JP4294510B2 - Optical waveguide structure - Google Patents

Optical waveguide structure Download PDF

Info

Publication number
JP4294510B2
JP4294510B2 JP2004036674A JP2004036674A JP4294510B2 JP 4294510 B2 JP4294510 B2 JP 4294510B2 JP 2004036674 A JP2004036674 A JP 2004036674A JP 2004036674 A JP2004036674 A JP 2004036674A JP 4294510 B2 JP4294510 B2 JP 4294510B2
Authority
JP
Japan
Prior art keywords
refractive index
index portion
light
low refractive
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004036674A
Other languages
Japanese (ja)
Other versions
JP2005227573A (en
Inventor
充 上片野
邦治 姫野
佳弘 寺田
嘉磊 賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2004036674A priority Critical patent/JP4294510B2/en
Publication of JP2005227573A publication Critical patent/JP2005227573A/en
Application granted granted Critical
Publication of JP4294510B2 publication Critical patent/JP4294510B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、入射した光触媒励起光を適所で漏光させる機能を有する光導波路構造体に関する。   The present invention relates to an optical waveguide structure having a function of leaking incident photocatalyst excitation light at an appropriate place.

光触媒反応は、光照射下で励起された光触媒活性物質により生じる反応であり、多くの場合において、光触媒物質に対して紫外線または紫外線を含む光を照射する必要がある。光触媒物質が光励起されると、例えば光触媒物質表面は、水との接触角が10度以下となる超親水化を発現し、また、光触媒的酸化還元反応により、電子−正孔対を生成し、生成した電子は表面酸素を還元してスーパーオキサイドアニオン(・O)を生成すると共に、正孔は表面水酸基を酸化して水酸ラジカル(・OH)を生成し、これらの反応性活性酸素種の酸化還元反応によって、有機物質が高効率で光分解する。 The photocatalytic reaction is a reaction caused by a photocatalytic active substance excited under light irradiation, and in many cases, it is necessary to irradiate the photocatalytic substance with ultraviolet light or light containing ultraviolet light. When the photocatalytic substance is photoexcited, for example, the surface of the photocatalytic substance expresses superhydrophilicity with a contact angle with water of 10 degrees or less, and generates an electron-hole pair by a photocatalytic oxidation-reduction reaction, The generated electrons reduce surface oxygen to generate superoxide anions (.O 2 ), and holes oxidize surface hydroxyl groups to generate hydroxyl radicals (.OH). These reactive active oxygen species The organic substance is photolyzed with high efficiency by this redox reaction.

このような光触媒作用を有する光触媒物質としては、例えば二酸化チタン、酸化タンタル、酸化スズ、チタン酸バリウム(BaTi)、チタン酸ストロンチウム(SrTiO)、チタン酸ナトリウム(NaTi13)、二酸化ジルコニウム、硫化ガドミウム、α−Fe、酸化亜鉛(ZnO)などが知られている。 Examples of the photocatalytic substance having such a photocatalytic action include titanium dioxide, tantalum oxide, tin oxide, barium titanate (BaTi 4 O 9 ), strontium titanate (SrTiO 3 ), and sodium titanate (Na 2 Ti 6 O 13). ), Zirconium dioxide, gadmium sulfide, α-Fe 2 O 3 , zinc oxide (ZnO), and the like are known.

光触媒への光の供給方法は、光触媒を担持した構造体(成形体)に外部から光を照射する方法(例えば、特許文献1参照。)、光源自体に光触媒を付けたもの(例えば、特許文献2参照。)などが提案されている。   The method for supplying light to the photocatalyst includes a method of irradiating light on the structure (molded body) carrying the photocatalyst from the outside (see, for example, Patent Literature 1), and a method in which a photocatalyst is attached to the light source itself (eg, Patent Literature). 2) is proposed.

しかしながら、光触媒が機能するためには、光触媒に光が照射されている必要があるため、光源と光触媒の間に光を遮ったり吸収してしまう物質が介在すると、光触媒に供給される光の強さが弱まり光触媒機能が有効に発揮されなくなるといった問題があった。特に、着色したり濁った水の処理や、粉塵が含まれるガスのように、処理しようとする対象物(被処理物に同じ。)が光を通しにくい場合には、光触媒の適用が困難である。また、光源自体に光触媒を付ける場合、小型化や高密度化が困難であるといった問題があった。   However, in order for the photocatalyst to function, the photocatalyst needs to be irradiated with light. Therefore, if a substance that blocks or absorbs light is interposed between the light source and the photocatalyst, the intensity of the light supplied to the photocatalyst is increased. There is a problem that the photocatalytic function cannot be effectively exhibited due to weakness. In particular, it is difficult to apply a photocatalyst when the object to be treated (same as the object to be treated) is difficult to transmit light, such as treatment of colored or turbid water or gas containing dust. is there. In addition, when a photocatalyst is attached to the light source itself, there is a problem that it is difficult to reduce the size and increase the density.

これらの問題を解消するために、光触媒を担持した透明構造体(導光体)中に光を伝播させ、その光路を制御して光触媒層に内部から照射するようにした導光体構造が提案されている(例えば、特許文献3〜5参照。)。
特開2000−5747号公報 特開平11−176383号公報 特開平9−225262号公報 特開2000−288406号公報 特開2002−350646号公報
In order to solve these problems, a light guide structure is proposed in which light is propagated through a transparent structure (light guide) carrying a photocatalyst and the light path is controlled to irradiate the photocatalyst layer from the inside. (For example, refer to Patent Documents 3 to 5.)
JP 2000-5747 A JP-A-11-176383 JP 9-225262 A JP 2000-288406 A JP 2002-350646 A

しかしながら、前記特許文献3〜5に記載された従来技術には、次のような問題があった。
特許文献3には、光ファイバのコアに相当する導光体の表面に、光ファイバのクラッドに相当する光触媒物質を担持する方法が開示されている。しかし、このような光ファイバにおいては、クラッド材質の屈折率はコアよりも大きく、本質的に利用する波長の光を吸収する物質であるため、基本的に光は導光せず、すぐに減衰、消失してしまう。
However, the conventional techniques described in Patent Documents 3 to 5 have the following problems.
Patent Document 3 discloses a method of supporting a photocatalytic substance corresponding to the cladding of an optical fiber on the surface of a light guide corresponding to the core of the optical fiber. However, in such an optical fiber, the refractive index of the cladding material is larger than that of the core, and it is a substance that essentially absorbs light of the wavelength used. , Disappear.

