JP4297680B2 - Biodegradable resin emulsion adhesive - Google Patents
Biodegradable resin emulsion adhesive Download PDFInfo
- Publication number
- JP4297680B2 JP4297680B2 JP2002330998A JP2002330998A JP4297680B2 JP 4297680 B2 JP4297680 B2 JP 4297680B2 JP 2002330998 A JP2002330998 A JP 2002330998A JP 2002330998 A JP2002330998 A JP 2002330998A JP 4297680 B2 JP4297680 B2 JP 4297680B2
- Authority
- JP
- Japan
- Prior art keywords
- adhesive
- biodegradable resin
- acid
- biodegradable
- emulsion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Adhesives Or Adhesive Processes (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、生分解性あるいは生分解速度が制御され、かつ実用上十分な接着力を有し、耐水性に優れ、品質の安定した木工用生分解性樹脂系エマルジョン型接着剤に関するものである。
【0002】
【従来の技術】
従来、製本、包装、木工等の接着剤として、エチレン−酢酸ビニルコポリマー、スチレンブロックコポリマー、ブチルゴム、エチレン−エチルアクリレートコポリマーのオレフィン樹脂又はポリビニルアルコール系樹脂などの熱可塑性樹脂型接着剤やフェノール系樹脂、メラミン系樹脂、ウレタン系樹脂、エポキシ系樹脂、不飽和ポリエステル系樹脂などの熱硬化型接着剤からなる省力型接着剤が用いられてきた。しかし、これらの省力型接着剤は微生物によって分解されない上に、太陽光などによってもきわめて分解速度が遅く、さらに発生するホルマリン等の低分子化合物が人体に悪影響を及ぼすことから、環境的に大きな問題を提起していた。こうした省力型接着剤に変わるものとして、天然素材又は生分解性素材を利用した接着剤が注目を集め盛んに研究がなされている。
【0003】
【発明が解決しようとする課題】
しかし、天然素材からなる接着剤は、例えばデンプン、のり、にかわ等のように、いずれも品質が不安定で、耐水性に乏しく、かつ接着強度も低いという問題があった。また、従来の生分解性素材からなる接着剤は、特許文献1、2にみるように品質も安定し、耐水性も高く、かつ接着力も高いが、生分解能が十分でなかった。こうした欠点を解消する接着剤として、生分解性ポリエステルを含むO/W型生分解性エマルジョン(特許文献3)や生分解性樹脂の粒子を10〜60質量%含み、かつ0.1質量%水溶液の25℃における回転粘度が10mPa・s以上である多糖類を0.01〜1質量%含む生分解性樹脂系水分散体(特許文献4)が提案されている。しかしながら、前記生分解性ポリエステルを含むO/W型生分解性エマルジョン接着剤は、特に木工用接着剤としての接着力が十分でなく、また、生分解性樹脂系水分散体は多糖類を微生物産生の微生物とすることで製品コストが高くなる上に、接着力、特に木工に対する接着力が十分でなく、例えばコンクリートの木製型枠の接着剤として使用したときに満足できるものでなかった。
【0004】
【特許文献1】
特表平9−505615号公報
【特許文献2】
特願平11−60716号公報
【特許文献3】
特開平11−92712号号公報
【特許文献4】
特開2002−241629号号公報
【0005】
こうした現状に鑑み、本発明者らは鋭意研究を続けた結果、ヒドロキシアルカノエート単位を60モル%以上含有する生分解性樹脂と天然の産業廃棄物の粒子をエマルジョンとして含有することで、上記特許文献1〜4の接着剤に比して高い接着強度を有するとともに、品質が安定し、耐水性がよく、かつ配合する粉体物質が天然の産業廃棄物であることから、低コストである上に、生分解期間が制御できるエマルジョン型接着剤が得られることを見出して本発明を完成したものである。すなわち、
【0006】
本発明は、接着強度が高く、品質が安定し、耐水性がよく、かつ低コストの生分解性樹脂系エマルジョン型接着剤を提供することを目的とする。
【0007】
また、本発明は、生分解期間が制御できる生分解性樹脂系エマルジョン型接着剤を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成する本発明は、生分解性樹脂及び天然の産業廃棄物の粒子が分散した生分解性樹脂系エマルジョン型接着剤であって、前記生分解性樹脂がヒドロキシアルカノエート単位を60モル%以上含有する樹脂であり、天然の産業廃棄物が米ぬか又はふすまであることを特徴とする木工用生分解性樹脂系エマルジョン型接着剤に係る。
【0009】
上記生分解性樹脂は、ポリ乳酸、乳酸単位が60モル%以上の乳酸と他のヒドロキシカルボン酸との共重合体、乳酸単位が60モル%以上の乳酸、脂肪族多価カルボン酸及び脂肪族グリコールからなる脂肪族ポリエステル共重合体などのポリ乳酸系樹脂、脂肪族ポリエステル樹脂などが挙げられる。前記ポリ乳酸としては、具体的にL−乳酸、D−乳酸、あるいはL−乳酸とD−乳酸の混合物を脱水縮合した樹脂が挙げられ、特に物性、耐熱性が要求される場合にはL体が85モル%、好ましくは95モル%のポリ乳酸がよい。前記ポリ乳酸は、乳酸の環状二量体であるラクチドを開環重合するなどの方法で製造され、その数平均分子量は20,000〜1,000,000、好ましくは50,000〜500、000の範囲がよく、数平均分子量が20,000未満では、実用的な水分散液が得られず、また、1,000,000を超えると塗布性が悪く好ましくない。
【0010】
乳酸と共重合する他のヒドロキシカルボン酸としては、例えばグリコール酸、ジメチルグリコール酸、2−ヒドロキシ酪酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、2−ヒドロキシプロパン酸、3−ヒドロキシプロパン酸、2−ヒドロキシ吉草酸、3−ヒドロキシ吉草酸、4−ヒドロキシ吉草酸、5−ヒドロキシ吉草酸、2−ヒドロキシカプロン酸、3−ヒドロキシカプロン酸、4−ヒドロキシカプロン酸等が挙げられる。
【0011】
脂肪族ポリエステル共重合体を形成する脂肪族多価カルボン酸としては、例えばマロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、アゼライン酸及びこれらの無水物などが、また脂肪族グリコールとしては、例えばエチレングリコール、ジエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンチルジオール、1.6−ペンチルジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、テトラメチレングリコールなどが挙げられる。
【0012】
また、脂肪族ポリエステル樹脂としては、ポリラクチドなどのポリ(α−ヒドロキシカルボン酸)、ポリ−ε−カプトラクトン、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリ−β−プロピオラクトンなどが挙げられる。
【0013】
上記天然の産業廃棄物としては、米ぬか又はふすまが用いられる。天然の産業廃棄物は10〜20質量%の範囲で含有するのがよく、この範囲で含有量を変えることで生分解性速度を適宜制御できる。天然の産業廃棄物が20質量%を超えると乳化が良好に行われず、接着強度などの力学的性質が低下して好ましくなく、天然の産業廃棄物が10質量%未満では生分解能の制御が困難となる上に、製品コストが高くなり好ましくない。
【0014】
上記生分解性樹脂及び天然の産業廃棄物の粒子を分散する乳化剤としては、界面活性剤や水溶性高分子物質が挙げられるが、前記界面活性剤としては、炭素数4〜18の脂肪酸塩を含む陰イオン性界面活性剤、陽イオン性界面活性剤、両性イオン性界面活性剤、非イオン性界面活性剤などが挙げられ、また、水溶性高分子物質としてはアラビアゴム、寒天、結晶性セルロース、カルボキシメチルセルロース、ポリビニルアルコール、ポリアクリルアミド、ポリビニルピロリドン、ポリアクリル酸またはそれらの陰イオン性あるいは陽イオン性、さらには疎水性の構造単位をもつように共重合ないし変性されたもの、さらにまたアクリル酸エステル、メタクリル酸エステルなどが挙げられ、好ましくはポリビニルアルコール、ポリアクリルアミド、ポリアクリル酸またはそれらの陰イオン性あるいは陽イオン性、アクリル酸エステル、メタクリル酸エステル、カルボキシメチルセルロースなどがよい。
【0015】
本発明の生分解性樹脂系エマルジョン型接着剤は、上記生分解性樹脂及び天然の産業破棄物に加えて、さらに必要に応じて各種の添加剤、例えば安定剤、ぬれ調整剤、充填剤などを含有することができる。また、使用する溶剤としては、水、クロロホルム、トルエン、キシレン、メチルエチルケトン、ジオキサン、シクロヘキサン等が挙げられ、中でも水、クロロホルム、ジオキサンが好適である。さらに、可塑剤としては、生分解性樹脂と相溶性がよく、かつ環境面で問題のない可塑剤であれば特に限定されないが、例えばエーテルエステル誘導体、グリセリン誘導体、グリコール誘導体、クエン酸誘導体から選ばれた単一又は複数の混合物が挙げられる。さらに、ぬれ調整剤としては、平均分子量が20,000以下の乳酸系オリゴマーがよい。
【0016】
本発明の生分解性樹脂系エマルジョン型接着剤は、生分解性樹脂を溶剤に溶解し、その溶液に天然の産業廃棄物を配合しそれらをミキサーで懸濁させたのち、乳化剤を加え、ハンドミキサーで乳化させる方法などで調製される。
【0017】
上記生分解性樹脂系エマルジョン型接着剤の機能は、木、板、布、木材パルプ、ステープルファイバー、木片、強化紙、不織布、皮革、各種ボードなどの接着に有効である。そして、廃棄後においても自然環境下で容易に分解し、廃棄物由来の環境汚染を起すことがない。
【0018】
【実施例】
以下に本発明を実施例に基づいて具体的に説明するが、本発明はこれに限定されるものではない。
【0019】
実施例1
ポリ乳酸(島津製作所製、LACY#9000)(以下PLAという)、ポリブチレンサクシネートアジペート(昭和高分子製、BIONOLL、#3001)(以下PBSAという)及びポリカプロラクトン(ダイセル化学社製、CELGREEN、PH7)(以下PCLという)のそれぞれの25部を119部のクロロホルムに溶解させ、得られた溶液にそれぞれ10〜20質量%の米ぬかを懸濁させた。次いで前記懸濁液に蒸留水20部に1.5部のポリビニルアルコール(クラレ製、POVAL、CP−1210)(以下PVAという)を溶解させた溶液を配合し、乳化させて生分解性樹脂系エマルジョン型接着剤を調製した。前記生分解性樹脂系エマルジョン型接着剤中のエマルジョン粒子径をJIS K6828光学顕微鏡で観察したところ、平均粒子径は、PLA系エマルジョンで約3.8μm、PBS系エマルジョンで約3.1μm及びPCL系エマルジョンで約2.4μmであった。この生分解性樹脂系エマルジョン型接着剤の244g/m2を試験体の片面に塗布し、次いで熱圧着と常温圧着の2種類の処理条件で試験片を作製した。熱圧着の場合の温度はPLA系エマルジョンでは165℃を、PBS系エマルジョンでは110℃を、PCL系エマルジョンでは75℃を用い、それぞれの温度に加熱しつつ1.47MPaで10分間加圧し、解圧し、常温にて10分間1.47MPaの圧力をかけて試験片を作製した。また、常温圧着の場合には、1.47MPaで24時間加圧して試験片を作製した。得られた試験片について(株)島津製作所製のコンピューター計測制御式精密万能引張使用試験機(型式:AGS−1000B)を用いて引張試験を行った。その結果を表1に示す。
【0020】
比較例1
市販のポリ酢酸ビニル系エマルジョン木工用接着剤(コニシ製、#10132)(以下木工用接着剤という)及び生分解性エマルジョン型接着剤(昭和高分子製)(以下従来の生分解性エマルジョン型接着剤という)を用いて実施例1と同様な試験を行った。その結果を表1に示す。なお、木工用接着剤の試験片作製に際しては熱圧着の場合を除き、圧着の場合のみで試験片を作製し、前述の従来の生分解性エマルジョン接着剤よる試験片作製に際しては熱圧着の温度を110℃とした。
【0021】
【表1】
【0022】
上記表1に示されるように、本発明のPLAエマルジョン型接着剤及びPBSAエマルジョン型接着剤は、米ぬかを20質量%配合しても、従来の生分解性エマルジョン接着剤を遥かに凌ぐ接着強度を示し、特にPLAエマルジョン接着剤は強力な接着剤の指標ともなる木破率も大きな値を示した。
【0023】
また、PCLエマルジョン型接着剤は、前記PLAエマルジョン型接着剤及びPBSAエマルジョン型接着剤に比べれば接着強度に劣るが、それでも従来の生分解性マルジョン接着剤より優れ、米ぬかを20質量%配合してた場合にほぼ同程度の接着強度をとなった。
【0024】
実施例2
実施例1の生分解性樹脂を実施例1と同様にクロロホルムに溶解し、それに米ぬかを、10質量%、20質量%混合した。得られた溶液をアプリケータでガラス板に塗布し膜厚約100μmのシートを作製した。このシートをホットメルト型接着剤として木材の間に挟んで実施例1と同様に熱圧着した。その後、一旦解圧し、常温でプレス圧を加え冷却して試験片を作製した。樹脂単体の試験片、米ぬか10質量%、20質量%混合して試験片について、土壌中に90日間放置した後、各試験片の接着部分の質量及び分子量の減少率を測定した。その結果を表2に示す。前記測定で分子量はGPC法を用いクロロホルムを溶媒として測定した。
【0025】
【表2】
【0026】
上記表2に示されるように、10質量%の米ぬかを配合した試験片では生分解速度が速くなり、さらに20重量%配合するとさらに生分解速度が速くなった。特にPCL接着剤において顕著であった。このように、本発明の生分解性樹脂系エマルジョン型接着剤は、含有する天然の産業廃棄物の量を変えることで任意の生分解期間が制御できる。その上、天然の産業廃棄物が20質量%以下であれば、大きな接着強度の低下がなく、例えばPCLに20質量%の米ぬかを含有させても、熱圧着の場合で接着強度は約7%低下し、圧着の場合で接着強度は約16%低下するにとどまった。
【0027】
【発明の効果】
本発明の生分解性樹脂系エマルジョン型接着剤は、接着強度が高いにもかかわらず、低コストで製造でき、しかも生分解期間が適宜制御できる生分解性樹脂系エマルジョン型接着剤である。そのため、用途に応じて天然の産業廃棄物質の含有量を変えることで、例えば木製型枠の廃棄期間に合わせた生分解ができるなど、環境問題に応じたもので、その工業的価値は高いものがある。[0001]
[Industrial application fields]
The present invention relates to a biodegradable resin emulsion adhesive for woodworking which has biodegradability or biodegradation rate controlled, has practically sufficient adhesive strength, is excellent in water resistance, and has a stable quality. .
[0002]
[Prior art]
Conventionally, as adhesives for bookbinding, packaging, woodworking, etc., thermoplastic resin type adhesives such as ethylene-vinyl acetate copolymer, styrene block copolymer, butyl rubber, ethylene-ethyl acrylate copolymer olefin resin or polyvinyl alcohol resin, and phenol resin Labor-saving adhesives composed of thermosetting adhesives such as melamine resins, urethane resins, epoxy resins and unsaturated polyester resins have been used. However, these labor-saving adhesives are not decomposed by microorganisms, and the degradation rate is extremely slow even by sunlight, and the low molecular weight compounds such as formalin adversely affect the human body. Was raised. As an alternative to such a labor-saving adhesive, an adhesive using a natural material or a biodegradable material has attracted attention and has been actively studied.
[0003]
[Problems to be solved by the invention]
However, the adhesives made of natural materials, such as starch, glue, and glue, all have the problems of unstable quality, poor water resistance, and low adhesive strength. Moreover, the adhesive made of conventional biodegradable material, and stable by Uni quality seen in Patent Documents 1 and 2, water resistance is high, and although high adhesion, biodegradability is was not sufficient. As an adhesive for eliminating these disadvantages, an O / W type biodegradable emulsion containing biodegradable polyester (Patent Document 3) and 10 to 60% by mass of biodegradable resin particles and a 0.1% by mass aqueous solution are included. A biodegradable resin-based aqueous dispersion containing 0.01 to 1% by mass of a polysaccharide having a rotational viscosity at 25 ° C. of 10 mPa · s or more has been proposed (Patent Document 4). However, the O / W type biodegradable emulsion adhesive containing the biodegradable polyester does not have sufficient adhesive strength particularly as an adhesive for woodworking, and the biodegradable resin-based aqueous dispersion converts polysaccharides into microorganisms. on the product cost becomes high by the microbial production, adhesion, particularly not sufficient adhesion to wood it is not satisfactory when used for example as an adhesive wooden formwork of the concrete.
[0004]
[Patent Document 1]
Japanese Patent Publication No. 9-505615 [Patent Document 2]
Japanese Patent Application No. 11-60716 [Patent Document 3]
Japanese Patent Laid-Open No. 11-92712 [Patent Document 4]
Japanese Patent Application Laid-Open No. 2002-241629
In view of such a current situation, the present inventors have conducted intensive research, and as a result, the patent contains a biodegradable resin containing 60 mol% or more of hydroxyalkanoate units and natural industrial waste particles as an emulsion. In addition to having high adhesive strength compared to the adhesives of Literatures 1 to 4, the quality is stable, the water resistance is good, and the powder material to be blended is a natural industrial waste, so it is low in cost. In addition, the present invention has been completed by finding that an emulsion type adhesive capable of controlling the biodegradation period can be obtained. That is,
[0006]
An object of the present invention is to provide a biodegradable resin emulsion adhesive having high adhesive strength, stable quality, good water resistance, and low cost.
[0007]
Another object of the present invention is to provide a biodegradable resin emulsion adhesive capable of controlling the biodegradation period.
[0008]
[Means for Solving the Problems]
To achieve the above object, the present invention provides a biodegradable resin emulsion adhesive in which particles of a biodegradable resin and natural industrial waste are dispersed, wherein the biodegradable resin contains 60 mol of a hydroxyalkanoate unit. The present invention relates to a biodegradable resin-based emulsion adhesive for woodworking , characterized in that it is a resin containing at least 50%, and natural industrial waste is from rice bran or bran .
[0009]
The biodegradable resin includes polylactic acid, a copolymer of lactic acid having a lactic acid unit of 60 mol% or more and another hydroxycarboxylic acid, lactic acid having a lactic acid unit of 60 mol% or more, an aliphatic polycarboxylic acid, and an aliphatic group. Examples thereof include polylactic acid resins such as aliphatic polyester copolymers made of glycol, and aliphatic polyester resins. Specific examples of the polylactic acid include L-lactic acid, D-lactic acid, or a resin obtained by dehydrating and condensing a mixture of L-lactic acid and D-lactic acid. Is 85 mol%, preferably 95 mol% polylactic acid. The polylactic acid is produced by a method such as ring-opening polymerization of lactide, which is a cyclic dimer of lactic acid, and its number average molecular weight is 20,000 to 1,000,000, preferably 50,000 to 500,000. When the number average molecular weight is less than 20,000, a practical aqueous dispersion cannot be obtained. On the other hand, when the number average molecular weight exceeds 1,000,000, the coatability is poor, which is not preferable.
[0010]
Examples of other hydroxycarboxylic acids copolymerized with lactic acid include glycolic acid, dimethyl glycolic acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxypropanoic acid, 3-hydroxypropanoic acid, 2-hydroxypropanoic acid, Examples thereof include hydroxyvaleric acid, 3-hydroxyvaleric acid, 4-hydroxyvaleric acid, 5-hydroxyvaleric acid, 2-hydroxycaproic acid, 3-hydroxycaproic acid, 4-hydroxycaproic acid and the like.
[0011]
Examples of the aliphatic polyvalent carboxylic acid forming the aliphatic polyester copolymer include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, azelaic acid, and anhydrides thereof. For example, ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentyldiol, 1.6-pentyldiol, , 6-hexanediol, neopentyl glycol, tetramethylene glycol and the like.
[0012]
Examples of the aliphatic polyester resin include poly (α-hydroxycarboxylic acid) such as polylactide, poly-ε-captolactone, polyethylene succinate, polybutylene succinate, and poly-β-propiolactone.
[0013]
Rice bran or bran is used as the natural industrial waste. Natural industrial waste is preferably contained in the range of 10 to 20% by mass, and the biodegradability rate can be appropriately controlled by changing the content in this range. When natural industrial waste exceeds 20% by mass, emulsification is not performed well, and mechanical properties such as adhesive strength deteriorate, which is not preferable. When natural industrial waste is less than 10% by mass, it is difficult to control biodegradability. In addition, the product cost is undesirably high.
[0014]
Examples of the emulsifier for dispersing the biodegradable resin and natural industrial waste particles include surfactants and water-soluble polymer substances. Examples of the surfactant include fatty acid salts having 4 to 18 carbon atoms. Examples include anionic surfactants, cationic surfactants, zwitterionic surfactants, and nonionic surfactants. Examples of water-soluble polymeric substances include gum arabic, agar, and crystalline cellulose. , Carboxymethyl cellulose, polyvinyl alcohol, polyacrylamide, polyvinyl pyrrolidone, polyacrylic acid, or those copolymerized or modified to have an anionic or cationic, or hydrophobic structural unit, and also acrylic acid Ester, methacrylic acid ester, etc., preferably polyvinyl alcohol, polyacrylamid , Polyacrylic acid or their anionic or cationic, acrylic acid esters, methacrylic acid esters, it is carboxymethyl cellulose.
[0015]
In addition to the biodegradable resin and the natural industrial waste, the biodegradable resin emulsion adhesive of the present invention further includes various additives as necessary, for example, a stabilizer, a wetting adjuster, a filler, etc. Can be contained. Examples of the solvent to be used include water, chloroform, toluene, xylene, methyl ethyl ketone, dioxane, cyclohexane, and the like. Among these, water, chloroform, and dioxane are preferable. Further, the plasticizer is not particularly limited as long as it is compatible with the biodegradable resin and has no environmental problems. For example, the plasticizer is selected from ether ester derivatives, glycerin derivatives, glycol derivatives, and citric acid derivatives. Single or multiple mixtures. Further, as the wetting regulator, a lactic acid oligomer having an average molecular weight of 20,000 or less is preferable.
[0016]
The biodegradable resin emulsion adhesive of the present invention is prepared by dissolving a biodegradable resin in a solvent, blending natural industrial waste in the solution and suspending them with a mixer, adding an emulsifier, It is prepared by a method of emulsifying with a mixer.
[0017]
The function of the biodegradable resin emulsion adhesive is effective for bonding wood, board, cloth, wood pulp, staple fiber, wood piece, reinforced paper, nonwoven fabric, leather, various boards and the like. And even after disposal, it is easily decomposed in the natural environment, and does not cause waste-derived environmental pollution.
[0018]
【Example】
Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited thereto.
[0019]
Example 1
Polylactic acid (manufactured by Shimadzu Corporation, LACY # 9000) (hereinafter referred to as PLA), polybutylene succinate adipate (manufactured by Showa Polymer, BIONOLL, # 3001) (hereinafter referred to as PBSA) and polycaprolactone (manufactured by Daicel Chemical Industries, Ltd., CELGREEN, PH7) ) (Hereinafter referred to as PCL) was dissolved in 119 parts of chloroform, and 10 to 20% by mass of rice bran was suspended in the resulting solution. Next, a solution in which 1.5 parts of polyvinyl alcohol (manufactured by Kuraray, POVAL, CP-1210) (hereinafter referred to as PVA) was dissolved in 20 parts of distilled water was blended into the suspension and emulsified to obtain a biodegradable resin system. An emulsion type adhesive was prepared. When the emulsion particle diameter in the biodegradable resin emulsion adhesive was observed with a JIS K6828 optical microscope, the average particle diameter was about 3.8 μm for the PLA emulsion, about 3.1 μm for the PBS emulsion, and the PCL system. The emulsion was about 2.4 μm. 244 g / m 2 of this biodegradable resin-based emulsion type adhesive was applied to one side of the test body, and then a test piece was prepared under two kinds of processing conditions of thermocompression bonding and room temperature pressure bonding. The temperature for thermocompression bonding is 165 ° C for PLA emulsions, 110 ° C for PBS emulsions and 75 ° C for PCL emulsions, pressurizing at 1.47 MPa for 10 minutes while heating to the respective temperatures, and releasing the pressure. A test piece was prepared by applying a pressure of 1.47 MPa for 10 minutes at room temperature. In the case of room temperature pressure bonding, a test piece was prepared by applying pressure at 1.47 MPa for 24 hours. About the obtained test piece, the tensile test was done using the Shimadzu Corp. make computer measurement control type precision universal use test machine (model: AGS-1000B). The results are shown in Table 1.
[0020]
Comparative Example 1
Commercially available polyvinyl acetate emulsion adhesive for woodworking (manufactured by Konishi, # 10132) (hereinafter referred to as woodworking adhesive) and biodegradable emulsion type adhesive (manufactured by Showa Polymer) (hereinafter referred to as conventional biodegradable emulsion type bonding) The same test as in Example 1 was performed using the above-mentioned agent. The results are shown in Table 1. Except for the case of thermocompression bonding, when preparing a test piece of woodworking adhesive, the test piece is prepared only in the case of pressure bonding, and the temperature of thermocompression bonding is required when preparing the test piece using the above-mentioned conventional biodegradable emulsion adhesive. Was 110 ° C.
[0021]
[Table 1]
[0022]
As shown in Table 1 above, the PLA emulsion type adhesive and the PBSA emulsion type adhesive of the present invention have an adhesive strength far surpassing that of conventional biodegradable emulsion adhesives even when 20% by weight of rice bran is blended. In particular, the PLA emulsion adhesive also showed a large value for the rate of tree breakage, which is also an indicator of a strong adhesive.
[0023]
The PCL emulsion type adhesive is inferior in adhesive strength to the PLA emulsion type adhesive and the PBSA emulsion type adhesive, but is still superior to the conventional biodegradable marble adhesive and contains 20% by weight of rice bran. The adhesive strength was almost the same.
[0024]
Example 2
The biodegradable resin of Example 1 was dissolved in chloroform in the same manner as in Example 1, and 10% by mass and 20% by mass of rice bran were mixed therewith. The obtained solution was applied to a glass plate with an applicator to prepare a sheet having a thickness of about 100 μm. This sheet was sandwiched between woods as a hot melt adhesive and thermocompression bonded in the same manner as in Example 1. Thereafter, the pressure was once released, and the test piece was prepared by applying a press pressure at room temperature and cooling. A test piece of resin alone, 10% by weight of rice bran and 20% by weight of the test piece were mixed and left in the soil for 90 days, and then the mass of the bonded portion of each test piece and the rate of decrease in molecular weight were measured. The results are shown in Table 2. In the measurement, the molecular weight was measured using the GPC method with chloroform as a solvent.
[0025]
[Table 2]
[0026]
As shown in Table 2 above, the biodegradation rate of the test piece containing 10% by mass of rice bran was increased, and the biodegradation rate was further increased by adding 20% by weight. This was particularly noticeable in PCL adhesives. Thus, the biodegradable resin emulsion adhesive of the present invention can be controlled for an arbitrary biodegradation period by changing the amount of natural industrial waste contained. In addition, if the amount of natural industrial waste is 20% by mass or less, there is no significant decrease in adhesive strength. For example, even when 20% by mass of rice bran is added to PCL, the adhesive strength is about 7% in the case of thermocompression bonding. In the case of pressure bonding, the adhesive strength was only reduced by about 16%.
[0027]
【The invention's effect】
The biodegradable resin-based emulsion type adhesive of the present invention is a biodegradable resin-based emulsion type adhesive that can be produced at a low cost and the biodegradation period can be appropriately controlled even though the adhesive strength is high. Therefore, by changing the content of natural industrial waste materials according to the application, it can be biodegradable according to the disposal period of the wooden formwork, etc., and responds to environmental problems, and its industrial value is high There is.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002330998A JP4297680B2 (en) | 2002-11-14 | 2002-11-14 | Biodegradable resin emulsion adhesive |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002330998A JP4297680B2 (en) | 2002-11-14 | 2002-11-14 | Biodegradable resin emulsion adhesive |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004161931A JP2004161931A (en) | 2004-06-10 |
JP4297680B2 true JP4297680B2 (en) | 2009-07-15 |
Family
ID=32808512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002330998A Expired - Fee Related JP4297680B2 (en) | 2002-11-14 | 2002-11-14 | Biodegradable resin emulsion adhesive |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4297680B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007070423A (en) * | 2005-09-06 | 2007-03-22 | Oshika:Kk | Polylactic acid-based aqueous adhesive composition for wood |
JP2007231110A (en) * | 2006-02-28 | 2007-09-13 | Oshika:Kk | Water-based adhesive composition for wood |
JP2007231109A (en) * | 2006-02-28 | 2007-09-13 | Oshika:Kk | Water-based adhesive composition for wood |
JP4668812B2 (en) * | 2006-02-28 | 2011-04-13 | 株式会社オーシカ | Water-based adhesive composition for wood |
JP5086588B2 (en) * | 2006-08-22 | 2012-11-28 | 住江織物株式会社 | Adhesive composition and fabric formed using the composition |
JP5921946B2 (en) * | 2012-04-26 | 2016-05-24 | ヘンケルジャパン株式会社 | Hot melt adhesive |
JP5883344B2 (en) * | 2012-04-26 | 2016-03-15 | ヘンケルジャパン株式会社 | Hot melt adhesive |
JP5925094B2 (en) | 2012-09-27 | 2016-05-25 | ヘンケルジャパン株式会社 | Hot melt adhesive for labels |
JP6057837B2 (en) | 2013-05-30 | 2017-01-11 | ヘンケルジャパン株式会社 | Hot melt adhesive |
JP2020176230A (en) * | 2019-04-22 | 2020-10-29 | 東洋インキScホールディングス株式会社 | Biodegradable adhesive and sheet |
-
2002
- 2002-11-14 JP JP2002330998A patent/JP4297680B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004161931A (en) | 2004-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4297680B2 (en) | Biodegradable resin emulsion adhesive | |
JP2997995B2 (en) | Aqueous dispersion of biodegradable resin composition | |
JP2001354841A (en) | Aqueous dispersion of biodegradable polyester | |
JP2002121288A (en) | Aqueous dispersion of biodegradable resin and biodegradable composite material | |
JP4996896B2 (en) | Polylactic acid emulsion adhesive for packaging film | |
JP4745540B2 (en) | Biodegradable water-dispersed adhesive composition | |
JP6287832B2 (en) | the film | |
WO2022225024A1 (en) | Emulsion resin composition and coating agent | |
JP2004331847A (en) | Polylactic acid aqueous dispersion | |
KR101854321B1 (en) | Eco-friendly adhesive composition for bonding finishing foil, and method for manufacturing the same | |
JP2004099883A (en) | Aqueous dispersion system of biodegradable resin | |
JP2004168927A (en) | Aqueous dispersion of biodegradable resin and heat-sealable material | |
JP2004277679A (en) | Modified polylactic acid resin emulsion and its manufacturing method | |
JP2002356612A (en) | Aqueous dispersion of biodegradable resin and biodegradable composite material | |
JPH1192712A (en) | O/w type biologically decomposable emulsion and composition using the same | |
JP2002256250A (en) | Biodegradable adhesive | |
JP4229078B2 (en) | Basalt fiber-containing sheet-shaped molding material, board material and automotive interior material | |
JP2022167851A (en) | Resin composition for emulsion, and coating agent | |
KR20220138129A (en) | Eco-friendly paper coating method and device for replacing LDPE for cost reduction and productivity improvement | |
JPH06346399A (en) | Production of biodegradable composite paper and sheet | |
JP2004277681A (en) | Modified biodegradable resin emulsion of small particle size | |
JP2004323804A (en) | Biodegradable resin aqueous dispersion | |
JP2022188700A (en) | pencil | |
JP3385102B2 (en) | Biodegradable sheet and its manufacturing method | |
JP2002059524A (en) | Degradable laminate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050127 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080606 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080617 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080728 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090414 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090414 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120424 Year of fee payment: 3 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091029 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100419 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130424 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130424 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130424 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140424 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |