JP4299091B2 - Bottle mold cooling method and bottle mold used therefor - Google Patents

Bottle mold cooling method and bottle mold used therefor Download PDF

Info

Publication number
JP4299091B2
JP4299091B2 JP2003334810A JP2003334810A JP4299091B2 JP 4299091 B2 JP4299091 B2 JP 4299091B2 JP 2003334810 A JP2003334810 A JP 2003334810A JP 2003334810 A JP2003334810 A JP 2003334810A JP 4299091 B2 JP4299091 B2 JP 4299091B2
Authority
JP
Japan
Prior art keywords
mold
cooling
bottle
die
straight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003334810A
Other languages
Japanese (ja)
Other versions
JP2005097056A (en
Inventor
篤志 宮城
光夫 植田
勝己 橋本
裕康 蘆田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Yamamura Glass Co Ltd
Original Assignee
Nihon Yamamura Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Yamamura Glass Co Ltd filed Critical Nihon Yamamura Glass Co Ltd
Priority to JP2003334810A priority Critical patent/JP4299091B2/en
Publication of JP2005097056A publication Critical patent/JP2005097056A/en
Application granted granted Critical
Publication of JP4299091B2 publication Critical patent/JP4299091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B9/00Blowing glass; Production of hollow glass articles
    • C03B9/30Details of blowing glass; Use of materials for the moulds
    • C03B9/38Means for cooling, heating, or insulating glass-blowing machines or for cooling the glass moulded by the machine
    • C03B9/3875Details thereof relating to the side-wall, body or main part of the moulds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Description

本発明は、製びん機の粗型や仕上型などのびん成形型を成形中に冷却するびん成形型の冷却方法とそれに用いるびん成形型に関し、詳しくは、周方向複数箇所で縦向きの通風を図って冷却するびん成形型の冷却方法とそれに用いるびん成形型に関するものである。   The present invention relates to a cooling method for a bottle forming die that cools a bottle forming die such as a rough die or a finishing die of a bottle making machine during molding, and a bottle forming die used therefor. The present invention relates to a cooling method for a bottle mold that cools by cooling the bottle mold and a bottle mold used therefor.

製びん機では、粗型や仕上型を成形中冷却して、それらが軟化した高温のゴブから順次に成形するパリソンやびんをその成形段階に応じて降温させることにより、形状保証することが古くから行われている。このような冷却は一般的に、粗型や仕上型における姿面のまわりに複数配した軸線に平行な冷却通路を通じた通風によって行われる(例えば、特許文献1〜3参照)。   In the bottle-making machine, it is old to guarantee the shape by cooling the rough mold and finishing mold during molding, and lowering the temperature of the parison and bottle that are molded sequentially from the high-temperature gob that they softened according to the molding stage. It is made from. Such cooling is generally performed by ventilation through cooling passages parallel to the axes arranged around the appearance surface of the rough mold or the finish mold (see, for example, Patent Documents 1 to 3).

特許公報1は、特に、粗型が一対隣接して配置されるなどのために、外部への放熱の違いによる周方向の温度差が生じてびんの成形に悪影響することに対応すべく、粗型に対するプレナムチャンバからの送風量を周方向に設けた送風域ごとに個別に調整できるようにした技術を開示している。   Japanese Patent Laid-Open Publication No. 2001-28103 discloses that a rough temperature difference due to a difference in heat radiation to the outside occurs due to a pair of adjacent rough molds, which adversely affects bottle molding. The technique which enabled it to adjust individually the ventilation volume from the plenum chamber with respect to a type | mold for every ventilation area provided in the circumferential direction is disclosed.

特許文献2は、特に、粗型、仕上型の隣接配置やまわりの設置機器が邪魔で、送風装置が複雑で背圧の高いものになりやすく、粗型と仕上型とで送風装置を共通にできないことに対応すべく、粗型および仕上型の中間高さ部の外周部に、周方向に配設されている冷却通路と繋がる半円弧型の導入口を設け、送風装置は粗型や仕上型を開閉するように支持する支持部材を介して前記導入口に通じ冷却通路に送風できるようにした技術を開示しており、冷却通路への通風はその途中から両側に分流させるので長い冷却通路の一端から他端へ通風する場合のように上流側と下流側とで生じる冷却空気の温度差を軽減することができる。   In Patent Document 2, in particular, the adjacent arrangement of the rough mold and the finish mold and the surrounding installation equipment are obstructive, and the blower is complicated and tends to have high back pressure. The blower is shared between the rough mold and the finish mold. In order to cope with this, the semicircular arc type inlet that connects to the cooling passage arranged in the circumferential direction is provided on the outer peripheral part of the intermediate height part of the rough mold and finish mold, Disclosed is a technology that allows air to be blown to the cooling passage through the introduction port via a support member that supports the mold to open and close, and the ventilation passage to the cooling passage is diverted from the middle to both sides, so that the long cooling passage The temperature difference of the cooling air generated between the upstream side and the downstream side can be reduced as in the case where air is passed from one end to the other end.

特許文献3は、冷却通路の径を上流側と下流側とで大小違える技術を開示している。これによると、径の違いによって流速など通風条件を異ならせ、型の軸線方向でも冷却条件を調節することができる。
特開平03−228833号公報 特開平06−064931号公報 特開昭61−083637号公報
Patent Document 3 discloses a technique for changing the diameter of the cooling passage between the upstream side and the downstream side. According to this, the cooling conditions can be adjusted even in the axial direction of the mold by changing the ventilation conditions such as the flow velocity depending on the difference in diameter.
Japanese Patent Laid-Open No. 03-228833 Japanese Patent Application Laid-Open No. 06-064931 JP-A-61-083637

ところで、近時では省エネルギ、省力化、生産性の向上が叫ばれ、製びんにおける歩留まりの向上が望まれている一方、びんの安全基準が高まったり、極薄の超軽量びんが登場するなどして精度基準が益々高まるなか、歩留まりよく製びんすることが困難になっている。   By the way, recently, energy saving, labor saving, and productivity improvement have been screamed, and while improving the yield of bottles is desired, the safety standards of bottles have increased, and ultra-thin ultra-light bottles have appeared. As accuracy standards increase, it is difficult to produce bottles with high yield.

本発明者等は新たな基準での各種びんの成形において、天面の傾斜、首部の傾きによるへたり、胴部の変形、肉厚不良、くびれ部やくぼみ部での面荒れであるビリ、などの発生を経験している。ビリは冷却が過度でも、不足しても生じ、形状不良は特に、超軽量びんの成形において多発し、程度も大きい。天面傾斜やへたりは単純に冷却不足と思われ、肩部や首部のまわりに冷却リングを設けたり、それへの風量を高めたりして冷却を強化することが対策として考えられ種々に実験をした。   In molding various bottles based on a new standard, the present inventors have found that the top surface is inclined due to the inclination of the top surface, the neck is inclined, the body is deformed, the wall thickness is poor, and the surface is rough at the constricted portion or the recessed portion. Has experienced the occurrence of such. Billiards occur even when the cooling is excessive or insufficient, and the shape defect occurs frequently, especially in the formation of an ultralight bottle. It seems that the top slope and sag are simply insufficiently cooled, and a cooling ring around the shoulder and neck, and increasing the airflow to it, can be considered as a countermeasure and various experiments are considered. Did.

天面傾斜やへたりが解消できると、過度の冷却のために成形後の表面強化処理であるホットエンドコーティングにおいて強化膜の付きが悪くなったり、底びり、底割れ、歪みなどがときとして生じた。これらは、びんの形状や厚み、径の大小などの各種条件の違い、粗型の姿面と成形材料となるゴブとの形状の関係や、仕上型の姿面の成形材料となるパリソンとの形状の関係による姿面と成形材料との接触の早い遅いの違い、などによって異なる姿面の温度分布に対応した部分的な温度管理が適正にできていないことを意味する。   If the top slope or sag can be eliminated, the hot end coating, which is a surface strengthening treatment after molding, may cause poor adhesion, bottoming, bottom cracking, distortion, etc. due to excessive cooling. It was. These are differences in various conditions such as the shape and thickness of the bottle, the size of the diameter, the relationship between the shape of the rough mold and the gob that is the molding material, and the parison that is the molding material of the finish mold. It means that the partial temperature control corresponding to the temperature distribution of the different figure is not properly performed due to the difference of the early and late contact between the figure and the molding material due to the shape relationship.

例えば、特許文献1〜3に記載のような型の軸線に平行な冷却通路を利用するだけでは、特許文献1に記載のもののように周方向での冷却条件を調整したり、特許文献2に開示のように上流側と下流側との冷却空気の温度差を低減しても、姿面の軸線方向で異なる温度分布の解消に対応しない。また、特許文献3に開示のように上流側と下流側とで径を異ならせて冷却条件を変えて、これが軸線方向で姿面の軸線方向で異なる温度分布に仮に対応したものであったとしても、姿面から遠い部分では間接度合の高い冷却作用となって設定条件通りに冷却が及ばず、特に、天面傾斜やへたりを防止するために部分的に強く冷却したいようなことには対応し切れない。まして、びんの外面の局部的な窪み部や胴部途中のくびれ部には対応し切れない。   For example, just by using a cooling passage parallel to the axis of the mold as described in Patent Documents 1 to 3, the cooling conditions in the circumferential direction can be adjusted as in Patent Document 1, or Even if the temperature difference of the cooling air between the upstream side and the downstream side is reduced as disclosed, it does not correspond to the elimination of the temperature distribution that differs in the axial direction of the appearance surface. Further, as disclosed in Patent Document 3, the cooling conditions are changed by changing the diameters on the upstream side and the downstream side, and this temporarily corresponds to the temperature distribution that differs in the axial direction in the axial direction. However, in the part far from the figure, it becomes a cooling action with a high degree of indirect, and the cooling does not reach the set condition, especially for those who want to cool partly strongly in order to prevent the top surface inclination and sag. I can't handle it. Furthermore, it cannot fully correspond to a local depression on the outer surface of the bottle or a constriction in the middle of the trunk.

これが対応できるようになれば、それ単独で、あるいは従来の、また、これから開発される、周方向での冷却条件の調整や軸線方向での冷却条件の調整も併せ、各種成形条件の違いに対応した姿面の温度制御が好適に達成される筈である。   If this becomes possible, it will be possible to cope with differences in various molding conditions, including adjustment of cooling conditions in the circumferential direction and adjustment of cooling conditions in the axial direction, either alone or in the future. Thus, the temperature control of the appearance should be preferably achieved.

このような視点から、本発明者等は姿面の軸線方向での温度分布の違い、必要に応じて周方向での温度分布の違い、に十分に対応できる冷却方式を見出し実現した。   From such a viewpoint, the present inventors have found and realized a cooling method that can sufficiently cope with the difference in temperature distribution in the axial direction of the appearance, and the difference in temperature distribution in the circumferential direction as necessary.

本発明の目的は、このような新たな冷却方式に基づき、粗型、仕上型の別を問わず姿面の温度分布を的確に管理して成形不良を防止できるびん成形型の冷却方法とそれに用いるびん成形型を提供することにある。   An object of the present invention is to provide a bottle mold cooling method capable of preventing defective molding by accurately managing the temperature distribution of the appearance surface regardless of whether it is a rough mold or a finishing mold based on such a new cooling method, and It is to provide a bottle mold to be used.

上記のような目的を達成するために、本発明のびん成形型の冷却方法は、成形中の型につき、その周方向複数箇所で縦向きの通風を図って冷却するびん成形型の冷却方法において、型の外面からストレートにあけられる2つ以上の穴の繋がりを利用した、型の姿面の軸線方向における非ストレート形状にほぼ倣う経路にて、前記通風を行い冷却することを1つの特徴としている。   In order to achieve the above object, the bottle molding die cooling method of the present invention is a bottle molding die cooling method in which the mold being molded is cooled by a plurality of circumferentially directed airflows at a plurality of locations in the circumferential direction. One feature is to cool by performing the ventilation in a path that substantially follows the non-straight shape in the axial direction of the shape of the mold, using a connection of two or more holes that are drilled straight from the outer surface of the mold. Yes.

このような構成では、びん成形型を冷却するのに、その姿面の軸線方向における非ストレート形状に対し、型の外面からストレートにあけられる2つ以上の穴の繋がりを利用してほぼ倣うようにした簡単な経路での通風によって、姿面の軸線方向における非ストレート形状の各部に対して必要な程度に接近した位置から直接度合高く、従って、設定した冷却条件がよく反映した冷却を実現して、粗型や仕上型の別なく、軸線方向の温度分布はもとより、前記接近度を周方向に異ならせることにより周方向での温度分布をも十分に管理し、超軽量びんや必要精度の高いびんでも歩留まりよく製びんすることができる。   In such a configuration, in order to cool the bottle molding die, the non-straight shape in the axial direction of the appearance surface is substantially imitated by using a connection of two or more holes that are drilled straight from the outer surface of the die. Ventilation through a simple path is a high degree of directness from a position that is close to the necessary degree to each part of the non-straight shape in the axial direction of the appearance, and thus cooling that reflects the set cooling conditions is realized. Regardless of whether it is a rough mold or a finished mold, the temperature distribution in the circumferential direction is sufficiently controlled by varying the degree of proximity in the circumferential direction as well as the temperature distribution in the axial direction. Even high bottles can be made with good yield.

このような方法は、軸線方向に非ストレートな姿面を有したびん成形型において、型の外面からストレートにあけられる2つ以上の穴の繋がりによって、型の姿面の軸線方向における非ストレート形状にほぼ倣う冷却通路を備え、この冷却通路は通風口と排気口とを少なくとも1つずつ型の外面に有したことを1つの特徴とするびん成形型を用いて実現することができ、びん成形型はその外面からストレートにあけた2つ以上の穴が所望の経路をなして繋がるようにするだけで容易かつ安価に製作できる。   In such a method, a non-straight shape in the axial direction of the mold surface is obtained by connecting two or more holes that are drilled straight from the outer surface of the mold in a mold having a non-straight surface in the axial direction. The cooling passage can be realized by using a bottle forming die characterized by having at least one ventilation port and an exhaust port on the outer surface of the die. The mold can be easily and inexpensively manufactured simply by connecting two or more holes formed straight from the outer surface in a desired path.

本発明のびん成形型の冷却方法は、また、成形中の型につき、その周方向複数箇所で縦向きの通風を図って冷却するびん成形型の冷却方法において、型の外面からストレートにあけられる2つ以上の穴の繋がりを利用した、型の姿面の軸線方向における非ストレート形状にほぼ倣い、かつ、型の姿面のくびれ形成部またはくぼみ形成部には穴どうしの繋がりによる屈曲部が倣う経路にて、前記通風を行い冷却することを他の特徴としている。   The bottle molding die cooling method according to the present invention is also a bottle molding die cooling method in which the mold being molded is cooled by vertical ventilation at a plurality of locations in the circumferential direction, and the bottle molding die is cooled straight from the outer surface of the mold. Almost exactly follows the non-straight shape in the axial direction of the mold surface using the connection of two or more holes, and the constriction forming part or the hollow forming part of the mold appearance surface has a bent part due to the connection between the holes. Another feature is to cool by performing the ventilation in the copying path.

このような構成では、びん成形型を冷却するのに、その姿面の軸線方向における非ストレート形状に対し、型の外面からストレートにあけられる2つ以上の穴の繋がりを利用してほぼ倣い、かつ、型の姿面のくびれ形成部またはくぼみ形成部に対しても穴どうしの繋がりによる屈曲部で倣うようにした簡単な経路での通風によって、姿面の軸線方向におけるくびれ形成部やくぼみ形成部を有した非ストレート形状の各部に対して必要な程度に接近した位置から直接度合高く、従って、設定した冷却条件がよく反映した冷却を実現して、粗型や仕上型の別なく、軸線方向の温度分布はもとより、前記接近度を周方向に異ならせることにより周方向での温度分布をも十分に管理し、くびれ部やくぼみ部の存在の影響なしに超軽量びんや必要精度の高いびんでも歩留まりよく製びんすることができる。   In such a configuration, in order to cool the bottle molding die, the non-straight shape in the axial direction of the appearance surface is substantially imitated by using a connection of two or more holes that are made straight from the outer surface of the die, Constriction forming part or concavity formation in the axial direction of the figure surface by ventilating through a simple path that follows the constriction forming part or concavity forming part of the mold form surface with a bent part by connecting holes. High degree of directness from the position close to the necessary degree for each non-straight-shaped part with a part, thus realizing cooling that well reflects the set cooling conditions, regardless of whether it is a rough mold or a finish mold, the axis line In addition to the temperature distribution in the direction, the temperature distribution in the circumferential direction can be sufficiently managed by making the degree of proximity different in the circumferential direction, and the ultra-light bottle and the required accuracy can be achieved without the influence of the presence of the constricted part or the recessed part. Ibin But it can be a good yield a bottle.

このような方法は、軸線方向に非ストレートな姿面を有したびん成形型において、型の外面からストレートにあけられる2つ以上の穴の繋がりによって、型の姿面の軸線方向における非ストレート形状にほぼ倣い、かつ、型の姿面のくびれ形成部またはくぼみ形成部には穴どうしの繋がりによる屈曲部が倣う冷却通路を備え、この冷却通路は通風口と排気口とを少なくとも1つずつ型の外面に有したことを他の特徴とするびん成形型を用いて実現でき、びん成形型はその外面からストレートにあけた2つ以上の穴が所望の経路をなして繋がるようにするだけで容易かつ安価に製作できる。   In such a method, a non-straight shape in the axial direction of the mold surface is obtained by connecting two or more holes that are drilled straight from the outer surface of the mold in a mold having a non-straight surface in the axial direction. In addition, the constriction forming part or the hollow forming part of the shape of the mold is provided with a cooling passage that follows the bent part of the connection between the holes, and this cooling passage has at least one ventilation opening and one exhaust opening. It can be realized by using a bottle mold having other features, and the bottle mold can be formed by simply connecting two or more holes drilled straight from the outer surface in a desired path. Easy and inexpensive to manufacture.

本発明のびん成形型の冷却方法は、また、成形中の型につき、その周方向複数箇所で縦向きの通風を図って冷却するびん成形型の冷却方法において、型の外面からストレートにあけられる2つ以上の穴の繋がりを利用した、型の姿面のくびれ形成部またはくぼみ形成部には穴どうしの繋がりによる屈曲部が倣う経路にて、前記通風を行い冷却することを別の特徴としている。   The bottle molding die cooling method according to the present invention is also a bottle molding die cooling method in which the mold being molded is cooled by vertical ventilation at a plurality of locations in the circumferential direction, and the bottle molding die is cooled straight from the outer surface of the mold. Another feature is that cooling is performed by passing the air in the path formed by the bent portion formed by the connection between the holes in the constriction forming portion or the recess forming portion of the mold using the connection of two or more holes. Yes.

このような構成では、びん成形型を冷却するのに、その姿面の軸線方向のくびれ形成部またはくぼみ形成部に対し、型の外面からストレートにあけられる2つ以上の穴どうしの繋がりによる屈曲部で倣うようにした簡単な経路での通風によって、姿面の軸線方向におけるくびれ形成部やくぼみ形成部に対して必要な程度に接近した位置から直接度合高く、従って、設定した冷却条件がよく反映した冷却を実現して、粗型や仕上型の別なく、軸線方向の温度分布はもとより、前記接近度を周方向に異ならせることにより周方向での温度分布をも十分に管理し、くびれ部やくぼみ部の存在の影響なしに超軽量びんや必要精度の高いびんでも歩留まりよく製びんすることができる。   In such a configuration, in order to cool the bottle molding die, bending due to the connection between two or more holes that are drilled straight from the outer surface of the die with respect to the constriction formation portion or the depression formation portion in the axial direction of the appearance surface Due to the ventilation in a simple path that is imitated by the part, the degree of direct cooling is high from the position close to the necessary degree with respect to the constriction forming part and the hollow forming part in the axial direction of the figure, and therefore the set cooling condition is good. The reflected cooling is realized and the temperature distribution in the circumferential direction is sufficiently controlled by varying the degree of proximity in the circumferential direction as well as the temperature distribution in the axial direction, regardless of whether it is a rough mold or a finished mold. Even with ultra-light bottles and bottles with high accuracy, it is possible to produce bottles with a high yield without being affected by the presence of parts or indentations.

このような方法は、軸線方向にくびれ形成部またはくぼみ形成部を持った姿面を有したびん成形型において、型の外面からストレートにあけられる2つ以上の穴の繋がりによって、型の姿面のくびれ形成部またはくぼみ形成部に穴どうしの繋がりによる屈曲部が倣う冷却通路を備え、この冷却通路は通風口と排気口とを少なくとも1つずつ型の外面に有したことを別の特徴とするびん成形型を用いて実現でき、びん成形型はその外面からストレートにあけた2つ以上の穴が所望の経路をなして繋がるようにするだけで容易かつ安価に製作できる。   In such a method, in a bottle mold having a shape having a constriction forming part or a hollow forming part in the axial direction, the appearance of the mold is obtained by connecting two or more holes that are formed straight from the outer surface of the mold. Another feature is that the constriction forming part or the hollow forming part is provided with a cooling passage which is followed by a bent part formed by connecting holes, and the cooling passage has at least one ventilation port and one exhaust port on the outer surface of the mold. The bottle forming mold can be easily and inexpensively manufactured simply by connecting two or more holes formed straight from the outer surface thereof in a desired path.

本発明のびん成形型の冷却方法は、また、成形中の型につき、その周方向複数箇所で縦向きの通風を図って冷却するびん成形型の冷却方法において、前記通風は型の姿面の軸線方向における非ストレート形状にほぼ倣った経路を通じて行うことを最も基本的な特徴としている。   The bottle molding die cooling method according to the present invention is also a bottle molding die cooling method in which the mold being molded is cooled by vertical ventilation at a plurality of locations in the circumferential direction. The most basic feature is that it is performed through a path substantially following the non-straight shape in the axial direction.

このような構成では、びん成形型を冷却するのに、その姿面の軸線方向における非ストレート形状に対しほぼ倣う経路での通風によって、姿面の軸線方向における非ストレート形状の各部に対して必要な程度に接近した位置から直接度合高く、従って、設定した冷却条件がよく反映した冷却を実現して、粗型や仕上型の別なく、軸線方向の温度分布はもとより、前記接近度を周方向に異ならせることにより周方向での温度分布をも十分に管理し、超軽量びんや必要精度の高いびんでも歩留まりよく製びんすることができる。   In such a configuration, it is necessary for each part of the non-straight shape in the axial direction of the appearance surface to cool the bottle mold by ventilation in a path that substantially follows the non-straight shape in the axial direction of the appearance surface. Directly from a position close to a certain level, therefore, cooling that reflects well the set cooling conditions is realized, and the degree of proximity is determined in the circumferential direction in addition to the temperature distribution in the axial direction, regardless of whether it is a rough mold or a finish mold. Therefore, the temperature distribution in the circumferential direction can be sufficiently controlled, and bottles can be manufactured with good yield even for ultra-light bottles or bottles with high required accuracy.

このような方法は、軸線方向に非ストレートな姿面を有したびん成形型において、型の姿面の軸線方向における非ストレート形状にほぼ倣う冷却通路を備え、この冷却通路は通風口と排気口とを少なくとも1つずつ型の外面に有したことを基本的な特徴とするびん成形型を用いて実現することができる。   Such a method comprises a cooling die that has a non-straight appearance surface in the axial direction and that has a cooling passage that substantially follows the non-straight shape in the axial direction of the appearance surface of the die. Can be realized by using a bottle forming die having a basic feature of having at least one each on the outer surface of the die.

型の姿面が異径な形状を有し、小径部に対応する経路部による周方向の冷却通路数を、それよりも大きい大径部に対応する経路部のそれよりも少なくして冷却を行う、さらなる構成によれば、
冷却個所が姿面の小径部に近づいて周方向でも近接するのを周方向の冷却通路数を大径部よりも少なくして、冷却が過剰になるのを調整することができる。
The shape of the mold has a different diameter, and the number of cooling passages in the circumferential direction by the path portion corresponding to the small diameter portion is less than that of the path portion corresponding to the larger diameter portion for cooling. According to the further configuration to do,
The number of cooling passages in the circumferential direction can be made smaller than that in the large-diameter portion so that the cooling portion approaches the small-diameter portion of the figure and approaches in the circumferential direction.

このような方法は、型の姿面は異径な形状を有し、冷却通路は型の姿面の小径部に対応する部分の周方向の経路数を、大径部に対応する部分の周方向の経路数よりも少なくしてあるびん成形型を用いて実現する。   In such a method, the mold surface has a different diameter, and the cooling passage has the number of paths in the circumferential direction of the portion corresponding to the small-diameter portion of the mold surface, and the circumference of the portion corresponding to the large-diameter portion. This is achieved by using a bottle mold that is smaller than the number of directions.

本発明のそれ以上の目的および特徴は、以下の詳細な説明および図面によって明らかになる。本発明の各特徴は、それ単独で、あるいは可能な限りにおいて種々な組合せで複合して採用することができる。   Further objects and features of the present invention will become apparent from the following detailed description and drawings. Each feature of the present invention can be used alone or in combination in various combinations as much as possible.

本発明の1つの特徴によれば、姿面の軸線方向における非ストレート形状の各部に対して設定した冷却条件での冷却を行って、粗型や仕上型の別なく、軸線方向の温度分布はもとより、前記接近度を周方向に異ならせることにより周方向での温度分布をも十分に管理し、超軽量びんや必要精度の高いびんでも歩留まりよく製びんすることができる。   According to one aspect of the present invention, cooling is performed under the cooling conditions set for each non-straight portion in the axial direction of the appearance surface, and the temperature distribution in the axial direction is determined regardless of whether it is a rough mold or a finishing mold. Of course, by varying the degree of approach in the circumferential direction, the temperature distribution in the circumferential direction can be sufficiently managed, and bottles can be manufactured with high yield even with ultra-light bottles or bottles with high required accuracy.

本発明の他の特徴によれば、型の姿面の軸線方向におけるくびれ形成部やくぼみ形成部を有した非ストレート形状の各部に対して設定した冷却条件での冷却を行って、粗型や仕上型の別なく、軸線方向の温度分布はもとより、前記接近度を周方向に異ならせることにより周方向での温度分布をも十分に管理し、くびれ部やくぼみ部の存在の影響なしに超軽量びんや必要精度の高いびんでも歩留まりよく製びんすることができる。   According to another feature of the present invention, cooling is performed under a cooling condition set for each non-straight shape part having a constriction forming part and a hollow forming part in the axial direction of the mold surface, and a rough mold or Regardless of the finish type, not only the temperature distribution in the axial direction but also the temperature distribution in the circumferential direction can be sufficiently controlled by making the degree of approach different in the circumferential direction, and it is superfluous without the influence of the presence of the constricted part or the recessed part. Even lightweight bottles and bottles with high accuracy can be manufactured with good yield.

本発明の別の特徴によれば、型の姿面の軸線方向におけるくびれ形成部またはくぼみ形成部に対して設定した冷却条件での冷却を行って、粗型や仕上型の別なく、軸線方向の温度分布はもとより、前記接近度を周方向に異ならせることにより周方向での温度分布をも十分に管理し、くびれ部やくぼみ部の存在の影響なしに超軽量びんや必要精度の高いびんでも歩留まりよく製びんすることができる。   According to another feature of the present invention, cooling is performed under the cooling conditions set for the constriction forming portion or the hollow forming portion in the axial direction of the mold appearance surface, regardless of whether the rough die or the finishing die is in the axial direction. The temperature distribution in the circumferential direction is sufficiently controlled by varying the degree of proximity in the circumferential direction as well as the temperature distribution of the ultra-light bottle and the bottle with high required accuracy without the influence of the presence of the constricted part or the recessed part. But it can be made with good yield.

本発明のびん成形型の基本的な特徴によれば、型の姿面の軸線方向における非ストレート形状の各部に対して設定した冷却条件での冷却を行って、粗型や仕上型の別なく、軸線方向の温度分布はもとより、前記接近度を周方向に異ならせることにより周方向での温度分布をも十分に管理し、超軽量びんや必要精度の高いびんでも歩留まりよく製びんすることができる。   According to the basic features of the bottle forming mold of the present invention, cooling is performed under the cooling conditions set for each non-straight shape part in the axial direction of the mold surface, regardless of whether it is a rough mold or a finished mold. In addition to the temperature distribution in the axial direction, the temperature distribution in the circumferential direction can be sufficiently managed by making the degree of proximity different in the circumferential direction, making it possible to produce bottles with high yield even with ultra-light bottles or bottles with high required accuracy. it can.

型の姿面が異径な形状を有し、小径部に対応する経路部による周方向の冷却個所を、それよりも大きい大径部に対応する経路部のそれよりも少なくして冷却を行う、さらなる構成によれば、
冷却個所が姿面の小径部に近づいて周方向でも近接して、冷却が過剰になるのを調整することができる。
The shape of the mold has a different shape, and cooling is performed by reducing the number of cooling points in the circumferential direction by the path portion corresponding to the small diameter portion smaller than that of the path portion corresponding to the larger diameter portion. According to a further configuration,
It is possible to adjust the cooling portion to approach the small-diameter portion of the appearance surface and close in the circumferential direction so that the cooling is excessive.

以下、本発明に係るびん成形型の冷却方法とそれに用いるびん成形型の実施の形態について、図1〜図6を参照しながら幾つかの例とともに詳細に説明し、本発明の理解に供する。なお、以下の説明および図示は、本発明の具体例であって、特許請求の範囲における記載の内容を限定するものではない。   Hereinafter, the cooling method of the bottle mold according to the present invention and the embodiment of the bottle mold used therewith will be described in detail together with some examples with reference to FIGS. 1 to 6 for the understanding of the present invention. The following description and illustrations are specific examples of the present invention and do not limit the contents described in the claims.

本実施の形態にかかるびん成形型の冷却方法は、図1、図2に示す仕上型1、図3〜図6に示す粗型2の別、図1、図2に示す仕上型1どうしの、姿面1aの形状の違い、図3〜図6に示す粗型2どうしの姿面2aどうしの違いに係わらず適用して有効である。それら種々な違いに対し本発明は、総じて、図1に示す例、図2に示す例、図3に示す例、図4に示す例、図5に示す例、図6に示す例がそうなっているように、成形中のびん成形型である仕上型1または粗型2につき、その周方向複数箇所で実線または破線の矢印で示す縦向きの通風3を図って冷却する。特に、この通風3は仕上型1や粗型2の姿面1a、2aの軸線4の方向における非ストレート形状にほぼ倣った経路5を通じて行う。通風3は従来知られたどのような送風機構をも採用することができ、特許文献1、2などに形成されているように冷却空気を送風してもよい。勿論これ以降新しく開発される送風機構によることもできる。   The cooling method of the bottle forming mold according to the present embodiment is different from the finishing mold 1 shown in FIGS. 1 and 2, the rough mold 2 shown in FIGS. 3 to 6, and the finishing mold 1 shown in FIGS. It is effective to apply regardless of the difference in the shape of the appearance surface 1a and the difference in the appearance surfaces 2a of the rough molds 2 shown in FIGS. For these various differences, the present invention generally has the example shown in FIG. 1, the example shown in FIG. 2, the example shown in FIG. 3, the example shown in FIG. 4, the example shown in FIG. As shown in the figure, the finishing mold 1 or the rough mold 2 which is a bottle forming mold being molded is cooled by aiming at the vertical ventilation 3 indicated by solid or broken arrows at a plurality of locations in the circumferential direction. In particular, this ventilation 3 is performed through a path 5 substantially following the non-straight shape in the direction of the axis 4 of the appearance surfaces 1a and 2a of the finishing die 1 and the rough die 2. As the ventilation 3, any conventionally known blowing mechanism can be adopted, and cooling air may be blown as described in Patent Documents 1 and 2. Of course, it is possible to use a newly developed air blowing mechanism.

このように、びん成形型である仕上型1や粗型2を冷却するのに、その姿面1a、2aの軸線4方向における非ストレート形状に対しほぼ倣う経路5での通風3によって、姿面1a、2aの軸線4方向における非ストレート形状の各部に対して必要な程度に接近した位置、つまり従来のような軸線4に平行な冷却通路による場合に比して近接した位置からの直接度合の高い、従って、冷却通路6の径や形状、それへの通風3における冷却空気の流量、流速、温度の違いなどにより設定した冷却条件がよく反映した、冷却を実現することができる。この結果、粗型2や仕上型1の別なく、軸線4方向の温度分布はもとより、前記接近度を周方向に異ならせることにより周方向での温度分布をも十分に管理し、超軽量びんや必要精度の高いびんでも歩留まりよく製びんすることができる。このような方法は、軸線4方向に非ストレートな姿面1a、2aを有した図1〜図6に示すような各種の仕上型1や粗型2において、姿面1a、2aの軸線4方向における非ストレート形状にほぼ倣う経路5を持った冷却通路6を備え、この冷却通路6は通風口6aと排気口6bとを少なくとも1つずつ仕上型1および粗型2などの外面に有したびん成形型を用いて実現することができる。   Thus, to cool the finishing mold 1 and the rough mold 2 which are bottle molding dies, the air flow 3 in the path 5 substantially following the non-straight shape in the direction of the axis 4 of the surface 1a, 2a 1a, 2a in the direction of the axis 4 in the direction of the non-straight shape as close as necessary, that is, the degree of direct from the position close to that in the case of the conventional cooling passage parallel to the axis 4 Therefore, it is possible to realize cooling that is well reflected by the cooling conditions set by the difference in the diameter and shape of the cooling passage 6 and the flow rate, flow velocity, and temperature of the cooling air in the ventilation 3 to the cooling passage 6. As a result, regardless of whether the rough mold 2 or the finishing mold 1 is used, not only the temperature distribution in the direction of the axis 4 but also the temperature distribution in the circumferential direction can be sufficiently controlled by making the degree of approach different in the circumferential direction, and the ultralight bottle Even high-precision bottles can be made with good yield. Such a method is used in various finishing molds 1 and rough molds 2 as shown in FIGS. 1 to 6 having non-straight appearance faces 1a and 2a in the direction of the axis 4, and in the direction of the axes 4 of the appearance faces 1a and 2a. The cooling passage 6 has a path 5 that substantially follows the non-straight shape in FIG. 1. This cooling path 6 has at least one ventilation port 6a and exhaust port 6b on the outer surface of the finishing mold 1 and the rough mold 2 respectively. It can be realized using a mold.

具体的には、仕上型1や粗型2の外面からストレートにあけられる2つ以上の穴の種々な繋がりを利用した、例えば図1に示すような3つのストレートな穴11、12,13による繋がりを利用した、また、図2に示すような2つのストレートな穴14、15による繋がりを利用した、また、図3に示す2つのストレートな穴16、17による繋がりを利用した、また、図4に示す2つのストレートな穴18、19による繋がりを利用した、また、図5に示す3つのストレートな穴21、22、23による繋がりを利用した、また、図6に示す3つのストレートな穴24、25、26による繋がりを利用した、姿面1a、2aの軸線4方向における非ストレート形状にほぼ倣うそれぞれの経路5にて、前記通風3を行い冷却する。これにより、型の外面からストレートにあけられる2つ以上の穴の繋がりを利用してほぼ倣うようにした簡単な経路5での通風3によって、姿面1a、2aの軸線4方向における非ストレート形状の各部に対して必要な程度に接近した位置からの直接度合の高い、設定した冷却条件がよく反映する冷却が達成される。ストレートな穴の繋がり数は経路5ないしはそれを形成する冷却通路6の必要屈曲回数により種々に設定することができ、姿面1a、2aの軸線4方向での非ストレート形状とそれにどのように、また、どの程度に倣わすかによって必要に応じ選択すればよい。   Specifically, for example, by using three straight holes 11, 12, and 13 as shown in FIG. 1 using various connections of two or more holes that are drilled straight from the outer surface of the finishing mold 1 or the rough mold 2. Utilizing the connection, utilizing the connection by the two straight holes 14 and 15 as shown in FIG. 2, and utilizing the connection by the two straight holes 16 and 17 shown in FIG. 4 using the connection by the two straight holes 18, 19 shown in FIG. 4, using the connection by the three straight holes 21, 22, 23 shown in FIG. 5, and the three straight holes shown in FIG. The ventilating 3 is used for cooling in the respective paths 5 that substantially follow the non-straight shape in the direction of the axis 4 of the appearance surfaces 1a and 2a using the connection of 24, 25, and 26. As a result, the non-straight shape in the direction of the axis 4 of the appearance surfaces 1a and 2a is obtained by the ventilation 3 in the simple path 5 that is substantially imitated by using a connection of two or more holes that are drilled straight from the outer surface of the mold. Cooling that directly reflects the set cooling conditions with a high degree of directness from a position close to the necessary degree with respect to each part is achieved. The number of straight hole connections can be variously set according to the number of required bends of the path 5 or the cooling passage 6 forming the path, and the non-straight shape in the direction of the axis 4 of the appearance surfaces 1a and 2a and how to do it. Moreover, what is necessary is just to select as needed according to how much it copies.

このような方法を達成するための仕上型1や粗型2としては、軸線4方向に非ストレートな姿面1a、2aを有したびん成形型において、型の外面からストレートにあけられる2つ以上の既述したような穴11〜13、穴14と15、穴16と17、穴18と19、穴21〜23、穴24〜26のような繋がりによって、型の姿面1a、2aの軸線4方向における非ストレート形状にほぼ倣う経路5をなす冷却通路6を備え、この冷却通路6が通風口6aと排気口6bとを少なくとも1つずつ型の外面に有したものであればよく、容易かつ安価に製作できる。もっとも、そのような繋がりのあるストレートな穴を型の外面からあけ、型の外面の所望する位置に通風口6aと排気口6bを得るのに、必要な通風口6aや排気口6bとする穴あけ口以外の穴あけ口は閉じるようにすればよく、図1に示す例では2箇所の穴あけ口31、32を、図5に示す例では1箇所の穴あけ口33を、図6に示す例では1箇所の穴あけ口34をそれぞれ栓35により閉じている。栓35は金属部材の詰め物が耐久性、馴染み性などの面でよく、必要に応じて打ち込み止め、カシメ止め、螺子止め、溶接止めなどができる。   As the finishing mold 1 and the rough mold 2 for achieving such a method, two or more finishing molds having a non-straight appearance surface 1a, 2a in the direction of the axis 4 can be opened straight from the outer surface of the mold. The axes of the mold appearance surfaces 1a and 2a by the connections such as the holes 11 to 13, the holes 14 and 15, the holes 16 and 17, the holes 18 and 19, the holes 21 to 23, and the holes 24 to 26 as described above. A cooling passage 6 that forms a path 5 that substantially follows the non-straight shape in four directions is provided, and the cooling path 6 may have at least one ventilation port 6a and at least one exhaust port 6b on the outer surface of the mold. And it can be manufactured at low cost. Of course, a straight hole having such a connection is made from the outer surface of the mold, and the necessary ventilation holes 6a and 6b are formed to obtain the ventilation holes 6a and 6b at desired positions on the outer surface of the mold. It is only necessary to close holes other than the mouth. In the example shown in FIG. 1, two holes 31 and 32 are provided, in the example shown in FIG. 5, one hole 33 is provided, and in the example shown in FIG. Each hole 34 is closed with a plug 35. The plug 35 may be a metal member stuffing that is durable and familiar, and can be driven in, swaged, screwed, welded, etc. as required.

さらに、本実施の形態のびん成形型の冷却方法は、型の外面からストレートにあけられる2つ以上の既述したような穴11〜13、穴14と15、穴16と17、穴18と19、穴21〜23、穴24〜26のような繋がりによって、型の姿面1a、2aの軸線4方向における非ストレート形状にほぼ倣い、かつ、図1の仕上型1の姿面1aに示すような肩部41におけるくびれ形成部41aや図2の仕上型1の姿面1aに示すような胴部42におけるくびれ形成部42a、図3、図4、図5、図6の粗型2の姿面2aに示すような肩部43におけるくびれ形成部43a、または図示しないくぼみ形成部には、各種穴どうしの繋がりによる屈曲部44が倣う経路5にて、前記通風3を行い冷却する。   Further, the bottle molding die cooling method of the present embodiment includes two or more holes 11 to 13, holes 14 and 15, holes 16 and 17, holes 18, and the like that are straightly drilled from the outer surface of the mold. 19, the shape of the mold surface 1a, 2a substantially follows the non-straight shape in the direction of the axis 4 and is shown in the shape surface 1a of the finishing mold 1 in FIG. The constriction forming part 41a in the shoulder part 41 and the constriction forming part 42a in the body part 42 as shown in the figure 1a of the finishing mold 1 in FIG. 2, the rough mold 2 in FIG. 3, FIG. 4, FIG. The constriction forming portion 43a in the shoulder portion 43 as shown in the appearance surface 2a, or the recess forming portion (not shown) is cooled by performing the ventilation 3 in the path 5 followed by the bent portion 44 formed by connecting various holes.

これにより、姿面1a、2aの軸線4方向における非ストレート形状に対し、型の外面からストレートにあけられる2つ以上の前記穴11〜13、穴14と15、穴16と17、穴18と19、穴21〜23、穴24〜26のような繋がりによってほぼ倣い、かつ、姿面1a、2aのくびれ形成部41a、42a、43a、またはくぼみ形成部に対しても穴どうしの繋がりによる屈曲部44で倣うようにした簡単な経路5での通風3によって、姿面1a、2aの軸線4方向におけるくびれ形成部41a、42a、43aやくぼみ形成部を有した非ストレート形状の各部に対して必要な程度に接近した位置から直接度合の高い設定した冷却条件がよく反映した冷却を実現することができる。従って、粗型2や仕上型1の別なく、軸線4方向の温度分布はもとより、前記接近度を周方向に異ならせることにより周方向での温度分布をも十分に管理し、くびれ形成部41a、42a、43aの存在やくぼみ部の存在の影響なしに超軽量びんや必要精度の高いびんでも歩留まりよく製びんすることができる。特に、肩部43のくびれ形成部43aやくぼみ部は、粗型2における成形材料となるゴブがいち早く局部的に接触して、長い時間加熱されることに対する冷却不足となりがちで、成形したびんの天面傾斜やへたりの原因になりやすいのを解消することができる。また、胴部42のくびれ形成部42aやくぼみ部は、冷却不足によって既述したビリが生じやすく、離型剤を塗布する必要とそれによる弊害が生じやすかったのを解消できる。   Thereby, with respect to the non-straight shape in the direction of the axis 4 of the appearance surfaces 1a and 2a, the two or more holes 11 to 13, the holes 14 and 15, the holes 16 and 17, and the hole 18 that are drilled straight from the outer surface of the mold 19, almost following the connection such as the holes 21 to 23 and the holes 24 to 26, and bending due to the connection between the holes to the constriction forming portions 41a, 42a, 43a of the appearance surfaces 1a and 2a or the recess forming portions. Due to the ventilation 3 in the simple path 5 that is imitated by the portion 44, each of the non-straight-shaped portions having the constriction forming portions 41a, 42a, 43a and the hollow forming portions in the direction of the axis 4 of the appearance surfaces 1a, 2a. It is possible to realize cooling that reflects the set cooling conditions with a high degree of directness from a position close to the necessary degree. Therefore, regardless of whether the rough mold 2 or the finishing mold 1 is used, not only the temperature distribution in the direction of the axis 4 but also the temperature distribution in the circumferential direction can be sufficiently managed by varying the degree of proximity in the circumferential direction, and the constriction forming portion 41a. , 42a, 43a and the presence of the indented portion, it is possible to produce a bottle with a high yield even with an ultralight bottle or a bottle with high required accuracy. In particular, the constriction forming portion 43a and the indentation portion of the shoulder portion 43 tend to be insufficiently cooled against being heated for a long time because the gob which is the molding material in the rough mold 2 comes into contact quickly and locally. It is possible to eliminate the tendency to cause top tilt and sag. Further, the constriction forming portion 42a and the indented portion of the body portion 42 are likely to cause the above-described chatter due to insufficient cooling, and it is possible to eliminate the necessity of applying the release agent and the adverse effects caused by it.

このような方法も、軸線4方向に非ストレートな姿面1a、2aを有したびん成形型としての仕上型1や粗型2において、型の外面からストレートにあけられる2つ以上の前記穴11〜13、穴14と15、穴16と17、穴18と19、穴21〜23、穴24〜26のような繋がりによって、姿面1a、2aの軸線4方向における非ストレート形状にほぼ倣い、かつ、姿面1a、2aのくびれ形成部41a、42a、43a、またはくぼみ形成部には穴どうしの繋がりによる屈曲部44が倣う経路5をなす冷却通路6を備え、この冷却通路6は通風口6aと排気口6bとを少なくとも1つずつ型の外面に有しただけの簡単な仕上型1または粗型2によって達成することができ、このような仕上型1や粗型2は容易かつ安価に製作できる。   Also in such a method, in the finishing die 1 or the rough die 2 as the bottle forming die having the non-straight appearance surfaces 1a and 2a in the direction of the axis 4, the two or more holes 11 can be made straight from the outer surface of the die. ˜13, holes 14 and 15, holes 16 and 17, holes 18 and 19, holes 21 to 23, holes 24 to 26, almost imitating the non-straight shape in the axis 4 direction of the appearance surfaces 1a and 2a, Further, the constriction forming portions 41a, 42a, 43a or the hollow forming portions of the appearance surfaces 1a and 2a are provided with a cooling passage 6 which forms a path 5 followed by a bent portion 44 formed by connecting holes, and this cooling passage 6 is a vent hole This can be achieved by a simple finishing die 1 or rough die 2 having at least one 6a and at least one exhaust port 6b on the outer surface of the die. Such finishing die 1 and rough die 2 can be easily and inexpensively. Can be produced.

また、図1に示すように、肩部41に限って見たくびれ形成部41aは大径部となる胴部42に対して小径部であって、くびれ形成部41aに倣う屈曲部44は、胴部42に倣う穴11に対して、内径側に延びる穴12、この穴12の内端から立ち上がる穴13へと繋がって形成され、胴部42に倣う穴11の周方向間隔に対し、穴13およびそれによる屈曲部44の周方向間隔は図1に示すように小さくなる。このため、経路5および冷却通路6における屈曲部44によるくびれ形成部41aに対する温度管理が過剰になりやすいのを、姿面1aが前記のような異径な形状を有し、小径部に対応する経路5部の一例となる屈曲部44による周方向の冷却個所を、それよりも大きい大径部に対応する経路5部の一例となる穴11のそれよりも少なくして冷却を行うようにする。これにより、冷却個所が姿面1aなどの小径部に近づいて周方向でも近接するのを周方向の冷却個所数を大径部よりも少なくして、冷却が過剰になるのを単独で、または経路5の通路断面積などと協働して調整することができる。それには、軸線4方向に異径な形状を有した姿面1aを持った仕上型1などにおいて、図1に例示するように冷却通路6が姿面1aなどの小径部に対応する部分の、周方向の経路5の数を、大径部に対応する部分の、周方向の経路5の数よりも少なくすればよい。   Further, as shown in FIG. 1, the constriction forming portion 41a viewed only in the shoulder portion 41 is a small diameter portion with respect to the body portion 42 which is a large diameter portion, and the bent portion 44 following the constriction forming portion 41a is With respect to the hole 11 that follows the body portion 42, the hole 12 that extends to the inner diameter side and the hole 13 that rises from the inner end of the hole 12 are formed. 13 and the circumferential interval between the bent portions 44 is reduced as shown in FIG. For this reason, the temperature management of the constriction forming portion 41a by the bent portion 44 in the path 5 and the cooling passage 6 tends to be excessive, and the appearance surface 1a has the different diameter shape as described above and corresponds to the small diameter portion. Cooling is performed by reducing the cooling portion in the circumferential direction by the bent portion 44 as an example of the path 5 portion to be smaller than that of the hole 11 as an example of the path 5 portion corresponding to the larger diameter portion. . Accordingly, the number of cooling points in the circumferential direction is less than that in the large-diameter portion by approaching the small-diameter portion such as the appearance surface 1a and approaching in the circumferential direction by this, so that the cooling becomes excessive alone or It can be adjusted in cooperation with the cross-sectional area of the path 5 and the like. For this purpose, in the finishing die 1 having the appearance surface 1a having a different diameter in the direction of the axis 4, the cooling passage 6 corresponds to a small diameter portion such as the appearance surface 1a as illustrated in FIG. The number of circumferential paths 5 may be smaller than the number of circumferential paths 5 in the portion corresponding to the large diameter portion.

なお、本実施の形態に係る図1に示す実施例1の仕上型1では、図1(b)に示すように屈曲部44は、平面視して直径線上で2つ割した仕上型1の合目部51に対する周方向近傍位置の直径線52上と、この周方向近傍位置と合目部51に直交する直径線53との周方向中間位置となる直径線54上に設け、屈曲部44を持たない穴11だけによるストレートな経路5をなす冷却通路6を含め、各冷却通路6は両側の直径線52間にそれらの中間位置である直径線53上を空けてほぼ接近した配列ピッチで設けてある。   In addition, in the finishing die 1 of Example 1 shown in FIG. 1 according to the present embodiment, as shown in FIG. 1 (b), the bent portion 44 of the finishing die 1 is divided into two on the diameter line in plan view. A bent portion 44 is provided on a diameter line 52 at a position in the vicinity of the joint portion 51 in the circumferential direction and on a diameter line 54 at a position in the circumferential direction between the position in the vicinity of the circumferential direction and the diameter line 53 orthogonal to the joint portion 51. Each cooling passage 6 includes a cooling passage 6 that forms a straight path 5 with only holes 11 having no gaps, and each cooling passage 6 has a substantially close arrangement pitch between the diameter lines 52 on both sides with a diameter line 53 that is an intermediate position therebetween. It is provided.

また、通風3は実線矢印の方向に行うことに対応して、穴11の下流側寄りの上端部径を上流側を小径部11bとしてそれよりも大径な大径部11aとし、通風3における冷却空気の膨張を図って流速を所定割合下げて仕上型1との接触時間が長くなるようにする。つまり通風3に供される冷却空気が下流側に達するほど昇温することに対して冷却効果が低下するのを補償するようにしている。一方、屈曲部44を形成する穴12、13は大径部11aよりもさらに小径にして絞り効果を持たせ、ここでの冷却空気の流速を高めて大径部11aとは逆の働きをするようにしている。さらに、直径線52上と、その隣の冷却通路6の径を他の冷却通路6の径よりも小さくしている。   Corresponding to the ventilation 3 being performed in the direction of the solid arrow, the upper end diameter near the downstream side of the hole 11 is the small-diameter portion 11b on the upstream side and the large-diameter portion 11a having a larger diameter than that. The cooling air is expanded to reduce the flow rate by a predetermined rate so that the contact time with the finishing die 1 is increased. That is, the cooling effect is compensated for the temperature rise as the cooling air supplied to the ventilation 3 reaches the downstream side. On the other hand, the holes 12 and 13 forming the bent portion 44 are made smaller in diameter than the large-diameter portion 11a so as to have a throttling effect, thereby increasing the flow velocity of the cooling air here and acting opposite to the large-diameter portion 11a. I am doing so. Furthermore, the diameter of the cooling passage 6 adjacent to the diameter line 52 is made smaller than the diameters of the other cooling passages 6.

以上のようにして、仕上型1の姿面1aの形状や仕上型1どうしの隣接部、非隣接部などに対応した軸線4方向と周方向との冷却度を種々に調節している。特に、屈曲部44の合目部51近くへの配置は、肩ビリや段下ビリの防止に有効である。しかし、必要なら、冷却通路6は屈曲部44の有無にかかわらず、型の外面からあけられるストレートな穴11などよりなることから、その途中に縮径部は勿論拡径部を設けることも容易である。例えば、拡径部は、それに合わせた径での穴あけを行った後、拡径部としたい下流側と上流側とにパイプを挿入して拡径部よりも小さな内径とすることができる。   As described above, the degree of cooling in the direction of the axis 4 and the circumferential direction corresponding to the shape of the appearance surface 1a of the finishing die 1 and the adjacent and non-adjacent portions of the finishing dies 1 are variously adjusted. In particular, the arrangement of the bent portion 44 near the joint portion 51 is effective in preventing shoulder and lower step bills. However, if necessary, the cooling passage 6 is formed of a straight hole 11 or the like that is opened from the outer surface of the mold regardless of the presence or absence of the bent portion 44. Therefore, it is easy to provide a diameter-reduced portion as well as a diameter-reduced portion in the middle. It is. For example, the diameter-enlarged portion can be made to have an inner diameter smaller than that of the expanded-diameter portion by drilling with a diameter corresponding to the expanded-diameter portion and then inserting a pipe on the downstream side and upstream side where the expanded-diameter portion is desired.

図2に示す実施例2の仕上型1では、図1に示す実施例と同じ径の違いと、配列を持って冷却通路6を周方向に設けてあるが、くびれ形成部42aの径が図1のくびれ形成部41aよりも大径であることから、全ての冷却通路6に屈曲部44を形成した点で図1のそれと異なる。しかし、必要なら屈曲部44を持った冷却通路6とそうでない冷却通路6とを周方向に配置してもよい。また、屈曲部44の径をその上流側および下流側に対し大径あるいは小径としてもよい。   In the finishing mold 1 of the second embodiment shown in FIG. 2, the same difference in diameter as in the embodiment shown in FIG. 1 and the cooling passage 6 are provided in the circumferential direction with the arrangement, but the diameter of the constriction forming portion 42a is illustrated. Since it has a larger diameter than the one constriction forming portion 41a, it differs from that of FIG. 1 in that the bent portions 44 are formed in all the cooling passages 6. However, if necessary, the cooling passage 6 having the bent portion 44 and the cooling passage 6 that is not so may be arranged in the circumferential direction. The diameter of the bent portion 44 may be larger or smaller than its upstream side and downstream side.

ここで、本実施の形態における図1に示す実施例1の仕上型1と、図1の実施例1における穴12、13による屈曲部44を持たない比較例としての仕上型とにつき、仕上げ成形後に開いた合目部51でのくびれ形成部41aの外回り部分Aにおける温度と、成形したびんの天面傾斜の程度とを測定し、比較したところ、下記表1、2の通りであった。   Here, the finish mold 1 of the embodiment 1 shown in FIG. 1 in the present embodiment and the finish mold as a comparative example having no bent portions 44 by the holes 12 and 13 in the embodiment 1 of FIG. Tables 1 and 2 below show the results obtained by measuring and comparing the temperature at the outer peripheral portion A of the constriction forming portion 41a at the joint portion 51 opened later and the degree of inclination of the top surface of the molded bottle.

Figure 0004299091
Figure 0004299091

Figure 0004299091
肩部の温度については表1に示す通り、実施例1は比較例に比して明らかに低く抑えられている。天面傾斜は天面傾斜の発生は天候や気温にも左右され、それぞれの測定日に違いがあって一概に言えないものの、押しなべて実施例1は比較例に比して天面傾斜が軽減しているといえ、表1での温度差が反映したものといえる。
Figure 0004299091
As shown in Table 1, the shoulder temperature is clearly lower in Example 1 than in the comparative example. Although the top slope is affected by the weather and temperature, the top slope is affected by the weather and temperature, and there is a difference between the measurement dates. It can be said that the temperature difference in Table 1 is reflected.

図3に示す実施例3と図4に示す実施例4は共に粗型2の場合であるが、形成したパリソンは、その口部を成形した口型によって片持ち支持した状態で、口型を有した反転アームの反転スイングによって倒立状態から正立状態に上下反転させて仕上げ成形のための仕上型1に移し替えられるので、反転スイング時の慣性の影響を受けて底側がスイング径の外方側に偏り、仕上げ成形時の軸線4方向や周方向での肉厚不同を招きやすい。特に肩部43の部分に変形力が強く働くために、これに対向するには成形したパリソンの肩部43の温度は重要である。そこで、粗型2の肩部43の温度は低く抑えるほど反転時の変形を防止できるが、冷却し過ぎると成形後のパリソンを仕上型に移して仕上げ成形するときの成形性が低下する。   Example 3 shown in FIG. 3 and Example 4 shown in FIG. 4 are both in the case of the rough mold 2, but the formed parison is cantilevered by the molded mouth mold and the mouth mold is used. Because the reversing swing of the reversing arm that has it is inverted from the inverted state to the upright state and transferred to the finishing mold 1 for finish molding, the bottom side is outside the swing diameter under the influence of inertia during the reversing swing This tends to cause unevenness in the thickness in the direction of the axis 4 and the circumferential direction during finish molding. In particular, since the deformation force acts strongly on the shoulder portion 43, the temperature of the shoulder portion 43 of the molded parison is important to oppose this. Therefore, as the temperature of the shoulder portion 43 of the rough mold 2 is kept low, deformation at the time of reversal can be prevented. However, when it is cooled too much, the formability when the molded parison is transferred to the finishing mold and finish-molded is lowered.

従って、粗型2でも肩部43、特に天面傾斜やへたり対策をも含め、そのくびれ形成部43aの温度管理は微妙であるが、従来、温度管理し切れていなかったのを、姿面2aにほぼ倣う、特に、姿面2aにおける軸線4方向のくびれ形成部43aにほぼ倣う経路5ないしは冷却通路6、特に、くびれ形成部43aにほぼ倣う屈曲部44を持った経路5ないしは冷却通路6とすることによって温度管理が十分行えるようになった。   Therefore, even in the rough mold 2, the temperature control of the neck portion 43 a including the shoulder portion 43, in particular the countermeasure for the inclination of the top surface and the sag, is delicate, but in the past, the temperature control was not completely performed. 2a, particularly the path 5 or the cooling passage 6 substantially following the constriction forming portion 43a in the direction of the axis 4 on the appearance surface 2a, in particular, the path 5 or the cooling passage 6 having the bent portion 44 substantially following the constriction forming portion 43a. As a result, the temperature can be controlled sufficiently.

図3の実施例3は姿面2aの肩部43以外の大方の部分にほぼ倣う穴19の軸線4に対する傾斜角を5°とし、図4の実施例4では10°としてあり、プランジャ成形後の肩部43と首下とでの周方向肉厚の平均値を計測したところ、穴19と同じ位置から軸線4に平行に穴をストレートにあけた従来形態の比較例では首部で2.75mm、首下で2.24mmであったのが、実施例3では首部で2.93mm、首下で2.39mm、実施例4では首部で3.01mm、首下で2.41mmと、比較例よりも肉厚を確保することができた。また、実施例3の場合よりも実施例4の方が結果がよく、屈曲部44が実施例3の場合よりも実施例4の方が姿面2aのくびれ形成部43aにより近い形態であることが反映していると思われる。   In Example 3 of FIG. 3, the inclination angle with respect to the axis 4 of the hole 19 that almost follows the most part other than the shoulder 43 of the appearance surface 2a is 5 °, and in Example 4 of FIG. When the average value of the circumferential wall thickness at the shoulder 43 and under the neck was measured, in the comparative example of the conventional form in which a hole was made straight in parallel to the axis 4 from the same position as the hole 19, it was 2.75 mm at the neck. In Example 3, the neck was 2.24 mm, the neck was 2.93 mm, the neck was 2.39 mm, the neck 4 was 3.01 mm and the neck was 2.41 mm. The wall thickness was able to be secured. In addition, the result of Example 4 is better than that of Example 3, and the bent portion 44 is closer to the constriction forming portion 43a of the face 2a than the case of Example 3. Seems to reflect.

図5の実施例5と図6の実施例6とは、図4の実施例に対して、粗型2の合目部が冷却不良となって、びんの周方向での合目対応部の肉厚が薄くなりがちであるに対応したもので、特に、3つの穴21〜23、24〜26の各組み合わせによってより姿面2aに近く、かつより平行にほぼ倣わせて、合目付近での冷却をより促進するようにしている。特に、実施例6は実施例5よりも姿面2aさらに近く、さらに平行になるようにしており、これによって冷却効果はより高められた。   Example 5 of FIG. 5 and Example 6 of FIG. 6 are different from the example of FIG. 4 in that the joint part of the rough mold 2 is poorly cooled, and the joint corresponding part in the circumferential direction of the bottle is It corresponds to the tendency that the wall thickness tends to be thin. In particular, the combination of the three holes 21 to 23 and 24 to 26 is closer to the appearance surface 2a and more nearly parallel to each other. To further promote the cooling of In particular, Example 6 is closer to and more parallel to the appearance surface 2a than Example 5, which further enhances the cooling effect.

本発明は、ISマシンなど製びん機の粗型や仕上型に実用でき、びんの成形精度、歩留まりを高められ、超軽量びんの成形などに有効である。   INDUSTRIAL APPLICABILITY The present invention can be practically used for roughing and finishing molds of bottle machines such as IS machines, can improve the molding accuracy and yield of bottles, and is effective for molding ultra-light bottles.

本発明の実施の形態に係る1つの実施例としての仕上型を示す、平面図および合目部正面図である。It is the top view and joint part front view which show the finishing type | mold as one Example which concerns on embodiment of this invention. 本発明の実施の形態に係る他の実施例としての仕上型を示す、平面図および合目部正面図である。It is the top view and joint part front view which show the finishing type | mold as another Example which concerns on embodiment of this invention. 本発明の実施の形態に係る別の実施例としての粗型を示す、合目部正面図である。It is a joint part front view which shows the rough type | mold as another Example which concerns on embodiment of this invention. 本発明の実施の形態に係る今1つの実施例としての粗型を示す、合目部正面図である。It is a joint part front view which shows the rough type | mold as another example which concerns on embodiment of this invention. 本発明の実施の形態に係るさらに他の実施例としての粗型を示す、合目部正面図である。It is a joint part front view which shows the rough type | mold as another Example based on embodiment of this invention. 本発明の実施の形態に係るさらに今1つの実施例としての粗型を示す、合目部正面図である。It is a joint part front view which shows the rough type | mold as another one Example based on embodiment of this invention.

符号の説明Explanation of symbols

1 仕上型
2 粗型
1a、2a 姿面
3 通風
4 軸線
5 経路
6 冷却通路
11〜19、21〜26 穴
35 栓
41 肩部
41a くびれ形成部
42 胴部
42a くびれ形成部
43 肩部
43a くびれ形成部
44 屈曲部
DESCRIPTION OF SYMBOLS 1 Finish type | mold 2 Rough type | mold 1a, 2a Form surface 3 Ventilation 4 Axis 5 Path | route 6 Cooling passage 11-11, 21-26 Hole 35 Plug 41 Shoulder part 41a Constriction formation part 42 Trunk part 42a Constriction formation part 43 Shoulder part 43a Constriction formation Part 44 bent part

Claims (10)

成形中の型につき、その周方向複数箇所で縦向きの通風を図って冷却するびん成形型の冷却方法において、
型の外面からストレートにあけられる2つ以上の穴の繋がりを利用した、型の姿面の軸線方向における非ストレート形状にほぼ倣う経路にて、前記通風を行い冷却することを特徴とするびん成形型の冷却方法。
In the cooling method of the bottle forming die that cools the die being formed by aiming the vertical ventilation at a plurality of locations in the circumferential direction,
A bottle molding characterized in that it cools by ventilating in a path that substantially follows the non-straight shape in the axial direction of the mold surface, using a connection of two or more holes that are drilled straight from the outer surface of the mold Mold cooling method.
成形中の型につき、その周方向複数箇所で縦向きの通風を図って冷却するびん成形型の冷却方法において、
型の外面からストレートにあけられる2つ以上の穴の繋がりを利用した、型の姿面の軸線方向における非ストレート形状にほぼ倣い、かつ、型の姿面のくびれ形成部またはくぼみ形成部には穴どうしの繋がりによる屈曲部が倣う経路にて、前記通風を行い冷却することを特徴とするびん成形型の冷却方法。
In the cooling method of the bottle forming die that cools the die being formed by aiming the vertical ventilation at a plurality of locations in the circumferential direction,
Using the connection of two or more holes that are drilled straight from the outer surface of the mold, it closely follows the non-straight shape in the axial direction of the mold appearance surface, and the constriction formation portion or the depression formation portion of the mold appearance surface A cooling method for a bottle forming die, wherein the cooling is performed by passing the air in a path followed by a bent portion formed by a connection between holes.
成形中の型につき、その周方向複数箇所で縦向きの通風を図って冷却するびん成形型の冷却方法において、
型の外面からストレートにあけられる2つ以上の穴の繋がりを利用した、型の姿面のくびれ形成部またはくぼみ形成部に穴どうしの繋がりによる屈曲部が倣う経路にて、前記通風を行い冷却することを特徴とするびん成形型の冷却方法。
In the cooling method of the bottle forming die that cools the die being formed by aiming the vertical ventilation at a plurality of locations in the circumferential direction,
Using the connection of two or more holes that are drilled straight from the outer surface of the mold, cooling by performing the above-mentioned ventilation in the path where the bent part of the constriction forming part or the recessed part forming part of the mold surface follows the connecting part A method for cooling a bottle mold, characterized by:
成形中の型につき、その周方向複数箇所で縦向きの通風を図って冷却するびん成形型の冷却方法において、
前記通風は型の姿面の軸線方向における非ストレート形状にほぼ倣った経路にて行うことを特徴とするびん成形型の冷却方法。
In the cooling method of the bottle forming die that cools the die being formed by aiming the vertical ventilation at a plurality of locations in the circumferential direction,
The bottle molding die cooling method, wherein the ventilation is performed along a path substantially following the non-straight shape in the axial direction of the mold surface.
型の姿面は異径な形状を有し、小径部に対応する経路部による周方向の冷却個所を、それよりも大きい大径部に対応する経路部のそれよりも少なくして冷却を行う請求項1〜4のいずれか1項に記載のびん成形型の冷却方法。 The shape of the mold has a different diameter, and cooling is performed by reducing the number of cooling points in the circumferential direction by the path corresponding to the small diameter part less than that of the path corresponding to the larger diameter part. The method for cooling a bottle mold according to any one of claims 1 to 4. 軸線方向に非ストレートな姿面を有したびん成形型において、
型の外面からストレートにあけられる2つ以上の穴の繋がりによって、型の姿面の軸線方向における非ストレート形状にほぼ倣う冷却通路を備え、この冷却通路は通風口と排気口とを少なくとも1つずつ型の外面に有したことを特徴とするびん成形型。
In a bottle mold that has a non-straight appearance in the axial direction,
A cooling passage that substantially follows the non-straight shape in the axial direction of the mold appearance surface is formed by a connection of two or more holes that are drilled straight from the outer surface of the die, and this cooling passage has at least one ventilation port and exhaust port. A bottle mold characterized by having it on the outer surface of each mold.
軸線方向に非ストレートな姿面を有したびん成形型において、
型の外面からストレートにあけられる2つ以上の穴の繋がりによって、型の姿面の軸線方向における非ストレート形状にほぼ倣い、かつ、型の姿面のくびれ形成部またはくぼみ形成部には穴どうしの繋がりによる屈曲部が倣う冷却通路を備え、この冷却通路は通風口と排気口とを少なくとも1つずつ型の外面に有したことを特徴とするびん成形型。
In a bottle mold that has a non-straight appearance in the axial direction,
By connecting two or more holes that are drilled straight from the outer surface of the mold, it almost follows the non-straight shape in the axial direction of the mold surface, and there is no hole in the constriction or indentation part of the mold surface. A bottle forming die comprising a cooling passage that follows a bent portion due to the connection, and the cooling passage has at least one ventilation opening and one exhaust opening on the outer surface of the mold.
軸線方向にくびれ形成部またはくぼみ形成部を持った姿面を有したびん成形型において、
型の外面からストレートにあけられる2つ以上の穴の繋がりによって、型の姿面のくびれ形成部またはくぼみ形成部に穴どうしの繋がりによる屈曲部が倣う冷却通路を備え、この冷却通路は通風口と排気口とを少なくとも1つずつ型の外面に有したことを特徴とするびん成形型。
In a bottle mold having a shape with a constriction forming part or a hollow forming part in the axial direction,
There is a cooling passage in which the bent portion of the constriction forming portion or the hollow forming portion of the form surface of the die follows the connecting portion of two or more holes that are drilled straight from the outer surface of the die, and this cooling passage is a vent hole And at least one exhaust port on the outer surface of the mold.
軸線方向に非ストレートな姿面を有したびん成形型において、
型の姿面の軸線方向における非ストレート形状にほぼ倣う冷却通路を備え、この冷却通路は通風口と排気口とを少なくとも1つずつ型の外面に有したことを特徴とするびん成形型。
In a bottle mold that has a non-straight appearance in the axial direction,
A bottle forming die comprising a cooling passage substantially following the non-straight shape in the axial direction of the mold surface, wherein the cooling passage has at least one ventilation port and one exhaust port on the outer surface of the die.
型の姿面は異径な形状を有し、冷却通路は型の姿面の小径部に対応する部分の周方向の経路による周方向の冷却通路数を、それよりも大きい大径部に対応する経路部のそれよりも少なくしてある請求項6〜9のいずれか1項に記載のびん成形型。

The mold surface has a different diameter, and the cooling passages correspond to the number of cooling passages in the circumferential direction of the part corresponding to the small diameter part of the mold surface, corresponding to the larger diameter part. The bottle molding die according to any one of claims 6 to 9, wherein the bottle forming die is smaller than that of the path portion.

JP2003334810A 2003-09-26 2003-09-26 Bottle mold cooling method and bottle mold used therefor Expired - Fee Related JP4299091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003334810A JP4299091B2 (en) 2003-09-26 2003-09-26 Bottle mold cooling method and bottle mold used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003334810A JP4299091B2 (en) 2003-09-26 2003-09-26 Bottle mold cooling method and bottle mold used therefor

Publications (2)

Publication Number Publication Date
JP2005097056A JP2005097056A (en) 2005-04-14
JP4299091B2 true JP4299091B2 (en) 2009-07-22

Family

ID=34462375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003334810A Expired - Fee Related JP4299091B2 (en) 2003-09-26 2003-09-26 Bottle mold cooling method and bottle mold used therefor

Country Status (1)

Country Link
JP (1) JP4299091B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060150681A1 (en) * 2005-01-13 2006-07-13 Owens-Brockway Glass Container Inc. Glassware molds with cooling arrangement

Also Published As

Publication number Publication date
JP2005097056A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
US20070227192A1 (en) Mold cooling system for I.S. machine
JP5113904B2 (en) One press manufacturing method for glass containers
JPH04224123A (en) Curve-forming of sheet glass to compliacted shape and its device
US6569376B2 (en) Process for improving material thickness distribution within a molded bottle and bottle therefrom
EP0576745B1 (en) Apparatus and method for cooling a mould
JP4299091B2 (en) Bottle mold cooling method and bottle mold used therefor
US20070214838A1 (en) Vacuum valve for an I.S. machine
CN102603156B (en) Die for manufacturing glass container
WO2005047197A1 (en) Method of regulating temperature of bottle-forming mold and bottle-forming mold used for the method
JP2006521269A (en) Gas cushion generator
JP2001039724A (en) Bending method for glass sheet and apparatus therefor
CN207031240U (en) A kind of vial blow head
US20060179884A1 (en) Glassware forming machine mold cooling apparatus and method
JP4850765B2 (en) I. S. Blank mold for glass forming machine
JP4388197B2 (en) BOTTOM MACHINE BOTTOM TYPE, BOTTLE MACHINE AND METHOD FOR PRODUCING BOTTLE USING THE SAME
JP2018168067A (en) Bottom die, glass vessel manufactured using the same, and method for manufacturing glass vessel using bottom die
US20070079634A1 (en) Mold cooling for I.S. machine
JP5606733B2 (en) Glass product forming equipment
JP2002037634A (en) Apparatus and method for control of mold temperature of glass forming machine
JP2003305768A (en) Method for manufacturing curved resin tube
JP4205626B2 (en) I. S. Mold support mechanism for machine
JP4026699B2 (en) Coarse mold and finish mold
JP3628975B2 (en) sleeve
JP2001302257A (en) Machine for molding glass bottle
JPH0611654B2 (en) Mold for glass tumbler with recess

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090416

R150 Certificate of patent or registration of utility model

Ref document number: 4299091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees