JP4292661B2 - Water quality analyzer - Google Patents

Water quality analyzer Download PDF

Info

Publication number
JP4292661B2
JP4292661B2 JP36772999A JP36772999A JP4292661B2 JP 4292661 B2 JP4292661 B2 JP 4292661B2 JP 36772999 A JP36772999 A JP 36772999A JP 36772999 A JP36772999 A JP 36772999A JP 4292661 B2 JP4292661 B2 JP 4292661B2
Authority
JP
Japan
Prior art keywords
sample water
water
syringe
quality analyzer
water quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36772999A
Other languages
Japanese (ja)
Other versions
JP2001183360A (en
Inventor
美奈子 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP36772999A priority Critical patent/JP4292661B2/en
Publication of JP2001183360A publication Critical patent/JP2001183360A/en
Application granted granted Critical
Publication of JP4292661B2 publication Critical patent/JP4292661B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、下水、河川水又は工場排水などの試料水中に含まれるTOC(有機体炭素)やTN(全窒素)など水質に関係のある含有化学物質を測定するための水質分析計に関する。
【0002】
【従来の技術】
下水、河川水、工場排水などから採取した試料水には、有機体炭素、窒素、りんなど多種類の化合物質が含まれ、それらは試料水中に溶解、沈殿あるいは懸濁物の状態、すなわち不均一な分布状態で存在している。従来、懸濁物を含んだ試料水を測定する場合には、その試料水をいったん別の超音波破砕装置や粉砕装置などの容器内に移し替え、一定時間懸濁物を破砕、撹拌した後、その試料水をシリンジポンプで吸引して測定部に注入している。
【0003】
【発明が解決しようとする課題】
従来の水質分析計は上記のように構成されているが、超音波破砕装置や粉砕装置を用いて試料水中の懸濁物を破砕する場合、試料水をいったんそれらの容器に移し替えねばならないことと、通常のサンプル量に比べて多量の試料水を取扱わねばならないため、懸濁物の破砕処理に手間と時間がかかるという問題がある。また、水質分析計の外部で破砕処理された試料水をシリンジポンプで採取すると、懸濁物がシリンジ内で再沈殿や再凝縮をしてしまい、複数回注入して測定する場合、その都度測定値がばらつくという問題がある。
本発明は、このような事情に鑑みてなされたものであって、試料水中の懸濁物の分布を均一化する手間がかからず、測定値のばらつきのない水質分析計を提供することを目的とする。
【0004】
【課題を解決するための手段】
上記の目的を達成するため、本発明の水質分析計は、シリンジポンプ内に吸引した試料水を測定部に注入して、試料水中の特定化学物質を測定する水質分析計において、前記シリンジポンプのプランジャ部に超音波発生振動子を固着すると共に、該超音波発生振動子に外部から駆動電源を印加する電源を備え、シリンジポンプ内の試料水に超音波振動を与えることにより、試料水中の懸濁物を破砕、撹拌して、該試料水の含有化学物質の分布を均一化できるようにしたことを特徴とするものである。
本発明の水質分析計は上記のように構成されており、試料水を吸引したシリンジポンプ内で懸濁物の破砕、撹拌が行えるので、短時間に含有化学物質を均一な分布状態にすることができる。
【0005】
【発明の実施の形態】
以下、試料水中の全炭素濃度、IC炭素濃度及び有機体炭素濃度を測定することができる水質分析計の実施例を図面に基づいて説明する。
図1は、本発明の水質分析計の概略構成図である。図において、シリンジポンプ1は、試料容器7内の試料水8等を吸引するプランジャ1bと、吸引した試料水8を保持するシリンジ1aとからなり、マルチポートバルブ2の共通ポート2aに接続されている。このプランジャ1bの先端部には超音波発生振動子として電歪振動子3が固着され、引出し線4及びスイッチ5を介して励振電源6が接続されている。前記電歪振動子3は、励振電源6が印加されると試料水8中に超音波を発射し、試料水中に含まれる懸濁物を破砕、撹拌して試料水8中の含有化学物質の分布を均一化する。
【0006】
マルチポートバルブ2は、一つの共通ポート2aと複数の分配ポート2b〜2eを有し、適宜、共通ポート2aと分配ポート2b〜2eを切り換え接続する。分配ポート2bには、接続管9を介して試料容器7が接続されており、試料水8はこのポート2bからシリンジ1a内に吸引される。分配ポート2cには、接続管10を介してIC反応器13が接続されており、シリンジ1a内の試料水8がIC反応器13に注入される。また、分配ポート2dには、接続管11を介してTC燃焼炉14が接続されており、シリンジ1a内の試料水8がTC燃焼炉14に注入される。そして、分配ポート2eには、ドレン排出管12が接続されており、シリンジ1a内の不要残留物がこのドレン排出管12を通して適宜排出される。
【0007】
前記IC反応器13に注入される試料水8に含まれているIC(無機)炭素は、IC反応液13aと反応して二酸化炭素に変換された後、赤外線ガス分析計15に送られてIC炭素濃度として測定される。また、前記TC燃焼炉14に注入された試料水8は、不図示のキャリアガスと共にヒータ14bにより燃焼管14a内で燃焼され、試料水8中の全炭素は二酸化炭素に変換された後、赤外線ガス分析計15に送られて全炭素濃度として測定される。
なお、有機炭素濃度は、前記赤外線ガス分析計15において、全炭素濃度からIC炭素濃度を差し引いて求められる。
【0008】
図2は、本発明の特徴である試料水内の懸濁物の破砕、撹拌手段を有するシリンジポンプ1の動作説明図である。シリンジ1a内に試料水8を吸入した状態では、電歪振動子3はその試料水8内に浸漬している。この状態でスイッチ5をオンにして励振電源6から高周波電圧を電歪振動子3の電極3a、3b間に印加すると、電極3a、3bの対向する方向に電歪振動子3が伸縮し超音波振動波が発生する。この超音波振動波は図2の矢印で示すように、試料水8の下方から上方に向かって伝播し、試料水8はシリンジ1aの下方から上方に向かって押し上げられ、表面に達した試料水8はシリンジ1aの側壁に沿って下方に向かって移動する撹拌作用と、超音波振動波及びその振動によって発生するキャビテーション(空洞)による懸濁物の破砕作用とで、試料水8の懸濁物が分散し、その分布が均一化される。
なお、図1において、マルチポートバルブ2を駆動するためのモータ16、プランジャ1bを駆動するモータ17及び電歪振動子3を駆動するためのスイッチ5の制御は、図3に示される制御手段18によってなされる。
【0009】
次に、本発明の水質分析計の動作を、図1及び前記制御手段18の動作を示す図4のフローチャート図に基づいて説明する。先ず、モータ16を駆動してマルチポートバルブ2の共通ポート2aを分配ポート2bに接続した後、モータ17を駆動してプランジャ1bを引き下げ、一定量の試料水8をシリンジ1a内に試料容器7から吸引する(S1)。シリンジ1a内に試料水8が吸引された後、スイッチ5をオンにして励振電源6から高周波電圧を電歪振動子3に印加し、懸濁物を含む含有物に超音波を発射して、破砕、撹拌する(S2)。
【0010】
続いて、モータ16を駆動してマルチポートバルブ2の共通ポート2aを分配ポート2dに接続した後、モータ17を駆動してプランジャ1bを引き上げて、試料水8をTC燃焼炉14に注入し燃焼させると、その全炭素が二酸化炭素に変換される(S3)。この二酸化炭素を赤外線ガス分析計に送り測定することにより、全炭素濃度が計測される(S4)。
さらに、前記(S1)と同一の手順により一定量の試料水8をシリンジ1a内に吸引する(S5)。シリンジ1a内に試料水8が吸引された後、前記(S2)と同一手順により試料水8の破砕、撹拌が行われる(S6)。
【0011】
そして、モータ16を駆動してマルチポートバルブ2の共通ポート2aを分配ポート2cに切り換えた後、モータ17を駆動してプランジャ1bを引き上げて試料水8をIC反応器13に注入し、IC反応液13aと反応させるとIC炭素が二酸化炭素に変換される(S7)。この二酸化炭素を赤外線ガス分析計15に送り、測定することによりIC炭素濃度が計測される。なお、有機体炭素は前記全炭素濃度からIC炭素濃度を差し引いて有機炭素濃度が計測される(S8)。
【0012】
図5は、本発明の水質分析計の他の実施例の概略構成図を示したものである。図において、マルチポートバルブ2の分配ポート2cは接続管19を介して酸溶液18に接続され、分配ポート2dは接続管10を介して赤外線ガス分析計に接続され、分配ポート2eは接続管11を介してTC燃焼炉14に接続されている。また、シリンジ1aにはスパージ口19が設けられスパージガスが導入される。その他の構成要素で図1と同じ機能を有するものには同記号が付されている。
【0013】
本発明の水質分析計によるIC炭素濃度の測定は、共通ポート2aを分配ポート2b及び2cに切り換え、それぞれ一定量ずつの試料水8及び酸溶液18をシリンジ1a内に吸引し、スパージ口19からスパージガス19aを注入して、さらに電歪振動子3に高周波電圧を印加して超音波を発生し、IC炭素を二酸化炭素に変換した後、この二酸化炭素を赤外線ガス分析計15により測定して行うものであり、試料水8の懸濁物の破砕、撹拌以外に二酸化炭素への変換を促進する効果が得られ、測定時間をさらに短縮することができる。
【0014】
また、全炭素濃度の測定は、共通ポート2aを分配ポート2bに切り換え、シリンジ1aに試料水8を吸引して、シリンジ1a内で試料水8の化学物質の分布の均一化を行った後、共通ポート2aを分配ポート2eに切り換え、この試料水をTC燃焼炉14で二酸化炭素に変換して赤外線ガス分析計で測定して行う。
上記のように、本発明によればシリンジ1a内に採取された懸濁物を含んだ試料水を超音波振動波により破砕、撹拌することができ、別容器への移し替えの手間が省略でき、短時間で容易に試料水中の含有化学物質の分布を均一化することができ、測定精度のバラツキを無くし高精度の測定が可能となる。
なお、上記実施例において、超音波発生振動子として電歪振動子を使用しているが、プランジャに励磁コイルを形成して磁界を発生させることにより、磁歪振動子を使用することも可能である。
【0015】
【発明の効果】
本発明の水質分析計は上記のように構成されており、水質分析計のシリンジ内で試料水内の懸濁物の破砕、撹拌を行うので、手間がかからず破砕処理時間が最小ですむ。また、測定の直前で懸濁物の破砕、撹拌を行うので、懸濁物の再沈殿や再凝縮が起こらず、測定値にバラツキがなく精度の良い測定ができる。
【図面の簡単な説明】
【図1】本発明の実施例による水質分析計の概略構成図である。
【図2】本発明にかかるシリンジポンプの動作説明図である。
【図3】本発明にかかる制御手段及びモータ等のブロック図である。
【図4】本発明の水質分析計の動作を示すフローチャート図である。
【図5】本発明の他の実施例による水質分析計の概略構成図である。
【符号の説明】
1…シリンジポンプ 9、10、11、19…接続管
1a…シリンジ 12…ドレン排出管
1b…プランジャ 13…IC反応器
2…マルチポートバルブ 13a…IC反応液
2a…共通ポート 14…TC燃焼炉
2b、2c、2d、2e…分配ポート
3…電歪振動子 14a…TC燃焼管
4…引出し線 14b…ヒータ
5…スイッチ 15…赤外線ガス分析計
6…励振電源 16、17…モータ
7…試料容器 18…制御手段
8…試料水
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water quality analyzer for measuring contained chemical substances related to water quality such as TOC (organic carbon) and TN (total nitrogen) contained in sample water such as sewage, river water, or factory effluent.
[0002]
[Prior art]
Sample water collected from sewage, river water, factory effluent, etc. contains many kinds of compound substances such as organic carbon, nitrogen, phosphorus, etc., which are dissolved, precipitated, or suspended in the sample water, that is, insoluble. It exists in a uniform distribution. Conventionally, when measuring sample water containing a suspension, the sample water is once transferred to a container such as another ultrasonic crusher or crusher, and the suspension is crushed and stirred for a certain period of time. The sample water is sucked with a syringe pump and injected into the measuring section.
[0003]
[Problems to be solved by the invention]
Conventional water quality analyzers are configured as described above, but when crushing suspensions in sample water using an ultrasonic crushing device or crushing device, the sample water must be transferred to those containers once. Since a large amount of sample water has to be handled compared to the normal sample amount, there is a problem that it takes time and effort to crush the suspension. In addition, if sample water that has been crushed outside the water quality analyzer is collected with a syringe pump, the suspension will re-precipitate or re-condense inside the syringe, and measurement will be performed each time it is injected multiple times. There is a problem that the values vary.
The present invention has been made in view of such circumstances, and provides a water quality analyzer that does not require the effort to equalize the distribution of the suspension in the sample water and that does not cause variations in measured values. Objective.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the water quality analyzer of the present invention is a water quality analyzer for measuring a specific chemical substance in a sample water by injecting the sample water sucked into the syringe pump into the measurement unit. The ultrasonic wave generating vibrator is fixed to the plunger part, and the ultrasonic wave generating vibrator is provided with a power source for applying a driving power from the outside. By applying ultrasonic vibration to the sample water in the syringe pump, the suspension in the sample water is suspended. The turbid matter is crushed and stirred so that the distribution of chemical substances contained in the sample water can be made uniform.
The water quality analyzer of the present invention is configured as described above, and since the suspension can be crushed and stirred in the syringe pump that sucked the sample water, the contained chemical substances can be uniformly distributed in a short time. Can do.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a water quality analyzer capable of measuring the total carbon concentration, IC carbon concentration, and organic carbon concentration in sample water will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a water quality analyzer of the present invention. In the figure, a syringe pump 1 includes a plunger 1b that sucks sample water 8 and the like in a sample container 7 and a syringe 1a that holds the sucked sample water 8, and is connected to a common port 2a of the multiport valve 2. Yes. An electrostrictive vibrator 3 as an ultrasonic wave generating vibrator is fixed to the distal end portion of the plunger 1b, and an excitation power source 6 is connected through a lead wire 4 and a switch 5. When the excitation power supply 6 is applied, the electrostrictive vibrator 3 emits ultrasonic waves into the sample water 8, crushes and stirs the suspension contained in the sample water, and contains the chemical substances contained in the sample water 8. Uniform distribution.
[0006]
The multi-port valve 2 has one common port 2a and a plurality of distribution ports 2b to 2e, and switches between the common port 2a and the distribution ports 2b to 2e as appropriate. A sample container 7 is connected to the distribution port 2b via a connecting pipe 9, and sample water 8 is sucked into the syringe 1a from this port 2b. An IC reactor 13 is connected to the distribution port 2c via the connecting pipe 10, and the sample water 8 in the syringe 1a is injected into the IC reactor 13. Further, a TC combustion furnace 14 is connected to the distribution port 2d through a connection pipe 11, and the sample water 8 in the syringe 1a is injected into the TC combustion furnace 14. A drain discharge pipe 12 is connected to the distribution port 2e, and unnecessary residues in the syringe 1a are appropriately discharged through the drain discharge pipe 12.
[0007]
IC (inorganic) carbon contained in the sample water 8 injected into the IC reactor 13 reacts with the IC reaction solution 13a to be converted into carbon dioxide, and is then sent to the infrared gas analyzer 15 for IC. Measured as carbon concentration. The sample water 8 injected into the TC combustion furnace 14 is combusted in the combustion tube 14a by the heater 14b together with a carrier gas (not shown), and all the carbon in the sample water 8 is converted into carbon dioxide, and then the infrared ray. It is sent to the gas analyzer 15 and measured as the total carbon concentration.
The organic carbon concentration is obtained by subtracting the IC carbon concentration from the total carbon concentration in the infrared gas analyzer 15.
[0008]
FIG. 2 is an explanatory view of the operation of the syringe pump 1 having means for crushing and stirring the suspension in the sample water, which is a feature of the present invention. In a state where the sample water 8 is sucked into the syringe 1 a, the electrostrictive vibrator 3 is immersed in the sample water 8. In this state, when the switch 5 is turned on and a high-frequency voltage is applied from the excitation power source 6 between the electrodes 3a and 3b of the electrostrictive vibrator 3, the electrostrictive vibrator 3 expands and contracts in the direction opposite to the electrodes 3a and 3b. Vibration waves are generated. As indicated by the arrows in FIG. 2, this ultrasonic vibration wave propagates from below to above the sample water 8, and the sample water 8 is pushed upward from below the syringe 1a to reach the surface of the sample water. 8 is a stirring action that moves downward along the side wall of the syringe 1a, and a crushing action of the suspension due to an ultrasonic vibration wave and cavitation (cavity) generated by the vibration. Are dispersed and the distribution is made uniform.
In FIG. 1, the control of the motor 16 for driving the multiport valve 2, the motor 17 for driving the plunger 1b, and the switch 5 for driving the electrostrictive vibrator 3 is shown in FIG. Made by.
[0009]
Next, the operation of the water quality analyzer of the present invention will be described based on FIG. 1 and the flowchart of FIG. 4 showing the operation of the control means 18. First, the motor 16 is driven to connect the common port 2a of the multi-port valve 2 to the distribution port 2b, and then the motor 17 is driven to pull down the plunger 1b so that a certain amount of sample water 8 is put into the syringe 1a. (S1). After the sample water 8 is sucked into the syringe 1a, the switch 5 is turned on, a high frequency voltage is applied from the excitation power source 6 to the electrostrictive vibrator 3, and ultrasonic waves are emitted to the contents including the suspension, Crush and stir (S2).
[0010]
Subsequently, after driving the motor 16 to connect the common port 2a of the multiport valve 2 to the distribution port 2d, the motor 17 is driven to pull up the plunger 1b, and the sample water 8 is injected into the TC combustion furnace 14 for combustion. Then, all the carbon is converted into carbon dioxide (S3). The total carbon concentration is measured by sending this carbon dioxide to the infrared gas analyzer and measuring it (S4).
Further, a predetermined amount of sample water 8 is sucked into the syringe 1a by the same procedure as (S1) (S5). After the sample water 8 is sucked into the syringe 1a, the sample water 8 is crushed and stirred by the same procedure as (S2) (S6).
[0011]
Then, the motor 16 is driven to switch the common port 2a of the multi-port valve 2 to the distribution port 2c, and then the motor 17 is driven to pull up the plunger 1b to inject the sample water 8 into the IC reactor 13 for the IC reaction. When reacted with the liquid 13a, IC carbon is converted to carbon dioxide (S7). IC carbon concentration is measured by sending this carbon dioxide to the infrared gas analyzer 15 and measuring it. The organic carbon concentration is measured by subtracting the IC carbon concentration from the total carbon concentration (S8).
[0012]
FIG. 5 shows a schematic configuration diagram of another embodiment of the water quality analyzer of the present invention. In the figure, the distribution port 2c of the multi-port valve 2 is connected to the acid solution 18 via the connection pipe 19, the distribution port 2d is connected to the infrared gas analyzer via the connection pipe 10, and the distribution port 2e is connected to the connection pipe 11. Is connected to the TC combustion furnace 14. Further, the syringe 1a is provided with a sparge port 19 and sparge gas is introduced. Other components having the same functions as those in FIG. 1 are given the same symbols.
[0013]
The IC carbon concentration is measured by the water quality analyzer of the present invention by switching the common port 2a to the distribution ports 2b and 2c, and sucking a predetermined amount of sample water 8 and acid solution 18 into the syringe 1a, respectively, from the sparge port 19 A sparge gas 19a is injected, and a high-frequency voltage is further applied to the electrostrictive vibrator 3 to generate ultrasonic waves. After converting IC carbon to carbon dioxide, the carbon dioxide is measured by the infrared gas analyzer 15. In addition to crushing and stirring the suspension of the sample water 8, the effect of promoting the conversion to carbon dioxide can be obtained, and the measurement time can be further shortened.
[0014]
The total carbon concentration is measured after switching the common port 2a to the distribution port 2b, sucking the sample water 8 into the syringe 1a, and homogenizing the distribution of chemical substances in the sample water 8 in the syringe 1a. The common port 2a is switched to the distribution port 2e, and this sample water is converted into carbon dioxide in the TC combustion furnace 14 and measured with an infrared gas analyzer.
As described above, according to the present invention, the sample water containing the suspension collected in the syringe 1a can be crushed and stirred by the ultrasonic vibration wave, and the trouble of transferring to another container can be omitted. In addition, the distribution of the chemical substances contained in the sample water can be made uniform easily in a short time, and variations in measurement accuracy can be eliminated and high-precision measurement can be performed.
In the above embodiment, an electrostrictive vibrator is used as the ultrasonic wave generating vibrator. However, it is also possible to use a magnetostrictive vibrator by forming an exciting coil on the plunger to generate a magnetic field. .
[0015]
【The invention's effect】
The water quality analyzer of the present invention is configured as described above. Since the suspension in the sample water is crushed and agitated in the syringe of the water quality analyzer, there is no need for trouble and the crushing time is minimized. . In addition, since the suspension is crushed and stirred immediately before the measurement, the suspension is not re-precipitated or re-condensed, and the measurement value does not vary and the measurement can be performed with high accuracy.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a water quality analyzer according to an embodiment of the present invention.
FIG. 2 is an operation explanatory diagram of a syringe pump according to the present invention.
FIG. 3 is a block diagram of a control unit and a motor according to the present invention.
FIG. 4 is a flowchart showing the operation of the water quality analyzer of the present invention.
FIG. 5 is a schematic configuration diagram of a water quality analyzer according to another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Syringe pump 9, 10, 11, 19 ... Connection pipe 1a ... Syringe 12 ... Drain discharge pipe 1b ... Plunger 13 ... IC reactor 2 ... Multiport valve 13a ... IC reaction liquid 2a ... Common port 14 ... TC combustion furnace 2b 2c, 2d, 2e ... distribution port 3 ... electrostrictive vibrator 14a ... TC combustion tube 4 ... lead wire 14b ... heater 5 ... switch 15 ... infrared gas analyzer 6 ... excitation power source 16, 17 ... motor 7 ... sample container 18 ... Control means 8 ... Sample water

Claims (1)

シリンジポンプ内に吸引した試料水を測定部に注入して、試料水中の特定化学物質を測定する水質分析計において、前記シリンジポンプのプランジャ部に超音波発生振動子を固着すると共に、該超音波発生振動子に外部から駆動電源を印加する電源を備え、シリンジポンプ内の試料水に超音波振動を与えることにより、試料水中の懸濁物を破砕、撹拌して、該試料水の含有化学物質の分布を均一化できるようにしたことを特徴とする水質分析計。In a water quality analyzer for injecting sample water sucked into a syringe pump into a measurement unit and measuring a specific chemical substance in the sample water, an ultrasonic wave generating vibrator is fixed to a plunger part of the syringe pump, and the ultrasonic wave The generator vibrator is equipped with a power source for applying a driving power from the outside, and by applying ultrasonic vibration to the sample water in the syringe pump, the suspension in the sample water is crushed and stirred, and the chemical substances contained in the sample water Water quality analyzer, characterized in that the distribution of water can be made uniform.
JP36772999A 1999-12-24 1999-12-24 Water quality analyzer Expired - Fee Related JP4292661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36772999A JP4292661B2 (en) 1999-12-24 1999-12-24 Water quality analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36772999A JP4292661B2 (en) 1999-12-24 1999-12-24 Water quality analyzer

Publications (2)

Publication Number Publication Date
JP2001183360A JP2001183360A (en) 2001-07-06
JP4292661B2 true JP4292661B2 (en) 2009-07-08

Family

ID=18490052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36772999A Expired - Fee Related JP4292661B2 (en) 1999-12-24 1999-12-24 Water quality analyzer

Country Status (1)

Country Link
JP (1) JP4292661B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105004836A (en) * 2014-04-21 2015-10-28 赛默飞世尔(上海)仪器有限公司 Method and device for online water quality detection

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6931950B2 (en) 2001-12-13 2005-08-23 Xerox Corporation System and processes for particulate analysis
KR100989636B1 (en) * 2009-08-31 2010-10-26 (주)대신피아이씨 Method for cleaning sensor of measuring instrument using an ultrasound oscillator and measuring instrument
JP6160536B2 (en) * 2014-03-28 2017-07-12 株式会社島津製作所 Water quality analyzer and water quality analysis method
CN104764696A (en) * 2015-04-08 2015-07-08 三峡大学 Water quality heavy metal online sample detection system
CN105842467B (en) * 2015-04-08 2017-06-06 三峡大学 A kind of multi-parameter water-quality monitors instrument on-line
US11946278B2 (en) 2018-08-09 2024-04-02 Maytronics Ltd. Device and system utilizing ultrasonic waves in spectrophotometrically monitoring the quality of water in swimming-pools
KR102359468B1 (en) * 2020-09-17 2022-02-07 서울과학기술대학교 산학협력단 Improve Total Organic Carbon Analysis Method with pretreatment and homogeneity evaluation of Sample
CN114323779A (en) * 2022-01-11 2022-04-12 河北省地矿局第八地质大队(河北省海洋地质资源调查中心) Method and device for sampling and monitoring concentration of suspended matters in construction sea area

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105004836A (en) * 2014-04-21 2015-10-28 赛默飞世尔(上海)仪器有限公司 Method and device for online water quality detection

Also Published As

Publication number Publication date
JP2001183360A (en) 2001-07-06

Similar Documents

Publication Publication Date Title
JP4292661B2 (en) Water quality analyzer
KR100932024B1 (en) Micro Chemical Analysis Device, Micro Mixing Device and Micro Chemical Analysis System
US7264709B2 (en) Method and apparatus for conditioning a sensor for measuring oxidation reduction potential
Capote et al. Analytical applications of ultrasound
EP3564681B1 (en) Nozzle cleaner and automated analyzer using same
US20060099111A1 (en) Liquid analysis system and cartridge
US8169122B1 (en) Ultra sonic release of DNA or RNA
JP3812219B2 (en) Chemical analyzer
EP0555842A1 (en) A method of dissolving biological tissue
GB2403729A (en) Sonicator device and method
WO2018235383A1 (en) Sample liquid-feeding device, flow cytometer, and sample liquid-feeding method
JP3153676B2 (en) Sample mixing device and fluorescence detection device using the same
JP2019124608A (en) Chemical analyzer and sound wave stirrer used in chemical analyzer
JP2017207391A (en) Sample injection device and chromatograph device equipped with the device
JP5467231B2 (en) Ultrasonic concentration method and ultrasonic concentration analysis system
EP2083256A1 (en) Method for agitating liquid material by using crystal oscillator
JP2001242177A (en) Auto analyzer
EP3990909A1 (en) External sonication
JP2002204939A (en) Agitator and analyzer provided therewith
TWI323196B (en)
JP2003033637A (en) Automatic analyzer
JP2003035715A (en) Ultrasonic stirring device and autoanalyzer using the same
JP5026994B2 (en) Automatic analyzer
JP2004037187A (en) Ultrasonic vibration supplying apparatus and its supply method
JPH08113300A (en) Stirring nozzle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees