JP4289662B2 - Sheet-like catalyst structure using carbon nanotube and method for producing the same - Google Patents

Sheet-like catalyst structure using carbon nanotube and method for producing the same Download PDF

Info

Publication number
JP4289662B2
JP4289662B2 JP2003136717A JP2003136717A JP4289662B2 JP 4289662 B2 JP4289662 B2 JP 4289662B2 JP 2003136717 A JP2003136717 A JP 2003136717A JP 2003136717 A JP2003136717 A JP 2003136717A JP 4289662 B2 JP4289662 B2 JP 4289662B2
Authority
JP
Japan
Prior art keywords
sheet
carbon nanotubes
metal
catalyst structure
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003136717A
Other languages
Japanese (ja)
Other versions
JP2004337731A (en
Inventor
洋 塩山
裕介 山田
近 稲住
将明 岸田
友紀 西良
二朗 石辺
大祐 藤田
百世 澤井
喜萬 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Hitachi Zosen Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Hitachi Zosen Corp
Priority to JP2003136717A priority Critical patent/JP4289662B2/en
Publication of JP2004337731A publication Critical patent/JP2004337731A/en
Application granted granted Critical
Publication of JP4289662B2 publication Critical patent/JP4289662B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、カーボンナノチューブを用いたシート状触媒構造体およびその製造方法に関するものである。カーボンナノチューブは、カーボン原子が網目状に結合してできた穴径ナノ(1ナノは10億分の1)メートルサイズの極微細な筒(チューブ)状の物質である。本発明による触媒構造体は、例えば環境浄化用触媒材料として使用され、特に、ダイレクトメタノール型燃料電池において、燃料が酸化されるのに伴って発生するホルムアルデヒド等の中間生成物を空気中の酸素により常温で燃焼させる反応に好適に使用される。
【0002】
【従来の技術】
従来、環境浄化触媒においては、触媒活性金属を高分散状に担持する担体として、ゼオライトや活性炭、炭素繊維などがよく用いられて来た。例えば、触媒活性金属を担持させた活性炭に有機系バインダーを加え、得られた混合物をハニカム状に成型してなる、酸化触媒性を有する金属酸化物担持活性炭成型体が知られている(特許文献1参照)。
【0003】
しかし、このような担体を用いる場合、触媒活性を高めるために金属をナノレベルのサイズに微小化し、この微粒子を上記担体に分散状に担持するには、ゾル−ゲル法などの複雑な工程を経る必要があり、製造コストが高く付くという問題があった。また、これらの担体は元もと繊維状ないしは粒状のものであるので、これをシート状、さらにはハニカム状または螺旋状に成形するには大きなコストがかかるという問題があった。
【0004】
【特許文献1】
特開平9−192485号公報、特にその特許請求の範囲の欄。
【0005】
【発明が解決しようとする課題】
本発明は、上記の点に鑑み、大きな表面積を持たせることにより活性を高めることができ、ハニカム状や螺旋状のような使用に適した形状に容易に成形することができるシート状触媒構造体を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく研究を重ねた結果、シート上にブラシ毛状に設けたカーボンナノチューブに触媒活性金属を担持させてなるシート状触媒構造体が好適であることを見出した。
【0007】
すなわち、本発明は、基板上に点在状に形成した金属微粒子を核として成長させたブラシ毛状のカーボンナノチューブを厚さ0.01〜1mmの合成樹脂製のシートに実質上垂直に転写し、次いで、金属塩を含む溶液による含浸により該カーボンナノチューブ上に触媒活性金属を担持させるシート状触媒構造体の製造方法、または、基板上に点在状に形成した金属微粒子を核として成長させたブラシ毛状のカーボンナノチューブを厚さ0.01〜1mmの合成樹脂製のシートに実質上垂直に転写し、次いで、化学蒸着、真空蒸着法または陰極スパッタリング法により該カーボンナノチューブ上に触媒活性金属を担持させるシート状触媒構造体の製造方法、または、基板上に点在状に形成した金属微粒子を核として成長させたブラシ毛状のカーボンナノチューブ上に、金属塩を含む溶液による含浸により触媒活性金属を担持させ、次いで該カーボンナノチューブを厚さ0.01〜1mmの合成樹脂製のシートに実質上垂直に転写するシート状触媒構造体の製造方法、または、基板上に点在状に形成した金属微粒子を核として成長させたブラシ毛状のカーボンナノチューブ上に、化学蒸着、真空蒸着法または陰極スパッタリング法により触媒活性金属を担持させ、次いで該カーボンナノチューブを厚さ0.01〜1mmの合成樹脂製のシートに実質上垂直に転写するシート状触媒構造体の製造方法である。
【0008】
本明細書において、「シート」とは、厚さに基づいて規定される狭義のシートだけでなく、通常フィルムと呼ばれる薄手のものも含むこととする。
【0009】
該シートは、ポリエステル、ポリエチレン、フッ素樹脂、アクリル樹脂などの合成樹脂からなることが好ましい。シートは、カーボンナノチューブを植え込むためのベース層と同層を支持する層を少なくとも含む多層シートであってもよい。シートは耐熱性シートであることが好ましい。好ましい耐熱性シートはポリエチレンテレフタレートシートである。シートは酸、アルカリなどに対する耐食性に優れたものであることが好ましい。シートは、無数の貫通孔が開けられた多孔性シートであってもよい。この多孔性シートを用いて得られる触媒構造体は、ガス拡散が容易であり、環境浄化用触媒材料として好ましい。シートの厚みは好ましくは0.01〜1mm、より好ましくは0.05〜0.5mmである。
【0010】
該触媒活性金属は、好ましくは、白金、金、ルテニウム、ロジウム、イリジウムおよびパラジウムからなる群より選ばれる。
【0011】
カーボンナノチューブの構造は単層すなわち単一のチューブであってもよいし、多層すなわち同心状の複数の異径チューブであってもよい。
【0012】
シート上のカーボンナノチューブの直径は好ましくは1〜100nm、より好ましくは2〜50nm、高さは好ましくは1〜200μmである。
【0014】
本発明によるシート状触媒構造体は、反応装置に充填される際に好適である形状、例えば、ハニカム状または螺旋状に容易に成形される。
【0016】
ブラシ毛状カーボンナノチューブは、公知の方法で作製できる。例えば、シリコン基板またはガラス基板の少なくとも片面上に、ニッケル、コバルト、鉄などの金属またはその化合物を含む溶液をスプレーや刷毛で塗布し、または金属を電子ビーム蒸着した後、この塗膜または蒸着膜を加熱して形成した点在状の金属微粒子に、あるいは、クラスター銃で打ち付けて形成した金属微粒子に、アセチレン(C)ガスを用いて一般的な化学蒸着法(CVD法)を施すことにより、触媒として働く金属微粒子を核として直径12〜38nmのカーボンナノチューブが多層構造で基板上に実質上垂直に起毛される。
【0018】
本発明による触媒構造体は、例えば環境浄化用触媒材料として使用され、特に、ダイレクトメタノール型燃料電池において、燃料が酸化されるのに伴って発生するホルムアルデヒド等の中間生成物を空気中の酸素により常温で燃焼させる酸化反応に好適に使用される。
【0019】
【発明の実施の形態】
以下に、本発明の実施の形態について説明する。
【0020】
まず、基板上に金属微粒子を形成し、金属微粒子を核として高温雰囲気で原料ガスからカーボンナノチューブを成長させる。基板は金属微粒子を支持するものであればよく、金属微粒子が濡れにくいものが好ましく、シリコン基板やガラス基板であってよい。金属微粒子はニッケル、コバルト、鉄などの粒子であってよい。これらの金属またはその錯体等の化合物の溶液をスプレーや刷毛で基板に塗布し、乾燥させ、必要であれば加熱し、皮膜を形成する。皮膜の厚みは、厚過ぎると加熱による金属粒子化が困難になるので、好ましくは1〜100nmである。皮膜は電子ビーム蒸着法によって形成してもよい。次いでこの皮膜を好ましくは減圧下または非酸化雰囲気中で好ましくは650〜800℃に加熱すると、直径1〜50nm程度の金属微粒子が形成される。金属微粒子はクラスター銃を用いて形成することもできる。
【0021】
カーボンナノチューブの原料ガスとしては、アセチレン、メタン、エチレン等の脂肪族炭化水素が使用でき、とりわけアセチレンガスが好ましい。アセチレンの場合、多層構造で太さ12〜38nmのカーボンナノチューブが金属微粒子を核として基板上にブラシ毛状に形成される。カーボンナノチューブの形成温度は、好ましくは650〜800℃である。
【0022】
成長させたブラシ毛状カーボンナノチューブをシートに転写する。転写の際、シートの温度をシートの軟化温度以上で溶融温度以下にすることにより、カーボンナノチューブをシートに実質上垂直方向に配向させることが容易になる。また、転写後は、シートの温度を軟化温度以下に冷却することにより、カーボンナノチューブをシートに固定できる。シートに植え付けたカーボンナノチューブから基板を剥がす際の温度を50〜0℃、好ましくは35〜0℃とするのがよい。
【0023】
こうしてシートに転写したブラシ毛状カーボンナノチューブ上に触媒活性金属を担持させるには、金属塩を含む溶液でカーボンナノチューブを含浸する湿式法、または、化学蒸着法、真空蒸着法または陰極スパッタリング法のように乾式法が採用できる。湿式法では金属塩は、好ましくは、白金、金、ルテニウム、ロジウム、イリジウム、パラジウムなどの金属のハロゲン物、金属酸ハロゲン物、金属の無機酸塩、金属の有機酸塩、金属錯塩等である。金属塩を含む溶液は、水溶液でも有機溶媒溶液でもよい。有機溶媒はアルコール、エーテル、ケトン、ハロゲン化炭化水素等、金属塩を溶かすものであればよい。金属塩の濃度は、金属の担持量に従って決められる。金属塩を含む溶液でカーボンナノチューブを含浸するには、カーボンナノチューブに該溶液を滴下または散布するか、カーボンナノチューブを該溶液に浸漬し、その後カーボンナノチューブを乾燥する方法が好ましい。
【0024】
基板上に成長させたブラシ毛状のカーボンナノチューブ上に触媒活性金属を担持させ、次いで該カーボンナノチューブをシートに実質上垂直に転写する方法も、上記方法の工程順序を変えることにより実施できる。
【0025】
つぎに、本発明を実施例に基づいて具体的に説明する。
【0026】
実施例1
(第一工程)
50mm×50mm、厚さ0.5mmのシリコン基板上に電子ビーム蒸着法により厚さ5nmの鉄皮膜を生成させた。
【0027】
(第二工程)
鉄皮膜を有する基板を内径50mmの石英製反応管に入れた。ヘリウムガスを流量200ml/min反応管内に流し、温度を約730℃に上げた。この加熱により鉄皮膜は粒子化した。次いでヘリウムガス流通と共に、カーボンナノチューブの原料ガスとしてアセチレンガスを流量30ml/min、温度約730℃、時間10分、反応管内に流した。その後、アセチレンガスの導入を止め、反応管を常温まで冷却した。
【0028】
この操作により、鉄微粒子を核として直径20nm、高さ50μmの多層構造のブラシ毛状カーボンナノチューブが成長した。
【0029】
(第三工程)
ホットプレート上に厚さ500μmのポリエステル製シートを置き、このシートの上に、基板状のブラシ毛状カーボンナノチューブを先端がシートを向くように配し、先端から1kg/cmでシートに押し付けながらシートを100℃まで昇温した。この状態を10分間保った後、シートを常温まで冷却すると共に押し付け圧をリリースした。次いで、基板をカーボンナノチューブから外して転写を完了し、カーボンナノチューブをブラシ毛状に植え付けたシートを得た。
【0030】
(第四工程)
シートに植え付けたカーボンナノチューブを上向きにし、カーボンナノチューブに塩化白金酸のエタノール溶液(50mg/ml)をピペットを用いて均等に7μl/cm滴下した。次いで、カーボンナノチューブを備えたシートを アルゴン雰囲気中で250℃で2時間熱処理した。こうして、シート上に実質上垂直に設けられたブラシ毛状のカーボンナノチューブ上に白金が担持されてなるシート状触媒構造体を得た。
【0031】
この触媒構造体を走査型電子顕微鏡で観察したところ、直径20nm、高さ50μmのカーボンナノチューブ上に直径2〜5mの白金微粒子が均一分散状に担持されていることが認められた。
【0032】
比較例1
シートに植え付けたカーボンナノチューブの代わりに、カーボン繊維シート(カーボン繊維の直径:5μm)を用いた以外、実施例1の第四工程と同じ操作を行い、カーボン繊維シート上に白金が担持されてなるシート状触媒構造体を得た。
【0033】
この触媒構造体を走査型電子顕微鏡で観察したところ、直径5μmのカーボン繊維上に直径2〜5μmの白金微粒子が担持されていることが認められた。
【0034】
触媒活性試験
実施例1および比較例1で得られたシート状触媒構造体をそれぞれ、反応管に充填し、反応管に常温で5000ppm水素/空気の混合ガスを流し、サーモグラフ分析を行った。この分析により、実施例1のシート状触媒構造体を用いた場合、反応管内で水素の燃焼が起きており、比較例1のシート状触媒構造体を用いた場合、このような燃焼が起きていないことが確認された。
【0035】
【発明の効果】
本発明による触媒構造体では、カーボンナノチューブの表面および筒内面に触媒活性金属が担持されているので、従来の触媒担体に比べ触媒表面積が極めて大きく、したがって触媒活性が高い。また、カーボンナノチューブはシートに対し実質上垂直であるので、反応すべきガスの流通性がよく、同ガスがカーボンナノチューブ上の触媒活性金属とよく接触して、この点でも触媒活性が高い。
【0036】
また、シート状触媒構造体をハニカム状や螺旋状のような使用に適した形状に容易に成形することができ、これらを低コストで大量生産するのに好適である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sheet-like catalyst structure using carbon nanotubes and a method for producing the same. A carbon nanotube is an extremely fine tube (tube) substance having a hole diameter of nanometers (one nano is one billionth of a meter) formed by bonding carbon atoms in a network. The catalyst structure according to the present invention is used, for example, as a catalyst material for environmental purification. In particular, in a direct methanol fuel cell, an intermediate product such as formaldehyde generated as the fuel is oxidized by oxygen in the air. It is suitably used for reactions that burn at room temperature.
[0002]
[Prior art]
Conventionally, in an environmental purification catalyst, zeolite, activated carbon, carbon fiber or the like has been often used as a carrier for supporting a catalytically active metal in a highly dispersed state. For example, there is known a metal oxide-supported activated carbon molded body having oxidation catalytic properties, which is obtained by adding an organic binder to activated carbon supporting a catalytically active metal and molding the resulting mixture into a honeycomb shape (Patent Document). 1).
[0003]
However, when such a carrier is used, a complicated process such as a sol-gel method is required to reduce the metal to a nano-level size in order to enhance the catalytic activity and to support the fine particles in a dispersed state on the carrier. There is a problem that the manufacturing cost is high. Further, since these carriers are originally in the form of fibers or granules, there has been a problem that it takes a large cost to form them into a sheet, and further into a honeycomb or a spiral.
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 9-192485, especially the column of the claims.
[0005]
[Problems to be solved by the invention]
In view of the above points, the present invention can increase the activity by giving a large surface area, and can be easily formed into a shape suitable for use such as a honeycomb shape or a spiral shape. It is an issue to provide.
[0006]
[Means for Solving the Problems]
As a result of repeated researches to solve the above-mentioned problems, the present inventors have found that a sheet-like catalyst structure in which a catalytically active metal is supported on carbon nanotubes provided in a bristle shape on a sheet is suitable. It was.
[0007]
That is, the present invention transfers brush-like carbon nanotubes grown with metal fine particles formed in a scattered manner on a substrate as nuclei onto a synthetic resin sheet having a thickness of 0.01 to 1 mm substantially vertically. Then, a method for producing a sheet-like catalyst structure in which a catalytically active metal is supported on the carbon nanotubes by impregnation with a solution containing a metal salt, or metal fine particles formed in a scattered manner on a substrate were grown as nuclei. The bristle-like carbon nanotubes are transferred onto a synthetic resin sheet having a thickness of 0.01 to 1 mm substantially vertically, and then a catalytically active metal is deposited on the carbon nanotubes by chemical vapor deposition, vacuum vapor deposition or cathode sputtering. Production method of sheet-like catalyst structure to be supported, or brush-like car grown with metal fine particles formed in a scattered manner on a substrate as a nucleus Sheet-like catalyst structure in which a catalytically active metal is supported on a carbon nanotube by impregnation with a solution containing a metal salt, and then the carbon nanotube is transferred to a synthetic resin sheet having a thickness of 0.01 to 1 mm substantially vertically Or a catalytically active metal supported by chemical vapor deposition, vacuum deposition method or cathode sputtering method on brush-like carbon nanotubes grown using nuclei of fine metal particles formed in a scattered manner on a substrate as a production method of Next, this is a method for producing a sheet-like catalyst structure in which the carbon nanotubes are transferred substantially vertically to a synthetic resin sheet having a thickness of 0.01 to 1 mm.
[0008]
In the present specification, the “sheet” includes not only a narrowly defined sheet defined based on the thickness but also a thin sheet usually called a film.
[0009]
The sheet is preferably made of a synthetic resin such as polyester, polyethylene, fluororesin, or acrylic resin. The sheet may be a multilayer sheet including at least a layer supporting the same layer as a base layer for implanting carbon nanotubes. The sheet is preferably a heat resistant sheet. A preferred heat resistant sheet is a polyethylene terephthalate sheet. It is preferable that the sheet has excellent corrosion resistance against acid, alkali and the like. The sheet may be a porous sheet having innumerable through holes. The catalyst structure obtained using this porous sheet is preferable as an environmental purification catalyst material because gas diffusion is easy. The thickness of the sheet is preferably 0.01 to 1 mm, more preferably 0.05 to 0.5 mm.
[0010]
The catalytically active metal is preferably selected from the group consisting of platinum, gold, ruthenium, rhodium, iridium and palladium.
[0011]
The structure of the carbon nanotube may be a single layer, that is, a single tube, or may be a multilayer, that is, a plurality of different diameter tubes that are concentric.
[0012]
The diameter of the carbon nanotubes on the sheet is preferably 1 to 100 nm, more preferably 2 to 50 nm, and the height is preferably 1 to 200 μm.
[0014]
The sheet-like catalyst structure according to the present invention is easily formed into a shape suitable for filling the reactor, for example, a honeycomb shape or a spiral shape.
[0016]
The brush-like carbon nanotube can be produced by a known method. For example, after applying a solution containing a metal such as nickel, cobalt, iron or the like or a compound thereof by spraying or brushing on at least one surface of a silicon substrate or a glass substrate, or performing electron beam evaporation of the metal, this coating film or deposited film A general chemical vapor deposition method (CVD method) is performed using acetylene (C 2 H 2 ) gas on the scattered fine metal particles formed by heating the metal particles or the fine metal particles formed by striking with a cluster gun. As a result, carbon nanotubes having a diameter of 12 to 38 nm are raised substantially vertically on the substrate in a multi-layer structure with metal fine particles serving as a catalyst as a nucleus.
[0018]
The catalyst structure according to the present invention is used, for example, as a catalyst material for environmental purification. In particular, in a direct methanol fuel cell, an intermediate product such as formaldehyde generated as the fuel is oxidized by oxygen in the air. It is suitably used for oxidation reactions that burn at room temperature.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0020]
First, fine metal particles are formed on a substrate, and carbon nanotubes are grown from a raw material gas in a high temperature atmosphere using the fine metal particles as nuclei. The substrate is not particularly limited as long as it supports metal fine particles, and is preferably one in which the metal fine particles are difficult to wet, and may be a silicon substrate or a glass substrate. The metal fine particles may be particles of nickel, cobalt, iron or the like. A solution of a compound such as these metals or a complex thereof is applied to the substrate with a spray or a brush, dried, and heated if necessary to form a film. If the thickness of the film is too thick, it becomes difficult to form metal particles by heating, and is preferably 1 to 100 nm. The film may be formed by electron beam evaporation. Next, when this film is heated preferably at 650 to 800 ° C., preferably under reduced pressure or in a non-oxidizing atmosphere, metal fine particles having a diameter of about 1 to 50 nm are formed. The metal fine particles can also be formed using a cluster gun.
[0021]
As a raw material gas for carbon nanotubes, aliphatic hydrocarbons such as acetylene, methane, and ethylene can be used, and acetylene gas is particularly preferable. In the case of acetylene, carbon nanotubes having a multilayer structure and a thickness of 12 to 38 nm are formed in a brush-like shape on a substrate with metal fine particles as nuclei. The formation temperature of the carbon nanotube is preferably 650 to 800 ° C.
[0022]
The grown brush hairy carbon nanotube is transferred to a sheet. When transferring, the temperature of the sheet is set to be not lower than the softening temperature of the sheet and not higher than the melting temperature, so that it becomes easy to orient the carbon nanotubes substantially perpendicularly to the sheet. Further, after the transfer, the carbon nanotubes can be fixed to the sheet by cooling the sheet temperature to the softening temperature or lower. The temperature at which the substrate is peeled off from the carbon nanotubes planted on the sheet is 50 to 0 ° C., preferably 35 to 0 ° C.
[0023]
In order to support the catalytically active metal on the brush-like carbon nanotubes transferred to the sheet in this way, a wet method in which the carbon nanotubes are impregnated with a solution containing a metal salt, a chemical vapor deposition method, a vacuum vapor deposition method or a cathode sputtering method is used. The dry method can be used. In the wet method, the metal salt is preferably a metal halide such as platinum, gold, ruthenium, rhodium, iridium, palladium, a metal acid halide, a metal inorganic acid salt, a metal organic acid salt, a metal complex salt, or the like. . The solution containing the metal salt may be an aqueous solution or an organic solvent solution. The organic solvent only needs to dissolve a metal salt such as alcohol, ether, ketone, halogenated hydrocarbon, or the like. The concentration of the metal salt is determined according to the amount of metal supported. In order to impregnate the carbon nanotubes with a solution containing a metal salt, a method in which the solution is dropped or dispersed on the carbon nanotubes, or the carbon nanotubes are immersed in the solution, and then the carbon nanotubes are dried is preferable.
[0024]
A method of supporting a catalytically active metal on brush-like carbon nanotubes grown on a substrate and then transferring the carbon nanotubes to a sheet substantially perpendicularly can be carried out by changing the process sequence of the above method.
[0025]
Next, the present invention will be specifically described based on examples.
[0026]
Example 1
(First step)
An iron film having a thickness of 5 nm was formed on a silicon substrate having a size of 50 mm × 50 mm and a thickness of 0.5 mm by an electron beam evaporation method.
[0027]
(Second step)
A substrate having an iron coating was placed in a quartz reaction tube having an inner diameter of 50 mm. Helium gas was flowed into the reaction tube at a flow rate of 200 ml / min, and the temperature was raised to about 730 ° C. This heating turned the iron film into particles. Next, along with the helium gas flow, acetylene gas as a carbon nanotube source gas was flowed into the reaction tube at a flow rate of 30 ml / min, a temperature of about 730 ° C., and a time of 10 minutes. Thereafter, the introduction of acetylene gas was stopped, and the reaction tube was cooled to room temperature.
[0028]
By this operation, brush-like carbon nanotubes with a multi-layer structure having a diameter of 20 nm and a height of 50 μm were grown using iron fine particles as nuclei.
[0029]
(Third process)
A polyester sheet having a thickness of 500 μm is placed on a hot plate, and a brush-like carbon nanotube in the form of a substrate is placed on this sheet so that the tip faces the sheet, while pressing against the sheet at 1 kg / cm 2 from the tip. The sheet was heated to 100 ° C. After maintaining this state for 10 minutes, the sheet was cooled to room temperature and the pressing pressure was released. Next, the substrate was removed from the carbon nanotubes to complete the transfer, and a sheet in which the carbon nanotubes were planted in a brush hair shape was obtained.
[0030]
(Fourth process)
The carbon nanotubes planted on the sheet were faced up, and an ethanol solution of chloroplatinic acid (50 mg / ml) was evenly dropped onto the carbon nanotubes using a pipette at 7 μl / cm 2 . Next, the sheet provided with the carbon nanotubes was heat-treated at 250 ° C. for 2 hours in an argon atmosphere. Thus, a sheet-like catalyst structure in which platinum was supported on brush-like carbon nanotubes provided substantially vertically on the sheet was obtained.
[0031]
The catalyst structure were observed by the scanning electron microscope, it was found to diameter 20 nm, platinum microparticles height 50μm diameter 2 to 5 n m on the carbon nanotubes are carried on uniformly distributed form.
[0032]
Comparative Example 1
Platinum is supported on the carbon fiber sheet by performing the same operation as in the fourth step of Example 1 except that a carbon fiber sheet (carbon fiber diameter: 5 μm) is used instead of the carbon nanotubes planted on the sheet. A sheet-like catalyst structure was obtained.
[0033]
When this catalyst structure was observed with a scanning electron microscope, it was found that platinum fine particles having a diameter of 2 to 5 μm were supported on carbon fibers having a diameter of 5 μm.
[0034]
Catalytic Activity Test Each of the sheet-like catalyst structures obtained in Example 1 and Comparative Example 1 was filled in a reaction tube, and a mixed gas of 5000 ppm hydrogen / air was allowed to flow through the reaction tube at room temperature, and thermographic analysis was performed. According to this analysis, when the sheet-like catalyst structure of Example 1 was used, hydrogen combustion occurred in the reaction tube, and when the sheet-like catalyst structure of Comparative Example 1 was used, such combustion occurred. Not confirmed.
[0035]
【The invention's effect】
In the catalyst structure according to the present invention, since the catalytically active metal is supported on the surface of the carbon nanotube and the inner surface of the cylinder, the catalyst surface area is extremely larger than that of the conventional catalyst carrier, and thus the catalytic activity is high. Further, since the carbon nanotubes are substantially perpendicular to the sheet, the gas to be reacted has good flowability, and the gas is in good contact with the catalytically active metal on the carbon nanotubes, and the catalytic activity is also high in this respect.
[0036]
Further, the sheet-like catalyst structure can be easily formed into a shape suitable for use such as a honeycomb shape or a spiral shape, which is suitable for mass production at low cost.

Claims (4)

基板上に点在状に形成した金属微粒子を核として成長させたブラシ毛状のカーボンナノチューブを厚さ0.01〜1mmの合成樹脂製のシートに実質上垂直に転写し、次いで、金属塩を含む溶液による含浸により該カーボンナノチューブ上に触媒活性金属を担持させるシート状触媒構造体の製造方法。The bristle-like carbon nanotubes grown with the metal fine particles formed in a scattered manner on the substrate as nuclei are transferred onto a synthetic resin sheet having a thickness of 0.01 to 1 mm substantially vertically, and then the metal salt is transferred. method for producing a catalytically active metal is supported Resid over preparative shaped catalyst structure on the carbon nanotubes by impregnation with a solution containing. 基板上に点在状に形成した金属微粒子を核として成長させたブラシ毛状のカーボンナノチューブを厚さ0.01〜1mmの合成樹脂製のシートに実質上垂直に転写し、次いで、化学蒸着、真空蒸着法または陰極スパッタリング法により該カーボンナノチューブ上に触媒活性金属を担持させるシート状触媒構造体の製造方法。The brush-like carbon nanotubes grown with the metal fine particles formed in a scattered manner on the substrate as nuclei are transferred to a synthetic resin sheet having a thickness of 0.01 to 1 mm substantially vertically, and then chemical vapor deposition, A method for producing a sheet-like catalyst structure in which a catalytically active metal is supported on the carbon nanotubes by a vacuum deposition method or a cathode sputtering method. 基板上に点在状に形成した金属微粒子を核として成長させたブラシ毛状のカーボンナノチューブ上に、金属塩を含む溶液による含浸により触媒活性金属を担持させ、次いで該カーボンナノチューブを厚さ0.01〜1mmの合成樹脂製のシートに実質上垂直に転写するシート状触媒構造体の製造方法。A catalytically active metal is supported by impregnation with a solution containing a metal salt on brush-like carbon nanotubes grown with metal fine particles formed in a scattered manner on a substrate as nuclei . method for producing a substantially vertically transferred to Resid over preparative like catalyst structure made of synthetic resin sheet 01~1Mm. 基板上に点在状に形成した金属微粒子を核として成長させたブラシ毛状のカーボンナノチューブ上に、化学蒸着、真空蒸着法または陰極スパッタリング法により触媒活性金属を担持させ、次いで該カーボンナノチューブを厚さ0.01〜1mmの合成樹脂製のシートに実質上垂直に転写するシート状触媒構造体の製造方法。A catalytically active metal is supported on the bristle-like carbon nanotubes grown with the metal fine particles formed in a scattered manner on the substrate as nuclei by chemical vapor deposition, vacuum vapor deposition or cathode sputtering , and then the carbon nanotubes are thickened. A method for producing a sheet-like catalyst structure, which is transferred substantially vertically to a synthetic resin sheet having a thickness of 0.01 to 1 mm .
JP2003136717A 2003-05-15 2003-05-15 Sheet-like catalyst structure using carbon nanotube and method for producing the same Expired - Lifetime JP4289662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003136717A JP4289662B2 (en) 2003-05-15 2003-05-15 Sheet-like catalyst structure using carbon nanotube and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003136717A JP4289662B2 (en) 2003-05-15 2003-05-15 Sheet-like catalyst structure using carbon nanotube and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004337731A JP2004337731A (en) 2004-12-02
JP4289662B2 true JP4289662B2 (en) 2009-07-01

Family

ID=33526567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003136717A Expired - Lifetime JP4289662B2 (en) 2003-05-15 2003-05-15 Sheet-like catalyst structure using carbon nanotube and method for producing the same

Country Status (1)

Country Link
JP (1) JP4289662B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100503044C (en) * 2004-12-15 2009-06-24 中国科学院物理研究所 Carbon wool ball carried type catalyst and its preparation method and uses
JP4846245B2 (en) * 2005-02-17 2011-12-28 シャープ株式会社 Air purifier and air conditioner
JP4528192B2 (en) * 2005-04-26 2010-08-18 シャープ株式会社 Filter, manufacturing method thereof, air cleaning device
JP5110836B2 (en) * 2006-09-11 2012-12-26 独立行政法人物質・材料研究機構 Catalyst electrode for fuel cell, membrane / electrode assembly using the same, and fuel cell
JP5767441B2 (en) * 2010-02-25 2015-08-19 日清紡ホールディングス株式会社 Hazardous substance decomposition material
JP5563945B2 (en) * 2010-09-30 2014-07-30 日本バルカー工業株式会社 Method for controlling growth density of vertically aligned carbon nanotubes
CN113233443A (en) * 2021-04-22 2021-08-10 电子科技大学 Preparation method of fluorinated spiral carbon nanotube and application of fluorinated spiral carbon nanotube in lithium primary battery
CN115228483B (en) * 2022-07-12 2023-11-14 远景动力技术(江苏)有限公司 Catalyst for synthesizing carbon nano tube and application thereof

Also Published As

Publication number Publication date
JP2004337731A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
US10633249B2 (en) Device for simultaneously producing carbon nanotubes and hydrogen
US7288576B2 (en) Carbon nanotube-containing catalysts, methods of making, and reactions catalyzed over nanotube catalysts
Meshot et al. Engineering vertically aligned carbon nanotube growth by decoupled thermal treatment of precursor and catalyst
US7011760B2 (en) Carbon nanotube-containing structures, methods of making, and processes using same
Hanif et al. Study on the structure and formation mechanism of molybdenum carbides
Kumar et al. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production
JP5624627B2 (en) Catalyst for synthesizing hydrocarbons from CO and H2 and method for producing the same
US20030042147A1 (en) Method of forming a nano-supported catalyst on a substrate for nanotube growth
JP5509595B2 (en) Method for producing carbon nanotube
US20100297428A1 (en) Composit consisting of nanotubes or nanofibres on a b-sic film
CN110038590B (en) Multi-interlayer composite catalyst and preparation method and application thereof
JP2002526361A (en) Contact growth of single-walled carbon nanotubes from metal particles
US20060067872A1 (en) Method of preparing catalyst base for manufacturing carbon nanotubes and method of manufacturing carbon nanotubes employing the same
KR20100120298A (en) Carbon nano-tube manufacturing method and carbon nano-tube manufacturing apparatus
CN101610837A (en) Prepare the method for carbon fiber and/or nanotube by being combined in carbon source in the catalyst
JP2013502309A (en) Bilayer catalyst, process for its production and its use in the production of nanotubes
JP4289662B2 (en) Sheet-like catalyst structure using carbon nanotube and method for producing the same
JP2001522408A (en) Skeletal columnar coating
KR101436030B1 (en) Method for preparing a electrode for fuel cell comprising nanocarbon and core-shell structure of platinium-carbon composite and the electrode for fuel cell prepared by the same
RU2546154C1 (en) Nanocomposite based on nitrogen-containing carbon nanotubes with encapsulated cobalt and nickel particles and method of obtaining thereof
JPS60171215A (en) Manufacture of highly dispersible hyperfine particles of tungsten carbide
TWI262171B (en) Catalyst for synthesizing carbon nanotubes by low-temperature thermal chemical vapor deposition, process for preparing the same and method of synthesizing carbon nanotubes
JP2003146630A (en) Method for manufacturing carbon nanotube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250