JP4290019B2 - Fluorescence immunoassay method - Google Patents

Fluorescence immunoassay method Download PDF

Info

Publication number
JP4290019B2
JP4290019B2 JP2004011546A JP2004011546A JP4290019B2 JP 4290019 B2 JP4290019 B2 JP 4290019B2 JP 2004011546 A JP2004011546 A JP 2004011546A JP 2004011546 A JP2004011546 A JP 2004011546A JP 4290019 B2 JP4290019 B2 JP 4290019B2
Authority
JP
Japan
Prior art keywords
optical waveguide
measurement
fluorescence
immunoassay method
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004011546A
Other languages
Japanese (ja)
Other versions
JP2005207749A (en
JP2005207749A5 (en
Inventor
真優子 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Chemicals Inc
Original Assignee
Canon Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Chemicals Inc filed Critical Canon Chemicals Inc
Priority to JP2004011546A priority Critical patent/JP4290019B2/en
Publication of JP2005207749A publication Critical patent/JP2005207749A/en
Publication of JP2005207749A5 publication Critical patent/JP2005207749A5/ja
Application granted granted Critical
Publication of JP4290019B2 publication Critical patent/JP4290019B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

本発明は、光導波路の表面において抗原抗体反応を観測する蛍光免疫測定方法に関するものである。 The present invention relates to a fluorescence immunoassay method for observing an antigen-antibody reaction on the surface of an optical waveguide.

免疫反応を利用する分析法は、夾雑物の多い試料から特定の測定対象物を選択的かつ簡便に測定する方法として優れており、食品、医療、環境といった分野に普及しつつある。特に食品分野では、食の多様化、外食・中食の普及や流通の発達により、食中毒の発生原因が従来とは異なる傾向にあり、また大規模・広範囲にわたって病原性の強い集団食中毒が発生していることから、食中毒菌への対策として出荷前の迅速な検査等が求められている。   An analysis method using an immune reaction is excellent as a method for selectively and simply measuring a specific measurement object from a sample having a lot of impurities, and is becoming widespread in fields such as food, medicine, and the environment. Especially in the food field, due to the diversification of food, the spread of eating out and eating out, and the development of distribution, the causes of food poisoning tend to be different from the conventional ones, and mass food poisoning that is highly pathogenic over a large scale and wide area has occurred. Therefore, rapid inspection before shipment is required as a measure against food poisoning bacteria.

免疫反応を利用した分析法には、抗原抗体反応による結合物の直接又は間接的な測定法として沈降反応や凝集反応などが従来から用いられている。更に、放射性同位体、蛍光物質、発光物質、酵素などの標識によって抗原抗体反応を定量化する標識免疫測定方法により、測定感度が飛躍的に高まっている。標識法による放射免疫測定方法、酵素免疫測定方法、蛍光免疫測定方法などが知られており、幾つかの装置が市販されている。   As an analysis method using an immune reaction, a precipitation reaction, an agglutination reaction, or the like has been conventionally used as a direct or indirect measurement method of a conjugate by an antigen-antibody reaction. Furthermore, the measurement sensitivity is dramatically increased by a labeled immunoassay method in which the antigen-antibody reaction is quantified using a label such as a radioisotope, a fluorescent substance, a luminescent substance, or an enzyme. A radioimmunoassay method using a labeling method, an enzyme immunoassay method, a fluorescence immunoassay method, and the like are known, and several devices are commercially available.

蛍光測定においては、高感度のためノイズ成分も含まれ易く、蛍光免疫測定方法においても測定値の信頼性を確保するために様々な工夫がされており、その1つの方法としてエバネッセント波による励起を用いることが挙げられる。光導波路内部に光を全反射させ、その外部表面に滲み出すエバネッセント波によって蛍光色素を励起させるこの方法は、光導波路の表面近傍においてのみ起こる反応を選択的に観測することができるので、抗原抗体反応の観測には好適である。   In fluorescence measurement, noise components are easily included due to high sensitivity, and various measures have been taken to ensure the reliability of the measurement value in the fluorescence immunoassay method. As one method, excitation by evanescent waves is used. Use. This method, in which light is totally reflected inside the optical waveguide and the fluorescent dye is excited by the evanescent wave that oozes out to the outer surface, can selectively observe the reaction that occurs only near the surface of the optical waveguide. Suitable for observation of reaction.

また、前記の全反射を多重に行わせることにより、励起光をより効率良く用い、感度を向上させることもできる。この多重全反射を利用した蛍光免疫測定法の一例としては、ファイバ型光導波路を検体溶液に浸漬して用いる方式が、既に特許文献1において知られている。また、特許文献2においては、内部全反射の効率を高めるために、独特な形状部分を有するファイバ型光導波路が開示されている。   In addition, by performing the total reflection in a multiplexed manner, the excitation light can be used more efficiently and the sensitivity can be improved. As an example of the fluorescence immunoassay method using multiple total reflection, a method using a fiber-type optical waveguide immersed in a sample solution is already known in Patent Document 1. Patent Document 2 discloses a fiber-type optical waveguide having a unique shape portion in order to increase the efficiency of total internal reflection.

米国特許4582809号公報US Pat. No. 4,582,809 米国特許6136611号公報US Pat. No. 6,136,611

抗原抗体反応による蛍光免疫測定では、特異的結合物質は測定対象物の生死を問わず捕捉するため、死滅した食中毒菌が生菌との区別なく検出されると不都合が生ずることがある。例えば、食品の製造工程において加熱処理により死滅し無害な菌を陽性と判定し、製品の回収に至った場合には、回収のコストや損害は膨大なものとなる。   In the fluorescence immunoassay based on the antigen-antibody reaction, the specific binding substance is captured regardless of whether the object to be measured is live or dead. Therefore, there may be inconvenience if the dead food poisoning bacteria are detected without distinction from the live bacteria. For example, in the production process of food, when it is determined that a harmless bacteria killed by heat treatment is positive and the product is collected, the cost and damage of the collection become enormous.

蛍光免疫法により微生物を高感度かつ迅速、簡便に測定する方法において、生菌のみの検出を図るためには、測定における操作手順の工夫が必要である。   In the method of measuring microorganisms with high sensitivity, rapidity and simpleness by the fluorescence immunization method, in order to detect only viable bacteria, it is necessary to devise an operation procedure in the measurement.

本発明の目的は、上述の問題点を解消し、生菌のみを簡便な操作により高い測定感度、信頼性で測定可能な蛍光免疫測定方法を提供することにある。 An object of the present invention is to provide a fluorescence immunoassay method capable of solving the above-mentioned problems and measuring only viable bacteria with high measurement sensitivity and reliability by a simple operation.

上記目的を達成するための本発明に係る蛍光免疫測定方法は、光導波路の表面において免疫反応を観測する蛍光免疫測定方法において、前記光導波路と検体とを接触させ、前記光導波路の表面に捕捉された測定対象物に蛍光性発色団を有する標識抗体を結合し、前記光導波路内に励起光を導入して発生したエバネッセント波によって前記蛍光性発色団を励起し、前記光導波路内を伝播して収集された光を観測する第1の工程と、該第1の工程後に前記検体を前記光導波路との接触のための容器と同一の容器により培養する第2の工程とを有し、前記第2の工程後に前記第1の工程を少なくとも1回繰り返し、培養に伴う観測光量の変化を測定すること特徴とする。 The fluorescence immunoassay method according to the present invention for achieving the above object is the fluorescence immunoassay method for observing an immune reaction on the surface of the optical waveguide, wherein the optical waveguide and the specimen are brought into contact with each other and captured on the surface of the optical waveguide. A labeled antibody having a fluorescent chromophore is bound to the measured object, the fluorescent chromophore is excited by an evanescent wave generated by introducing excitation light into the optical waveguide, and propagates through the optical waveguide. A first step of observing the collected light, and a second step of culturing the specimen in the same container as the container for contact with the optical waveguide after the first step, The first step is repeated at least once after the second step, and the change in the amount of observation light accompanying the culture is measured.

本発明に係る蛍光免疫測定方法によれば、光導波路を用いた蛍光免疫法によって、培養により増殖した微生物を測定することで、高感度かつ迅速、簡便、確実に生菌を検出できる。According to the fluorescence immunoassay method of the present invention, viable bacteria can be detected with high sensitivity, speed, convenience, and reliability by measuring microorganisms grown by culture by fluorescence immunoassay using an optical waveguide.

本発明を図示の実施例に基づいて詳細に説明する。
図1は光学プローブ1の側面図、図2は平面図であり、この光学プローブ1は例えばポリスチレン樹脂を射出成型して製作され、フランジ部2を境に上部はレンズ部位3とされ、下部は光導波路4とされている。また光導波路4の中間部は抗体の固定に用いるロッド部位5であり、先端は光吸収部位6とされている。
The present invention will be described in detail based on the embodiments shown in the drawings.
FIG. 1 is a side view of the optical probe 1 and FIG. 2 is a plan view. The optical probe 1 is manufactured by, for example, polystyrene molding by injection molding, the upper part is a lens part 3 with the flange part 2 as a boundary, and the lower part is The optical waveguide 4 is used. The intermediate portion of the optical waveguide 4 is a rod portion 5 used for antibody fixation, and the tip is a light absorption portion 6.

図3は基本的な測定光学系の構成図である。光学プローブ1を検体を入れた容器11中にフランジ部2を用いて固定する。レンズ部位3の上方にはビームスプリッタ12を介して635nmのレーザー光を出射する半導体レーザー光源13が配置され、ビームスプリッタ12の側方には例えばフォトダイオードから成る検出器14が配置されている。光学プローブ1はセンサ部分である光導波路4において、容器11内で励起光の導入と蛍光の収集を併せて行い、全体の光学系がコンパクトになり、安定性を確保し易く、保守が容易となる。   FIG. 3 is a configuration diagram of a basic measurement optical system. The optical probe 1 is fixed in the container 11 containing the specimen using the flange portion 2. A semiconductor laser light source 13 that emits a 635 nm laser beam via a beam splitter 12 is disposed above the lens portion 3, and a detector 14 made of, for example, a photodiode is disposed on the side of the beam splitter 12. The optical probe 1 performs excitation light introduction and fluorescence collection in the container 11 in the optical waveguide 4 which is a sensor part, and the entire optical system becomes compact, stable and easy to maintain. Become.

また、容器11内において検体がロッド部位5の外側に位置するために、浸漬、洗浄などの各種操作が行い易いという長所を持っている。しかし一方で、励起光の反射光、散乱光が蛍光に混入して収集され易いという短所がある。この短所は光導波路4の端面の光吸収部位6に黒色体を配置すること、測定光学系中に光学フィルタを導入するなどによってかなり解決されるが、微量な蛍光量を扱う場合には実質的に問題になることが多い。   Further, since the specimen is located outside the rod portion 5 in the container 11, it has an advantage that various operations such as immersion and washing can be easily performed. On the other hand, however, there is a disadvantage in that reflected light and scattered light of the excitation light are easily mixed with fluorescence. This disadvantage is considerably solved by disposing a black body in the light absorption part 6 on the end face of the optical waveguide 4 and introducing an optical filter in the measurement optical system. However, it is substantially effective when dealing with a small amount of fluorescence. It often becomes a problem.

また、死滅した食中毒菌は問題にならないような用途で使用される場合でも、光導波路4に固定された特異的結合物質により、測定対象物は生死の区別なく検出されてしまうことを改善するために、検体中に生菌が存在すれば培養によって増殖するようにする。即ち、検出器14で観測される光量のうち、生菌との抗原抗体反応によって観測される蛍光標識抗体からの蛍光量は、生菌の増殖に応じて増加するものであることを利用する。本実施例の基本的な測定手順は、図4のフローチャート図に示すように、
(1)光導波路4を容器11中の検体に接触し、光導波路4の表面に捕捉された測定対象物に蛍光性発色団を有する標識抗体を結合させ、光導波路4内に励起光を導入して発生したエバネッセント波によって蛍光性発色団を励起し、光導波路4内を伝播して収集された光を検出器14により観測する。
(2)この観測によって、光量が前回と同じであれば、生菌は存在しないとして測定を終了する。光量が変化していれば、(3)の工程を実施する。
(3)容器11中で検体を好適な条件で培養する。
(4)上記工程(1)、(2)を再度実施する。
という一連の工程を少なくとも1回繰り返し、培養に伴う観測光量の変化を検出器14で測定し、観測光量に増加分があれば、それは生菌の増殖によるものとする。
In addition, even when the dead food poisoning bacteria are used for an application that does not cause a problem, the specific binding substance fixed to the optical waveguide 4 is used to improve that the measurement object is detected without distinction between life and death. In addition, if viable bacteria are present in the specimen, they are proliferated by culture. That is, of the amount of light observed by the detector 14, the fact that the amount of fluorescence from the fluorescence-labeled antibody observed by the antigen-antibody reaction with the living bacteria increases according to the growth of the living bacteria. The basic measurement procedure of this embodiment is as shown in the flowchart of FIG.
(1) The optical waveguide 4 is brought into contact with the specimen in the container 11, a labeled antibody having a fluorescent chromophore is bound to the measurement object captured on the surface of the optical waveguide 4, and excitation light is introduced into the optical waveguide 4. The fluorescent chromophore is excited by the evanescent wave generated in this way, and the light collected by propagating through the optical waveguide 4 is observed by the detector 14.
(2) If the amount of light is the same as the previous one by this observation, the measurement is terminated because there is no viable bacteria. If the amount of light has changed, step (3) is performed.
(3) The specimen is cultured in the container 11 under suitable conditions.
(4) The above steps (1) and (2) are performed again.
A series of steps is repeated at least once, and the change in the amount of observation light accompanying the culture is measured by the detector 14, and if there is an increase in the amount of observation light, it is attributed to the growth of viable bacteria.

この測定手順は標識抗体の抗原抗体反応に因らない非特異的吸着が強い場合には、これによる蛍光増加を観測してしまう場合がある。このような虞れがある場合には、本測定に先立って標識抗体のみとの接触を行い、予め非特異的吸着を飽和させておくことが望ましい。   In this measurement procedure, when non-specific adsorption that is not attributable to the antigen-antibody reaction of the labeled antibody is strong, an increase in fluorescence due to this may be observed. When there is such a fear, it is desirable to contact with the labeled antibody only prior to the main measurement and saturate the nonspecific adsorption in advance.

また、検体中に蛍光性の不純物が存在する可能性がある場合には、本測定に先立って、本測定と同様な手順を行使して、測定対象物を含まないブランク検体の測定を行ってもよい。この操作は一旦結合した非特異的吸着成分が何らかの原因で溶出するような場合にも有効である。ブランク測定において得られる蛍光量を、引き続き行う本測定において得られる蛍光量から差し引くことによって、正味の蛍光量を導くこともできる。   If there is a possibility that fluorescent impurities may be present in the sample, measure the blank sample that does not include the measurement target by exercising the same procedure as the main measurement prior to the main measurement. Also good. This operation is also effective when the non-specifically adsorbed component once bound is eluted for some reason. The net amount of fluorescence can also be derived by subtracting the amount of fluorescence obtained in the blank measurement from the amount of fluorescence obtained in the subsequent measurement.

光導波路4の表面への測定対象物の捕捉方法は、直接的な物理吸着や予め表面に準備された吸着剤による捕捉を用いることができるが、予め表面に固定された測定対象物に特異的に結合する物質による捕捉、より好ましくは抗体による捕捉が選択性の高い方法として望ましい。光導波路4と検体の接触後、光導波路4と標識抗体溶液との接触後には、次の操作に進む前に適当な液体による洗浄を行うことが有効であるが、本発明においては必ずしも必須ではない。   The method for capturing the measurement object on the surface of the optical waveguide 4 can use direct physical adsorption or capture using an adsorbent prepared on the surface in advance, but is specific to the measurement object fixed on the surface in advance. Capturing with a substance that binds to the antibody, more preferably capturing with an antibody, is desirable as a highly selective method. After the contact between the optical waveguide 4 and the specimen and after the contact between the optical waveguide 4 and the labeled antibody solution, it is effective to perform cleaning with an appropriate liquid before proceeding to the next operation. Absent.

検体と光導波路4との接触は、検体を入れた容器11を回転させ、容器11内の回転軸上を除いて回転軸に平行する部分に棒状の光導波路4を置くという配置が好適である。蛍光信号の測定に用いた検体容器11は取り外してインキュベータに移動し、適当な条件で培養を行うことができる。或いは、内部に温調機構を備えた容器11を持つ蛍光免疫測定装置内で培養を行うことができ、このとき容器11を一旦取り出す操作が不要であるので、培養を含めた蛍光免疫測定を自動化することが可能となる。   For the contact between the specimen and the optical waveguide 4, an arrangement in which the container 11 containing the specimen is rotated and the rod-shaped optical waveguide 4 is placed in a portion parallel to the rotational axis except on the rotational axis in the container 11 is suitable. . The specimen container 11 used for the measurement of the fluorescence signal can be removed and moved to an incubator, and culture can be performed under appropriate conditions. Alternatively, culture can be performed in a fluorescence immunoassay apparatus having a container 11 with a temperature control mechanism inside, and at this time, there is no need to take out the container 11 once. Therefore, fluorescence immunoassay including culture is automated. It becomes possible to do.

検体を入れる容器11には、上部を開放したものを使用することができるが、培養を行う際の汚染を防ぐために、容器11を移し変えることなく開閉可能な構造であることがより好ましい。   As the container 11 into which the specimen is placed, a container having an open top can be used. However, in order to prevent contamination when culturing is performed, a structure that can be opened and closed without changing the container 11 is more preferable.

また、検体は食品及びそれらに関する器具、製造ライン等の環境材料、また飲料水等の水、土、糞便等を対象として、これらを含む液状培地とする。液状のものはそのまま使用することができ、粘度の高い流動体、粉末、固形の検体は、希釈液を加えてストマッカーにより均質化したものを使用することができる。布巾、まな板などの器具や製造ラインでは、スタンプ法により採取したものを使用することができ、これらを液状の一般細菌用培地、或いは選択培地に添加して検体とする。   In addition, the sample is a liquid medium containing foods, environmental materials such as appliances and production lines, water such as drinking water, soil, and feces. Liquid materials can be used as they are, and fluids, powders, and solid specimens having high viscosity can be diluted with a diluent and homogenized by a stomacher. Tools and production lines such as cloths and cutting boards that can be collected by the stamp method can be used, and these are added to a liquid general bacterial culture medium or a selective culture medium as a specimen.

図5は測定装置の構成図である。図3の構成を含む検出部21からの出力、つまりは検出器14の出力は信号処理部22を介してパーソナルコンピュータ23に接続されている。このパーソナルコンピュータ23の出力は検体容器11を回転させるモータ24に接続されている。更に、検出部21の検体容器11に対しては温調部25、送液ポンプ26が接続されており、送液ポンプ26にはリザーバタンク27から緩衝液が供給されるようになっている。   FIG. 5 is a configuration diagram of the measuring apparatus. The output from the detector 21 including the configuration of FIG. 3, that is, the output of the detector 14 is connected to the personal computer 23 via the signal processor 22. The output of the personal computer 23 is connected to a motor 24 that rotates the sample container 11. Further, a temperature control unit 25 and a liquid feed pump 26 are connected to the sample container 11 of the detection unit 21, and a buffer solution is supplied from a reservoir tank 27 to the liquid feed pump 26.

光導波路4は検体が満たされた検体容器11に浸漬され、測定対象物の捕捉を行う。この際に、検体容器11をモータ24により回転させることで捕捉の促進を行う。更に、標識抗体と接触することで抗原抗体反応の結合物を形成し、検出部21の検出器14において蛍光信号の光量を測定する。ここでは、光導波路4の洗浄、半導体レーザー光源13からの635nmのレーザー光の導入、蛍光の集光を行う。蛍光は光導波路4のレンズ部位3からレンズ、フィルタを通過して検出器14で検出される。また、培養は温調部25を用いて適当な条件で行われる。   The optical waveguide 4 is immersed in the sample container 11 filled with the sample, and captures the measurement object. At this time, the specimen container 11 is rotated by the motor 24 to facilitate the capture. Furthermore, the conjugate | bonded_body of an antigen antibody reaction is formed by contacting with a labeled antibody, and the light quantity of a fluorescence signal is measured in the detector 14 of the detection part 21. FIG. Here, cleaning of the optical waveguide 4, introduction of 635 nm laser light from the semiconductor laser light source 13, and concentration of fluorescence are performed. The fluorescence is detected by the detector 14 from the lens portion 3 of the optical waveguide 4 through the lens and the filter. In addition, the culture is performed using the temperature control unit 25 under appropriate conditions.

[実験例1]
光導波路4の表面にEscherichia coli O157:H7抗体(Kirkegaard & Perry Lab.Inc社製)を固定し、光導波路4の表面の抗体の未結合部を0.4%カゼインを含む0.5%Tween20(商品名)を含む0.01Mりん酸緩衝液によりブロックしたものを用い、測定装置により次の操作を行った。
[Experiment 1]
An Escherichia coli O157: H7 antibody (manufactured by Kirkegaard & Perry Lab. Inc.) is immobilized on the surface of the optical waveguide 4, and the unbound portion of the antibody on the surface of the optical waveguide 4 is 0.5% Tween 20 containing 0.4% casein. The following operation was performed with a measuring apparatus using what was blocked with 0.01 M phosphate buffer containing (trade name).

(イ)初めに、非特異的吸着分による信号を得るために、光導波路4を容器11中の2μg/mlの蛍光標識抗体(Amersham Biosciences社製:Cy5 bisfunctional reactive dye により抗体を標識)を含む緩衝液に浸漬して、25℃で5分間静置した。
(ロ)容器11を2mlの緩衝液により洗浄した。
(ハ)再び、緩衝液で検体容器11を満たして蛍光信号を3回測定した。これにより、非特異的吸着分による僅かな信号増加と飽和を予め確認した。
(ニ)続いて、抗原抗体反応による信号を得るために、TSB培地(日水製薬社製:トリプトソーヤブイヨン)に不活化したEscherichia coli O157:H7及び生菌体を添加した試料10mlを検体容器11に注入した。光導波路4を検体に浸漬し、検体容器11をモータ24により100rpmで5分間回転した。
(ホ)容器11を2mlの緩衝液により洗浄した。
(ヘ)容器11に2μg/mlの蛍光標識抗体を含む緩衝液を入れ、光導波路4を浸漬して、25℃で5分間静置した。
(ト)容器11を2mlの緩衝液で洗浄した。
(チ)再び、緩衝液を検体容器11に満たして蛍光信号を測定した。
(A) First, in order to obtain a signal due to nonspecific adsorption, the optical waveguide 4 contains 2 μg / ml fluorescently labeled antibody (Amersham Biosciences, Inc .: labeled with Cy5 bisfunctional reactive dye) in the container 11. It was immersed in a buffer solution and allowed to stand at 25 ° C. for 5 minutes.
(B) The container 11 was washed with 2 ml of buffer solution.
(C) Again, the sample container 11 was filled with the buffer solution, and the fluorescence signal was measured three times. This confirmed in advance a slight signal increase and saturation due to nonspecific adsorption.
(D) Subsequently, in order to obtain a signal from the antigen-antibody reaction, a 10 ml sample to which Escherichia coli O157: H7 and viable cells inactivated in TSB medium (manufactured by Nissui Pharmaceutical Co., Ltd .: Tryptosoya bouillon) were added was used as a sample. Injected into container 11. The optical waveguide 4 was immersed in the specimen, and the specimen container 11 was rotated by the motor 24 at 100 rpm for 5 minutes.
(E) The container 11 was washed with 2 ml of buffer solution.
(F) A buffer containing 2 μg / ml of fluorescently labeled antibody was placed in the container 11, the optical waveguide 4 was immersed therein, and allowed to stand at 25 ° C. for 5 minutes.
(G) The container 11 was washed with 2 ml of buffer solution.
(H) Again, the buffer solution was filled in the sample container 11 and the fluorescence signal was measured.

測定が終了した検体を、インキュベータにおいて42℃で90分間培養を行った後に、再び抗原抗体反応による蛍光信号を得るための測定を行った。また、各測定の終了後に、寒天培地を用いて検体のコロニ形成単位を計数し、菌数を求めた。   After the measurement was completed, the specimen was cultured at 42 ° C. for 90 minutes in an incubator, and then a measurement for obtaining a fluorescent signal by the antigen-antibody reaction was performed again. In addition, after each measurement was completed, the colony-forming units of the specimen were counted using an agar medium to obtain the number of bacteria.

図6は培養前及び培養後の蛍光信号強度を、非特異的吸着分の測定値からの増加分として示している。また、それぞれの測定に用いた検体の菌数を示しており、検体の培養により信号と菌数は共に増加している。このとき、非特異的吸着による信号の増加は見られなかった。   FIG. 6 shows the fluorescence signal intensity before and after the culture as an increase from the measured value of the nonspecific adsorption. Moreover, the number of bacteria of the specimen used for each measurement is shown, and both the signal and the number of bacteria are increased by the culture of the specimen. At this time, no increase in signal due to non-specific adsorption was observed.

[実験例2]
実験例1と同様にEscherichia coli O157:H7抗体を固定し、ブロック処理を行った光導波路4を用いて、非特異吸着分による信号増加を確認した。続いて、抗原抗体反応による信号を得るために、9倍量のTSB培地を加えてストマッカーにより均質化した生食用ホタテ貝柱に、不活化したEscherichia coli O157:H7及び生菌体を添加した試料10mlを検体容器11に注入し、実験例1と同様にして蛍光信号を測定した。
[Experimental example 2]
In the same manner as in Experimental Example 1, the Escherichia coli O157: H7 antibody was immobilized, and the signal increase due to the nonspecific adsorption was confirmed using the optical waveguide 4 subjected to the block treatment. Subsequently, in order to obtain a signal from the antigen-antibody reaction, 10 ml of a sample prepared by adding inactivated Escherichia coli O157: H7 and viable cells to a raw scallop scallop that was added 9 times TSB medium and homogenized by a stomacher Was injected into the specimen container 11 and the fluorescence signal was measured in the same manner as in Experimental Example 1.

測定終了後に、検体を測定装置内の温調部位に移動し、42℃で90分間培養を行った後に、再び抗原抗体反応による蛍光信号を得るための測定を行った。また各測定の終了後に、寒天培地を用いて検体のコロニ形成単位を計数し、菌数を求めた。   After completion of the measurement, the specimen was moved to a temperature-controlled part in the measurement apparatus, cultured at 42 ° C. for 90 minutes, and then subjected to measurement for obtaining a fluorescent signal by antigen-antibody reaction again. Moreover, after completion | finish of each measurement, the colony formation unit of the test substance was counted using the agar medium, and the number of bacteria was calculated | required.

図7は培養前及び培養後の蛍光信号強度を、非特異吸着分の測定値からの増加分として示した。また、それぞれの測定に用いた検体の菌数を示している。検体の培養により、信号と菌数は共に増加しており、非特異吸着による信号の増加は見られなかった。   FIG. 7 shows the fluorescence signal intensity before and after the culture as an increase from the measured value of the nonspecific adsorption. Moreover, the number of bacteria of the specimen used for each measurement is shown. As the sample was cultured, both the signal and the number of bacteria increased, and no increase in signal due to nonspecific adsorption was observed.

光学プローブの側面図である。It is a side view of an optical probe. 平面図である。It is a top view. 測定光学系の構成図である。It is a block diagram of a measurement optical system. 測定動作のフローチャート図である。It is a flowchart figure of a measurement operation. 測定装置の構成図である。It is a block diagram of a measuring device. 実験例1における測定データのグラフ図である。It is a graph figure of the measurement data in example 1 of an experiment. 実験例2における測定データのグラフ図である。It is a graph figure of the measurement data in example 2 of an experiment.

符号の説明Explanation of symbols

1 光学プローブ
2 フランジ部
3 レンズ部位
4 光導波路
5 ロッド部位
6 光吸収部位
11 容器
12 ビームスプリッタ
13 半導体レーザー光源
14 検出器
21 検出部
22 信号処理部
23 パーソナルコンピュータ
24 モータ
25 温調部
26 送液ポンプ
DESCRIPTION OF SYMBOLS 1 Optical probe 2 Flange part 3 Lens part 4 Optical waveguide 5 Rod part 6 Light absorption part 11 Container 12 Beam splitter 13 Semiconductor laser light source 14 Detector 21 Detection part 22 Signal processing part 23 Personal computer 24 Motor 25 Temperature control part 26 Liquid sending pump

Claims (5)

光導波路の表面において免疫反応を観測する蛍光免疫測定方法において、前記光導波路と検体とを接触させ、前記光導波路の表面に捕捉された測定対象物に蛍光性発色団を有する標識抗体を結合し、前記光導波路内に励起光を導入して発生したエバネッセント波によって前記蛍光性発色団を励起し、前記光導波路内を伝播して収集された光を観測する第1の工程と、該第1の工程後に前記検体を前記光導波路との接触のための容器と同一の容器により培養する第2の工程とを有し、前記第2の工程後に前記第1の工程を少なくとも1回繰り返し、培養に伴う観測光量の変化を測定すること特徴とする蛍光免疫測定方法。 In a fluorescence immunoassay method for observing an immune reaction on the surface of an optical waveguide, the labeled optical antibody and a specimen are brought into contact with each other, and a labeled antibody having a fluorescent chromophore is bound to a measurement target captured on the surface of the optical waveguide. A first step of exciting the fluorescent chromophore with an evanescent wave generated by introducing excitation light into the optical waveguide, and observing the light collected by propagating through the optical waveguide; A second step of culturing the specimen in the same container as the container for contact with the optical waveguide after the step, and repeating the first step at least once after the second step, A method for measuring fluorescence immunity, characterized by measuring a change in the amount of observed light accompanying the measurement. 前記第1の工程に先立ち、前記標識抗体を前記光導波路の表面に接触させ、前記光導波路内に励起光を導入して発生したエバネッセント波が前記光導波路内を伝播して収集される光を観測する一連の工程を少なくとも1回行い、非特異的吸着成分に起因する観測光量を予め測定する工程を有することを特徴とする請求項1に記載の蛍光免疫測定方法。   Prior to the first step, the evanescent wave generated by bringing the labeled antibody into contact with the surface of the optical waveguide and introducing excitation light into the optical waveguide propagates through the optical waveguide and is collected. The fluorescence immunoassay method according to claim 1, further comprising a step of performing a series of observation steps at least once and measuring in advance the amount of observation light caused by the non-specific adsorption component. 前記非特異的吸着成分に起因する観測光量が予め設定された値よりも大きい場合に、自動的に測定を中断することを特徴とする請求項2に記載の蛍光免疫測定方法。   3. The fluorescence immunoassay method according to claim 2, wherein the measurement is automatically interrupted when the amount of light observed due to the non-specific adsorption component is larger than a preset value. 前記光導波路には前記測定対象物に特異的に結合する物質を予め固定していることを特徴とする請求項1又は2又は3に記載の蛍光免疫測定方法。   The fluorescence immunoassay method according to claim 1, wherein a substance that specifically binds to the measurement target is fixed in advance in the optical waveguide. 前記測定対象物に特異的に結合する物質は抗体であることを特徴とする請求項4に記載の蛍光免疫測定方法。   The fluorescence immunoassay method according to claim 4, wherein the substance that specifically binds to the measurement target is an antibody.
JP2004011546A 2004-01-20 2004-01-20 Fluorescence immunoassay method Expired - Fee Related JP4290019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004011546A JP4290019B2 (en) 2004-01-20 2004-01-20 Fluorescence immunoassay method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004011546A JP4290019B2 (en) 2004-01-20 2004-01-20 Fluorescence immunoassay method

Publications (3)

Publication Number Publication Date
JP2005207749A JP2005207749A (en) 2005-08-04
JP2005207749A5 JP2005207749A5 (en) 2007-03-08
JP4290019B2 true JP4290019B2 (en) 2009-07-01

Family

ID=34898207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004011546A Expired - Fee Related JP4290019B2 (en) 2004-01-20 2004-01-20 Fluorescence immunoassay method

Country Status (1)

Country Link
JP (1) JP4290019B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5105956B2 (en) * 2006-06-08 2012-12-26 キヤノン株式会社 Measuring probe and manufacturing method thereof
FR2968314B1 (en) * 2010-12-01 2016-03-18 Commissariat Energie Atomique METHOD FOR DETECTING AND QUANTIFYING MICROORGANISMS

Also Published As

Publication number Publication date
JP2005207749A (en) 2005-08-04

Similar Documents

Publication Publication Date Title
Liu et al. Surface plasmon resonance immunosensor for fast, highly sensitive, and in situ detection of the magnetic nanoparticles-enriched Salmonella enteritidis
Guan et al. Rapid detection of pathogens using antibody-coated microbeads with bioluminescence in microfluidic chips
Syal et al. Plasmonic imaging of protein interactions with single bacterial cells
Wang et al. Rapid detection of pathogenic bacteria and screening of phage-derived peptides using microcantilevers
Fratamico et al. Detection of Escherichia coli 0157: H7 using a surface plasmon resonance biosensor
Lan et al. Using a surface plasmon resonance biosensor for rapid detection of Salmonella typhimurium in chicken carcass
US7141369B2 (en) Measuring cellular metabolism of immobilized cells
Adányi et al. Development of new immunosensors for determination of contaminants in food
Pearson et al. Innovative sandwich assay with dual optical and SERS sensing mechanisms for bacterial detection
US10241053B2 (en) Bacterial detection platform based on SERS mapping
Claycomb et al. Biosensor for on-line measurement of bovine progesterone during milking
Peedel et al. Rapid biosensing of Staphylococcus aureus bacteria in milk
Kasili et al. Nanosensor for in vivo measurement of the carcinogen benzo [a] pyrene in a single cell
Oyarzabal et al. Immunological methods for the detection of Campylobacter spp.-current applications and potential use in biosensors
JP4290019B2 (en) Fluorescence immunoassay method
Eser et al. Rapid detection of foodborne pathogens by surface plasmon resonance biosensors
Basso et al. A immunosensor for the diagnosis of canine distemper virus infection using SPR and EIS
CN102099494A (en) Method and system for detecting and/or quantifying bacteriophages, use of a microelectronic sensor device for detecting said bacteriophages and microelectronic sensor device for implementing said method
Morgan et al. Binding inhibition assay using fiber-optic based biosensor for the detection of foodborne pathogens
CN108414745A (en) A kind of visualization biosensor signal amplification method being simple and efficient
JP2010008361A (en) Pathogen detection chip and pathogen detecting method
Tahari Fluorescence correlation spectroscopy: Ultrasensitive detection in clear and turbid media
Helali et al. Fast Detection of Pathogenic Escherichia coli from Chicken Meats
Gu et al. Dual-mode immunochromatographic biosensor enhanced with CuS@ Au-nanocomposites for rapid detection of Shigella Sonnei
JP2004205286A (en) Fluorescence immunity measurement method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees