JP4296349B2 - Method of supplying fusing gas in metal fusing device - Google Patents
Method of supplying fusing gas in metal fusing device Download PDFInfo
- Publication number
- JP4296349B2 JP4296349B2 JP2004037681A JP2004037681A JP4296349B2 JP 4296349 B2 JP4296349 B2 JP 4296349B2 JP 2004037681 A JP2004037681 A JP 2004037681A JP 2004037681 A JP2004037681 A JP 2004037681A JP 4296349 B2 JP4296349 B2 JP 4296349B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- hydrogen
- fusing
- oxygen
- mixed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Feeding And Controlling Fuel (AREA)
Description
本発明は、金属溶断装置に水素−LPG(液化プロパンガス)の混合ガスを溶断ガスとして供給する方法に関するものである。 The present invention relates to a method for supplying a mixed gas of hydrogen-LPG (liquefied propane gas) as a fusing gas to a metal fusing device.
例えば金属溶断装置のうちの鋼板溶断装置は、1枚の鋼板を溶断して複数枚の鋼板を製造するものであり、これには従来より、プラズマ放電による溶断加工法、電子ビームによる溶断加工法、あるいはガストーチ構造の燃焼炎によって溶断加工する方法などが知られている。 For example, a steel sheet fusing device of a metal fusing device is one that cuts one steel plate to produce a plurality of steel plates. Conventionally, a fusing method using plasma discharge, a fusing method using an electron beam, and the like. Alternatively, a method of fusing with a combustion flame having a gas torch structure is known.
これらのうち、溶断用ガスの供給を受けるガストーチを使用して燃焼炎を生成し、金属を複数枚に溶断する構成の金属溶断装置において、金属溶断ガスとしては、LPG(液化プロパンガス)、アセチレンなどが広く使用されているが、最近、高燃焼エネルギー、切断精度の高品質、ワーク時間の短縮などに優れる水素ガスが脚光を浴びている。 Among these, in a metal fusing device configured to generate a combustion flame using a gas torch that is supplied with a fusing gas and to cut a metal into a plurality of pieces, LPG (liquefied propane gas), acetylene are used as the metal fusing gas. Recently, hydrogen gas, which is excellent in high combustion energy, high quality cutting accuracy, and shortening the work time, has attracted attention.
ところが、水素ガス単体では、燃焼時に火口(トーチ)から白点が見えず、燃焼時に逆火等が発生しやすく、取扱いが困難であった。このため、通常は、水素ガスにLPG(液化プロパンガス)を添加し、白点が明確に確認できるように混合している。 However, with hydrogen gas alone, a white spot cannot be seen from the crater (torch) at the time of combustion, and a backfire or the like tends to occur at the time of combustion, which makes handling difficult. For this reason, LPG (liquefied propane gas) is usually added to hydrogen gas and mixed so that the white point can be clearly confirmed.
例えば鋼板溶断装置において、特に溶断用ガスに主成分として水素ガスを用いるものでは、その添加ガスとして燃焼炎の視認性を向上させる色付けの目的のため、またカロリーアップのためにプロパンガスを数パーセント添加させており、このガス混合比を一定の値に安定させることは、溶断性能、加工品質のばらつきを防ぐと共に、安全性の確保という面でも重要なことであった。 For example, in a steel sheet fusing device, especially in the case of using hydrogen gas as a main component for the fusing gas, propane gas is used as the additive gas for the purpose of coloring to improve the visibility of the combustion flame, and for increasing the calorie, several percent of propane gas. In addition, stabilizing the gas mixture ratio at a constant value is important in terms of ensuring safety as well as preventing variation in fusing performance and processing quality.
ここで、従来の鋼板溶断装置に関わる先行特許文献には、つぎのようなものがある。
しかしながら、上記特許文献1に記載の従来の鋼板溶断装置における鋼板溶断用ガスの流出量制御装置では、水の電気分解によって水素と酸素とを発生する水素/酸素電気分解部とプロパンガス貯蔵タンクとを具備し、さらに、水素/酸素電気分解部に連結されている水素ガス供給管の途上に介在させられた水素ガス流量検知器と、プロパンガス貯蔵タンクに連結されているプロパンガス供給管の途上に介在させられたに設置されて、供給されプロパンガス流出量調整器と、水素ガス流量検知器によって検知された水素ガス流量の検知データを受けて、プロパンガス流出量調整器を動作させてプロパンガス流出量を制御する制御部と、水素ガスとプロパンガスとの混合ガスを溶断用ガスとしてガストーチ構造体へ供給するための混合/供給部(タンク)とを具備するものであり、このような特許文献1に記載の従来の鋼板溶断装置における鋼板溶断用ガスの流出量制御装置は、非常に高価であるという問題があった。
However, in the apparatus for controlling the outflow amount of the steel sheet fusing gas in the conventional steel sheet fusing apparatus described in
というのは、特許文献1に記載の装置では、水の電気分解によって水素と酸素とを発生する水素/酸素電気分解部に対し、別に、プロパンガス貯蔵タンクと、水素ガスとプロパンガスとの混合ガスを供給するための混合/供給部(タンク)とを設置する必要があり、設備費が非常に高くつくという問題があった。
This is because, in the apparatus described in
本発明の目的は、上記の従来技術の問題を解決し、金属溶断装置に溶断ガスを供給するにあたり、従来のプロパンガス貯蔵タンクや、水素ガスとプロパンガスとを混合するためのタンクを設置する必要がなく、設備コストが非常に安くつき、しかも所定の混合比を有する水素−プロパンガスの混合ガスよりなる溶断ガスを供給することができる、金属溶断装置における溶断ガスの供給方法を提供しようとすることにある。 The object of the present invention is to solve the above-mentioned problems of the prior art and to install a conventional propane gas storage tank and a tank for mixing hydrogen gas and propane gas when supplying the fusing gas to the metal fusing device. There is no need to provide a fusing gas supply method in a metal fusing device that can supply a fusing gas made of a mixed gas of hydrogen-propane gas having a predetermined mixing ratio, with a very low equipment cost. There is to do.
上記の目的を達成するために、本発明の請求項1記載の金属溶断装置における溶断ガスの供給方法の発明は、金属溶断装置に溶断ガスを供給するにあたり、電解槽の上部に接続された水素ガス流送管によって水素ガスを、水素ガス気液分離器(気液分離タンク)に送り、そこで、水素ガスとこれに同伴する水分(電解液)とを分離し、一方、電解槽の上部に接続された酸素ガス流送管によって酸素ガスを気液分離器に送り、そこで酸素ガスとこれに同伴する水分(電解液)とを分離し、上記水素ガス気液分離器に、LPG(液化プロパンガス)を、流送管により直接添加して混合し、同気液分離器内で形成された水素−プロパンガスの混合ガスを、混合ガス流送管によって金属溶断装置の溶断ガスとして供給するものであって、混合ガス流送管の途上に、冷却器と、減圧弁と、触媒塔と、流量調節弁とが、この順序で介在させられ、冷却器においては、50〜80℃の水素−プロパンガスの混合ガスを、5〜20℃に冷却して、混合ガスに含まれる水分を除去し、該冷却器で冷却後の混合ガスの一部は、金属溶断装置の溶断ガスへの供給量の調節のために、冷却器と減圧弁との中間において混合ガス流送管に接続されかつ流量調節弁を有する混合ガス一部排出管によって系外に排出され、上記減圧弁では、水素−プロパンガスの混合ガス圧力を減圧して、触媒塔を結露水で濡らさないようにし、上記触媒塔では、水素−プロパンガスの混合ガスを触媒に接触させて、混合ガスに含有する酸素を除去し、上記流量調節弁は、水素−プロパンガスの混合ガスの流量を、金属溶断装置の溶断ガスの火口に供給する所定量に調節して、この混合ガスよりなる溶断ガスを金属溶断装置に供給し、他方、上記電解槽の上部に接続された酸素ガス流送管によって酸素ガスを、酸素ガス気液分離器(気液分離タンク)に送り、そこで、酸素ガスとこれに同伴する水分(電解液)とを分離し、酸素ガスは、酸素ガス気液分離器の頂部に接続されかつ流量調節弁を有する酸素ガス流送管によって取り出し、これの全部または一部を、上記水素−プロパンガスの混合ガスよりなる金属溶断ガスの燃焼用酸素として使用することを特徴としている。
In order to achieve the above-mentioned object, the invention of the fusing gas supply method in the metal fusing device according to
本発明の請求項2記載の発明は、上記請求項1記載の金属溶断装置における溶断ガスの供給方法であって、電解槽において水の電気分解の電解電流値を計測し、これに基づいて水素発生量を算出して、その値に基づいて所定の混合比となるLPGの添加量を算出し、この値を制御信号に変換して、該制御信号をラインにより流量調節弁(マスフローメーター)に伝送し、この制御信号に基づく流量調節弁の作動によりLPGの流量を調節して、水素発生量に対応する量のLPGを、水素ガス気液分離器に直接添加して混合し、同気液分離器内で形成された所定の混合比を有する水素−プロパンガスの混合ガスよりなる溶断ガスを、金属溶断装置に供給することを特徴としている。
The invention according to
本発明の請求項1記載の発明は、上述のように、金属溶断装置に溶断ガスを供給するにあたり、電解槽の上部に接続された水素ガス流送管によって水素ガスを、水素ガス気液分離器(気液分離タンク)に送り、そこで、水素ガスとこれに同伴する水分(電解液)とを分離し、一方、電解槽の上部に接続された酸素ガス流送管によって酸素ガスを気液分離器に送り、そこで酸素ガスとこれに同伴する水分(電解液)とを分離し、上記水素ガス気液分離器に、LPG(液化プロパンガス)を、流送管により直接添加して混合し、同気液分離器内で形成された水素−プロパンガスの混合ガスを、混合ガス流送管によって金属溶断装置の溶断ガスとして供給するものであって、混合ガス流送管の途上に、冷却器と、減圧弁と、触媒塔と、流量調節弁とが、この順序で介在させられ、冷却器においては、50〜80℃の水素−プロパンガスの混合ガスを、5〜20℃に冷却して、混合ガスに含まれる水分を除去し、該冷却器で冷却後の混合ガスの一部は、金属溶断装置の溶断ガスへの供給量の調節のために、冷却器と減圧弁との中間において混合ガス流送管に接続されかつ流量調節弁を有する混合ガス一部排出管によって系外に排出され、上記減圧弁では、水素−プロパンガスの混合ガス圧力を減圧して、触媒塔を結露水で濡らさないようにし、上記触媒塔では、水素−プロパンガスの混合ガスを触媒に接触させて、混合ガスに含有する酸素を除去し、上記流量調節弁は、水素−プロパンガスの混合ガスの流量を、金属溶断装置の溶断ガスの火口に供給する所定量に調節して、この混合ガスよりなる溶断ガスを金属溶断装置に供給し、他方、上記電解槽の上部に接続された酸素ガス流送管によって酸素ガスを、酸素ガス気液分離器(気液分離タンク)に送り、そこで、酸素ガスとこれに同伴する水分(電解液)とを分離し、酸素ガスは、酸素ガス気液分離器の頂部に接続されかつ流量調節弁を有する酸素ガス流送管によって取り出し、これの全部または一部を、上記水素−プロパンガスの混合ガスよりなる金属溶断ガスの燃焼用酸素として使用するものであるから、金属溶断装置に溶断ガスを供給するにあたり、従来のプロパンガス貯蔵タンクや、水素ガスとプロパンガスとを混合するためのタンクを設置する必要がなく、設備コストが非常に安くつき、しかも所定の混合比を有する水素−プロパンガスの混合ガスよりなる溶断ガス
を供給することができるという効果を奏する。
According to the first aspect of the present invention, as described above, when supplying the fusing gas to the metal fusing device, the hydrogen gas is separated from the hydrogen gas by the hydrogen gas flow pipe connected to the upper part of the electrolytic cell. The gas (liquid-liquid separation tank), where the hydrogen gas and the water (electrolyte) that accompanies it are separated. On the other hand, the oxygen gas is gas-liquid separated by the oxygen gas flow pipe connected to the upper part of the electrolytic cell. It is sent to the separator, where oxygen gas and water (electrolyte) accompanying it are separated, and LPG (liquefied propane gas) is directly added to the hydrogen gas gas-liquid separator through the flow pipe and mixed. The mixed gas of hydrogen-propane gas formed in the same gas-liquid separator is supplied as a fusing gas of a metal fusing device through a mixed gas flow pipe, and is cooled in the middle of the mixed gas flow pipe. Vessel, pressure reducing valve, catalyst tower, flow control valve, In the cooler, the hydrogen-propane gas mixed gas at 50 to 80 ° C. is cooled to 5 to 20 ° C. to remove moisture contained in the mixed gas. A part of the mixed gas after cooling is connected to the mixed gas flow pipe in the middle of the cooler and the pressure reducing valve and has a flow rate adjusting valve in order to adjust the supply amount to the fusing gas of the metal fusing device. The gas is discharged out of the system by a partial discharge pipe, and the pressure reducing valve reduces the pressure of the mixed gas of hydrogen-propane gas so that the catalyst tower is not wetted with condensed water. The mixed gas is brought into contact with the catalyst to remove oxygen contained in the mixed gas, and the flow rate control valve supplies the flow rate of the mixed gas of hydrogen-propane gas to the fusing gas crater of the metal fusing device. Adjust to this gas mixture Is supplied to a metal fusing device, and on the other hand, oxygen gas is sent to an oxygen gas gas-liquid separator (gas-liquid separation tank) by an oxygen gas flow pipe connected to the upper part of the electrolytic cell. Gas and water accompanying the gas (electrolyte) are separated, and oxygen gas is taken out by an oxygen gas flow pipe connected to the top of the oxygen gas gas-liquid separator and having a flow control valve. Part is used as combustion oxygen of a metal fusing gas composed of a mixed gas of the hydrogen-propane gas , so when supplying the fusing gas to the metal fusing device, a conventional propane gas storage tank, hydrogen gas and There is no need to install a tank for mixing propane gas, the equipment cost is very low, and a fusing gas comprising a hydrogen-propane gas mixture gas having a predetermined mixing ratio is used. There is an effect that it can be supplied.
また、本発明の請求項2記載の発明は、上述のように、上記請求項1記載の金属溶断装置における溶断ガスの供給方法であって、電解槽において水の電気分解の電解電流値を計測し、これに基づいて水素発生量を算出して、その値に基づいて所定の混合比となるLPGの添加量を算出し、この値を制御信号に変換して、該制御信号をラインにより流量調節弁(マスフローメーター)に伝送し、この制御信号に基づく流量調節弁の作動によりLPGの流量を調節して、水素発生量に対応する量のLPGを、水素ガス気液分離器に直接添加して混合し、同気液分離器内で形成された所定の混合比を有する水素−プロパンガスの混合ガスよりなる溶断ガスを、金属溶断装置に供給するもので、電解槽における水の電気分解による水素発生量は、電解電流値により決まる。
Moreover, the invention according to
換言すれば、所定の電解電流値に対しては、水素発生量が一定となるため、この点を利用して、電解槽の電解電流値に基づく水素発生量に対応する量のLPG(液化プロパンガス)を、水素ガスの気液分離タンクに直接添加して混合しているから、所定の混合比を有する水素−プロパンガスの混合ガスよりなる溶断ガスを、非常に簡単に作成して供給することができ、しかも従来のプロパンガス貯蔵タンクや、水素ガスとプロパンガスとを混合するためのタンクを設置する必要がなく、設備コストが非常に安くという効果を奏する。 In other words, since the hydrogen generation amount is constant for a predetermined electrolysis current value, using this point, an amount of LPG (liquefied propane) corresponding to the hydrogen generation amount based on the electrolysis current value of the electrolytic cell is used. Gas) is directly added to the gas-liquid separation tank of hydrogen gas and mixed, so that a fusing gas composed of a mixed gas of hydrogen-propane gas having a predetermined mixing ratio is created and supplied very easily. In addition, there is no need to install a conventional propane gas storage tank or a tank for mixing hydrogen gas and propane gas, and the equipment cost is very low.
つぎに、本発明の実施の形態を、図面を参照して説明するが、本発明はこれらに限定されるものではない。 Next, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
図1は、本発明の請求項1記載の金属溶断装置における溶断ガスの供給方法を実施する装置の一例を示すフローシートである。
FIG. 1 is a flow sheet showing an example of an apparatus for carrying out a fusing gas supply method in a metal fusing apparatus according to
同図を参照すると、(1)は電解槽で、陰極板と陽極板とを具備し、電解槽(1)内には、純水、およびKOH、NaOH、H2SO4等の電解液が満たされている。そして、陰極板と陽極板とに電気的に接続された電源(2)より直流電流を導通して、水の電気分解により水素と酸素を発生させるものである。電解液の水位は、上下の2箇所に設けられたセンサー(図示せず)によって感知され、弁(図示略)の開閉等によって、水位の調整がなされるものである。また、電解槽(1)は、陰極板と陽極板との間に分離膜を使用して、陰極室と陽極室とに分離し、水素と酸素を別々に取り出すようになっている。 Referring to the figure, (1) is an electrolytic cell comprising a cathode plate and an anode plate, and pure water, and electrolytes such as KOH, NaOH, H 2 SO 4 are contained in the electrolytic cell (1). be satisfied. Then, a direct current is conducted from a power source (2) electrically connected to the cathode plate and the anode plate, and hydrogen and oxygen are generated by electrolysis of water. The water level of the electrolyte is sensed by sensors (not shown) provided at two locations above and below, and the water level is adjusted by opening and closing a valve (not shown). Moreover, the electrolytic cell (1) uses a separation membrane between the cathode plate and the anode plate to separate the cathode chamber and the anode chamber, and separately takes out hydrogen and oxygen.
電解槽(1)の上部に接続された水素ガス流送管(6)によって水素ガスを気液分離器(気液分離タンク)(3)に送り、そこで、水素ガスとこれに同伴する水分(電解液)とを分離する。一方、電解槽(1)の上部に接続された酸素ガス流送管(7)によって酸素ガスを気液分離器(4)に送り、そこで酸素ガスとこれに同伴する水分(電解液)とを分離する。 Hydrogen gas is sent to a gas-liquid separator (gas-liquid separation tank) (3) by a hydrogen gas flow pipe (6) connected to the upper part of the electrolytic cell (1), where hydrogen gas and moisture accompanying the gas ( (Electrolyte). On the other hand, oxygen gas is sent to the gas-liquid separator (4) by the oxygen gas flow pipe (7) connected to the upper part of the electrolytic cell (1), where oxygen gas and water (electrolyte) accompanying the oxygen gas are sent. To separate.
本発明においては、金属溶断装置(図示略)に溶断ガスを供給するにあたり、電解槽(1)において水の電気分解により発生した水素ガスを収容する気液分離タンク(3)に、LPG(液化プロパンガス)を、流送管(8)により直接添加して混合し、同タンク(3)内で形成された水素−プロパンガスの混合ガスを、混合ガス流送管(10)によって金属溶断装置の溶断ガスとして供給するものである。LPG(液化プロパンガス)の添加量は、0.01〜10%が好ましく、LPG流送管(8)の途上に介在させられた流量調節弁(マスフローメーター)(9)によってその流量を調節し、残部の90〜99.99%を水素ガスとするのが好ましい。 In the present invention, when supplying a fusing gas to a metal fusing device (not shown), an LPG (liquefaction) is contained in a gas-liquid separation tank (3) containing hydrogen gas generated by electrolysis of water in an electrolytic cell (1). Propane gas) is directly added and mixed by the flow pipe (8), and the hydrogen-propane gas mixed gas formed in the tank (3) is mixed with the metal fusing device by the mixed gas flow pipe (10). It is supplied as a fusing gas. The addition amount of LPG (liquefied propane gas) is preferably 0.01 to 10%, and the flow rate is adjusted by a flow rate control valve (mass flow meter) (9) interposed in the middle of the LPG flow pipe (8). The remaining 90 to 99.99% is preferably hydrogen gas.
なお、LPG(液化プロパンガス)の添加は、電解槽(1)の上部に接続された水素ガス流送管(6)の途上に介在させられた水素ガス流量検出器(図示略)などによって水素ガスの発生量を適宜検出して、その値に基づいて所定の混合比となるLPGの添加量を算出し、この値を制御信号に変換して、該制御信号に基づく流量調節弁(9)の作動によりLPGの流量を調節して、実施するものである。 Note that LPG (liquefied propane gas) is added by a hydrogen gas flow rate detector (not shown) interposed in the middle of the hydrogen gas flow pipe (6) connected to the upper part of the electrolytic cell (1). The amount of gas generated is detected as appropriate, the amount of LPG added at a predetermined mixing ratio is calculated based on the detected value, this value is converted into a control signal, and the flow rate control valve (9) based on the control signal This is performed by adjusting the flow rate of LPG by the operation of.
気液分離タンク(3)から水素−プロパンガスの混合ガスを流送する混合ガス流送管(10)の途上には、冷却器(11)と、減圧弁(12)と、触媒塔(13)と、流量調節弁(14)とが、この順序で介在させられている。 In the middle of a mixed gas flow pipe (10) for flowing a mixed gas of hydrogen-propane gas from the gas-liquid separation tank (3), a cooler (11), a pressure reducing valve (12), and a catalyst tower (13) ) And the flow control valve (14) are interposed in this order.
ここで、冷却器(11)は、50〜80℃の水素−プロパンガスの混合ガスを、5〜20℃に冷却する。これは混合ガスに含まれる水分を除去するためである。なお、冷却器(11)で冷却後の混合ガスの一部は、金属溶断装置の溶断ガスへの供給量の調節のために、冷却器(11)と減圧弁(12)との中間において混合ガス流送管(10)に接続されかつ流量調節弁(17)を有する混合ガス一部排出管(16)によって系外に排出される。 Here, the cooler (11) cools the mixed gas of hydrogen to propane gas at 50 to 80 ° C. to 5 to 20 ° C. This is to remove moisture contained in the mixed gas. A part of the mixed gas after being cooled by the cooler (11) is mixed between the cooler (11) and the pressure reducing valve (12) in order to adjust the supply amount to the fusing gas of the metal fusing device. A mixed gas partial discharge pipe (16) connected to the gas flow pipe (10) and having a flow control valve (17) is discharged out of the system.
減圧弁(12)は、例えば0.5MPaGの水素−プロパンガスの混合ガス圧力を、0.02〜0.45MPaGに減圧する。これは触媒塔(13)を結露水で濡らさないためである。 The pressure reducing valve (12) reduces the pressure of a mixed gas of 0.5 MPaG hydrogen-propane gas to 0.02 to 0.45 MPaG, for example. This is to prevent the catalyst tower (13) from getting wet with condensed water.
触媒塔(13)は、水素−プロパンガスの混合ガスを、パラジウムを成分とする触媒に接触させる。これは混合ガスに含有する酸素を除去するためである。 The catalyst tower (13) brings a mixed gas of hydrogen-propane gas into contact with a catalyst containing palladium as a component. This is for removing oxygen contained in the mixed gas.
流量調節弁(14)は、水素−プロパンガスの混合ガスの流量を、例えば金属溶断装置の溶断ガスの火口1本当たり500〜1500L/hに調節し、この混合ガスよりなる溶断ガスを金属溶断装置に供給する。 The flow rate control valve (14) adjusts the flow rate of the mixed gas of hydrogen-propane gas to, for example, 500 to 1500 L / h per crater of the fusing gas of the metal fusing device, and cuts the fusing gas composed of this mixed gas into the metal. Supply to the device.
これに対し、電解槽(1)の上部に接続された酸素ガス流送管(7)によって酸素ガスを気液分離器(気液分離タンク)(4)に送り、そこで、酸素ガスとこれに同伴する水分(電解液)とを分離する。そして、酸素ガスは、気液分離器(気液分離タンク)(4)の頂部に接続されかつ流量調節弁(19)を有する酸素ガス流送管(18)によって取り出し、これの全部または一部を、上記水素−プロパンガスの混合ガスよりなる金属溶断ガスの燃焼用酸素として使用する。なお、金属溶断ガスの燃焼用酸素が不足する場合には、適宜、外部の酸素ボンベなどから酸素ガスを補給すれば良い。 On the other hand, oxygen gas is sent to a gas-liquid separator (gas-liquid separation tank) (4) by an oxygen gas flow pipe (7) connected to the upper part of the electrolytic cell (1), where oxygen gas and Separate the accompanying water (electrolyte). And oxygen gas is taken out by the oxygen gas flow pipe (18) which is connected to the top part of the gas-liquid separator (gas-liquid separation tank) (4) and has a flow control valve (19), and all or a part thereof Is used as oxygen for combustion of a metal cutting gas composed of a mixed gas of hydrogen-propane gas. In addition, when the oxygen for combustion of metal fusing gas is insufficient, oxygen gas should just be replenished from an external oxygen cylinder etc. suitably.
上記水素ガス気液分離器(気液分離タンク)(3)において分離された水分(電解液)は、該分離器(3)の底部に接続された流送管(22)より取り出す。一方、上記酸素ガス気液分離器(気液分離タンク)(4)において分離された水分(電解液)は、該分離器(4)の底部に接続された流送管(23)より取り出す。水素ガス気液分離器(3)からの水分流送管(22)の先端部は、酸素ガス気液分離器(4)からの水分流送管(23)の途上に接続されていて、同水分流送管(23)の途上に介在させられた循環水ポンプ(24)の作動により、両分離器(3)(4)からの水分(電解液)を電解槽(1)に返送する。 The water (electrolyte) separated in the hydrogen gas / liquid separator (gas / liquid separation tank) (3) is taken out from a flow pipe (22) connected to the bottom of the separator (3). On the other hand, the water (electrolytic solution) separated in the oxygen gas gas-liquid separator (gas-liquid separation tank) (4) is taken out from a flow pipe (23) connected to the bottom of the separator (4). The tip of the water flow pipe (22) from the hydrogen gas gas-liquid separator (3) is connected to the water flow pipe (23) from the oxygen gas gas-liquid separator (4). The water (electrolyte) from both separators (3) and (4) is returned to the electrolytic cell (1) by the operation of the circulating water pump (24) interposed in the middle of the water flow pipe (23).
なお、酸素ガス気液分離器(気液分離タンク)(4)の下部には、純水供給管(20)が接続されていて、これの途上に介在させられた給水ポンプ(21)の作動により、純水タンク(5)から純水を気液分離器(気液分離タンク)(4)に適宜供給し、電解槽(1)の水分量を調節するものである。 A pure water supply pipe (20) is connected to the lower part of the oxygen gas gas-liquid separator (gas-liquid separation tank) (4), and the operation of the water supply pump (21) interposed in the middle of this is performed. Thus, pure water is appropriately supplied from the pure water tank (5) to the gas-liquid separator (gas-liquid separation tank) (4) to adjust the water content of the electrolytic cell (1).
図2は、本発明の請求項2記載の金属溶断装置における溶断ガスの供給方法を実施する装置の一例を示すフローシートである。
FIG. 2 is a flow sheet showing an example of an apparatus for carrying out the fusing gas supply method in the metal fusing apparatus according to
図2において、上記図1の実施形態の場合と異なる点は、LPG(液化プロパンガス)の添加量の制御手段にある。すなわち、この実施形態においては、電解槽(1)において水の電気分解による水素発生量を電解電流値に基づいて計測する。すなわち、電解槽(1)における水の電気分解による水素発生量は、電解電流値により決まる。換言すれば、所定の電解電流値に対しては、水素発生量が一定となるため、この点を利用して、電解槽(1)の電解電流値を計測し、これに基づいて水素発生量を算出して、その値に基づいて所定の混合比となるLPGの添加量を算出し、この値を制御信号に変換して、該制御信号をライン(15)により流量調節弁(マスフローメーター)(9)に伝送し、この制御信号に基づく流量調節弁(9)の作動によりLPGの流量を調節して、水素発生量に対応する量のLPG(液化プロパンガス)を水素ガス気液分離タンク(3)に直接添加して混合するものである。これにより、同タンク(3)内で形成された所定の混合比を有する水素−プロパンガスの混合ガスよりなる溶断ガスを、非常に簡単に作成して金属溶断装置に供給することができるものである。 In FIG. 2, the difference from the embodiment of FIG. 1 lies in the means for controlling the amount of LPG (liquefied propane gas) added. That is, in this embodiment, the amount of hydrogen generated by electrolysis of water in the electrolytic cell (1) is measured based on the electrolysis current value. That is, the amount of hydrogen generated by the electrolysis of water in the electrolytic cell (1) is determined by the electrolysis current value. In other words, since the hydrogen generation amount is constant for a predetermined electrolysis current value, the electrolysis current value of the electrolytic cell (1) is measured using this point, and the hydrogen generation amount is based on this value. Based on the value, the amount of LPG to be added having a predetermined mixing ratio is calculated, this value is converted into a control signal, and the control signal is converted into a flow rate control valve (mass flow meter) via line (15). The amount of LPG (liquefied propane gas) corresponding to the amount of hydrogen generated is adjusted to a hydrogen gas-liquid separation tank by adjusting the flow rate of LPG by operating the flow rate control valve (9) based on this control signal. It is added directly to (3) and mixed. As a result, a fusing gas made of a mixed gas of hydrogen-propane gas having a predetermined mixing ratio formed in the tank (3) can be created very easily and supplied to the metal fusing device. is there.
この第2実施形態のその他の点は上記第1実施形態の場合と同様であるので、図2において図1と同一のものには同一の符号を付した。 Since the other points of the second embodiment are the same as those of the first embodiment, the same reference numerals in FIG. 2 denote the same parts as in FIG.
以下、本発明の実施例を説明するが、本発明はこれらに限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited thereto.
実施例1〜6
図1に示す金属溶断装置における溶断ガスの供給装置のフローシートに従って本発明の方法を実施した。
Examples 1-6
The method of the present invention was carried out according to the flow sheet of the fusing gas supply device in the metal fusing device shown in FIG.
同図において、陰極板と陽極板とを具備する水素発生量3Nm3/hの電解槽(1)内に、純水を満たした。そして、陰極板と陽極板とに電気的に接続された電源(2)より375Aの直流電流を導通して、水の電気分解により水素と酸素を、1分間に50NLおよび25NLの割合で発生させた。電解液の水位は、上下の2箇所に設けられたセンサー(図示せず)と弁(図示略)とによって一定に調整した。電解槽(1)は、陰極板と陽極板との間に分離膜を使用して、陰極室と陽極室とに分離し、水素と酸素を別々に取り出ようにした。 In the drawing, pure water was filled in an electrolytic cell (1) having a hydrogen generation amount of 3 Nm 3 / h comprising a cathode plate and an anode plate. Then, a direct current of 375 A is conducted from the power source (2) electrically connected to the cathode plate and the anode plate, and hydrogen and oxygen are generated at a rate of 50 NL and 25 NL per minute by electrolysis of water. It was. The water level of the electrolytic solution was adjusted to be constant by sensors (not shown) and valves (not shown) provided at two locations above and below. The electrolytic cell (1) was separated into a cathode chamber and an anode chamber using a separation membrane between the cathode plate and the anode plate, and hydrogen and oxygen were taken out separately.
つぎに、電解槽(1)の上部に接続された水素ガス流送管(6)によって水素ガスを、全容量20L(ガス容量10L)の気液分離器(気液分離タンク)(3)に送り、そこで、水素ガスとこれに同伴する水分(電解液)とを分離した。一方、電解槽(1)の上部に接続された酸素ガス流送管(7)によって酸素ガスを全容量20L(ガス容量5L)の気液分離器(4)に送り、そこで酸素ガスとこれに同伴する水分(電解液)とを分離した。 Next, hydrogen gas is fed into a gas-liquid separator (gas-liquid separation tank) (3) having a total capacity of 20 L (gas capacity of 10 L) by a hydrogen gas flow pipe (6) connected to the upper part of the electrolytic cell (1). Then, hydrogen gas and water (electrolyte) accompanying the hydrogen gas were separated. On the other hand, oxygen gas is sent to a gas-liquid separator (4) having a total volume of 20 L (gas capacity of 5 L) by an oxygen gas flow pipe (7) connected to the upper part of the electrolytic cell (1). The accompanying water (electrolyte) was separated.
そして、金属溶断装置(図示略)に溶断ガスを供給するにあたり、水素ガスを収容する気液分離タンク(3)に、LPG(液化プロパンガス)を流送管(8)により水素ガスに対し、下記の表1に示す割合で、直接添加して混合し、同タンク(3)内で形成された水素−プロパンガスの混合ガスを、混合ガス流送管(10)によって金属溶断装置の溶断ガスとして供給した。なお、LPG(液化プロパンガス)の添加は、電解槽(1)の上部に接続された水素ガス流送管(6)の途上に介在させられた水素ガス流量検出器(図示略)などによって水素ガスの発生量を適宜検出して、その値に基づいて所定の混合比となるLPGの添加量を算出し、この値を制御信号に変換して、該制御信号に基づく流量調節弁(9)の作動によりLPGの流量を調節して実施した。 Then, when supplying the fusing gas to a metal fusing device (not shown), LPG (liquefied propane gas) is supplied to the hydrogen gas by the flow pipe (8) in the gas-liquid separation tank (3) containing hydrogen gas. The hydrogen-propane gas mixed gas directly added and mixed in the ratio shown in Table 1 below, and formed in the tank (3), is blown into the metal fusing device by the mixed gas flow pipe (10). As supplied. Note that LPG (liquefied propane gas) is added by a hydrogen gas flow rate detector (not shown) interposed in the middle of the hydrogen gas flow pipe (6) connected to the upper part of the electrolytic cell (1). The amount of gas generated is detected as appropriate, the amount of LPG added at a predetermined mixing ratio is calculated based on the detected value, this value is converted into a control signal, and the flow rate control valve (9) based on the control signal This was carried out by adjusting the flow rate of LPG by the operation of.
また、気液分離タンク(3)から水素−プロパンガスの混合ガスを流送する混合ガス流送管(10)の途上に介在させられた冷却器(11)において、50〜80℃の水素−プロパンガスの混合ガスを5〜20℃に冷却し、混合ガスに含まれる水分を除去した。また、減圧弁(12)において、0.5MPaGの水素−プロパンガスの混合ガス圧力を、0.45MPaGに減圧し、触媒塔(13)を結露水で濡らさないようにした。また、触媒塔(13)では、水素−プロパンガスの混合ガスを、パラジウムを成分とする触媒に接触させ、混合ガスに含有する酸素を除去した。そして、流量調節弁(14)の作動により、水素−プロパンガスの混合ガスの金属溶断装置の溶断ガスの火口1本当たりの流量を流量調節弁(マスフローメーター)(9)によって調節し、この混合ガスよりなる溶断ガスを金属溶断装置に供給した。 Further, in the cooler (11) interposed in the middle of the mixed gas flow pipe (10) for flowing the mixed gas of hydrogen-propane gas from the gas-liquid separation tank (3), hydrogen at 50 to 80 ° C. The mixed gas of propane gas was cooled to 5 to 20 ° C. to remove moisture contained in the mixed gas. Further, in the pressure reducing valve (12), the mixed gas pressure of 0.5 MPaG hydrogen-propane gas was reduced to 0.45 MPaG so that the catalyst tower (13) was not wetted by the dew condensation water. In the catalyst tower (13), the hydrogen-propane gas mixed gas was brought into contact with a catalyst containing palladium as a component to remove oxygen contained in the mixed gas. Then, by the operation of the flow rate control valve (14), the flow rate per one crater of the fusing gas of the metal fusing device of the hydrogen-propane gas mixed gas is adjusted by the flow rate control valve (mass flow meter) (9), and this mixing is performed. A fusing gas consisting of a gas was supplied to the metal fusing device.
上記のLPG(液化プロパンガス)の添加は、電解槽(1)の上部に接続された水素ガス流送管(6)の途上に介在させられた水素ガス流量検出器(図示略)によって水素ガスの発生量を適宜検出して、その値に基づいて所定の混合比となるLPGの添加量を算出し、この値を制御信号に変換して、該制御信号に基づく流量調節弁(9)の作動によりLPGの流量を調節して、実施した。 The addition of LPG (liquefied propane gas) is performed by hydrogen gas flow rate detector (not shown) interposed in the middle of the hydrogen gas flow pipe (6) connected to the upper part of the electrolytic cell (1). Is appropriately detected, the amount of LPG added at a predetermined mixing ratio is calculated based on the detected value, this value is converted into a control signal, and the flow control valve (9) based on the control signal is converted. The operation was performed by adjusting the flow rate of LPG by operation.
これに対し、電解槽(1)の上部に接続された酸素ガス流送管(7)によって酸素ガスを、全容量20L(ガス容量5L)の気液分離器(気液分離タンク)(4)に送り、そこで、酸素ガスとこれに同伴する水分(電解液)とを分離した。そして、酸素ガスは、気液分離器(気液分離タンク)(4)の頂部に接続されかつ流量調節弁(19)を有する酸素ガス流送管(18)によって取り出し、これの全部または一部を、上記水素−プロパンガスの混合ガスよりなる金属溶断ガスの燃焼用酸素として使用し、各種厚みを有しかつジンクプライマー表面処理を行なった構造用炭素鋼SM400板(金属板)を、Cu(銅)製のトーチを用いて溶断した。 In contrast, the oxygen gas flow pipe (7) connected to the upper part of the electrolytic cell (1) is used to supply oxygen gas to a gas-liquid separator (gas-liquid separation tank) (4) having a total capacity of 20 L (gas capacity 5 L). Then, oxygen gas and water (electrolyte solution) accompanying the oxygen gas were separated. And oxygen gas is taken out by the oxygen gas flow pipe (18) which is connected to the top part of the gas-liquid separator (gas-liquid separation tank) (4) and has a flow control valve (19), and all or a part thereof Is used as combustion oxygen of a metal cutting gas composed of a mixed gas of hydrogen-propane gas, and a structural carbon steel SM400 plate (metal plate) having various thicknesses and subjected to zinc primer surface treatment is used as Cu ( Fusing using a copper torch.
下記の表1に、構造用炭素鋼SM400板の厚み、金属溶断ガスとしての水素ガスおよびLPG(液化プロパンガス)の混合ガス、並びに酸素ガスの流量、切断酸素圧力、切断速度、トーチ隙間をまとめて示した。また、溶断の状態を評価し、得られた結果をあわせて示した。
上記表1の結果より明らかなように、厚みを12mm、16mm、22mm、30mm、40mmの5種類とした構造用炭素鋼SM400板のそれぞれについて、水素−プロパンガスの混合ガスよりなる金属溶断ガス中の水素ガス、LPG(液化プロパンガス)、酸素ガスの混合量を種々変化させた燃料を使用して溶断作業を行なったところ、構造用炭素鋼SM400板の厚みが厚くなるほど、切断速度は若干遅くなるが、いずれの場合も、切断後の断面の検査、とくに湯玉やドロス残り、断面の粗さ、火口疵、寸法精度についての検査の評価が良好(◎印)であり、切断後においても構造用炭素鋼SM400板の優れた品質と、高い切断寸法精度を確保することができた。 As is clear from the results in Table 1 above, in each of the structural carbon steel SM400 plates having a thickness of 12 mm, 16 mm, 22 mm, 30 mm, and 40 mm, in a metal fusing gas composed of a mixed gas of hydrogen-propane gas. When fusing work was performed using fuels with various amounts of mixed hydrogen gas, LPG (liquefied propane gas) and oxygen gas, the cutting speed was slightly slower as the thickness of the structural carbon steel SM400 plate increased. However, in all cases, the evaluation of the cross-section after cutting, especially the inspection of hot water balls and dross residue, cross-sectional roughness, crater flaw and dimensional accuracy is good (◎ mark), and the structure is also after cutting Excellent quality of carbon steel SM400 plate and high cutting dimensional accuracy could be secured.
実施例7
図2に示す金属溶断装置における溶断ガスの供給装置のフローシートに従って本発明の方法を実施した。この実施例において、上記図1の装置を用いた実施例1〜6の場合と異なる点は、水の電気分解により発生した水素とLPG(液化プロパンガス)の混合量の制御手段にある。すなわち、この実施例7では、電解槽(1)において水の電気分解による水素発生量を電解電流値に基づいて計測した。
Example 7
The method of the present invention was carried out according to the flow sheet of the fusing gas supply device in the metal fusing device shown in FIG. In this embodiment, the difference from the first to sixth embodiments using the apparatus of FIG. 1 lies in the control means for the mixing amount of hydrogen and LPG (liquefied propane gas) generated by the electrolysis of water. That is, in Example 7, the amount of hydrogen generated by electrolysis of water in the electrolytic cell (1) was measured based on the electrolysis current value.
電解槽(1)における水の電気分解による水素発生量は、電解電流値により決まる。例えば、上記実施例1の電解槽(1)の電解電流値を計測すると、97.5Aであり、これに基づいて水素発生量を算出すると、780L/hであった。この水素発生量に基づいて所定の混合比となるLPGの添加量330L/hを算出した。つぎに、この値を制御信号に変換して、該制御信号をライン(15)により流量調節弁(マスフローメーター)(9)に伝送し、この制御信号に基づく流量調節弁(9)の作動によりLPGの流量を調節して、水素発生量に対応する量のLPG(液化プロパンガス)を水素ガス気液分離タンク(3)に直接添加して混合した。これにより、同タンク(3)内で形成された所定の混合比を有する水素−プロパンガスの混合ガスよりなる溶断ガスを、簡単に作成して金属溶断装置に供給することができた。 The amount of hydrogen generated by electrolysis of water in the electrolytic cell (1) is determined by the electrolysis current value. For example, when the electrolytic current value of the electrolytic cell (1) of Example 1 was measured, it was 97.5 A, and the hydrogen generation amount calculated based on this was 780 L / h. Based on this hydrogen generation amount, an addition amount 330 L / h of LPG having a predetermined mixing ratio was calculated. Next, this value is converted into a control signal, and the control signal is transmitted to the flow rate control valve (mass flow meter) (9) via the line (15), and the flow rate control valve (9) is operated based on this control signal. The LPG flow rate was adjusted, and an amount of LPG (liquefied propane gas) corresponding to the amount of hydrogen generated was directly added to the hydrogen gas-liquid separation tank (3) and mixed. Thereby, the fusing gas which consists of the mixed gas of hydrogen-propane gas which has the predetermined | prescribed mixing ratio formed in the same tank (3) was able to be created easily, and was able to be supplied to a metal fusing device.
そして、上記実施例1〜6の場合と同様に、この水素ガスおよびLPG(液化プロパンガス)の混合ガスを金属溶断ガスとして使用し、構造用炭素鋼SM400板の溶断試験を行なったところ、実施例1〜6の場合と同様の結果が得られ、また切断後の断面の検査、とくに湯玉やドロス残り、断面の粗さ、火口疵、寸法精度についての検査の評価も良好であり、切断後においても構造用炭素鋼SM400板の優れた品質と、高い切断寸法精度を確保することができた。 Then, as in the case of Examples 1 to 6, a mixed gas of this hydrogen gas and LPG (liquefied propane gas) was used as a metal fusing gas, and a fusing test of a structural carbon steel SM400 plate was performed. The same results as in Examples 1 to 6 were obtained, and the cross-sectional inspection after cutting, in particular, the evaluation of the inspection of hot water balls and dross residue, cross-sectional roughness, crater pit, and dimensional accuracy was also good. In addition, the excellent quality of the structural carbon steel SM400 plate and high cutting dimensional accuracy could be secured.
1:電解槽
3:水素ガス用気液分離器(気液分離タンク)
4:酸素ガス用気液分離器(気液分離タンク)
5:純水タンク
8:LPG(液化プロパンガス)供給管
9:LPG流量調節弁(マスフローメーター)
10:混合ガス供給管
14:混合ガス流量調節弁
15:制御信号伝送ライン
1: Electrolyzer 3: Gas-liquid separator for hydrogen gas (gas-liquid separation tank)
4: Gas-liquid separator for oxygen gas (gas-liquid separation tank)
5: Pure water tank 8: LPG (liquefied propane gas) supply pipe 9: LPG flow control valve (mass flow meter)
10: Mixed gas supply pipe 14: Mixed gas flow control valve 15: Control signal transmission line
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004037681A JP4296349B2 (en) | 2004-02-16 | 2004-02-16 | Method of supplying fusing gas in metal fusing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004037681A JP4296349B2 (en) | 2004-02-16 | 2004-02-16 | Method of supplying fusing gas in metal fusing device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005224845A JP2005224845A (en) | 2005-08-25 |
JP4296349B2 true JP4296349B2 (en) | 2009-07-15 |
Family
ID=34999960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004037681A Expired - Fee Related JP4296349B2 (en) | 2004-02-16 | 2004-02-16 | Method of supplying fusing gas in metal fusing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4296349B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4596792B2 (en) * | 2004-02-24 | 2010-12-15 | あすか製薬株式会社 | Drugs having both 5-HT1A agonistic action and 5-HT3 antagonistic action |
JP5276937B2 (en) * | 2008-09-16 | 2013-08-28 | 日酸Tanaka株式会社 | Gas cutting method and gas cutting device |
US20130032250A1 (en) * | 2010-04-20 | 2013-02-07 | Taiyo Nippon Sanso Corporation | Gas cutting method, gas cutting machine, and cutting tip |
CN114594736B (en) * | 2020-12-05 | 2024-06-04 | 上海梅山钢铁股份有限公司 | Intelligent control method for oxyhydrogen cutting of casting blank |
-
2004
- 2004-02-16 JP JP2004037681A patent/JP4296349B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005224845A (en) | 2005-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9486771B2 (en) | Electrochemical carbon monoxide production | |
JP2021080520A (en) | Water electrolysis system, control method of water electrolysis system, and computer program | |
CN102203999B (en) | Fuel cell cooling | |
JP4296349B2 (en) | Method of supplying fusing gas in metal fusing device | |
GB2582049A (en) | Method for operating an electrolysis system and electrolysis system | |
JP2021085081A (en) | Water electrolysis system | |
US20120264029A1 (en) | Fuel cell system | |
JP2009079149A (en) | Emulsion fuel manufacturing apparatus and method for manufacturing emulsion fuel | |
WO2013028798A1 (en) | Liquid anodes and fuels for production of metals from their oxides by molten salt electrolysis with a solid electrolyte | |
WO2022227146A1 (en) | Composition and method for capturing and electrolyzing carbon dioxide | |
US4510211A (en) | Fuel cell electrolyte supply system and apparatus | |
WO2009043972A1 (en) | Fuel cell apparatus | |
US20070048581A1 (en) | Fuel cell system | |
KR20090032833A (en) | Fuel cell power generation system | |
US7718302B2 (en) | Electrochemical deoxygenation of fuel by electrolysis | |
US20110269034A1 (en) | Fuel cell system | |
Kovrov et al. | Oxygen evolving anodes for aluminum electrolysis | |
JP2009191362A (en) | Apparatus for molten salt electrolysis and method for producing fluorine gas | |
CA1137161A (en) | Fuel cell with anode containing transition element sulphide | |
JP2010202968A (en) | Apparatus for generating oxyhydrogen gas | |
EP2803102B1 (en) | A liquid electrolyte fuel cell system | |
JP2766185B2 (en) | Molten salt fuel cell power plant | |
EP2929067A2 (en) | Flame generator comprising an electrolyser for producing oxygen and hydrogen by means of the electrolysis of water | |
JP4666975B2 (en) | Molten carbonate fuel cell electrode | |
JP2005032600A (en) | Gas liquid separation system and gas liquid separation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070125 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080912 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080930 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090303 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090330 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120424 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130424 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140424 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |