JP4294332B2 - Spark plug - Google Patents

Spark plug Download PDF

Info

Publication number
JP4294332B2
JP4294332B2 JP2003019921A JP2003019921A JP4294332B2 JP 4294332 B2 JP4294332 B2 JP 4294332B2 JP 2003019921 A JP2003019921 A JP 2003019921A JP 2003019921 A JP2003019921 A JP 2003019921A JP 4294332 B2 JP4294332 B2 JP 4294332B2
Authority
JP
Japan
Prior art keywords
base material
mass
electrode
heat transfer
electrode base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003019921A
Other languages
Japanese (ja)
Other versions
JP2003323962A (en
Inventor
健一 熊谷
誠 山口
宏昭 九鬼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003019921A priority Critical patent/JP4294332B2/en
Publication of JP2003323962A publication Critical patent/JP2003323962A/en
Application granted granted Critical
Publication of JP4294332B2 publication Critical patent/JP4294332B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、内燃機関の点火用に使用されるスパークプラグに関する。
【0002】
【従来の技術】
近年、自動車エンジン等の内燃機関の性能改良、あるいはは排ガス規制の強化や燃焼効率向上を目的としてエンジンのリーンバーン化に伴い、その着火に使用されるスパークプラグの電極温度も上昇する傾向にある。特に、接地電極は中心電極よりも燃焼室内側に位置するため温度上昇が激しく、特に直噴型エンジンなどに使用されるスパークプラグは、接地電極の温度上昇が特に生じやすい。上記のような過酷な条件下においては、電極の火花消耗も進みやすくなるので、火花放電ギャップの拡大率を抑制するために、接地電極の火花放電ギャップに面する部位に貴金属チップを溶接したスパークプラグが普及している。
【0003】
接地電極の温度が上昇した場合、貴金属チップが溶接される電極母材の高温酸化が問題となる。従来、接地電極の母材は、高温耐酸化性を確保するために例えばインコネル600(インコネルは、英国Inco社の商標名)等のNi基耐熱合金で構成されることが多い。しかし、Ni基耐熱合金の熱伝導率は一般にそれほど高くないので、いわゆる熱引きが悪く、高速運転時等においては電極温度が特に上昇しやすい難点がある。熱引きが悪化して電極温度が上昇すると、電極母材に接合した金属チップの温度も上昇し、異常消耗による寿命低下の原因となる。そこで、熱引き改善を促進するために、Cu系金属からなる芯材(Cu系伝熱促進部)を電極母材中に配置して、電極の温度上昇を抑制する方法が提案されている(例えば特許文献1、特許文献2)。
【0004】
【特許文献1】
特開平5−159857号公報
【特許文献2】
特公平6−48629号公報
【0005】
【発明が解決しようとする課題】
しかしながら、燃焼温度がさらに上昇し、前記した直噴エンジンなどのように、発火部が燃焼室の中心にさらに近づくと、接地電極の温度上昇がさらに著しくなる。その結果、インコネル600程度の合金性能では電極母材の高温酸化を抑えきれなくなる問題が生ずる。この場合、電極母材の材質を、より高温耐酸化性の優れたものに置換することが考えられる。例えば、従来使用されていたインコネル600に代え、Cr及びFeの含有量を増加させることにより、高温耐酸化性を向上させたインコネル601を用いる提案もなされている。しかしながら、この材質置換は、Cu系伝熱促進部の埋設を選定とする場合、大きな障害が存在する。
【0006】
すなわち、Cu系伝熱促進部を有する電極は、電極母材となるNi合金素材中にCu系伝熱促進部となるCu素材を組み付けて組立体を作り、この組立体を引き抜きや鍛造、あるいは圧延により冷間加工してクラッド線材を作ることにより製造される。ところが、インコネル601等のCr含有率を高めたニッケル基耐熱合金は、高合金化により強度向上を図った金属材料の常として、インコネル600等と比較して変形抵抗が高く、延性も低い。従って、上記のような加工によりCu系伝熱促進部とのクラッド線材を製造しようとすると、割れ等のトラブルが発生しやすく、製造歩留まりの大幅な低下を来たす問題がある。また、Niを主体とする電極母材にCu系伝熱促進部を有するスパークプラグをエンジンで使用すると、電極母材とCu系伝熱促進部との間で成分拡散をさせた拡散層が形成される。そして、両者の熱膨張差に起因する繰返し荷重を受けることによって、この拡散層から剥離を生じることがある。この結果、電極母材からCu系伝熱促進部に対して、熱伝導が十分に行われなくなる可能性がある。他方、Cu系伝熱促進部を省略すると、電極母材の高温酸化は抑制できても、貴金属チップの温度上昇は抑制できないので、異常消耗の問題は解決できない。
【0007】
本発明の課題は、接地電極の電極母材に十分な高温耐酸化性を付与でき、また、Cu系伝熱促進部を埋設した構造を冷間加工により問題なく製造でき、ひいては電極母材に接合された貴金属チップの異常消耗を防止できるスパークプラグを提供することにある。
【0008】
【課題を解決するための手段及び作用・効果】
上記の課題を解決するために、本発明のスパークプラグは、筒状の主体金具と、その主体金具の内側に嵌め込まれた絶縁体と、該絶縁体の内側に設けられた中心電極と、主体金具に一端が溶接等により結合されるとともに他端側において中心電極との間に火花放電ギャップを形成する接地電極とを備え、接地電極が、電極母材と、該電極母材中に埋設されるとともにCuを主成分として構成されるCu系伝熱促進部と、火花放電ギャップに面する位置において電極母材に溶接された貴金属チップとを有し、さらに、電極母材が、Crを14〜17質量%、Moを0.8〜3.5質量%、Niを68〜85.2質量%含有するNi合金からなることを特徴とする。なお、本明細書において「主成分」とは、最も質量含有率の高い成分のことをいう。
【0009】
上記本発明のスパークプラグによると、接地電極をなす電極母材にCu系伝熱促進部が埋設されることにより、その熱引きが促進され温度上昇が抑制される結果、接地電極の寿命向上を図ることができる。また、電極母材に溶接された貴金属チップの温度上昇も抑制されるので、異常消耗が防止され、耐久性を確保することができる。そして、本発明においては、電極母材を構成するNi合金として、上記特有の組成を有するものを採用する。これにより、従来問題の多かったインコネル601等を採用する場合と比較して、以下の利点がある。まず、本発明のように、Cを含有するNi合金を採用する場合、Crとともに一定量のMoを含有させることで、合金の高温耐酸化性を著しく向上させることができる。従って、Cu系伝熱促進部の採用と相俟って、より過酷な条件下でスパークプラグを使用する場合においても、接地電極の耐久性を十分に確保でき、寿命向上を図ることができる。
【0010】
この場合、特にCが含有されるNi合金については、Mo添加による高温耐食性改善効果が高い。該Cは不純物として含有される場合と、炭化物形成による析出強化を図るため、積極添加される場合(いわゆる弱析出型合金)との両方があり、0.3質量%以下に調整される。特に後者の場合、C含有量は例えば0.03〜0.3質量%の範囲で調整される。しかし、過度の添加は多量の炭化物形成により冷間加工性を低下させるため、0.10質量%以下とすることが望ましい。いずれにしろ、含有されるCは、Moが添加されない場合は、主にCrとの間で炭化物を形成する。このようなCr炭化物が多量に形成されると、耐酸化性付与元素であるCr成分が炭化物析出の形で目減りし、不働態酸化被膜の形成が不十分となって耐酸化性の低下につながる。特にCr炭化物が粒界に形成されると、粒界付近にCr欠乏層が形成され、局部電池効果なども加わって粒界腐食が進みやすくなり、電極母材の耐久性に一層の悪影響を及ぼす。
【0011】
しかしながら、適量のMoを添加すると、Mo炭化物が優先的に形成されてCr炭化物の析出が抑制され、不働態酸化被膜形成に寄与する有効Cr含有量を増加させることができる。その結果、同じCr含有量であっても、より強固な不働態酸化被膜を形成可能となり、高温耐食性の向上に寄与する。また、Mo炭化物は一般に粒界析出を起こしにくいためCr欠乏層も生じにくく、粒界腐食抑制という観点においても有利に作用する。
【0012】
その結果、Mo添加による上記効果に基づき、Cr含有量を比較的低い14〜17質量%に設定しても、より高Cr組成を有するインコネル601等と同等又はそれ以上の高温耐食性が実現できる。従って、Cr含有量が減じられた分だけ冷間加工性が改善されるので、接地電極の素材となる、Cu系伝熱促進部を埋設したクラッド材の加工も問題なく行なうことができるようになる。
【0013】
また、Mo添加によって、エンジンで長時間使用されても、電極母材とCu系伝熱促進部との境界に形成される拡散層の厚みの増大を抑えることができるため、この拡散層における剥離を防止することができる。この剥離の発生は、この拡散層の主成分であるCuとNiとの合金の特徴である低延性が影響しているものと推察される。
【0014】
電極母材をなすNi合金のCr含有量が14質量%未満になると、電極母材の高温耐酸化性が不足することにつながり、電極寿命が低下する問題を生ずる。他方、17質量%を超えると加工性が悪化し、接地電極素材となる、Cu系伝熱促進部を埋設したクラッド材を製造する際に、割れ等の発生を招きやすくなる。
【0015】
また、Moの含有量が0.8質量%未満では、Mo添加による高温耐酸化性改善効果及び長時間使用時の拡散層における剥離防止効果が乏しくなる。また、3.5質量%を超えると合金の硬さが増して変形抵抗が増大し、加工性を悪化させることにつながる。さらに、Niの含有量が68質量%未満では、副成分の含有量が高くなりすぎ、加工性の低下等を招きやすくなる。
他方、Niの含有量が85.2質量%を超えると、Cr及びMoの必要な含有量を確保できなくなり、高温耐酸化性が悪化することにつながる。
【0016】
電極母材をなすNi合金は、接地電極を主体金具に溶接接合する際に、その溶接性ひいては溶接接合強度を確保する観点から、Alの含有率を1質量%未満とするのがよい。Alの含有率が1質量%以上になると、酸化アルミニウムの生成が過剰となり、溶接性ないし溶接接合強度が損なわれる場合がある。他方、高温耐酸化性を向上させる目的にて、Alを上記範囲にて積極添加することも可能である。
【0017】
電極母材をなすNi合金には、Feを添加することができる。FeはNi基のマトリックスに固溶してこれを強化し、高温強度を向上させる働きをなす。該Feの含有量は、6〜10質量%の範囲で調整するのがよい。Feの含有量が6質量%未満では高温強度向上効果に乏しく、10質量%を超えると高温耐酸化性が十分に確保できなくなる場合がある。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を用いて説明する。図1は本発明の一例たるスパークプラグ100の縦断面図を示すものであり、筒状の主体金具1、先端部21が突出するようにその主体金具1の内側に嵌め込まれた絶縁体2、絶縁体2の内側に設けられた中心電極3、及び主体金具1に一端が溶接等により結合されるとともに他端側において中心電極3との間に火花放電ギャップgを形成する接地電極4を備えている。本実施形態のスパークプラグ100は、いわゆる平行電極型と称されるもので、接地電極4の先端側が側方に曲げ返され、その側面と主体金具1の先端面との間に火花放電ギャップgが形成されている。また、接地電極4及び中心電極3の、火花放電ギャップgに面する位置には、それぞれPt合金あるいはIr合金よりなる貴金属チップ31,32が溶接されている。
【0019】
絶縁体2は、例えばアルミナあるいは窒化アルミニウム等のセラミック焼結体により構成され、その内部には自身の軸方向に沿って中心電極3及び端子金具8を嵌め込むための孔部6を有している。また、主体金具1は、低炭素鋼等の金属により筒状に形成されており、スパークプラグ100のハウジングを構成するとともに、その外周面には、プラグ100を図示しないエンジンブロックに取り付けるためのねじ部7が形成されている。
【0020】
図2に示すように、接地電極4は、外表面部をなす電極母材4aと、該電極母材4a中に埋設されるCu系伝熱促進部4cとを有する。電極母材4aは、Crを14〜17質量%、Moを0.8〜3.5質量%、Niを68〜85.2質量%含有するNi合金からなる。また、Cu系伝熱促進部4cは純Cu又はCu合金にて構成される。本実施例においてCu系伝熱促進部4cは、接地電極4の長手方向に配置されている。Cu系伝熱促進部4cは先細り形態とされ、かつその先端は火花放電ギャップgの位置から外れるように位置設定がなされている。これは、火花放電ギャップgの位置する接地電極4の先端部は特に昇温が激しく、この部分にCu系伝熱促進部4cが入り込んでいると、電極母材4aとの間の線膨張係数差に基づいて電極の膨らみや層間剥離といった不具合を生じる場合があるためである。
【0021】
なお、本実施形態においては、中心電極3も、電極母材3aとこれに埋設されたCu系伝熱促進部3cを有するものとして構成している。上記電極母材3aも接地電極4側と同じNi合金にて構成可能であるが、接地電極4よりは温度上昇しにくいことから、接地電極4側の電極母材4aよりはMo含有量を低く(あるいはMoを含有しないもの)、Cr含有量は電極母材4aと同等もしくはそれ以下の含有量となるものを使用することもできる。
【0022】
図4は、接地電極4の製造方法の一例を示すものである。すなわち、図4(a)に示すように、電極母材4aの構成素材となるNi合金により、空隙104hを有したNi系成形体104aを切削あるいは深絞り等の塑性加工により作製する。他方、Cu系伝熱促進部4の構成素材となる純Cu(たとえば無酸素銅素材)又はCu合金により、前記空隙104aに対応する形状のCu系成形体104cを作製する。そして、このCu系成形体104cをNi系成形体104aの空隙104hに嵌め入れて、図4(b)の組立体104を作製する。
【0023】
次いで、図4(c)に示すように、該組立体104に対し、室温にてダイス引き抜き、鍛造、あるいは圧延を施すことにより減面・延伸してクラッド線材4’を作る。これによりCu系成形体104cはCu系伝熱促進部4cとなり、Ni系成形体104aは電極母材4aとなる。該クラッド線材4’のCu系伝熱促進部4cの露出端側を主体金具1(図2)の端面に溶接し、曲げ加工を施すことにより、接地電極4が完成する。
【0024】
Ni系成形体104aをなすNi合金は、前述のようにCr含有量が減じられているので加工性が良好であり、室温での冷間加工、もしくは900℃以下に昇温して行なうことにより、割れ等の不具合を生ずることなくクラッド材4’を問題なく得ることができる。そして、Cr含有量が減じられる代わりに、前記範囲内のMoが含有されていることから、Cr含有量の高いインコネル601等のNi基耐熱合金と比較しても高温耐食性において遜色なくなり、接地電極の寿命を大幅に伸ばすことができる。また、Cu系伝熱促進部4cの配置が容易となり、さらに、エンジンでの長時間使用されても拡散層における剥離が発生しないので、貴金属チップ32の温度上昇ひいては異常消耗が抑制され、耐久性を確保することができる。
【0025】
なお、接地電極4を冷間加工で製造する場合、図4(d)に示すように、その電極母材4aには、結晶粒が電極長手方向に延伸した組織が観察される。なお、クラッド線材4’を加工上がりの状態から焼鈍を行なうと、Cu系伝熱促進部4cとNi合金からなる電極母材4aとの間で成分拡散が生じ、両者の結合力を向上させることができる。この焼鈍は、加工後に行っても、加工前に行ってもいずれでもよいが、加工後に行う焼鈍の温度が高い場合、図4(d)に示す結晶粒の延伸した組織が、結晶粒成長した組織に変化することがある。
【0026】
なお、図3に示すように、Cu系伝熱促進部4cのさらに内側に、純Ni又はNi合金からなるNi系膨張調整層4dを配置してもよい。Ni合金からなる電極母材4aとCu系伝熱促進部4cとは線膨張係数差が大きく、特に過酷な冷熱サイクルが加わると電極膨らみや層間剥離等を起こしやすくなる懸念がある。しかしながら、上記のようなNi系膨張調整層4dを形成することにより、Cu系伝熱促進部4cの厚みを減ずるとともに、Cu系伝熱促進部4cをNi系金属により挟み込む形とすることにより、上記不具合を生じにくくすることができる。
【0027】
【実施例】
本発明の効果を確認するために、以下の実験を行った。
図1に示すスパークプラグ100の種々の試作品を製造した。接地電極4は、図4の方法により製造した。すなわち、表1に示す種々の組成のNi合金を電極母材用素材として準備し、電極母材4aとなるNi系成形体104aを、外径4.5mm、長さ5.4mmの寸法にて作製した。また、Cu系伝熱促進部4cとなるCu系成形体104cを、無酸素銅を素材として、基端部外径2.9mm、長さ5mmにて作製した。そして、これをNi系成形体104aに形成した空隙104hにはめ込み、組立体104とした。この組立体104を、1パス当たりの減面率が55%となるように冷間押出加工して、断面が縦1.5mm、横2.8mmの長方形状であって、長さが19mmの線材を得た。なお、比較のため、番号1の組成の接地電極については、Cu系伝熱促進部4cを省略したものも作製した(番号13)。
【0028】
上記の各接地電極は、加工性評価を以下の基準にて行った。
良(○):電極母材4aとCu系伝熱促進部4cとの間にクラックや剥離などが見られず、問題なく冷間加工できたもの。
可(△):電極母材4aとCu系伝熱促進部4cとの間にクラックないし剥離が見られたが、組立体を930℃で1時間焼鈍してから冷間加工を行なうと、不具合が解消されたもの。
不可(×):組立体を930℃で1時間焼鈍しても、不具合が解消されなかったもの(不具合のない接地電極を、別途、温度730℃での温間押出加工により得ている)。
【0029】
また、得られた接地電極の高温疲労試験を以下の条件にて行っている。すなわち、試験機は軸荷重疲労試験を用い、温度を600℃に、応力振幅条件を±900Nの引張り/圧縮に、繰返し速度を10Hzにそれぞれ設定して行った。そして、疲労強度は、JIS:Z2273に規定された方法に準拠して、試験品数N=2とし、疲労寿命を10回に設定したときの時間強度を求め、以下の基準にて評価した(高温折損性の確認)。
良(○):時間強度が220MPa以上のもの。
可(△):時間強度が200MPa以上220MPa未満のもの。
不可(×):時間強度が200MPa未満のもの。
【0030】
次に、中心電極3については、電極母材3aをインコネル600により、Cu系伝熱促進部3cを無酸素銅により構成する形で、接地電極4と同様の冷間押出加工により、断面が外径2.5mmの円状となり、長さが24mmとなるように製造した。
【0031】
そして、接地電極4に対しては、材質がPt−10質量%Ni合金であり、直径0.9mm、厚さ0.4mmの円板状の貴金属チップ32を抵抗溶接により接合した。また、中心電極3に対しては、材質がPt−13質量%Ir合金であり、直径0.8mm、厚さ0.6mmの円板状の貴金属チップ32をレーザー溶接により接合した。そして、中心電極3はアルミナ製の絶縁体2に組み付け、その絶縁体2に、接地電極4を溶接した主体金具1を組み付けて該接地電極4に曲げ加工を施すことにより、貴金属チップ31,32間に間隔0.9mmの火花放電ギャップgを形成した。
【0032】
上述した製造方法により得られた接地電極を用いた各スパークプラグの試験品に対し、以下の試験を行った。なお、下記のエンジンによる試験を行った接地電極には予め、930℃で1時間の焼鈍を行い、Cu系伝熱促進部4cと電極母材4aとの間に拡散層を10〜20μm形成してある。
スパークプラグを4気筒ガソリンエンジン(排気量2000cc)に取り付け、スロットル全開状態、エンジン回転数6000rpmにて250時間連続運転する実機試験を行った(接地電極側の貴金属チップ32の推定温度:約1000℃)。試験後に接地電極4の断面を走査型電子顕微鏡により観察し、形成された酸化スケール層の厚さを測定し、以下の基準にて評価した(接地電極の高温耐酸化性の確認)。
良(○):酸化スケール層厚さが0.05mm未満のもの。
可(△):酸化スケール層厚さが0.05mm以上0.15mm未満のもの。
不可(×):酸化スケール層厚さが0.15mm以上のもの。
【0033】
さらに、試験終了後の接地電極側の貴金属チップの、ギャップ間隔方向の消耗厚さを測定し、以下の基準にて評価した(貴金属チップの耐久性確認)。
良(○):消耗厚さが0.3mm未満のもの。
可(△):消耗厚さが0.3mm以上0.35mm未満のもの。
不可(×):消耗厚さが0.35mm以上のもの。
【0034】
また、接地電極4と主体金具1との溶接強度を以下のようにして行った。強度試験は、主体金具1と接地電極4(曲げ前)の先端部(先端より5mmの位置)とを把持して接地電極4の軸線方向に引張りを行なう引張試験と、主体金具1を片持ち把持し、接地電極4に対し、金具端面より5mmの位置にて、接地電極4の軸線方向と直交する向きに一定の折り曲げ荷重を、破断が生ずるまで反復付加する折曲試験とを行った。そして、以下の条件にて評価した(溶接性の確認)。
良(○):引張試験及び折曲試験のいずれにおいても溶接部で破断しない。
可(△):引張試験のみ溶接部で破断しない。
不可(×):引張試験及び折曲試験のいずれにおいても溶接部で破断する。
【0035】
さらに、試験後に接地電極4のX線による観察及び断面を走査型電子顕微鏡により観察することにより、拡散層における剥離の発生及び拡散層の厚さを測定し、以下の基準にて評価した(接地電極の伝熱促進部剥離性の確認)。
良(○):Cu系伝熱促進部4cと電極母材4aとは剥離しておらず、かつ拡散層の幅が50μm以下のもの。
可(△):Cu系伝熱促進部4cと電極母材4aとは剥離していないが、拡散層の幅が50μm以上のもの。
不可(×):Cu系伝熱促進部4cと電極母材4aとの間に剥離が発生しているもの。
【0036】
以上の結果を表1に示す。
【0037】
【表1】

Figure 0004294332
【0038】
番号3,4,5,8,9,10は本発明品のスパークプラグであり、電極母材として、Crを14〜17質量%、Moを0.8〜3.5質量%、Niを68〜85.2質量%含有するNi合金を用いている。いずれもCrの含有量を減少させる代わりに、Moを上記範囲で添加しているので、Cを含有しているにもかかわらず、耐高温酸化性はCrの多い番号1の比較例と遜色ない程度に確保できていることがわかる。そして、Crの含有量が比較的低いので、番号1の比較例よりも電極の加工性が良好であり、Cu系伝熱促進部の埋設も支障なく行うことができる。該埋設により、熱引きが改善される結果、貴金属チップの耐久性も良好である。また、Moの添加により高温強度が著しく向上し、耐高温折損性も良好である。さらに、エンジンで長時間使用しても拡散層の厚みの増大を抑えることができ、この拡散層における剥離がない。これに対し、Moを添加しない番号1の比較例は冷間加工性が悪く、Cu系伝熱促進部の埋設には面倒な温間加工が必要である。また、耐高温折損性もあまり良好でなく、拡散層における剥離が発生している。そして、番号12のようにCu系伝熱促進部の埋設を省略すると、高温耐酸化性及び貴金属チップの耐久性が著しく低下する結果を招いている。
【図面の簡単な説明】
【図1】本発明のスパークプラグの一実施例を示す縦断面図。
【図2】図1のスパークプラグの要部を拡大して示す断面図。
【図3】図1のスパークプラグの変形例を示す要部断面図。
【図4】図1のスパークプラグの接地電極の製造工程説明図。
【図5】図3のスパークプラグの接地電極の製造工程説明図。
【符号の説明】
1 主体金具
2 絶縁体
21 先端部
3 中心電極
32 貴金属チップ
4 接地電極
4a 電極母材
4c Cu系伝熱促進部
100 スパークプラグ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a spark plug used for ignition of an internal combustion engine.
[0002]
[Prior art]
In recent years, with the aim of improving the performance of internal combustion engines such as automobile engines, or the lean burn of engines for the purpose of strengthening exhaust gas regulations and improving combustion efficiency, the electrode temperature of spark plugs used for ignition tends to increase. . In particular, since the ground electrode is located on the combustion chamber side with respect to the center electrode, the temperature rises rapidly. In particular, a spark plug used for a direct injection engine or the like is particularly likely to cause a temperature rise of the ground electrode. Under the above severe conditions, the sparks of the electrode can easily be consumed. Therefore, in order to suppress the expansion rate of the spark discharge gap, a spark in which a noble metal tip is welded to the portion of the ground electrode facing the spark discharge gap is used. Plugs are popular.
[0003]
When the temperature of the ground electrode rises, high temperature oxidation of the electrode base material to which the noble metal tip is welded becomes a problem. Conventionally, the base material of the ground electrode is often made of a Ni-base heat-resistant alloy such as Inconel 600 (Inconel is a trade name of Inco, UK) in order to ensure high-temperature oxidation resistance. However, since the heat conductivity of Ni-base heat-resistant alloys is generally not so high, so-called heat sinking is bad, and the electrode temperature is particularly likely to rise during high-speed operation. When the heat pulling deteriorates and the electrode temperature rises, the temperature of the metal tip bonded to the electrode base material also rises, causing a decrease in life due to abnormal wear. Therefore, a method has been proposed in which a core material made of a Cu-based metal (Cu-based heat transfer accelerating portion) is arranged in the electrode base material to suppress the temperature rise of the electrode in order to promote improvement in heat dissipation ( For example, Patent Document 1 and Patent Document 2).
[0004]
[Patent Document 1]
JP-A-5-159857 [Patent Document 2]
Japanese Examined Patent Publication No. 6-48629
[Problems to be solved by the invention]
However, when the combustion temperature further rises and the ignition part gets closer to the center of the combustion chamber as in the direct injection engine described above, the temperature rise of the ground electrode becomes more significant. As a result, there arises a problem that the high temperature oxidation of the electrode base material cannot be suppressed with an alloy performance of about Inconel 600. In this case, it is conceivable to replace the material of the electrode base material with a material having better high-temperature oxidation resistance. For example, instead of the conventionally used Inconel 600, a proposal has been made to use Inconel 601 with improved high-temperature oxidation resistance by increasing the content of Cr and Fe. However, this material replacement presents a major obstacle when the embedding of the Cu-based heat transfer promoting portion is selected.
[0006]
That is, an electrode having a Cu-based heat transfer promoting portion is assembled by assembling a Cu material serving as a Cu-based heat transfer promoting portion into a Ni alloy material serving as an electrode base material, and this assembly is drawn or forged, or Manufactured by cold working by rolling to make a clad wire. However, nickel-base heat-resistant alloys with increased Cr content such as Inconel 601 have higher deformation resistance and lower ductility than conventional Inconel 600 and the like as a metal material whose strength has been improved by high alloying. Therefore, when it is going to manufacture a clad wire with a Cu system heat transfer promotion part by the above processes, troubles, such as a crack, are easy to occur and there is a problem which brings about a significant fall of a manufacturing yield. In addition, when a spark plug having a Cu-based heat transfer promoting portion is used in an engine for a Ni-based electrode base material, a diffusion layer in which components are diffused between the electrode base material and the Cu-based heat transfer promoting portion is formed. Is done. In addition, peeling may occur from this diffusion layer by receiving a repeated load due to the difference in thermal expansion between the two. As a result, heat conduction may not be sufficiently performed from the electrode base material to the Cu-based heat transfer promoting portion. On the other hand, if the Cu-based heat transfer promoting portion is omitted, even if the high-temperature oxidation of the electrode base material can be suppressed, the temperature increase of the noble metal tip cannot be suppressed, so the problem of abnormal consumption cannot be solved.
[0007]
The object of the present invention is to provide sufficient resistance to high-temperature oxidation to the electrode base material of the ground electrode, and to be able to manufacture a structure in which a Cu-based heat transfer promoting portion is embedded without any problem by cold working. It is an object of the present invention to provide a spark plug that can prevent abnormal consumption of bonded noble metal tips.
[0008]
[Means for solving the problems and actions / effects]
In order to solve the above problems, a spark plug according to the present invention includes a cylindrical metal shell, an insulator fitted inside the metal shell, a center electrode provided inside the insulator, One end of the bracket is joined by welding or the like and a ground electrode is formed on the other end side to form a spark discharge gap with the center electrode. The ground electrode is embedded in the electrode base material and the electrode base material. And a Cu-based heat transfer promoting portion composed mainly of Cu, and a noble metal tip welded to the electrode base material at a position facing the spark discharge gap. It consists of a Ni alloy containing ˜17% by mass, Mo of 0.8 to 3.5% by mass, and Ni of 68 to 85.2% by mass. In the present specification, “main component” refers to a component having the highest mass content.
[0009]
According to the spark plug of the present invention, the Cu-based heat transfer promoting portion is embedded in the electrode base material that forms the ground electrode, thereby promoting the heat dissipation and suppressing the temperature rise, thereby improving the life of the ground electrode. Can be planned. Moreover, since the temperature rise of the noble metal tip welded to the electrode base material is also suppressed, abnormal wear is prevented and durability can be ensured. And in this invention, what has the said specific composition is employ | adopted as Ni alloy which comprises an electrode base material. As a result, there are the following advantages compared to the case of employing Inconel 601 or the like, which has been problematic in the past. First, when a Ni alloy containing C is employed as in the present invention, the high temperature oxidation resistance of the alloy can be remarkably improved by containing a certain amount of Mo together with Cr. Therefore, combined with the adoption of the Cu-based heat transfer promoting part, even when the spark plug is used under more severe conditions, the durability of the ground electrode can be sufficiently ensured and the life can be improved.
[0010]
In this case, particularly for the Ni alloy containing C, the effect of improving the high temperature corrosion resistance by adding Mo is high. There are both cases where the C is contained as an impurity and cases where it is positively added (so-called weak precipitation type alloy) in order to enhance precipitation strengthening by carbide formation, and is adjusted to 0.3% by mass or less. Particularly in the latter case, the C content is adjusted within a range of, for example, 0.03 to 0.3% by mass. However, excessive addition reduces the cold workability due to the formation of a large amount of carbide, so it is desirable to make it 0.10% by mass or less. In any case, the contained C mainly forms carbides with Cr when Mo is not added. When a large amount of such Cr carbide is formed, the Cr component, which is an oxidation resistance imparting element, decreases in the form of carbide precipitation, resulting in insufficient formation of a passive oxide film, leading to a decrease in oxidation resistance. . In particular, when Cr carbide is formed at the grain boundary, a Cr-deficient layer is formed near the grain boundary, and the interfacial corrosion is facilitated due to the local battery effect and the like, which further adversely affects the durability of the electrode base material. .
[0011]
However, when an appropriate amount of Mo is added, Mo carbides are preferentially formed and the precipitation of Cr carbides is suppressed, and the effective Cr content contributing to passive oxide film formation can be increased. As a result, even with the same Cr content, a stronger passive oxide film can be formed, which contributes to the improvement of high temperature corrosion resistance. In addition, since Mo carbides generally do not easily cause grain boundary precipitation, a Cr-deficient layer is also unlikely to occur, which is advantageous in terms of suppressing grain boundary corrosion.
[0012]
As a result, high-temperature corrosion resistance equivalent to or higher than that of Inconel 601 and the like having a higher Cr composition can be realized even if the Cr content is set to a relatively low value of 14 to 17% by mass based on the above effect due to the addition of Mo. Accordingly, the cold workability is improved by the amount of Cr content reduced, so that the processing of the clad material in which the Cu-based heat transfer promoting portion is embedded can be performed without any problem. Become.
[0013]
In addition, the addition of Mo can suppress an increase in the thickness of the diffusion layer formed at the boundary between the electrode base material and the Cu-based heat transfer promoting portion even if the engine is used for a long time. Can be prevented. The occurrence of this peeling is presumed to be due to the low ductility that is characteristic of the alloy of Cu and Ni, which is the main component of this diffusion layer.
[0014]
When the Cr content of the Ni alloy constituting the electrode base material is less than 14% by mass, the high temperature oxidation resistance of the electrode base material is insufficient, which causes a problem that the electrode life is reduced. On the other hand, when it exceeds 17 mass%, workability deteriorates, and when a clad material having a Cu-based heat transfer promoting portion embedded therein, which is a ground electrode material, is produced, cracking or the like is likely to occur.
[0015]
If the Mo content is less than 0.8% by mass, the effect of improving the high-temperature oxidation resistance due to the addition of Mo and the effect of preventing peeling in the diffusion layer during long-time use become poor. On the other hand, if it exceeds 3.5 mass%, the hardness of the alloy increases and the deformation resistance increases, leading to deterioration of workability. Furthermore, if the Ni content is less than 68% by mass, the content of subcomponents becomes too high, which tends to cause deterioration in workability.
On the other hand, if the Ni content exceeds 85.2% by mass, the necessary Cr and Mo contents cannot be ensured, leading to deterioration in high-temperature oxidation resistance.
[0016]
The Ni alloy constituting the electrode base material should have an Al content of less than 1% by mass from the viewpoint of securing the weldability and thus the weld joint strength when the ground electrode is welded to the metal shell. When the Al content is 1% by mass or more, the production of aluminum oxide becomes excessive, and weldability or weld joint strength may be impaired. On the other hand, Al can be positively added in the above range for the purpose of improving high-temperature oxidation resistance.
[0017]
Fe can be added to the Ni alloy that forms the electrode base material. Fe functions as a solid solution in a Ni-based matrix to strengthen and strengthen high temperature strength. The Fe content is preferably adjusted in the range of 6 to 10% by mass. If the Fe content is less than 6% by mass, the effect of improving the high-temperature strength is poor, and if it exceeds 10% by mass, sufficient high-temperature oxidation resistance may not be ensured.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a longitudinal cross-sectional view of a spark plug 100 as an example of the present invention. A cylindrical metal shell 1, an insulator 2 fitted inside the metal shell 1 so that a tip 21 protrudes, A center electrode 3 provided inside the insulator 2 and a ground electrode 4 having one end coupled to the metal shell 1 by welding or the like and forming a spark discharge gap g between the other end and the center electrode 3 are provided. ing. The spark plug 100 according to the present embodiment is a so-called parallel electrode type, and the front end side of the ground electrode 4 is bent back to the side, and a spark discharge gap g is formed between the side surface and the front end surface of the metal shell 1. Is formed. Further, noble metal tips 31 and 32 made of a Pt alloy or an Ir alloy are welded to the ground electrode 4 and the center electrode 3 at positions facing the spark discharge gap g, respectively.
[0019]
The insulator 2 is made of a ceramic sintered body such as alumina or aluminum nitride, for example, and has a hole 6 for fitting the center electrode 3 and the terminal fitting 8 along its own axial direction. Yes. The metal shell 1 is formed in a cylindrical shape from a metal such as low carbon steel, and constitutes a housing of the spark plug 100, and a screw for attaching the plug 100 to an engine block (not shown) on its outer peripheral surface. Part 7 is formed.
[0020]
As shown in FIG. 2, the ground electrode 4 includes an electrode base material 4a forming an outer surface portion, and a Cu-based heat transfer promoting portion 4c embedded in the electrode base material 4a. The electrode base material 4a is made of a Ni alloy containing 14 to 17% by mass of Cr, 0.8 to 3.5% by mass of Mo, and 68 to 85.2% by mass of Ni. Further, the Cu-based heat transfer promoting portion 4c is composed of pure Cu or a Cu alloy. In the present embodiment, the Cu-based heat transfer promoting portion 4 c is disposed in the longitudinal direction of the ground electrode 4. The Cu-based heat transfer promoting portion 4c is tapered, and its tip is set so as to deviate from the position of the spark discharge gap g. This is because the temperature of the tip of the ground electrode 4 where the spark discharge gap g is located is particularly high, and when the Cu-based heat transfer promoting portion 4c enters this portion, the linear expansion coefficient with the electrode base material 4a is increased. This is because problems such as electrode swelling and delamination may occur based on the difference.
[0021]
In the present embodiment, the center electrode 3 is also configured to have an electrode base material 3a and a Cu-based heat transfer promoting portion 3c embedded therein. The electrode base material 3a can also be made of the same Ni alloy as that of the ground electrode 4 side. However, since the temperature is less likely to rise than the ground electrode 4, the Mo content is lower than that of the electrode base material 4a on the ground electrode 4 side. (Although it does not contain Mo), the Cr content can be the same as or lower than that of the electrode base material 4a.
[0022]
FIG. 4 shows an example of a method for manufacturing the ground electrode 4. That is, as shown in FIG. 4 (a), a Ni-based molded body 104a having a gap 104h is produced by plastic working such as cutting or deep drawing with a Ni alloy that is a constituent material of the electrode base material 4a. On the other hand, a Cu-based molded body 104c having a shape corresponding to the gap 104a is made of pure Cu (for example, oxygen-free copper material) or a Cu alloy as a constituent material of the Cu-based heat transfer promoting portion 4. Then, this Cu-based molded body 104c is fitted into the gap 104h of the Ni-based molded body 104a to produce the assembly 104 in FIG. 4B.
[0023]
Next, as shown in FIG. 4C, the assembly 104 is subjected to die drawing, forging, or rolling at room temperature to reduce and extend the clad wire 4 ′. Thereby, the Cu-based molded body 104c becomes the Cu-based heat transfer promoting portion 4c, and the Ni-based molded body 104a becomes the electrode base material 4a. The ground electrode 4 is completed by welding the exposed end of the Cu-based heat transfer promoting portion 4c of the clad wire 4 'to the end face of the metal shell 1 (FIG. 2) and bending it.
[0024]
The Ni alloy forming the Ni-based molded body 104a has good workability because the Cr content is reduced as described above, and is performed by cold working at room temperature or by raising the temperature to 900 ° C. or lower. Thus, the clad material 4 ′ can be obtained without any problems without causing defects such as cracks. And, instead of reducing the Cr content, Mo in the above range is contained, so even when compared with Ni-based heat-resistant alloys such as Inconel 601 having a high Cr content, the high temperature corrosion resistance is inferior, and the ground electrode Can greatly extend the service life. In addition, the Cu-based heat transfer promoting portion 4c can be easily arranged, and further, even if it is used for a long time in an engine, the diffusion layer does not peel off. Can be secured.
[0025]
When the ground electrode 4 is manufactured by cold working, as shown in FIG. 4D, a structure in which crystal grains extend in the longitudinal direction of the electrode is observed in the electrode base material 4a. When the clad wire 4 'is annealed from the finished state, component diffusion occurs between the Cu-based heat transfer promoting portion 4c and the electrode base material 4a made of Ni alloy, thereby improving the binding force between the two. Can do. This annealing may be performed after processing or before processing, but when the temperature of annealing performed after processing is high, the stretched structure of crystal grains shown in FIG. May change to the organization.
[0026]
In addition, as shown in FIG. 3, you may arrange | position the Ni type expansion | swelling adjustment layer 4d which consists of pure Ni or Ni alloy further inside the Cu type heat transfer promotion part 4c. The electrode base material 4a made of an Ni alloy and the Cu-based heat transfer promoting portion 4c have a large difference in linear expansion coefficient, and there is a concern that electrode swelling, delamination, and the like are likely to occur particularly when a severe cooling / heating cycle is applied. However, by forming the Ni-based expansion adjustment layer 4d as described above, the thickness of the Cu-based heat transfer promoting portion 4c is reduced, and the Cu-based heat transfer promoting portion 4c is sandwiched between Ni-based metals, It is possible to make the above-mentioned problem difficult to occur.
[0027]
【Example】
In order to confirm the effect of the present invention, the following experiment was conducted.
Various prototypes of the spark plug 100 shown in FIG. 1 were manufactured. The ground electrode 4 was manufactured by the method shown in FIG. That is, Ni alloys having various compositions shown in Table 1 were prepared as electrode base material, and a Ni-based molded body 104a to be the electrode base material 4a was measured with an outer diameter of 4.5 mm and a length of 5.4 mm. Produced. Further, a Cu-based molded body 104c to be the Cu-based heat transfer promoting portion 4c was manufactured using oxygen-free copper as a material with a base end outer diameter of 2.9 mm and a length of 5 mm. Then, this was fitted into the gap 104h formed in the Ni-based molded body 104a to form an assembly 104. This assembly 104 was cold-extruded so that the area reduction rate per pass was 55%, and the cross-section was a rectangle with a length of 1.5 mm and a width of 2.8 mm, and the length was 19 mm. A wire was obtained. For comparison, a ground electrode having the composition of No. 1 was prepared by omitting the Cu heat transfer promoting portion 4c (No. 13).
[0028]
Each of the above ground electrodes was subjected to workability evaluation according to the following criteria.
Good (O): No cracks or peeling were observed between the electrode base material 4a and the Cu-based heat transfer promoting portion 4c, and cold working was possible without problems.
Possible (Δ): Cracks or peeling was observed between the electrode base material 4a and the Cu-based heat transfer promoting portion 4c. However, when the assembly was annealed at 930 ° C. for 1 hour, cold working was not possible. Is solved.
Impossibility (x): An assembly was annealed at 930 ° C. for 1 hour, but the failure was not eliminated (a ground electrode having no failure was obtained separately by warm extrusion at a temperature of 730 ° C.).
[0029]
Moreover, the high temperature fatigue test of the obtained ground electrode is performed on the following conditions. That is, the tester used an axial load fatigue test, setting the temperature to 600 ° C., the stress amplitude condition to ± 900 N tension / compression, and the repetition rate to 10 Hz. Then, the fatigue strength, JIS: Z2273 in compliance with the method defined in, a test number of goods N = 2, obtains the time-intensity at the time of setting the fatigue life of 10 6 times, was evaluated by the following criteria ( Confirmation of high temperature breakability).
Good (◯): Time strength is 220 MPa or more.
Possible (Δ): Time strength is 200 MPa or more and less than 220 MPa.
Impossible (x): Time strength is less than 200 MPa.
[0030]
Next, with respect to the center electrode 3, the cross section of the center electrode 3 is externally formed by cold extrusion similar to the ground electrode 4 in the form in which the electrode base material 3 a is composed of Inconel 600 and the Cu-based heat transfer promoting portion 3 c is composed of oxygen-free copper. It was manufactured to have a circular shape with a diameter of 2.5 mm and a length of 24 mm.
[0031]
The ground electrode 4 was made of a Pt-10 mass% Ni alloy, and a disc-shaped noble metal tip 32 having a diameter of 0.9 mm and a thickness of 0.4 mm was joined by resistance welding. In addition, a disc-shaped noble metal tip 32 made of a Pt-13 mass% Ir alloy and having a diameter of 0.8 mm and a thickness of 0.6 mm was joined to the center electrode 3 by laser welding. The center electrode 3 is assembled to the insulator 2 made of alumina, and the metal shell 1 to which the ground electrode 4 is welded is assembled to the insulator 2, and the ground electrode 4 is bent, whereby the noble metal tips 31, 32 are assembled. A spark discharge gap g with a spacing of 0.9 mm was formed therebetween.
[0032]
The following tests were performed on the test pieces of each spark plug using the ground electrode obtained by the manufacturing method described above. In addition, the ground electrode which was tested by the following engine was previously annealed at 930 ° C. for 1 hour, and a diffusion layer of 10 to 20 μm was formed between the Cu-based heat transfer promoting portion 4c and the electrode base material 4a. It is.
A spark plug was attached to a 4-cylinder gasoline engine (displacement 2000 cc), and an actual machine test was performed in which the throttle was fully opened and continuously operated at an engine speed of 6000 rpm for 250 hours (estimated temperature of the noble metal tip 32 on the ground electrode side: about 1000 ° C. ). After the test, the cross section of the ground electrode 4 was observed with a scanning electron microscope, and the thickness of the formed oxide scale layer was measured and evaluated according to the following criteria (confirmation of high temperature oxidation resistance of the ground electrode).
Good (O): Oxide scale layer thickness less than 0.05 mm.
Possible (Δ): Oxide scale layer thickness of 0.05 mm or more and less than 0.15 mm.
Impossible (x): Oxide scale layer thickness of 0.15 mm or more.
[0033]
Further, the wear thickness of the noble metal tip on the ground electrode side after the test was measured in the gap interval direction and evaluated according to the following criteria (confirmation of durability of the noble metal tip).
Good (O): Consumed thickness is less than 0.3 mm.
Possible (Δ): Consumed thickness is 0.3 mm or more and less than 0.35 mm.
Impossible (x): Consumed thickness is 0.35 mm or more.
[0034]
Further, the welding strength between the ground electrode 4 and the metal shell 1 was performed as follows. The strength test consists of a tensile test in which the metal shell 1 and the tip of the ground electrode 4 (before bending) (at a position 5 mm from the tip) are held and pulled in the axial direction of the ground electrode 4, and the metal shell 1 is cantilevered. A bending test was performed in which a fixed bending load was repeatedly applied to the ground electrode 4 in a direction orthogonal to the axial direction of the ground electrode 4 at a position 5 mm from the end surface of the metal fitting until breakage occurred. And it evaluated on the following conditions (confirmation of weldability).
Good (O): Does not break at the welded part in either the tensile test or the bending test.
Possible (Δ): Only the tensile test does not break at the weld.
Impossible (x): Breaks at the welded part in both the tensile test and the bending test.
[0035]
Furthermore, after the test, the observation of the ground electrode 4 by X-ray and the cross section thereof were observed with a scanning electron microscope, whereby the occurrence of peeling in the diffusion layer and the thickness of the diffusion layer were measured and evaluated according to the following criteria (grounding) Confirmation of peelability of electrode heat transfer promotion part).
Good (O): The Cu-based heat transfer promoting portion 4c and the electrode base material 4a are not separated and the width of the diffusion layer is 50 μm or less.
Possible (Δ): The Cu-based heat transfer promoting portion 4c and the electrode base material 4a are not separated, but the diffusion layer has a width of 50 μm or more.
Impossible (x): The peeling has occurred between the Cu-based heat transfer promoting portion 4c and the electrode base material 4a.
[0036]
The results are shown in Table 1.
[0037]
[Table 1]
Figure 0004294332
[0038]
Numbers 3, 4, 5, 8, 9, and 10 are spark plugs according to the present invention. As an electrode base material, Cr is 14 to 17% by mass, Mo is 0.8 to 3.5% by mass, and Ni is 68. Ni alloy containing ˜85.2% by mass is used. In either case, Mo is added in the above range instead of reducing the Cr content, so that the high-temperature oxidation resistance is comparable to the comparative example of No. 1 with a large amount of Cr even though it contains C. It can be seen that it has been secured to the extent. And since content of Cr is comparatively low, the workability of an electrode is better than the comparative example of No. 1, and embedding of a Cu type heat transfer promotion part can also be performed without trouble. As a result of improving the heat sinking by the burying, the durability of the noble metal tip is also good. Further, the addition of Mo significantly improves the high-temperature strength, and the high-temperature fracture resistance is also good. Further, even if the engine is used for a long time, an increase in the thickness of the diffusion layer can be suppressed, and there is no peeling in the diffusion layer. On the other hand, the comparative example of No. 1 in which Mo is not added has poor cold workability, and the embedding of the Cu-based heat transfer promoting portion requires troublesome warm working. Moreover, the high temperature fracture resistance is not very good, and peeling occurs in the diffusion layer. And if the embedding of the Cu-based heat transfer promoting part is omitted as in the case of No. 12, the result is that the high temperature oxidation resistance and the durability of the noble metal tip are remarkably lowered.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an embodiment of a spark plug according to the present invention.
2 is an enlarged cross-sectional view showing a main part of the spark plug of FIG. 1. FIG.
FIG. 3 is a cross-sectional view of an essential part showing a modification of the spark plug of FIG.
4 is an explanatory diagram of a manufacturing process of the ground electrode of the spark plug of FIG. 1. FIG.
5 is an explanatory diagram of a manufacturing process of the ground electrode of the spark plug of FIG. 3;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Main metal fitting 2 Insulator 21 Tip part 3 Center electrode 32 Noble metal tip 4 Ground electrode 4a Electrode base material 4c Cu system heat transfer promotion part 100 Spark plug

Claims (7)

筒状の主体金具(1)と、主体金具(1)の内側に嵌め込まれた絶縁体(2)と、該絶縁体(2)の内側に設けられた中心電極(3)と、前記主体金具(1)に一端が溶接等により結合されるとともに他端側において前記中心電極(3)との間に火花放電ギャップ(g)を形成する接地電極(4)とを備え、
前記接地電極(4)は、電極母材(4a)と、該電極母材中に埋設されるとともにCuを主成分として構成されるCu系伝熱促進部(4c)と、前記火花放電ギャップ(g)に面する位置において前記電極母材(4a)に溶接された貴金属チップ(32)とを有し、さらに、
前記電極母材(4a)が、Crを14〜16質量%、Moを0.8〜質量%、Alを1.1質量%以下、Cを0.03〜0.1質量%、Feを5〜12質量%、さらに、Mn及びSiを含有し、残部68〜85.2質量%のNiからなるNi合金からなることを特徴とするスパークプラグ。
A cylindrical metal shell (1), an insulator (2) fitted inside the metal shell (1), a center electrode (3) provided inside the insulator (2), and the metal shell A ground electrode (4) having one end coupled to (1) by welding or the like and forming a spark discharge gap (g) with the center electrode (3) on the other end side;
The ground electrode (4) includes an electrode base material (4a), a Cu-based heat transfer promoting portion (4c) embedded in the electrode base material and mainly composed of Cu, and the spark discharge gap ( a noble metal tip (32) welded to the electrode base material (4a) at a position facing g), and
In the electrode base material (4a), Cr is 14 to 16 % by mass, Mo is 0.8 to 3 % by mass, Al is 1.1% by mass or less, C is 0.03 to 0.1% by mass, Fe is A spark plug comprising a Ni alloy containing 5 to 12% by mass, further containing Mn and Si, and the remaining 68 to 85.2% by mass of Ni .
筒状の主体金具(1)と、主体金具(1)の内側に嵌め込まれた絶縁体(2)と、該絶縁体(2)の内側に設けられた中心電極(3)と、前記主体金具(1)に一端が溶接等により結合されるとともに他端側において前記中心電極(3)との間に火花放電ギャップ(g)を形成する接地電極(4)とを備え、
前記接地電極(4)は、電極母材(4a)と、該電極母材中に埋設されるとともにCuを主成分として構成されるCu系伝熱促進部(4c)と、前記電極母材(4a)と前記Cu系伝熱促進部(4c)との境界に形成された拡散層と、前記火花放電ギャップ(g)に面する位置において前記電極母材(4a)に溶接された貴金属チップ(32)とを有し、さらに、
前記電極母材(4a)が、Crを14〜16質量%、Moを0.8〜質量%、Alを1.1質量%以下、Cを0.03〜0.1質量%、Feを5〜12質量%、さらに、Mn及びSiを含有し、残部68〜85.2質量%のNiからなるNi合金からなることを特徴とするスパークプラグ。
A cylindrical metal shell (1), an insulator (2) fitted inside the metal shell (1), a center electrode (3) provided inside the insulator (2), and the metal shell A ground electrode (4) having one end coupled to (1) by welding or the like and forming a spark discharge gap (g) with the center electrode (3) on the other end side;
The ground electrode (4) includes an electrode base material (4a), a Cu-based heat transfer promoting portion (4c) embedded in the electrode base material and mainly composed of Cu, and the electrode base material ( 4a) and a diffusion layer formed at the boundary between the Cu-based heat transfer promoting portion (4c) and a noble metal tip (4a) welded to the electrode base material (4a) at a position facing the spark discharge gap (g) 32), and
In the electrode base material (4a), Cr is 14 to 16 % by mass, Mo is 0.8 to 3 % by mass, Al is 1.1% by mass or less, C is 0.03 to 0.1% by mass, Fe is A spark plug comprising a Ni alloy containing 5 to 12% by mass, further containing Mn and Si, and the remaining 68 to 85.2% by mass of Ni .
前記電極母材をなすNi合金は、Alの含有率が1質量%未満とされる請求項1又は2に記載のスパークプラグ。  The spark plug according to claim 1 or 2, wherein the Ni alloy constituting the electrode base material has an Al content of less than 1 mass%. 前記電極母材をなすNi合金は、Feの含有率が6〜10質量%とされる請求項1乃至3のいずれか1項に記載のスパークプラグ。  The spark plug according to any one of claims 1 to 3, wherein the Ni alloy constituting the electrode base material has a Fe content of 6 to 10 mass%. 前記Cu系伝熱促進部(4c)は、その先端が前記火花放電ギャップ(g)の位置から外れるように位置設定がなされている請求項1乃至4のいずれか1項に記載のスパークプラグ。 The spark plug according to any one of claims 1 to 4, wherein the position of the Cu-based heat transfer promoting part (4c) is set so that a tip of the Cu-based heat transfer promoting part (4c) is out of a position of the spark discharge gap (g) . 前記Cu系伝熱促進部(4c)は、その内側に純Ni又はNi合金からなるNi系膨張調整層(4d)が配設されている請求項1乃至5のいずれか1項に記載のスパークプラグ。The spark according to any one of claims 1 to 5, wherein the Cu-based heat transfer promoting portion (4c) has a Ni-based expansion adjustment layer (4d) made of pure Ni or a Ni alloy disposed therein. plug. 前記貴金属チップ(32)は、Pt−Ni合金からなる請求項1乃至6のいずれか1項に記載のスパークプラグ。 The spark plug according to any one of claims 1 to 6, wherein the noble metal tip (32) is made of a Pt-Ni alloy .
JP2003019921A 2002-02-27 2003-01-29 Spark plug Expired - Lifetime JP4294332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003019921A JP4294332B2 (en) 2002-02-27 2003-01-29 Spark plug

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-51313 2002-02-27
JP2002051313 2002-02-27
JP2003019921A JP4294332B2 (en) 2002-02-27 2003-01-29 Spark plug

Publications (2)

Publication Number Publication Date
JP2003323962A JP2003323962A (en) 2003-11-14
JP4294332B2 true JP4294332B2 (en) 2009-07-08

Family

ID=29552038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003019921A Expired - Lifetime JP4294332B2 (en) 2002-02-27 2003-01-29 Spark plug

Country Status (1)

Country Link
JP (1) JP4294332B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4933106B2 (en) * 2005-03-23 2012-05-16 日本特殊陶業株式会社 Spark plug and internal combustion engine equipped with the spark plug
US7557495B2 (en) * 2005-11-08 2009-07-07 Paul Tinwell Spark plug having precious metal pad attached to ground electrode and method of making same
JP4753432B2 (en) * 2005-11-16 2011-08-24 日本特殊陶業株式会社 Spark plug for internal combustion engine
CN101904066B (en) 2008-01-10 2013-09-25 日本特殊陶业株式会社 Spark plug for internal combustion engine and method of manufacturing the same
EP2325960B1 (en) 2008-09-09 2017-05-31 NGK Spark Plug Co., Ltd. Spark plug
JP5599840B2 (en) * 2012-04-27 2014-10-01 日本特殊陶業株式会社 Spark plug and spark plug manufacturing method

Also Published As

Publication number Publication date
JP2003323962A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
JP4073636B2 (en) Spark plug and manufacturing method thereof
US6759795B2 (en) Spark plug
US6794803B2 (en) Spark plug for an internal combustion engine
US6798125B2 (en) Spark plug having ground electrode made of NI alloy and noble metal wear resistant portion
KR101515257B1 (en) Spark plug for internal combustion engine and method of manufacturing the same
JP4769070B2 (en) Spark plug for internal combustion engine
JP4953630B2 (en) Spark plug
US7859177B2 (en) Spark plug for internal-combustion engines
JPH05335066A (en) Spark plug for internal combustion engine
JP5978348B1 (en) Spark plug
EP2325960B1 (en) Spark plug
JP4294332B2 (en) Spark plug
US20050194878A1 (en) Spark plug
JP4217372B2 (en) Spark plug
JP2003142227A (en) Spark plug
JP2007173116A (en) Spark plug
JP4267837B2 (en) Spark plug and manufacturing method thereof
JP6328158B2 (en) Spark plug
JP5815649B2 (en) Spark plug
JP4070228B2 (en) Manufacturing method of spark plug
JP2006173141A (en) Spark plug
JP4834264B2 (en) Spark plug
JP2007227188A (en) Spark plug for internal combustion engine and manufacturing method
JP5425558B2 (en) Glow plug housing and glow plug
JP2004265857A (en) Spark plug

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4294332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250