JP4292274B2 - Circuit for small amplitude operation signal - Google Patents

Circuit for small amplitude operation signal Download PDF

Info

Publication number
JP4292274B2
JP4292274B2 JP2004039949A JP2004039949A JP4292274B2 JP 4292274 B2 JP4292274 B2 JP 4292274B2 JP 2004039949 A JP2004039949 A JP 2004039949A JP 2004039949 A JP2004039949 A JP 2004039949A JP 4292274 B2 JP4292274 B2 JP 4292274B2
Authority
JP
Japan
Prior art keywords
circuit
coaxial
cable
line
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004039949A
Other languages
Japanese (ja)
Other versions
JP2005235429A (en
Inventor
勇二 河西
正宏 村川
哲也 樋口
Original Assignee
財団法人日本産業技術振興協会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人日本産業技術振興協会 filed Critical 財団法人日本産業技術振興協会
Priority to JP2004039949A priority Critical patent/JP4292274B2/en
Publication of JP2005235429A publication Critical patent/JP2005235429A/en
Application granted granted Critical
Publication of JP4292274B2 publication Critical patent/JP4292274B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Communication Cables (AREA)

Description

この発明は、高速通信用伝送ケーブルに関し、特に複数の同軸線路を束ね、各同軸線路
に個別の通信チャネルを伝送させる通信線路ケーブルの構造に関する。
The present invention relates to a transmission cable for high-speed communication, and more particularly to a structure of a communication line cable that bundles a plurality of coaxial lines and transmits individual communication channels to the respective coaxial lines.

従来、高速信号のケーブル伝送には一般に、電源電圧で論理振幅するシングルエンド信
号が用いられてきたが、近年の高速データ転送の要求に伴う駆動周波数アップ、バス幅の
増大に対して、放射ノイズ抑制と外来ノイズに対する耐性の観点から、小振幅差動信号(
LVDS Low Voltage Differential Signaling)でケーブル伝送する方法が用いられる
様になってきている。
Conventionally, single-ended signals that have a logical amplitude based on the power supply voltage have been used for high-speed signal cable transmission. However, in response to the recent increase in drive frequency and bus width associated with the demand for high-speed data transfer, radiation noise From the viewpoint of suppression and immunity to external noise, small-amplitude differential signals (
A cable transmission method using LVDS Low Voltage Differential Signaling has come to be used.

図5は、従来のLVDSインターフェースの構成図であり、送信側IC23と受信側I
C24の間は、奇モード・インピーダンスZoddが50Ωの伝送線路25と伝送線路2
6により結ばれ、伝送線路25、26は受信側IC入力端において100Ωの抵抗27で
終端されている。送信側IC23は、約3.5mAの電流を駆動し、100Ωの終端抵抗
27の両端に約350mVの電圧を発生させる仕様を有している。また、伝送線路25と
伝送線路26は電気的特性が等しく、いわゆる平衡伝送路を形成しており、LVDSでは
この2本の伝送線路により1つの信号の伝送を行うのが大きな特徴である。送信側IC2
3は入力端子21からの入力信号に基づいて、伝送線路25、伝送線路26の間に電位差
を生じるような差動信号を生成する。これに対して、受信側IC24は伝送線路25、伝
送線路26間の受信端に結合された100Ωの終端抵抗27の両端に生じる約350mV
の差動信号を受けてCMOSレベル電圧に変換し、これを出力端子22から出力する仕様
となっている。
FIG. 5 is a block diagram of a conventional LVDS interface, which shows a transmission side IC 23 and a reception side I.
Between C24, the transmission line 25 and the transmission line 2 having an odd mode impedance Zodd of 50Ω.
6, the transmission lines 25 and 26 are terminated with a 100Ω resistor 27 at the input end of the receiving IC. The transmission side IC 23 has a specification that drives a current of about 3.5 mA and generates a voltage of about 350 mV across the 100Ω termination resistor 27. In addition, the transmission line 25 and the transmission line 26 have the same electrical characteristics and form a so-called balanced transmission line. In the LVDS, one signal is transmitted through these two transmission lines. Sending side IC2
3 generates a differential signal that generates a potential difference between the transmission line 25 and the transmission line 26 based on the input signal from the input terminal 21. On the other hand, the receiving side IC 24 has about 350 mV generated at both ends of the 100Ω termination resistor 27 coupled to the receiving end between the transmission line 25 and the transmission line 26.
The differential signal is received, converted into a CMOS level voltage, and this is output from the output terminal 22.

LVDSの原理は、送信側IC23で発生した信号電流Isを、伝送線路25と伝送線
路26の平衡伝送路と受信側IC24近傍に配置された終端抵抗27で形成されるループ
に流すことによって、終端抵抗27の部分に信号電圧を発生させて信号を伝送するもので
ある。デジタル信号の「0」、「1」は、信号電流Isの流れる向きを切り替えることに
より識別する。伝送線路25と伝送線路26を流れる信号電流Isは、大きさが同じで、
向きが逆であるために、本来は、各々に流れる電流によって発生する磁界は互いに打ち消
しあい、結果として放射ノイズや、クロストーク・ノイズの発生を抑制する効果が生まれ
る。また、外来のノイズに対しても、影響の受け方が伝送経路25と伝送経路26とで相
対的に同じであれば信号の論理に影響しないという点で、ノイズ耐性にも優れている。
The principle of LVDS is that the signal current Is generated in the transmission side IC 23 is caused to flow through a loop formed by the transmission line 25 and the balanced transmission path of the transmission line 26 and the termination resistor 27 disposed in the vicinity of the reception side IC 24. A signal voltage is generated in the portion of the resistor 27 to transmit the signal. Digital signals “0” and “1” are identified by switching the direction in which the signal current Is flows. The signal current Is flowing through the transmission line 25 and the transmission line 26 has the same magnitude,
Since the directions are reversed, the magnetic fields generated by the currents flowing through each other cancel each other out, resulting in the effect of suppressing the generation of radiation noise and crosstalk noise. In addition, even with respect to external noise, if the influence is relatively the same between the transmission path 25 and the transmission path 26, the noise resistance is excellent in that the signal logic is not affected.

従来上記伝送線路として、ツイストペア線路もしくは平行2線シールドケーブルが用い
られてきた。しかし、実験の結果、表1に示す如く、従来のツイストペア線路もしくは平
行2線シールドケーブルはいずれも減衰が大きく,またチャネル間漏話によるノイズが大
きく、高速通信用の信号伝送路、特に10GHz帯での信号伝送路として使うことができ
ないことがわかった。
Conventionally, twisted pair lines or parallel two-wire shielded cables have been used as the transmission lines. However, as a result of the experiment, as shown in Table 1, the conventional twisted pair line or the parallel two-wire shielded cable has a large attenuation and a large amount of noise due to cross-talk between channels. It was found that it cannot be used as a signal transmission line.

Figure 0004292274
Figure 0004292274

なお、表1において、UTPとはUnsealed Twist Pairの略であり、カテゴリ7および
カテゴリ6はケーブルの国際的な規格におけるケーブルの種別である。インフィニバンド
用とは、シールドされた平衡2線を8本束ねたケーブルである。これら平衡2線の特性が
悪いのは図4に示す如く、それぞれの平衡2線によって生じる磁界が異なる、すなわち線
路の中心が相互にずれているため両線路によって生じる磁界が正確には一致せず、互いに
打ち消されない部分が残ってしまうためと考えられる。
特開2002−354053号公報
In Table 1, UTP is an abbreviation for Unsealed Twist Pair, and Category 7 and Category 6 are cable types in international cable standards. For InfiniBand is a cable that bundles eight shielded balanced two wires. As shown in FIG. 4, the characteristics of these balanced two lines are poor, as shown in FIG. 4, the magnetic fields generated by the balanced two lines are different, that is, the centers of the lines are shifted from each other, so the magnetic fields generated by both lines do not match exactly. This is thought to be because the portions that are not canceled out remain.
JP 2002-354053 A

この発明は、上記従来のツイストペア線路もしくは平行2線シールドケーブルの欠点を改善し、減衰が小さく、漏話によるノイズも小さく、さらに絶縁被覆を無くすことによりケーブル断面積が小さい小振幅差動信号用回路を提供することを目的とする。The present invention, the conventional twisted pair line or to remedy the drawbacks of the two parallel lines shielded cable, attenuation is small, noise due to crosstalk is small, the cable section is smaller by eliminating an insulating coating small amplitude differential signal circuit The purpose is to provide.

これを解決するため、本発明の小振幅差動信号用回路は、小振幅差動信号用送信回路と 小振幅差動信号用受信回路とを、両端部側にそれぞれ配置されたコモン・モード・チョー ク・コイルを介して同軸線の芯線と外部導体とで接続することにより通信チャネルを形成 した回路ユニットを複数有し、前記各回路ユニットを構成する同軸線が絶縁被覆を有さず、該同軸線の外部導体が相互に他のチャネルの同軸線の外部導体と電気的に接続されていることを特徴とする。In order to solve this, the small-amplitude differential signal circuit of the present invention has a common-mode differential circuit in which a small-amplitude differential signal transmission circuit and a small-amplitude differential signal reception circuit are arranged on both ends. a plurality of circuit units forming a communications channel by connecting with the core wire and the outer conductor of the coaxial line via a choke coil, coaxial lines constituting each circuit unit does not have an insulating coating, said The outer conductor of the coaxial line is electrically connected to the outer conductor of the coaxial line of another channel.

さらに、前記同軸線の間隙に介在用のひもを設けたことを特徴とする。Further, an interposing string is provided in the gap of the coaxial line .

本発明の小振幅差動信号用回路は、減衰が小さく、漏話によるノイズも小さいので、高速信号用回路として優れた特性を示す。また、各同軸線の絶縁被覆を無くすことにより、同径の絶縁被覆を有する同軸線に比較し該絶縁被覆分だけ同軸線の外部導体内側の絶縁体の径を大きくできるので、その分減衰量の小さい小振幅差動信号用回路を提供することができる。さらに、同軸線の両側にコモン・モード・チョーク・コイルを配置することによ り、寄生信号路がコモン・モード・チョーク・コイルのインダクタンスによって阻止され るので、不要信号の発生を阻止することができる。また、コモン・モード・チョーク・コ イルは、同軸線をフェライトコアに巻き付けることにより構成されるので、信号線路の特 性インピーダンスを均一にすることができ、インピーダンス不整合を解消することができ る。 The small-amplitude differential signal circuit of the present invention exhibits excellent characteristics as a high-speed signal circuit because of low attenuation and low noise due to crosstalk. In addition, by eliminating the insulation coating of each coaxial line , the diameter of the insulator inside the outer conductor of the coaxial line can be increased by an amount corresponding to the insulation coating as compared with the coaxial wire having the same diameter insulation coating, so that the attenuation amount accordingly. A small-amplitude differential signal circuit with a small amplitude can be provided. Further, Ri by the placing the common mode choke coil on each side of the coaxial line, a parasitic signal path is blocked by the inductance of the common mode choke coil Runode, be prevented generation of unnecessary signals it can. Also, common mode choke coils, because is constituted by winding a coaxial line on a ferrite core, it is possible to make uniform the characteristic impedance of the signal line, Ru can be eliminated impedance mismatch .

以下、この発明の通信線路ケーブルについて図を用いて説明する。
本発明は、4本の同軸ケーブルを使用して、パルス振幅変調(PAM)方式により全二
重で計10ギガビット毎秒(Gbps)以上の伝送が可能なデジタル伝送システムを対象
とする。
Hereinafter, the communication line cable of this invention is demonstrated using figures.
The present invention is directed to a digital transmission system capable of transmitting a total of 10 gigabits per second (Gbps) or more in full duplex by a pulse amplitude modulation (PAM) system using four coaxial cables.

図1,図2は、上記伝送システムに用いられるこの発明の通信線路ケーブル1の構造を
示す。図2は図1の断面図である。図2は図1の断面図である。図1,図2において、2
,3,4,5は同軸線であり、図2に示す如く、各同軸線2〜5は、芯線10〜13と絶
縁体14〜17を介したその外側の編組シールド6〜9から構成される。なお、図2にお
いて、18等の黒丸部分は介在用のひもで4本の同軸線が上記介在ひもと共にシース19
に覆われて複合通信線路ケーブル1となっている。この発明の通信線路ケーブルの特徴は
各同軸線に絶縁外皮が存在しない点である。従って、各同軸線は外側シールド導体(編組
シールド)が相互に電気的に接続されている状態になる。この発明の発明者は、同軸線に
絶縁外皮が無くても各同軸線を伝送するチャネル間に漏話が生じないことを実験により確
認した。これは従来の常識を破る新たな知見である。なお、従来は上記外部導体に流れる
電流が他の同軸ケーブルにも流れてしまい、漏話が生じるものと考えられていた。
1 and 2 show the structure of a communication line cable 1 of the present invention used in the transmission system. FIG. 2 is a cross-sectional view of FIG. FIG. 2 is a cross-sectional view of FIG. 1 and 2, 2
, 3, 4, 5 are coaxial lines, and as shown in FIG. 2, each of the coaxial lines 2-5 is composed of a core wire 10-13 and braided shields 6-9 on the outside via insulators 14-17. The In FIG. 2, black circles such as 18 are intervening strings, and four coaxial lines are connected to the sheath 19 together with the intervening strings.
The composite communication line cable 1 is covered. A feature of the communication line cable of the present invention is that there is no insulation sheath on each coaxial line. Therefore, each coaxial line is in a state where the outer shield conductors (braided shields) are electrically connected to each other. The inventor of the present invention has confirmed through experiments that no crosstalk occurs between the channels that transmit each coaxial line even if the coaxial line has no insulating sheath. This is a new finding that breaks conventional common sense. Conventionally, it has been considered that the current flowing through the outer conductor also flows through other coaxial cables, resulting in crosstalk.

上記構造の通信線路の利点は、以下のとおりである。
(1)各同軸線は芯線を往路及び外皮シールドを復路とする電流経路を形成し、該往路と
復路の電流は方向が逆で大きさが同じであるので、それぞれから発生する磁界は相互に打
ち消される。このとき、流れる電流が発生する同心円上の磁界の中心点は同じで、外側シ
ールド導体の外側に発生する磁界の大きさもまったく同一であるので、上記磁界の打ち消
しは完全なものとなり、平衡2線の場合のような往路と復路の電流の中心点のずれによる
磁界のずれは生じない。従って、平衡2線の場合に上記磁界のずれによって生じるチャネ
ル間漏話が原理的には発生しない。
(2)各同軸線の絶縁被覆が無いので、その分4本を束ねた時のケーブルの断面積は小さ
いものとなる。すなわち、各同軸ケーブルの絶縁被覆を無くすことにより、同径の絶縁被
覆を有する同軸ケーブルに比較し該絶縁被覆分だけ同軸線の外部導体内側の絶縁体の径を
大きくできる。
The advantages of the communication line having the above structure are as follows.
(1) Each coaxial line forms a current path with the core wire as the forward path and the outer shield as the return path, and the currents of the forward path and the return path are opposite in direction and have the same magnitude. Be countered. At this time, the center point of the magnetic field on the concentric circle where the flowing current is generated is the same and the magnitude of the magnetic field generated on the outside of the outer shield conductor is exactly the same. In this case, the magnetic field does not shift due to the shift of the center point of the forward and return currents. Therefore, in principle, no inter-channel crosstalk caused by the magnetic field deviation occurs in the case of balanced two wires.
(2) Since there is no insulation coating for each coaxial line, the cross-sectional area of the cable when the four wires are bundled is reduced. That is, by eliminating the insulation coating of each coaxial cable, the diameter of the insulator inside the outer conductor of the coaxial line can be increased by an amount corresponding to the insulation coating as compared with the coaxial cable having the same diameter insulation coating.

特性インピーダンンスが同じで絶縁体および導体の材質が同じ同軸線の場合、減衰量は
外部導体内側の絶縁体の径で決まる。同径(同じ断面積)の上記複合ケーブルを形成する
とき、本発明のように絶縁被覆のない同軸線を用いれば絶縁被覆を有する同軸線を用いる
場合に比較し、各同軸線の上記外部導体内部の絶縁体の径を大きくすることができるので
、複合ケーブル全体の径が同じ場合絶縁被覆無しの同軸線を用いる方が減衰量の小さい高
速通信用伝送ケーブルが提供できる。
When the characteristic impedance is the same and the insulator and conductor are the same coaxial line, the attenuation is determined by the diameter of the insulator inside the outer conductor. When forming the composite cable having the same diameter (the same cross-sectional area), if the coaxial cable without insulation coating is used as in the present invention, the outer conductor of each coaxial line is compared with the case of using the coaxial cable with insulation coating. Since the diameter of the internal insulator can be increased, it is possible to provide a transmission cable for high-speed communication with a smaller attenuation if a coaxial cable without insulation coating is used when the diameter of the entire composite cable is the same.

ところで、同軸線を伝送路に用いた場合でも平衡線路の場合と同様に、図3に示す如く
、外部導体(外皮シールド)33が送信回路31や受信回路34の接地によりそれぞれの
端末装置内の共通の接地37,38に接続されるので、図3の39に示す如く、外部導体
33、送信回路側の共通の接地37、アース、受信回路側の共通の接地38、外部導体3
3のルートでグランドループを形成するため不要信号が発生する可能性がある。
By the way, even when the coaxial line is used for the transmission line, as in the case of the balanced line, as shown in FIG. 3, the outer conductor (outer shield) 33 is connected to the inside of each terminal device by the grounding of the transmitting circuit 31 and the receiving circuit 34. Since it is connected to the common grounds 37 and 38, as shown by 39 in FIG. 3, the external conductor 33, the common ground 37 on the transmission circuit side, the ground, the common ground 38 on the reception circuit side, and the external conductor 3
Since the ground loop is formed by the route 3, an unnecessary signal may be generated.

このため、本発明の通信ケーブルには、図3に示す如く、送信回路31、または受信回
路34に接続される前に図6に示されるようなコモンモード・チョーク・コイル35,3
6を挿入することが好ましい。特に、本発明の場合は、同軸線の外部導体(外皮シールド
)が相互に接続状態にあるので、チャネル間においても該外部導体を介してグランドルー
プに起因する不要信号成分が発生しやすく、上記コモンモード・チョーク・コイルを挿入
する必要性が高い。
For this reason, the communication cable of the present invention has a common mode choke coil 35, 3 as shown in FIG. 6 before being connected to the transmission circuit 31 or the reception circuit 34, as shown in FIG.
6 is preferably inserted. In particular, in the case of the present invention, since the outer conductor (coating shield) of the coaxial line is in a mutually connected state, an unnecessary signal component due to the ground loop is easily generated between the channels via the outer conductor. The need to insert a common mode choke coil is high.

コモンモード・チョーク・コイルを挿入すれば、図3における前記アースを介する寄生
信号路がコモンモード・チョーク・コイルのインダクタンスによって阻止されるので、前
記不要信号の発生が阻止される。
If a common mode choke coil is inserted, the parasitic signal path through the ground in FIG. 3 is blocked by the inductance of the common mode choke coil, thereby preventing the generation of the unnecessary signal.

コモンモード・チョーク・コイルは、従来は1対の撚り線を用いる構成であったが、本
発明では図6の如く1本の同軸線をトロイダル状のフェライトコアに巻き付ける構成であ
る。このように、同軸線を用いることで、信号線路の特性インピーダンスを均一にするこ
とができ、不要信号の原因となるインピーダンス不整合を解消することが可能である。
Conventionally, the common mode choke coil has a configuration using a pair of twisted wires, but in the present invention, a single coaxial wire is wound around a toroidal ferrite core as shown in FIG. Thus, by using the coaxial line, the characteristic impedance of the signal line can be made uniform, and it is possible to eliminate the impedance mismatch that causes unnecessary signals.

また、通信線路ケーブル1の末端で同軸線をフェライトコアに巻き付けることにより、
コネクタ接続無しでコモンモード・チョーク・コイルを実現できる。この場合、端末装置
と通信線路ケーブル1との間のコネクタ部分にコモンモード・チョーク・コイルを内蔵す
ることも可能である。
Also, by wrapping a coaxial line around the ferrite core at the end of the communication line cable 1,
Common mode choke coil can be realized without connector connection. In this case, a common mode choke coil can be incorporated in the connector portion between the terminal device and the communication line cable 1.

同軸線に用いる絶縁体14〜17(図2)の材質は、発泡ポリエチレンが好適であり、
減衰の非常に少ない通信線路ケーブルを低コストで実現できる。このような発泡ポリエチ
レンは同軸線の構造には容易に使用可能であるが、ツイストペア線路もしくは平行2線の
構造には適用が困難であることから、本発明の通信線路ケーブルでは従来に比べて減衰量
を少なくすることができる。
The material of the insulators 14 to 17 (FIG. 2) used for the coaxial line is preferably foamed polyethylene,
A communication line cable with very little attenuation can be realized at low cost. Although such foamed polyethylene can be easily used for a coaxial line structure, it is difficult to apply to a twisted pair line or a parallel two-line structure. The amount can be reduced.

同軸線のチャネルを識別するために、絶縁体14〜17に着色してもよく、編組シール
ド6〜9に着色した薄いフィルム状のテープを粗に巻き付けても良い。
In order to identify the channel of the coaxial line, the insulators 14 to 17 may be colored, or a thin film tape colored on the braided shields 6 to 9 may be roughly wound.

本発明によれば、減衰が小さく、漏話によるノイズも小さい、また施設の作業性もよい
、優れた特性の高速信号伝送ケーブルが実現できた。このケーブルを用いることにより、
ギガヘルツ帯における高速伝送路としても100mのものが実現できる。
According to the present invention, it is possible to realize a high-speed signal transmission cable with excellent characteristics that is small in attenuation, small in noise due to crosstalk, and good in workability of facilities. By using this cable,
A 100 m high-speed transmission line in the gigahertz band can be realized.

この発明の高速信号伝送ケーブルの切り欠き斜視図である。It is a notch perspective view of the high-speed signal transmission cable of this invention. 図1のケーブルの断面図である。It is sectional drawing of the cable of FIG. この発明の高速伝送路の回路説明図である。It is circuit explanatory drawing of the high-speed transmission path of this invention. 平衡2線ケーブルに発生する次回の説明図である。It is explanatory drawing of the next time which generate | occur | produces in a balanced 2-wire cable. 小振幅差動信号(LVDS Low Voltage Differential Signaling)でケーブル伝送する方法の説明図である。It is explanatory drawing of the method of carrying out cable transmission with a small amplitude differential signal (LVDS Low Voltage Differential Signaling). コモン・モード・チョークコイルの例を示す図である。It is a figure which shows the example of a common mode choke coil.

符号の説明Explanation of symbols

1 通信線路ケーブル
2〜5 同軸線
6〜9 編組シールド
10〜13 芯線
14〜17 絶縁体
18 介在用ひも
31 送信回路
32,33 伝送路
34 受信回路
35,36 コモンモード・チョークコイル
DESCRIPTION OF SYMBOLS 1 Communication line cable 2-5 Coaxial line 6-9 Braided shield 10-13 Core wire 14-17 Insulator 18 Interposing string 31 Transmission circuit 32, 33 Transmission path 34 Reception circuit 35, 36 Common mode choke coil

Claims (2)

小振幅差動信号用送信回路と小振幅差動信号用受信回路とを、両端部側にそれぞれ配置さ れたコモン・モード・チョーク・コイルを介して同軸線の芯線と外部導体とで接続するこ とにより通信チャネルを形成した回路ユニットを複数有し、
前記各回路ユニットを構成する同軸線が絶縁被覆を有さず、該同軸線の外部導体が相互に他のチャネルの同軸線の外部導体と電気的に接続されていることを特徴とする小振幅差動 信号用回路
A small-amplitude differential signal transmission circuit and a small-amplitude differential signal reception circuit are connected to each other through a common mode choke coil disposed on both ends of the coaxial wire and an external conductor. a plurality of circuit units forming a communications channel by a crotch,
The small-amplitude characterized in that the coaxial line constituting each circuit unit does not have an insulating coating, and the outer conductor of the coaxial line is electrically connected to the outer conductor of the coaxial line of another channel. Differential signal circuit .
前記同軸線の間隙に介在用のひもを設けたことを特徴とする前記請求項1に記載の小振幅 差動信号用回路The small-amplitude differential signal circuit according to claim 1, wherein a string for interposition is provided in the gap of the coaxial line .
JP2004039949A 2004-02-17 2004-02-17 Circuit for small amplitude operation signal Expired - Fee Related JP4292274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004039949A JP4292274B2 (en) 2004-02-17 2004-02-17 Circuit for small amplitude operation signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004039949A JP4292274B2 (en) 2004-02-17 2004-02-17 Circuit for small amplitude operation signal

Publications (2)

Publication Number Publication Date
JP2005235429A JP2005235429A (en) 2005-09-02
JP4292274B2 true JP4292274B2 (en) 2009-07-08

Family

ID=35018176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004039949A Expired - Fee Related JP4292274B2 (en) 2004-02-17 2004-02-17 Circuit for small amplitude operation signal

Country Status (1)

Country Link
JP (1) JP4292274B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101556839B (en) * 2008-04-09 2011-08-24 清华大学 Cable
CN101497437B (en) 2008-02-01 2012-11-21 清华大学 Method for preparing carbon nano-tube compound film
JP2010272809A (en) * 2009-05-25 2010-12-02 Mitsubishi Electric Corp Common mode choke coil and signal transmission circuit using the same
JP7155107B2 (en) 2017-03-15 2022-10-18 株式会社村田製作所 Circuit modules, network modules, and in-vehicle electronic equipment

Also Published As

Publication number Publication date
JP2005235429A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
US7449639B2 (en) Shielded flat pair cable architecture
US8284007B1 (en) Magnetic package for a communication system
US8674223B2 (en) High speed data cable with impedance correction
CN104115240B (en) Data cable
JP5436985B2 (en) High-speed digital galvanic isolator with built-in low-voltage differential signal interface
US7753720B2 (en) On-train information transmitting/receiving system
US7307512B2 (en) Power line coupling device and method of use
KR0180017B1 (en) Circuit for broadband video transmission over unshielded twisted wire pairs
US9040823B2 (en) Low impedance boosted high speed data cable
US9728904B2 (en) Method for connecting differential transmission cable, differential transmission cable and electric device
JPH11505677A (en) Electromagnetic interference isolator
NO177949B (en) Transmission system with aids to reduce electromagnetic interference
JP4292274B2 (en) Circuit for small amplitude operation signal
CN104641427A (en) Higher-order multiple input multiple output in Ethernet
JP7004209B2 (en) Differential transmission cable module
JP2009128304A (en) Decoupling circuit
WO2023286649A1 (en) Bus line
WO2014207296A1 (en) A method and device for transmitting' electrical power and data
KR102274227B1 (en) Electric transmission media
CN113205918B (en) Communication transmission cable
CA2298313C (en) A semi-shielded cable
TWI721471B (en) Coil module and transformer device
CA2961341C (en) Low cost high speed data cable
CA2961313C (en) Economical boosted high speed data cable
TWM573918U (en) Pulsed filter

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040317

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees