus, and piezoelectric ultrasonic transducer
JP6392360B2 (en) Piezoelectric film and manufacturing method thereof, piezoelectric element, and liquid ejection device
JP4142726B2 (en) Film-forming method, piezoelectric film, and piezoelectric element
JP5449970B2 (en) Piezoelectric film forming method, piezoelectric element, liquid ejection device, and piezoelectric ultrasonic transducer
JP5243821B2 (en) Inorganic film and manufacturing method thereof, piezoelectric element, and liquid ejection apparatus
JP5270278B2 (en) Method for manufacturing piezoelectric element

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090416

R150 Certificate of patent or registration of utility model

Ref document number: 4299360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250