また、特許文献4には、導光体をコア・クラッド構造とし、クラッドの外側に光触媒物質を担持する方法が開示されている。しかし、長手方向の導光体の構造は一定であり、実質的にコア−クラッド間の屈折率差のみを調整して全反射の成立しない条件で光を漏洩する構成となっており、漏れ光のコントロールが非常に難しい。また、光を漏れやすくするために、屈折率差を小さくすると、導光体の開口数(NA)も小さくなって、外部光源から導光体に入射する際の結合効率が低下してしまう欠点があった。   Patent Document 4 discloses a method in which a light guide has a core / cladding structure and a photocatalytic substance is supported outside the cladding. However, the structure of the light guide in the longitudinal direction is constant, and it is configured to leak light on the condition that total reflection is not established by adjusting only the refractive index difference between the core and the clad. Is very difficult to control. In addition, if the difference in refractive index is made small in order to easily leak light, the numerical aperture (NA) of the light guide also becomes small, and the coupling efficiency when entering the light guide from an external light source is reduced. was there.

また、特許文献5には、ガラスその他の透光性物質を賦形化して外部との境界面に光触媒領域を形成すると共に、光源からの入射光を受ける光源面と該入射光を前記光触媒領域を除く外部へ透過又は漏洩させないように処理した反射処理部を有してなる光触媒担持用ガラス構造体が提案されているが、漏洩される部分と導光部分の構造が全く異なるため、作製が煩雑であるという欠点があった。   Patent Document 5 discloses that a glass or other light-transmitting substance is shaped to form a photocatalytic region on the boundary surface with the outside, and a light source surface that receives incident light from a light source and the incident light are used as the photocatalytic region. Although a photocatalyst-supporting glass structure having a reflection processing part processed so as not to be transmitted or leaked to the outside except for has been proposed, the structure of the leaked part and the light guiding part is completely different, so that the production is possible. There was a drawback of being complicated.

本発明は前記事情に鑑みてなされ、入射光を効率よく導光体内に結合させて、漏光させる必要のない領域では安定に導光し、漏光させる必要のある領域では導光体表面に担持させた光触媒物質に対して均一且つ効果的に光を照射し得る光導波路構造体の提供を目的とする。   The present invention has been made in view of the above circumstances, and efficiently couples incident light into a light guide so that the light is stably guided in a region where light leakage is not necessary and is carried on the surface of the light guide in a region where light leakage is necessary. An object of the present invention is to provide an optical waveguide structure capable of uniformly and effectively irradiating light to a photocatalytic substance.

前記目的を達成するため、本発明は、高屈折率材料からなる高屈折率部と該高屈折率部よりも屈折率の低い材料からなり高屈折率部の表面に設けられた低屈折率部とを備え、入射した光触媒励起光を適所で漏光させる光導波路構造体であって、高屈折率部が石英ガラスまたはPMMAからなり、低屈折率部がフッ素系樹脂からなり、低屈折率部の表面にシリカコート層が設けられ、該シリカコート層上に光触媒作用を有する物質を含む光触媒層が設けられ、長手方向に沿って低屈折率部の厚さを変化せしめて漏光量を制御したことを特徴とする光導波路構造体を提供する。
この光導波路構造体において、低屈折率部が厚く形成され実質的に漏光のない導光部分と、低屈折率部が薄く形成された漏光部分とが長手方向に沿って区画されてなる構成とすることが好ましい。
この光導波路構造体において、低屈折率部の厚さを長手方向に沿って漸次減少させ、長手方向に沿って漏光量分布を均一化した構成としてもよい。
また本発明は、高屈折率材料からなる高屈折率部と該高屈折率部よりも屈折率の低い材料からなり高屈折率部の表面に設けられた低屈折率部とを備え、入射した光触媒励起光を適所で漏光させる光導波路構造体であって、高屈折率部が石英ガラスまたはPMMAからなり、低屈折率部がフッ素系樹脂からなり、低屈折率部の表面にシリカコート層が設けられ、該シリカコート層上に光触媒作用を有する物質を含む光触媒層が設けられ、低屈折率部と高屈折率部との界面を長手方向に沿って不整にし、この界面の不整状態によって漏光量を制御したことを特徴とする光導波路構造体を提供する。
また本発明は、高屈折率材料からなる高屈折率部と該高屈折率部よりも屈折率の低い材料からなり高屈折率部の表面に設けられた低屈折率部とを備え、入射した光触媒励起光を適所で漏光させる光導波路構造体であって、高屈折率部が石英ガラスまたはPMMAからなり、低屈折率部がフッ素系樹脂からなり、低屈折率部の表面にシリカコート層が設けられ、該シリカコート層上に光触媒作用を有する物質を含む光触媒層が設けられ、低屈折率部が、光導波路構造体に曲げを与えた部分で漏光が生じ、曲げを与えない部分では漏光が生じない一定の厚さとされ、光導波路構造体に少なくとも1箇所の曲げ部が設けられたことを特徴とする光導波路構造体を提供する
本発明の光導波路構造体において、漏光部分の低屈折率部の厚さが50〜2000nmの範囲であることが好ましい。
本発明の光導波路構造体において、低屈折率部の表面に光散乱処理が施されたことが好ましい。
本発明の光導波路構造体において、光導波路構造体が外径0.01mm〜10mmのコア・クラッド構造を持つ光ファイバまたはロッドであることが好ましい。
In order to achieve the above object, the present invention provides a high refractive index portion made of a high refractive index material and a low refractive index portion provided on the surface of the high refractive index portion made of a material having a refractive index lower than that of the high refractive index portion. And having a high refractive index portion made of quartz glass or PMMA, a low refractive index portion made of a fluororesin, and a low refractive index portion A silica coat layer is provided on the surface, a photocatalyst layer containing a photocatalytic substance is provided on the silica coat layer, and the amount of light leakage is controlled by changing the thickness of the low refractive index portion along the longitudinal direction. An optical waveguide structure is provided.
In this optical waveguide structure, a configuration in which a light guide portion in which the low refractive index portion is formed thick and substantially free of light leakage and a light leakage portion in which the low refractive index portion is formed thin are partitioned along the longitudinal direction. It is preferable to do.
The optical waveguide structure may have a configuration in which the thickness of the low refractive index portion is gradually decreased along the longitudinal direction, and the light quantity distribution is made uniform along the longitudinal direction.
Further, the present invention includes a high refractive index portion made of a high refractive index material and a low refractive index portion made of a material having a lower refractive index than the high refractive index portion and provided on the surface of the high refractive index portion. An optical waveguide structure that leaks photocatalyst excitation light at an appropriate place, wherein the high refractive index portion is made of quartz glass or PMMA, the low refractive index portion is made of a fluororesin, and a silica coat layer is formed on the surface of the low refractive index portion. A photocatalyst layer containing a substance having a photocatalytic action is provided on the silica coat layer, and the interface between the low refractive index portion and the high refractive index portion is irregular along the longitudinal direction, and light leakage occurs due to the irregular state of the interface. An optical waveguide structure characterized in that the amount is controlled is provided.
Further, the present invention includes a high refractive index portion made of a high refractive index material and a low refractive index portion made of a material having a lower refractive index than the high refractive index portion and provided on the surface of the high refractive index portion. An optical waveguide structure that leaks photocatalyst excitation light at an appropriate place, wherein the high refractive index portion is made of quartz glass or PMMA, the low refractive index portion is made of a fluororesin, and a silica coat layer is formed on the surface of the low refractive index portion. provided, the photocatalyst layer is provided that includes a substance having a photocatalytic action on the silica-coated layer, the low refractive index portion is, light leakage occurs in part gave bent optical waveguide structure, the portion which does not give bend It is a constant thickness light leakage does not occur, to provide an optical waveguide structure, wherein a bent portion of the at least one location is provided on the optical waveguide structure.
In the optical waveguide structure of the present invention, the thickness of the low refractive index portion of the light leakage portion is preferably in the range of 50 to 2000 nm.
In the optical waveguide structure of the present invention, the surface of the low refractive index portion is preferably subjected to light scattering treatment.
In the optical waveguide structure of the present invention, the optical waveguide structure is preferably an optical fiber or a rod having a core / cladding structure having an outer diameter of 0.01 mm to 10 mm.

本発明は高屈折率部と低屈折率部とを備え、入射した光触媒励起光を適所で漏光させる光導波路構造体において、長手方向に沿って低屈折率部の厚さを変化せしめて光導波路からの漏光量を制御したものなので、長手方向に沿って低屈折率部の厚みを変化させることによって実質的に漏光のない導光部分と漏光部分とを簡単に作製することができる。
また漏光部分においても低屈折率部が存在するので、漏光部分で光が急激に漏れ出すことがない。
また低屈折率部の厚さを長手方向に沿って漸次減少させ、長手方向に沿って漏光量分布を均一化した構成としたことにより、光導波路から漏出する光強度を位置に依存せず一定とすることができる。
また、低屈折率部の厚さを一定とした場合でも、低屈折率部と高屈折率部の界面を不整にしたり、曲げを与えるなどの他のパラメータを操作することにより、漏出する光強度を調整することができる。
さらに、光導波路として石英ガラスまたはPMMAからなるコアと、フッ素系樹脂からなるクラッドからなる光ファイバ又はロッドとすることで開口数(NA)を大きくとることができ、光源との結合効率を高めることができる。
The present invention provides an optical waveguide structure that includes a high refractive index portion and a low refractive index portion, and leaks incident photocatalyst excitation light at an appropriate place, and the thickness of the low refractive index portion is changed along the longitudinal direction. Since the amount of light leakage from the light source is controlled, the light guide portion and the light leakage portion substantially free of light leakage can be easily produced by changing the thickness of the low refractive index portion along the longitudinal direction.
In addition, since the low refractive index portion exists in the light leakage portion, light does not leak suddenly in the light leakage portion.
In addition, the thickness of the low refractive index portion is gradually reduced along the longitudinal direction, and the distribution of the amount of light leakage is made uniform along the longitudinal direction, so that the light intensity leaking from the optical waveguide is constant regardless of the position. It can be.
In addition, even if the thickness of the low refractive index part is constant, the light intensity that leaks out by manipulating other parameters such as making the interface between the low refractive index part and the high refractive index part irregular or bending it. Can be adjusted.
Furthermore, a numerical aperture (NA) can be increased by using a core made of quartz glass or PMMA as an optical waveguide and an optical fiber or rod made of a clad made of fluororesin, thereby increasing the coupling efficiency with the light source. Can do.

以下、図面を参照して本発明の光導波路構造体の実施形態を説明する。
図1〜3は本発明による光導波路構造体の一実施形態を示す図であり、図1は光導波路構造体1の一部断面視した要部正面図、図2は図1中のA−A部断面図、図3は図1中のB−B部断面図である。
Hereinafter, an embodiment of an optical waveguide structure of the present invention will be described with reference to the drawings.
1-3 is a figure which shows one Embodiment of the optical waveguide structure by this invention, FIG. 1 is the principal part front view which looked at a partial cross section of the optical waveguide structure 1, FIG. 2 is A- in FIG. FIG. 3 is a cross-sectional view taken along a line B-B in FIG.

この光導波路構造体1は、石英ガラスまたはPMMAからなる高屈折率部4(以下、コアと言う場合がある。)と、それよりも屈折率の低いフッ素系樹脂からなり前記高屈折率部4を被覆して設けられた低屈折率部5(以下、クラッドと言う場合がある。)とからなるコア・クラッド構造を備えている。この光導波路構造体1は、低屈折率部5が厚く形成され実質的に漏光のない導光部分2と、低屈折率部5が薄く形成された漏光部分3とが長手方向に沿って区画された構造になっている。漏光部分3の低屈折率部5表面は、薄いシリカコート層6が設けられており、このシリカコート層6上には光触媒作用を有する二酸化チタン微粒子を含む光触媒層7が設けられている。   The optical waveguide structure 1 includes a high refractive index portion 4 (hereinafter sometimes referred to as a core) made of quartz glass or PMMA and a fluorine resin having a lower refractive index than the high refractive index portion 4. And a core / cladding structure comprising a low refractive index portion 5 (hereinafter sometimes referred to as a clad) provided so as to cover the surface. The optical waveguide structure 1 includes a light guide portion 2 in which the low refractive index portion 5 is formed thick and substantially free of light leakage, and a light leakage portion 3 in which the low refractive index portion 5 is formed thinly along the longitudinal direction. It has a structured. A thin silica coat layer 6 is provided on the surface of the low refractive index portion 5 of the light leakage portion 3, and a photocatalyst layer 7 containing titanium dioxide fine particles having photocatalytic action is provided on the silica coat layer 6.

低屈折率部5の厚さは、導光部分2では実質的に漏光が生じないように厚く形成され、漏光部分3では適当な光強度で漏光が生じるような厚さに形成されている。漏光部分3の低屈折率部5の厚さは、50〜2000nmの範囲であることが好ましい。漏光部分3の低屈折率部5の厚さが前記範囲より小さいと、漏光部分3からの漏光量が大きくなり、長手方向に沿って均一に漏光させる目的を達し得ない。漏光部分3の低屈折率部5の厚さが前記範囲を超えると、漏光量が少なすぎ、光触媒の励起の目的を達し得なくなる。   The thickness of the low refractive index portion 5 is formed to be thick so that light leakage does not substantially occur in the light guide portion 2, and is formed to such a thickness that light leakage occurs at an appropriate light intensity in the light leakage portion 3. The thickness of the low refractive index portion 5 of the light leakage portion 3 is preferably in the range of 50 to 2000 nm. If the thickness of the low refractive index portion 5 of the light leakage portion 3 is smaller than the above range, the amount of light leakage from the light leakage portion 3 becomes large, and the purpose of uniformly leaking light along the longitudinal direction cannot be achieved. If the thickness of the low refractive index portion 5 of the light leakage portion 3 exceeds the above range, the amount of light leakage is too small to achieve the purpose of excitation of the photocatalyst.

この光導波路構造体1は、コアとなる高屈折率部4の入射端側に配された図示しない光源から、光触媒の励起に適した波長の光を入射することによって、導光部分2では実質的に漏光が起こらず、光パワーは減少することなく導光され、漏光部分3においてこの光が低屈折率部5から外部に漏れ出すようになっている。漏光部分3には薄い低屈折率部5が存在するので、漏光部分3で光が急激に漏れ出すことがなく、漏光部分3の全域にわたり漏光が生じる。   The optical waveguide structure 1 is substantially formed in the light guide portion 2 by injecting light having a wavelength suitable for excitation of the photocatalyst from a light source (not shown) disposed on the incident end side of the high refractive index portion 4 serving as a core. Therefore, light leakage does not occur and the light power is guided without decreasing, and this light leaks out from the low refractive index portion 5 to the outside in the light leakage portion 3. Since the thin low-refractive-index part 5 exists in the light leakage part 3, light does not leak suddenly in the light leakage part 3, and light leakage occurs over the entire area of the light leakage part 3.

漏光部分3において、低屈折率部5から漏れ出した光は、光触媒層7に照射される。光触媒層7は光を照射されて光触媒活性が励起され、光触媒層7に接している被処理物を分解する。   In the light leakage portion 3, the light leaking from the low refractive index portion 5 is irradiated to the photocatalyst layer 7. The photocatalyst layer 7 is irradiated with light, the photocatalytic activity is excited, and the object to be processed in contact with the photocatalyst layer 7 is decomposed.

次にこの光導波路構造体1の製造方法を説明する。この光導波路構造体1を製造するには、まずコアとなる石英ガラス製またはPMMA製のファイバ又はロッドを用意する。一方、クラッドとなるフッ素系樹脂を適当な有機溶剤に溶かした樹脂溶液を用意する。このフッ素系樹脂としては、例えばフッ化ビニリデンなどが挙げられる。また樹脂溶液中のフッ素系樹脂含有量は樹脂溶液全量に対し1〜20質量%の範囲とすることが好ましい。   Next, a method for manufacturing the optical waveguide structure 1 will be described. In order to manufacture this optical waveguide structure 1, first, a fiber or rod made of quartz glass or PMMA as a core is prepared. On the other hand, a resin solution is prepared by dissolving a fluororesin serving as a cladding in a suitable organic solvent. Examples of the fluororesin include vinylidene fluoride. Moreover, it is preferable to make the fluorine-type resin content in a resin solution into the range of 1-20 mass% with respect to the resin solution whole quantity.

次に、前記コア又はロッドを樹脂溶液中に入れ、引き出して乾燥し、フッ素系樹脂をコーティングするディップコートを複数回繰り返し、全体に漏光部分3のクラッド厚さの樹脂がコーティングされた時点で、漏光部分のディップコートを止め、導光部分のみディップコートを繰り返すことによって、漏光部分と導光部分とでクラッド厚さの異なる光導波路を作製する。なお、クラッドとなる樹脂のコーティング方法はこれに限定されず、従来公知の他のコーティング方法を採用し得る。   Next, the core or rod is put into a resin solution, pulled out and dried, and dip coating for coating the fluororesin is repeated a plurality of times. When the resin having the cladding thickness of the light leakage portion 3 is coated on the whole, By stopping the dip coating of the light leakage portion and repeating the dip coating only for the light guide portion, optical waveguides having different cladding thicknesses are produced in the light leakage portion and the light guide portion. In addition, the coating method of resin used as a clad is not limited to this, Other conventionally well-known coating methods can be employ | adopted.

次に、シリカコート液を用意し、漏光部分3の表面にこれを薄くコーティングする。
次に、二酸化チタン微粉末を混入したコート液を用意し、シリカコート層6上に二酸化チタン微粉末を含む光触媒層7を形成する。
光触媒物質としては、二酸化チタン以外に、酸化タンタル、酸化スズ、チタン酸バリウム(BaTi)、チタン酸ストロンチウム(SrTiO)、チタン酸ナトリウム(NaTi13)、二酸化ジルコニウム、硫化ガドミウム、α−Fe、酸化亜鉛(ZnO)などが使用可能である。
Next, a silica coating solution is prepared and thinly coated on the surface of the light leakage portion 3.
Next, a coating liquid in which titanium dioxide fine powder is mixed is prepared, and a photocatalytic layer 7 containing titanium dioxide fine powder is formed on the silica coat layer 6.
As photocatalytic substances, in addition to titanium dioxide, tantalum oxide, tin oxide, barium titanate (BaTi 4 O 9 ), strontium titanate (SrTiO 3 ), sodium titanate (Na 2 Ti 6 O 13 ), zirconium dioxide, sulfide Gadmium, α-Fe 2 O 3 , zinc oxide (ZnO), or the like can be used.

本発明の光導波路構造体は、長手方向に沿って低屈折率部の厚さを変化せしめて光導波路からの漏光量を制御したものなので、長手方向に沿って低屈折率部の厚みを変化させることによって実質的に漏光のない導光部分と漏光部分とを簡単に作製することができる。
また漏光部分においても低屈折率部が存在するので、漏光部分で光が急激に漏れ出すことがない。
Since the optical waveguide structure of the present invention controls the amount of light leakage from the optical waveguide by changing the thickness of the low refractive index portion along the longitudinal direction, the thickness of the low refractive index portion is changed along the longitudinal direction. By doing so, it is possible to easily produce a light guide portion and a light leakage portion substantially free of light leakage.
In addition, since the low refractive index portion exists in the light leakage portion, light does not leak suddenly in the light leakage portion.

本発明は前述した実施形態に限定されるものではなく、種々変更が可能である。
例えば、低屈折率部の厚さを長手方向に沿って漸次減少させ、長手方向に沿って漏光量分布を均一化した構成としてもよい。
また、低屈折率部と高屈折率部との界面を長手方向に沿って不整にし、この界面の不整状態によって漏光量を制御することもできる。
また、低屈折率部が、光導波路構造体に曲げを与えた部分で漏光が生じ、曲げを与えない部分では実質的に漏光が生じない一定の厚さとされ、光導波路構造体に少なくとも1箇所の曲げ部が設けられた構成とすることもできる。
The present invention is not limited to the embodiments described above, and various modifications can be made.
For example, the thickness of the low refractive index portion may be gradually decreased along the longitudinal direction, and the light quantity distribution may be made uniform along the longitudinal direction.
It is also possible to make the interface between the low refractive index portion and the high refractive index portion irregular along the longitudinal direction, and to control the amount of leakage light according to the irregular state of this interface.
Further, the low refractive index portion has a constant thickness in which light leakage occurs in a portion where the optical waveguide structure is bent, and light leakage does not substantially occur in a portion where the bending is not applied. It can also be set as the structure by which this bending part was provided.

本発明では、コア・クラッド構造を有する導光体において、所定のコア・クラッドの屈折率差のもとでクラッドの厚みを調整することにより、クラッド外に漏洩する光の量をコントロールし、光触媒が無く漏光させる必要のない領域では損失を抑えて安定に導光し、漏光させる必要のある領域では漏光部分の表面に担持させた光触媒物質に対して均一に光を照射し得る。   In the present invention, in the light guide having the core / cladding structure, the amount of light leaking outside the clad is controlled by adjusting the thickness of the clad under a predetermined difference in refractive index between the core / cladding, and the photocatalyst. In a region where there is no light leakage and the light does not need to be leaked, the light can be stably guided while suppressing loss, and in a region where light leakage needs to be performed, the photocatalytic substance carried on the surface of the light leakage portion can be uniformly irradiated with light.

コア・クラッド構造の光導波路において、光はコア・クラッド界面で全反射を繰り返して伝播するが、その際、光電磁界はクラッド側にわずかに染み出す。クラッドが光の波長程度以下に十分薄く、クラッドの外にそれよりも屈折率の高い媒質、例えば二酸化チタンが接していたり、クラッドの表面が荒らされていて不整な状態であったりすると、コア・クラッド界面で全反射条件を満たしていても、光はクラッドを超えて漏れ出すこととなる。この場合に漏れ出す光の量は、クラッド厚に依存するので、これを調節することにより漏れ光量もコントロールすることができる。   In an optical waveguide having a core-cladding structure, light propagates by repeating total reflection at the core-cladding interface. At this time, the photoelectric magnetic field slightly oozes out to the clad side. If the cladding is thin enough below the wavelength of light and a medium with a higher refractive index, such as titanium dioxide, is in contact with the cladding, or if the cladding surface is rough and irregular, Even if the total reflection condition is satisfied at the cladding interface, light leaks beyond the cladding. In this case, the amount of light that leaks depends on the thickness of the cladding, and the amount of light leaked can be controlled by adjusting this amount.

例えば、クラッドの外に二酸化チタン光触媒層をコートした光ファイバ型の導波路において、光波長360nm、屈折率差Δ=0.4%程度で光ファイバが直線状の場合、クラッド厚1μm以上では実質的に光は漏洩しない。1μmより薄くなっていくと、光触媒層の状態や、光触媒層とクラッド界面の状態にもよるが、徐々に漏洩するようになり、さらにクラッド厚が50nm以下になると実質的に全反射状態が維持できなくなって、漏れ光のコントロールができなくなる。   For example, in an optical fiber waveguide in which a titanium dioxide photocatalyst layer is coated on the outside of the clad, when the optical fiber is linear with a light wavelength of 360 nm and a refractive index difference Δ = 0.4%, the clad thickness is 1 μm or more. The light does not leak. As it becomes thinner than 1 μm, it gradually leaks depending on the state of the photocatalyst layer and the state of the interface between the photocatalyst layer and the clad, and when the clad thickness is 50 nm or less, the total reflection state is substantially maintained. It becomes impossible to control leaked light.

また、直線状態では光が漏れ出さないようなクラッド厚であっても、適度な曲げを与えることによって光を漏れ出させるようにすることも可能である。   Further, even if the cladding thickness is such that light does not leak out in a straight line state, light can be leaked out by giving an appropriate bending.

このような構成の光導波路は、特に光ファイバをバンドル化して、光ファイバの表面に光触媒をコートする場合に、導光部分ではクラッド層を厚くして損失無く光を伝達し、光触媒作用の必要な部分ではクラッド厚を薄くして光触媒に漏光した光を照射することができるので有効である。   The optical waveguide with such a structure is necessary for photocatalytic action, especially when bundling optical fibers and coating the surface of the optical fiber with a photocatalyst to increase the thickness of the cladding layer at the light guide part and transmit light without loss. In such a portion, the clad thickness is reduced, and light leaked to the photocatalyst can be irradiated, which is effective.

クラッド層の厚さの調節は、例えばPCF(ポリマークラッドファイバ)、POF(ポリマーオプティックファイバ)であれば、コーティングを数回に分けて行えばよいので容易である。   For example, in the case of PCF (polymer clad fiber) and POF (polymer optic fiber), the thickness of the clad layer can be easily adjusted because the coating is performed in several steps.

(実施例1)
全長3m、外径125μmの100%石英ガラスベアファイバに溶剤可溶のフッ素系樹脂(屈折率1.40)を複数回ディップコートし、樹脂厚3μmの部分が1m、樹脂厚0.3μmの部分が2mのファイバを得た。このファイバの樹脂厚0.3μmの部分に0.1μmのシリカコートを施し、さらに二酸化チタン光触媒2μmをコートし、図1〜3に示す構造を有する光導波路構造体を作製した。
前記シリカコートは、市販のポリシラザン20%を含有するコート液を用いてディップコートして形成した。また前記二酸化チタン光触媒は、市販の二酸化チタン微粉(平均粒径5〜100nm程度)を5質量%含有したコート液を用いてディップコートして形成した。
Example 1
A 100% quartz glass bare fiber with a total length of 3m and an outer diameter of 125μm is dip-coated with a solvent-soluble fluororesin (refractive index of 1.40) multiple times. The resin thickness of 3μm is 1m and the resin thickness is 0.3μm. Obtained a 2 m fiber. An optical waveguide structure having the structure shown in FIGS. 1 to 3 was prepared by applying a silica coat of 0.1 μm to the resin resin having a thickness of 0.3 μm and further coating a titanium dioxide photocatalyst of 2 μm.
The silica coat was formed by dip coating using a commercially available coating liquid containing 20% polysilazane. The titanium dioxide photocatalyst was formed by dip coating using a coating solution containing 5% by mass of a commercially available titanium dioxide fine powder (average particle size of about 5 to 100 nm).

ファイバクリーバでカットしたファイバ端面に水銀−キセノンランプ光を集光して入射し、カットバック法で伝送損失を測定した。光源にはバンドパスフィルタを入れて360nm付近の波長のみとした。
樹脂厚3μmの部分の伝送損失は0.1dB/m以下であったが、樹脂厚0.3μmの部分は3.8dB/mであった。
Mercury-xenon lamp light was collected and incident on the end face of the fiber cut with a fiber cleaver, and transmission loss was measured by the cut-back method. A band pass filter was inserted into the light source so that only a wavelength near 360 nm was obtained.
The transmission loss of the resin thickness 3 μm portion was 0.1 dB / m or less, while the resin thickness 0.3 μm portion was 3.8 dB / m.

この光ファイバ500本を束ねてファイババンドルとし、樹脂厚0.3μmの部分を、100ppmのアセトアルデヒドを充填した1000mLの密閉容器内に導入し、バンドル端面から水銀−キセノンランプ光を3000mW/cmの光強度で入射したところ、40分間でアセトアルデヒド濃度は1ppm以下となった。 A bundle of 500 optical fibers is bundled to form a fiber bundle, and a resin thickness of 0.3 μm is introduced into a 1000 mL sealed container filled with 100 ppm of acetaldehyde, and mercury-xenon lamp light is 3000 mW / cm 2 from the end face of the bundle. When incident at a light intensity, the acetaldehyde concentration became 1 ppm or less in 40 minutes.

(比較例1)
全長3m、外径125μmの100%石英ガラスベアファイバに二酸化チタン光触媒光触媒2μmをコートした。ファイバクリーバでカットしたファイバ端面に水銀−キセノンランプ光を集光して入射し、カットバック法で伝送損失を測定した。光源にはバンドパスフィルタを入れて360nm付近の波長のみとした。
その結果、伝送損失は10dB/m以上あり、安定な測定は行えなかった。
(Comparative Example 1)
A 100% quartz glass bare fiber having a total length of 3 m and an outer diameter of 125 μm was coated with 2 μm of titanium dioxide photocatalyst photocatalyst. Mercury-xenon lamp light was collected and incident on the end face of the fiber cut with a fiber cleaver, and transmission loss was measured by the cut-back method. A band pass filter was inserted into the light source so that only a wavelength near 360 nm was obtained.
As a result, the transmission loss was 10 dB / m or more, and stable measurement could not be performed.

(実施例2)
全長3m、外径125μmの100%石英ガラスベアファイバに溶剤可溶のフッ素系樹脂(屈折率1.40)を複数回ディップコートし、樹脂厚3μmの部分が1m、樹脂厚0.6μmの部分が2mのファイバを得た。このファイバの樹脂厚0.6μmの部分に、実施例1と同様に0.1μmのシリカコートを施し、さらに二酸化チタン光触媒2μmをコートした。
(Example 2)
A 100% quartz glass bare fiber with a total length of 3m and an outer diameter of 125μm is dip-coated with a solvent-soluble fluororesin (refractive index of 1.40) multiple times, and the resin thickness of 3μm is 1m and the resin thickness is 0.6μm Obtained a 2 m fiber. A silica coat of 0.1 μm was applied to the fiber having a resin thickness of 0.6 μm in the same manner as in Example 1, and a titanium dioxide photocatalyst of 2 μm was further coated.

ファイバクリーバでカットしたファイバ端面に水銀−キセノンランプ光を集光して入射し、カットバック法で伝送損失を測定した。光源にはバンドパスフィルタを入れて360nm付近の波長のみとした。
樹脂厚3μmの部分の伝送損失は0.1dB/m以下であったが、樹脂厚0.6μmの部分は0.3dB/mであった。
次に樹脂厚0.6μmの部分をφ80mmの円柱に巻き付けて固定し、同様にカットバック法で巻き付けた部分の伝送損失を測定したところ、3.1dB/mであった。
Mercury-xenon lamp light was collected and incident on the end face of the fiber cut with a fiber cleaver, and transmission loss was measured by the cut-back method. A band pass filter was inserted into the light source so that only a wavelength near 360 nm was obtained.
The transmission loss at the resin thickness of 3 μm was 0.1 dB / m or less, but the resin thickness of 0.6 μm was 0.3 dB / m.
Next, a portion having a resin thickness of 0.6 μm was wound around a cylinder having a diameter of 80 mm and fixed, and similarly, the transmission loss of the portion wound by the cutback method was measured to be 3.1 dB / m.

(実施例3)
長さ1.5m、直径3mmの石英ガラスロッドに、クラッド厚3μmのフッ素添加石英ガラス層を外付けした。このロッドの下部1mをフッ化水素酸10%水溶液に浸漬して速度を調節しながら引き上げて、クラッド厚0.1〜1μmで徐々に厚さが変化し、表面の荒らされたロッドを得た。
(Example 3)
A fluorine-added quartz glass layer having a cladding thickness of 3 μm was externally attached to a quartz glass rod having a length of 1.5 m and a diameter of 3 mm. The lower 1 m of the rod was immersed in a 10% aqueous solution of hydrofluoric acid and pulled up while adjusting the speed, and the thickness was gradually changed at a cladding thickness of 0.1 to 1 μm to obtain a rod with a rough surface. .

バンドパスフィルタを入れて360nm付近の波長のみとした水銀−キセノンランプ光を端面から2000mW/cmの光強度で入射し、フッ化水素酸に浸漬した部分から放射される光強度をロッドから5mm離れた位置で測定したところ、中間0.8mの部分で0.14〜0.21mW/cmの範囲にあり、十分に金いるな漏れ光が得られた。 A mercury-xenon lamp light having a wavelength of around 360 nm with a band-pass filter is incident at a light intensity of 2000 mW / cm 2 from the end face, and the light intensity emitted from the portion immersed in hydrofluoric acid is 5 mm from the rod. When measured at a distant position, it was in the range of 0.14 to 0.21 mW / cm 2 at an intermediate 0.8 m portion, and a sufficient amount of leaking light was obtained.

このロッドに酸化チタン光触媒をコーティングして14本を束ね、下部1mを500mLのメチレンブルー20μmol/L溶液に浸漬し、端面から水銀−キセノンランプ光を3000mW/cmの光強度で入射したところ、2時間でほぼ完全にメチレンブルーは分解されて、溶液は無色透明になった。 The rod was coated titanium oxide photocatalyst by bundling fourteen, by dipping the lower 1m methylene blue 20 [mu] mol / L solution of 500 mL, mercury from the end face - where incident xenon lamp light at a light intensity of 3000 mW / cm 2, 2 Over time, methylene blue was almost completely decomposed and the solution became clear and colorless.

(比較例2)
全長3m、外径125μmの100%石英ガラスベアファイバに溶剤可溶のフッ素系樹脂(屈折率1.40)を複数回ディップコートし、樹脂厚3μmの部分が1m、樹脂厚0.3μmの部分が2mのファイバを得た。このファイバの樹脂厚0.3μmの部分に、実施例1と同様に0.1μmのシリカコートを施し、さらに二酸化チタン光触媒2μmをコートした。
(Comparative Example 2)
A 100% quartz glass bare fiber with a total length of 3m and an outer diameter of 125μm is dip-coated with a solvent-soluble fluororesin (refractive index of 1.40) multiple times. The resin thickness of 3μm is 1m and the resin thickness is 0.3μm. Obtained a 2 m fiber. A silica coat of 0.1 μm was applied to the resin having a resin thickness of 0.3 μm in the same manner as in Example 1, and further a titanium dioxide photocatalyst of 2 μm was coated.

ファイバクリーバでカットしたファイバ端面に水銀−キセノンランプ光を集光して入射し、カットバック法で伝送損失を測定した。光源にはバンドパスフィルタを入れて360nm付近の波長のみとした。
樹脂厚3μmの部分の伝送損失は0.1dB/m以下であったが、樹脂厚0.6μmの部分は0.3dB/mであった。
Mercury-xenon lamp light was collected and incident on the end face of the fiber cut with a fiber cleaver, and transmission loss was measured by the cut-back method. A band pass filter was inserted into the light source so that only a wavelength near 360 nm was obtained.
The transmission loss at the resin thickness of 3 μm was 0.1 dB / m or less, but the resin thickness of 0.6 μm was 0.3 dB / m.

本発明による光導波路構造体の一実施形態を示す一部断面視した要部正面図である。It is the principal part front view in the partial cross section which shows one Embodiment of the optical waveguide structure by this invention. 図1中のA−A部断面図である。It is an AA section sectional view in FIG. 図1中のB−B部断面図である。It is a BB section sectional view in FIG.

符号の説明Explanation of symbols

1…光導波路構造体、2…導光部分、3…漏光部分、4…高屈折率部(コア)、5…低屈折率部(クラッド)、6…シリカコート層、7…光触媒層。
DESCRIPTION OF SYMBOLS 1 ... Optical waveguide structure, 2 ... Light guide part, 3 ... Light leakage part, 4 ... High refractive index part (core), 5 ... Low refractive index part (cladding), 6 ... Silica coat layer, 7 ... Photocatalyst layer.

Claims (8)

高屈折率材料からなる高屈折率部と該高屈折率部よりも屈折率の低い材料からなり高屈折率部の表面に設けられた低屈折率部とを備え、入射した光触媒励起光を適所で漏光させる光導波路構造体であって、高屈折率部が石英ガラスまたはPMMAからなり、低屈折率部がフッ素系樹脂からなり、低屈折率部の表面にシリカコート層が設けられ、該シリカコート層上に光触媒作用を有する物質を含む光触媒層が設けられ、長手方向に沿って低屈折率部の厚さを変化せしめて漏光量を制御したことを特徴とする光導波路構造体。 A high refractive index portion made of a high refractive index material and a low refractive index portion made of a material having a refractive index lower than that of the high refractive index portion and provided on the surface of the high refractive index portion. The high refractive index portion is made of quartz glass or PMMA, the low refractive index portion is made of a fluororesin, and a silica coat layer is provided on the surface of the low refractive index portion. An optical waveguide structure in which a photocatalyst layer containing a substance having a photocatalytic action is provided on a coat layer, and the amount of light leakage is controlled by changing the thickness of the low refractive index portion along the longitudinal direction. 低屈折率部が厚く形成され漏光のない導光部分と、低屈折率部が薄く形成された漏光部分とが長手方向に沿って区画されてなることを特徴とする請求項1に記載の光導波路構造体。 And no light-guiding portion of the light leakage is formed low refractive index portion is thick, according to claim 1 in which the light leakage portion low refractive index portion is formed thin and characterized by being partitioned in the longitudinal direction Optical waveguide structure. 低屈折率部の厚さを長手方向に沿って漸次減少させ、長手方向に沿って漏光量分布を均一化したことを特徴とする請求項1に記載の光導波路構造体。   2. The optical waveguide structure according to claim 1, wherein the thickness of the low refractive index portion is gradually decreased along the longitudinal direction, and the leakage light amount distribution is made uniform along the longitudinal direction. 高屈折率材料からなる高屈折率部と該高屈折率部よりも屈折率の低い材料からなり高屈折率部の表面に設けられた低屈折率部とを備え、入射した光触媒励起光を適所で漏光させる光導波路構造体であって、高屈折率部が石英ガラスまたはPMMAからなり、低屈折率部がフッ素系樹脂からなり、低屈折率部の表面にシリカコート層が設けられ、該シリカコート層上に光触媒作用を有する物質を含む光触媒層が設けられ、低屈折率部と高屈折率部との界面を長手方向に沿って不整にし、この界面の不整状態によって漏光量を制御したことを特徴とする光導波路構造体。 A high refractive index portion made of a high refractive index material and a low refractive index portion made of a material having a refractive index lower than that of the high refractive index portion and provided on the surface of the high refractive index portion. The high refractive index portion is made of quartz glass or PMMA, the low refractive index portion is made of a fluororesin, and a silica coat layer is provided on the surface of the low refractive index portion. A photocatalyst layer containing a photocatalytic substance is provided on the coating layer , the interface between the low refractive index portion and the high refractive index portion is irregular along the longitudinal direction, and the amount of leakage light is controlled by the irregular state of this interface. An optical waveguide structure characterized by the above. 高屈折率材料からなる高屈折率部と該高屈折率部よりも屈折率の低い材料からなり高屈折率部の表面に設けられた低屈折率部とを備え、入射した光触媒励起光を適所で漏光させる光導波路構造体であって、高屈折率部が石英ガラスまたはPMMAからなり、低屈折率部がフッ素系樹脂からなり、低屈折率部の表面にシリカコート層が設けられ、該シリカコート層上に光触媒作用を有する物質を含む光触媒層が設けられ、低屈折率部が、光導波路構造体に曲げを与えた部分で漏光が生じ、曲げを与えない部分では漏光が生じない一定の厚さとされ、光導波路構造体に少なくとも1箇所の曲げ部が設けられたことを特徴とする光導波路構造体。 A high refractive index portion made of a high refractive index material and a low refractive index portion made of a material having a refractive index lower than that of the high refractive index portion and provided on the surface of the high refractive index portion. The high refractive index portion is made of quartz glass or PMMA, the low refractive index portion is made of a fluororesin, and a silica coat layer is provided on the surface of the low refractive index portion. photocatalyst layer is provided containing a substance having photocatalyst activity coat layer, a low refractive index portion is, light leakage occurs in part gave bent optical waveguide structure, it does not occur light leakage in a portion which does not give bend An optical waveguide structure having a constant thickness and provided with at least one bent portion in the optical waveguide structure. 漏光部分の低屈折率部の厚さが50〜2000nmの範囲であることを特徴とする請求項1〜のいずれかに記載の光導波路構造体。 The optical waveguide structure according to any one of claims 1 to 5, the thickness of the low refractive index portion of the light leakage portion is characterized by a range of 50 to 2000 nm. 低屈折率部の表面に光散乱処理が施されたことを特徴とする請求項1〜のいずれかに記載の光導波路構造体。 The optical waveguide structure according to any one of claims 1 to 6, characterized in that the light scattering treatment on the surface of the low refractive index portion is performed. 光導波路構造体が外径0.01mm〜10mmのコア・クラッド構造を持つ光ファイバまたはロッドであることを特徴とする請求項1〜のいずれかに記載の光導波路構造体。 The optical waveguide structure according to any one of claims 1 to 7 , wherein the optical waveguide structure is an optical fiber or a rod having a core / cladding structure having an outer diameter of 0.01 mm to 10 mm.
JP2004036674A 2004-02-13 2004-02-13 Optical waveguide structure Expired - Fee Related JP4294510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004036674A JP4294510B2 (en) 2004-02-13 2004-02-13 Optical waveguide structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004036674A JP4294510B2 (en) 2004-02-13 2004-02-13 Optical waveguide structure

Publications (2)

Publication Number Publication Date
JP2005227573A JP2005227573A (en) 2005-08-25
JP4294510B2 true JP4294510B2 (en) 2009-07-15

Family

ID=35002326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004036674A Expired - Fee Related JP4294510B2 (en) 2004-02-13 2004-02-13 Optical waveguide structure

Country Status (1)

Country Link
JP (1) JP4294510B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017072665A (en) * 2015-10-05 2017-04-13 株式会社フジクラ Polymer-clad optical fiber and fiber laser device

Also Published As

Publication number Publication date
JP2005227573A (en) 2005-08-25

Similar Documents

Publication Publication Date Title
JP5985608B2 (en) Light diffusing fiber and manufacturing method thereof
JP2014534566A (en) System and method for performing a photoreaction using a light diffusing optical fiber
JP5242582B2 (en) Photonic bandgap fiber
WO2002056070A1 (en) Optical fiber for transmitting ultraviolet ray, optical fiber probe, and method of manufacturing the optical fiber and optical fiber probe
KR20150142920A (en) Pupm beam stripper and manufacturing method of the same
AU741032B2 (en) Decreased h2 sensitivity in optical fiber
JP4319090B2 (en) Surface light leakage optical waveguide and photocatalytic module
EP2770352B1 (en) Index matched grating inscription
Zhao et al. Evanescent wave interactions with nanoparticles on optical fiber modulate side emission of germicidal ultraviolet light
US6853785B2 (en) Index modulation in glass using a femtosecond laser
JP4294510B2 (en) Optical waveguide structure
US9568670B2 (en) Index matched grating inscription
JP2000288406A (en) Light transmission body having photocatalytic ability, its designing method and production of light transmission body based on the same
US9547229B2 (en) Index matched grating inscription
JP2005208262A (en) Surface leakage light optical waveguide and photo-catalytic device using the same
US5315685A (en) Component for the transmission of high-energy light, and the application of the component
US9429704B2 (en) Index matched grating inscription
JP2005208263A (en) Surface leakage light optical waveguide and photo-catalytic device using the same
KR100879964B1 (en) Preparation Method for Optical Fibers Coated with Photocatalysts
RU2534722C1 (en) Liquid light waveguide
KR100443680B1 (en) Optical fiber using of photonic bandgap and the method
JPH05188225A (en) Hollow waveguide for uv laser beam
JP2005140961A (en) Light emitter, method for decomposing or sterilizing contaminant using the light emitter, and method for purifying liquid or gas using the light emitter
CN111868587A (en) Optical fiber and optical fiber grating
JPH052114A (en) Hollow waveguide made of synthetic resin for ultraviolet laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees