JP4293662B2 - Ground resistance measurement method - Google Patents

Ground resistance measurement method Download PDF

Info

Publication number
JP4293662B2
JP4293662B2 JP01778599A JP1778599A JP4293662B2 JP 4293662 B2 JP4293662 B2 JP 4293662B2 JP 01778599 A JP01778599 A JP 01778599A JP 1778599 A JP1778599 A JP 1778599A JP 4293662 B2 JP4293662 B2 JP 4293662B2
Authority
JP
Japan
Prior art keywords
ground
voltage
current
resistance
ground resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01778599A
Other languages
Japanese (ja)
Other versions
JP2000214197A (en
Inventor
良作 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kouatsu Electric Co
Original Assignee
Nippon Kouatsu Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kouatsu Electric Co filed Critical Nippon Kouatsu Electric Co
Priority to JP01778599A priority Critical patent/JP4293662B2/en
Publication of JP2000214197A publication Critical patent/JP2000214197A/en
Application granted granted Critical
Publication of JP4293662B2 publication Critical patent/JP4293662B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

【0001】
【発明の属する技術分野】
本願発明は配電線の柱上トランス等の接地抵抗を測定する方法に関する。
【0002】
【従来の技術】
図3に示すように、接地Eの接地抵抗を測定するのに、接地Eの他に、補助接地P1,P2を直線上に設け、接地Eと補助接地P2との間に、電源1と変圧器2の1次コイルとを接続し、変圧器2の2次コイルの電圧を可変抵抗器3で分圧して接地Eと補助接地P1間に印加し、検流計4の電流が0となるように抵抗Rsを調整すると、
2=niRs
である。従って、接地Eの接地抵抗Rxは、
Rx=e2/i=nRs
として求めることができる。なお、変圧器2の巻数比はn:1である。
【0003】
特開平6−213945号には、補助電極として適宜面積を有する一対のシート状電極を設ける接地抵抗測定方法が公開されている。この従来技術は図4に示すように、接地線5に補助電極10,11を並列に接続し、両補助電極を接地Eから適宜距離を離して接地し、接地Eと補助電極10との間に電源6と電流計7を接続し、接地Eと補助電極11との間に電圧計8を接続している。両補助電極10,11は同じ面積を有するシート状の電極である。両補助電極10,11の面積をS、真空誘導率をε0 、地表面のアスファルト層の厚さをd、アスファルトの比誘電率をεsとすると、両補助電極10,11をそれぞれ地表面上においた際の静電容量Cは、
C=S・ε0 ・εs/d(F)
と表される。また電源6の発振周波数をfとして両補助電極10,11のインピーダンスZを求めると、
Z=(2πfc)-1(Ω)
と表される。そして、電源6から流すべき電流Iを電源6の性能とインピーダンスZとの関係で定め、これによって電源6の発振電圧V0 を設定し、補助電極11に掛かる電圧を電圧計8で測定すれば、接地抵抗
Z=V/I
により測定される。
【0004】
【発明が解決しようとする課題】
前記従来技術の前者(図3)は、近時コンクリート地が多くなり、測定のための補助接地P1,P2を打つ場所が得にくくなっているばかりでなく、更に接地EとP1,P2はほぼ直線上にある必要があり、その場所を確保し難いという問題があった。
【0005】
また、前記従来技術の後者(図4)は、補助電極10と11を配置する場所を要するだけでなく、アスファルトの厚みdや、比誘電率εsを正確に把握することが困難で、かかる不確定要素を含んで算出する接地抵抗は正確さに欠けるという問題点があった。又、補助電極を2カ所要し、狭い場所での測定に不便で、作業性も悪いという問題点があった。
【0006】
そこで、本発明は、これらの問題点を解消できる接地抵抗測定方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
前記目的を達成するために、請求項1の発明は、接地抵抗を測定すべき接地とは別に、地表面に対して絶縁された導体を設けて地表面との間にコンデンサを形成し、前記接地と導体との間に一定電圧の交流電圧源を印加して電流を流し、該電流と、前記電圧に対する電流の位相角を測定し、これら電圧、電流、及び電圧に対する電流の位相角に基づいて接地抵抗を求める接地抵抗測定方法であって、
前記位相角が30°、45°又は60°の所定値になるように交流電圧源の周波数を加減すると共に、
前記電圧を|e|、電流を|i|、位相角をψとし、これらの値から接地抵抗Rxを
Rx=(|e|/|i|)cosψ
として求めることを特徴とする接地抵抗測定方法である。
【0011】
【発明の実施の形態】
次に、本発明の好ましい実施の形態を図面の実施例に従って説明する。
〔実施例1〕
図1(a)に示すように、接地Eとは別に、地表面9に対して絶縁された導体12を設けて地表面9との間に容量cのコンデンサを形成し、測定しようとする接地Eと導体12との間に、交流電圧源13を接続して電流を流す。
【0012】
交流電圧源13の電圧eを、
e=e0 sinωt
とすれば、コンデンサのインピーダンスZc=(1/ωc)と、測定しようとする接地抵抗Rxによる合成インピーダンスZ=(Rx2 +Zc2 1/2 によって、次の電流iが流れる。
【0013】
i=(e0 /Z)sin(ωt+ψ)
ψ=tan-1(1/ωcRx)
ここで、電圧e,電流i及び電圧eに対する電流iの位相角ψは測定することができるから、
Z=|e|/|i|
Rx=Zcosψ=(|e|/|i|)cosψ ・・・(1)
として求める接地抵抗Rxを知ることができる。(図1(b)参照)
【0014】
即ちコンクリート地であっても、例えば薄い板状導体を絶縁シートで覆って作った極板等をコンクリート上に広げて、交流電圧源を接地Eと極板との間に接続し、電圧e、電流i、位相角ψを計測することで(1)式から接地抵抗Rxを算出することができる。
【0015】
コンデンサの静電容量cは特に限定された値とする必要はなく任意で良い。又交流の角周波数ωや周波数f=ω/2πも特に限定されるものではない。
しかし、測定の精度や便利さ等に応じて次のようにして実用化すると良い。
【0016】
〔実施例2〕
前記実施例1で説明した図1(a)の構成で、位相角ψがちょうど45°となるようにすれば、
cos45°=(2)-1/2
であるため、(1)式は次の(2)式となる。
【0017】
Rx=Z(2)-1/2 ・・・(2)
位相角ψが45度であることを知るには、図1(c)のように、電圧e、電流iの瞬時値が0になる時間tA ,tB において、
B /tA =1/4
となることによっても良いし、オシログラフなどによっても良い。
【0018】
また、ψが45°でなく、60°、30°などでも同様に(1)式が簡略化されて、接地抵抗Rxの測定算出が容易となる。
〔実施例3〕実施例1の(1)式そのものから算出する方法で、|e|、|i|、ψを知って、三角関数cosψを演算して計算する。
計算は可搬式の計算機(電卓)や、数表を用いるとか、測定装置にこれらの演算機能を持たせることもできる。
【0022】
なお、上記実施例で明らかなように、(1)式で代表される測定原理中に、接地Eと導体12との距離の要素が入っていないから、導体12を設ける位置は任意の場所で良く、接地Eの直上でも良いし、又、接地Eから数m離れた位置でも良く、数十m離れた位置でも良い。
【0023】
従って建物内で接地抵抗を判定使用とする場合や、遠方の接地抵抗を測定しようとする場合などにおいて、何の制約もなく、極めて利便性が高いことを示している。
【0024】
更に従来のように接地Eの他に補助電極2点を直線上に配列するなどの制約も全くない。
参考例
図1の実施例で、厳密には導体12の下の地表面下に大地抵抗が存在する。その有様は、図2(a)のようで、電極12Aの下の地表面下に大地抵抗Rc1 が存在する。従って、この場合には、
e=eosinωt
=1/ωc
Z={(Rx+Rc1 2 +(Zc)2 1/2
i=(e0 /Z)sin(ωt+ψ)
ψ=tan-1{1/ωc(Rx+Rc1 )}
Z=|e|/|i|
Rx+Rc1 =Zcosψ=(|e|/|i|)cosψ ・・(1′)
となり、Rc1 ≪Rxならば、Rx≒Rx+Rc1 で(1′)式から接地抵抗Rxが求められる。しかし、大地抵抗Rc1 が無視できないときは、これが測定誤差となる。
【0025】
このようなときの測定誤差をなくすのが参考例である。
この参考例では、図2(d)のように接地Eの他に、地表面9と絶縁された第1の導体12Aと第2の導体12Bとを設け、次の(a)(b)(c)のように3段階に分けて測定値を求める。
【0026】
(a).図2(a)のように、接地Eと導体12Aとの間に交流電圧源13を接続して電流iを流す。電圧・電流位相角から(1′)式のように、
Rx+Rc1
が求められる。これをaとする。
【0027】
a=Rx+Rc1 ・・・(1A)
(b).図2(b)のように、接地Eと導体12Bとの間に交流電圧源13を接続して、同様に電圧、電流、位相角から、
b=Rx+Rc2 ・・・(1B)
が求められる。
【0028】
(c).図2(c)のように、導体12Aと12Bとの間に交流電圧源13を接続し、同様に電圧・電流・位相角とから、
c=Rc1 +Rc2 ・・・(1C)
が求められる。なお、この場合、(1C)式は計算式は省略するが、Rc1 +Rc2 と1/{(1/c1 )+(1/c2 )}の直列回路であるから求められるものである。
【0029】
従って、(1A)式、(1B)式、(1C)式から、Rc1 ,Rc2 を消去してRxを求めることができる。即ち、

Figure 0004293662
従って、
Rx=(a+b−c)/2 ・・・(2)
によって接地抵抗Rxを求めることができる。
【0030】
この参考例では、コンデンサ電極となる第1の導体と第2の導体とを必要とするが、接地Eと直線的に配置する必要はなく、任意の場所で良いから建物の中などにおいて、容易に判定できる。
【0031】
a,b,cを求めるのに、図2(a)(b)(c)の各場合において、電圧、電流と位相差を測定する必要があり、また、接地抵抗Rxを求めるのに(2)式の計算を要するが、測定装置に簡単なコンピュータを内蔵させることにより自動演算できる。なお、実施例5においても、上記実施例2,4のようにして、(a)(b)(c)の各場合においてa,b,cを求めることができる。
【0032】
【発明の効果】
本発明の接地抵抗測定方法は上述のように構成されているので、請求項1では、コンクリート地でも1つの補助電極を接地するだけで簡単に測定できる。
【0033】
また、計算が簡単になり、電卓でも容易に接地抵抗の演算ができる
【図面の簡単な説明】
【図1】 本発明の実施例で、(a)は測定回路の原理図、(b)はインピーダンスベクトルの図、(c)は電圧と電流の波形図である。
【図2】 参考例を説明する図で、(a)は段階(a)の回路図、(b)は段階(b)の回路図、(c)は段階(c)の回路図、(d)は接地電極と測定用の導体の配置図である。
【図3】 従来技術の電気回路図である。
【図4】 他の従来技術の電気回路図である。
【符号の説明】
9 地表面
12,12A,12B 導体
13 交流電圧源
e 電圧
i 電流
ψ 位相角
Rx 接地抵抗[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring a ground resistance of a pole transformer or the like of a distribution line.
[0002]
[Prior art]
As shown in FIG. 3, in order to measure the ground resistance of the ground E, in addition to the ground E, auxiliary grounds P1 and P2 are provided on a straight line, and between the ground E and the auxiliary ground P2, the power source 1 and the transformer Is connected to the primary coil of the transformer 2, the voltage of the secondary coil of the transformer 2 is divided by the variable resistor 3 and applied between the ground E and the auxiliary ground P1, and the current of the galvanometer 4 becomes zero. When the resistance Rs is adjusted as follows,
e 2 = niRs
It is. Therefore, the grounding resistance Rx of the grounding E is
Rx = e 2 / i = nRs
Can be obtained as Note that the turns ratio of the transformer 2 is n: 1.
[0003]
Japanese Patent Laid-Open No. 6-213945 discloses a ground resistance measuring method in which a pair of sheet-like electrodes having an appropriate area is provided as an auxiliary electrode. In this prior art, as shown in FIG. 4, auxiliary electrodes 10 and 11 are connected in parallel to the ground wire 5, both auxiliary electrodes are grounded at an appropriate distance from the ground E, and the ground E is connected between the auxiliary electrode 10 and the ground E. A power source 6 and an ammeter 7 are connected to each other, and a voltmeter 8 is connected between the ground E and the auxiliary electrode 11. Both auxiliary electrodes 10 and 11 are sheet-like electrodes having the same area. Assuming that the area of the auxiliary electrodes 10 and 11 is S, the vacuum induction rate is ε 0 , the thickness of the asphalt layer on the ground surface is d, and the relative permittivity of the asphalt is εs, the auxiliary electrodes 10 and 11 are respectively on the ground surface. The capacitance C when placed is
C = S · ε 0 · εs / d (F)
It is expressed. Further, when the oscillation frequency of the power source 6 is set to f and the impedance Z of both auxiliary electrodes 10 and 11 is obtained,
Z = (2πfc) −1 (Ω)
It is expressed. Then, the current I to be supplied from the power source 6 is determined by the relationship between the performance of the power source 6 and the impedance Z, thereby setting the oscillation voltage V 0 of the power source 6 and measuring the voltage applied to the auxiliary electrode 11 with the voltmeter 8. , Ground resistance Z = V / I
Measured by
[0004]
[Problems to be solved by the invention]
The former of the prior art (FIG. 3) has recently become more and more difficult to obtain a place for hitting auxiliary grounding P1 and P2 for measurement, and further, grounding E and P1 and P2 are almost the same. There was a problem that it was necessary to be on a straight line and it was difficult to secure the place.
[0005]
Further, the latter of the prior art (FIG. 4) not only requires a place for arranging the auxiliary electrodes 10 and 11, but it is difficult to accurately grasp the asphalt thickness d and the relative dielectric constant εs. There is a problem that the grounding resistance calculated including the deterministic element is not accurate. In addition, two auxiliary electrodes are required, which is inconvenient for measurement in a narrow place and has poor workability.
[0006]
Accordingly, an object of the present invention is to provide a ground resistance measurement method that can eliminate these problems.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 provides a conductor insulated from the ground surface separately from the ground to be measured for ground resistance to form a capacitor between the ground surface, A constant voltage AC voltage source is applied between the ground and the conductor to cause a current to flow, and the current and the phase angle of the current with respect to the voltage are measured. Based on the voltage, the current, and the phase angle of the current with respect to the voltage A ground resistance measuring method for obtaining ground resistance,
While adjusting the frequency of the AC voltage source so that the phase angle becomes a predetermined value of 30 °, 45 ° or 60 °,
The voltage is | e |, the current is | i |, the phase angle is ψ, and the ground resistance Rx is determined from these values.
Rx = (| e | / | i |) cosψ
It is a ground resistance measurement method characterized by obtaining as follows.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, preferred embodiments of the present invention will be described with reference to examples of the drawings.
[Example 1]
As shown in FIG. 1A, separately from the ground E, a conductor 12 insulated from the ground surface 9 is provided, and a capacitor of capacitance c is formed between the ground surface 9 and the ground to be measured. An AC voltage source 13 is connected between E and the conductor 12 to allow current to flow.
[0012]
The voltage e of the AC voltage source 13 is
e = e 0 sin ωt
Then, the following current i flows by the impedance Zc = (1 / ωc) of the capacitor and the combined impedance Z = (Rx 2 + Zc 2 ) 1/2 due to the ground resistance Rx to be measured.
[0013]
i = (e 0 / Z) sin (ωt + ψ)
ψ = tan −1 (1 / ωcRx)
Here, the voltage e, the current i, and the phase angle ψ of the current i with respect to the voltage e can be measured.
Z = | e | / | i |
Rx = Zcosψ = (| e | / | i |) cosψ (1)
It is possible to know the ground resistance Rx obtained as follows. (See Fig. 1 (b))
[0014]
That is, even in concrete ground, for example, a plate made by covering a thin plate conductor with an insulating sheet is spread on the concrete, an AC voltage source is connected between the ground E and the plate, and the voltage e, The ground resistance Rx can be calculated from the equation (1) by measuring the current i and the phase angle ψ.
[0015]
The capacitance c of the capacitor is not particularly limited and may be arbitrary. The AC angular frequency ω and the frequency f = ω / 2π are not particularly limited.
However, it may be put into practical use as follows according to the accuracy and convenience of measurement.
[0016]
[Example 2]
In the configuration of FIG. 1A described in the first embodiment, if the phase angle ψ is exactly 45 °,
cos45 ° = (2) -1/2
Therefore, the equation (1) becomes the following equation (2).
[0017]
Rx = Z (2) -1/2 (2)
In order to know that the phase angle ψ is 45 degrees, as shown in FIG. 1C, at times t A and t B when the instantaneous values of the voltage e and the current i become 0,
t B / t A = 1/4
It may be by oscillograph or the like.
[0018]
Similarly, when ψ is not 45 °, 60 °, 30 °, etc., the expression (1) is similarly simplified, and the measurement calculation of the ground resistance Rx becomes easy.
[Embodiment 3] Using the method of calculating from the expression (1) itself of Embodiment 1, knowing | e |, | i |, ψ, and calculating the trigonometric function cos ψ.
For the calculation, a portable calculator (calculator) or a numerical table can be used, or the measurement device can have these calculation functions.
[0022]
As is clear from the above embodiment, since the element of distance between the ground E and the conductor 12 is not included in the measurement principle represented by the equation (1), the position where the conductor 12 is provided is an arbitrary place. It may be just above the grounding E, may be a few meters away from the grounding E, or may be a few tens of meters away.
[0023]
Therefore, there is no restriction in the case where the ground resistance is used for judgment in the building, or in the case where the ground resistance in a distant place is to be measured.
[0024]
Further, there is no restriction such as arranging two auxiliary electrodes on a straight line in addition to the ground E as in the prior art.
[ Reference example ]
In the embodiment of FIG. 1, there is strictly a ground resistance below the ground surface under the conductor 12. The state is as shown in FIG. 2A, and the ground resistance Rc 1 exists under the ground surface under the electrode 12A. Therefore, in this case,
e = eosinωt
Z c = 1 / ωc
Z = {(Rx + Rc 1 ) 2 + (Zc) 2 } 1/2
i = (e 0 / Z) sin (ωt + ψ)
ψ = tan −1 {1 / ωc (Rx + Rc 1 )}
Z = | e | / | i |
Rx + Rc 1 = Z cos ψ = (| e | / | i |) cos ψ (1 ′)
If Rc 1 << Rx, then Rx≈Rx + Rc 1 and the ground resistance Rx can be obtained from equation (1 ′). However, when the ground resistance Rc 1 cannot be ignored, this becomes a measurement error.
[0025]
A reference example is to eliminate measurement errors in such a case .
In this reference example , in addition to the ground E as shown in FIG. 2D, a first conductor 12A and a second conductor 12B insulated from the ground surface 9 are provided, and the following (a), (b) ( As shown in c), the measured values are obtained in three stages.
[0026]
(A). As shown in FIG. 2A, the AC voltage source 13 is connected between the ground E and the conductor 12A to pass the current i. From the voltage / current phase angle,
Rx + Rc 1
Is required. This is a.
[0027]
a = Rx + Rc 1 (1A)
(B). As shown in FIG. 2B, an AC voltage source 13 is connected between the ground E and the conductor 12B, and similarly, from the voltage, current, and phase angle,
b = Rx + Rc 2 (1B)
Is required.
[0028]
(C). As shown in FIG. 2 (c), an AC voltage source 13 is connected between the conductors 12A and 12B. Similarly, from the voltage, current, and phase angle,
c = Rc 1 + Rc 2 (1C)
Is required. In this case, the formula (1C) is calculated because it is a series circuit of Rc 1 + Rc 2 and 1 / {(1 / c 1 ) + (1 / c 2 )}, although the calculation formula is omitted. .
[0029]
Therefore, Rx can be obtained by eliminating Rc 1 and Rc 2 from the equations (1A), (1B), and (1C). That is,
Figure 0004293662
Therefore,
Rx = (a + b−c) / 2 (2)
The ground resistance Rx can be obtained by
[0030]
In this reference example , the first conductor and the second conductor to be the capacitor electrodes are required, but it is not necessary to arrange them linearly with the ground E, and any place can be used. Can be determined.
[0031]
In order to obtain a, b, and c, it is necessary to measure the voltage, current, and phase difference in each of the cases of FIGS. 2A, 2B, and 2C, and to obtain the ground resistance Rx (2 ) Equation calculation is required, but automatic calculation can be performed by incorporating a simple computer in the measuring apparatus. In the fifth embodiment, as in the second and fourth embodiments, a, b, and c can be obtained in the cases (a), (b), and (c).
[0032]
【The invention's effect】
Since the ground resistance measuring method of the present invention is configured as described above, in claim 1, it can be easily measured even by grounding one auxiliary electrode even in a concrete ground.
[0033]
In addition, calculation is simplified, and the ground resistance can be calculated easily with a calculator .
[Brief description of the drawings]
1A is a principle diagram of a measurement circuit, FIG. 1B is an impedance vector diagram, and FIG. 1C is a voltage and current waveform diagram.
FIGS. 2A and 2B are diagrams illustrating a reference example, in which FIG. 2A is a circuit diagram of a step (a), FIG. 2B is a circuit diagram of a step (b), FIG. 2C is a circuit diagram of a step (c); ) Is a layout diagram of a ground electrode and a conductor for measurement.
FIG. 3 is an electric circuit diagram of the prior art.
FIG. 4 is another electrical circuit diagram of the prior art.
[Explanation of symbols]
9 Ground surface 12, 12A, 12B Conductor 13 AC voltage source e Voltage i Current ψ Phase angle Rx Ground resistance

Claims (1)

接地抵抗を測定すべき接地とは別に、地表面に対して絶縁された導体を設けて地表面との間にコンデンサを形成し、前記接地と導体との間に一定電圧の交流電圧源を印加して電流を流し、該電流と、前記電圧に対する電流の位相角を測定し、これら電圧、電流、及び電圧に対する電流の位相角に基づいて接地抵抗を求める接地抵抗測定方法であって、
前記位相角が30°、45°又は60°の所定値になるように交流電圧源の周波数を加減すると共に、
前記電圧を|e|、電流を|i|、位相角をψとし、これらの値から接地抵抗Rxを
Rx=(|e|/|i|)cosψ
として求めることを特徴とする接地抵抗測定方法。
Separately from the ground where the ground resistance is to be measured, a conductor insulated from the ground surface is provided to form a capacitor between the ground surface, and a constant voltage AC voltage source is applied between the ground and the conductor. A current resistance and a ground resistance measurement method for measuring the current and a phase angle of the current with respect to the voltage, and obtaining a ground resistance based on the voltage, the current, and the phase angle of the current with respect to the voltage,
While adjusting the frequency of the AC voltage source so that the phase angle becomes a predetermined value of 30 °, 45 ° or 60 °,
The voltage is | e |, the current is | i |, the phase angle is ψ, and the ground resistance Rx is determined from these values.
Rx = (| e | / | i |) cosψ
A grounding resistance measuring method characterized by:
JP01778599A 1999-01-27 1999-01-27 Ground resistance measurement method Expired - Lifetime JP4293662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01778599A JP4293662B2 (en) 1999-01-27 1999-01-27 Ground resistance measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01778599A JP4293662B2 (en) 1999-01-27 1999-01-27 Ground resistance measurement method

Publications (2)

Publication Number Publication Date
JP2000214197A JP2000214197A (en) 2000-08-04
JP4293662B2 true JP4293662B2 (en) 2009-07-08

Family

ID=11953379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01778599A Expired - Lifetime JP4293662B2 (en) 1999-01-27 1999-01-27 Ground resistance measurement method

Country Status (1)

Country Link
JP (1) JP4293662B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4778922B2 (en) * 2007-03-22 2011-09-21 東日本電信電話株式会社 Ground resistance measuring method and ground resistance measuring apparatus
GB2449285B (en) 2007-05-17 2010-08-11 Newson Gale Ltd Improvements relating to the testing of an earth connection
JP2011226983A (en) * 2010-04-22 2011-11-10 Hioki Ee Corp Grounding resistance meter and grounding state discrimination method
JP2013007692A (en) * 2011-06-27 2013-01-10 Hioki Ee Corp Grounding resistance measurement method
JP6178582B2 (en) * 2013-02-13 2017-08-09 東日本旅客鉄道株式会社 Method and apparatus for measuring ground resistance

Also Published As

Publication number Publication date
JP2000214197A (en) 2000-08-04

Similar Documents

Publication Publication Date Title
CN109283380B (en) Method, device, equipment and storage medium for measuring line current in power system
CN109283379B (en) Method, device and equipment for measuring current of lead and readable storage medium
US8493054B2 (en) Calibration of non-contact voltage sensors
JP5951005B2 (en) Method and apparatus for non-contact detection of the potential of an object with two different values of electric flux
JP4330256B2 (en) Non-contact voltage measuring method and apparatus
JP2002125313A (en) Leakage detector, and leakage alarm and leakage breaker therewith
CN110865238B (en) Alternating current resistance measurement method and device based on quasi-harmonic model sampling algorithm
Shenil et al. Feasibility study of a non-contact AC voltage measurement system
CN108761171A (en) Line current measuring method and device
JP4293662B2 (en) Ground resistance measurement method
Lafleur et al. Radio frequency current-voltage probe for impedance and power measurements in multi-frequency unmatched loads
CN104237832B (en) A kind of calibration method and device of complex impedance standard
JP4500451B2 (en) Measuring method for volume measuring system
WO2013158754A1 (en) Voltage sensor systems and methods
RU2086996C1 (en) Device for testing high-voltage measuring voltage transformers
JP6354332B2 (en) Voltage measuring device and voltage measuring method
Pan et al. Establishment of AC power standard at frequencies up to 100 kHz
JP4633890B2 (en) Effective earth leakage meter using grasping type zero-phase current transformer.
Korasli Ground resistance measurement with fall-of-potential method using capacitive test probes
TWI546542B (en) Device and method for measuring the power consumption, device and method for contactless measuring power supply status
KR102014511B1 (en) Apparatus and method for measuring dissipation factor of capacitor
JP3080590B2 (en) Semiconductor wafer resistance measurement method
TW201142311A (en) Branch-line coupled capacitor tester and method thereof
GB797399A (en) Improvements in or relating to apparatus for making electrical measurements upon coated conductors
RU2209440C2 (en) Method measuring parameters of input impedance and device for its realization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term