JP4289187B2 - Power transmission device - Google Patents

Power transmission device Download PDF

Info

Publication number
JP4289187B2
JP4289187B2 JP2004091416A JP2004091416A JP4289187B2 JP 4289187 B2 JP4289187 B2 JP 4289187B2 JP 2004091416 A JP2004091416 A JP 2004091416A JP 2004091416 A JP2004091416 A JP 2004091416A JP 4289187 B2 JP4289187 B2 JP 4289187B2
Authority
JP
Japan
Prior art keywords
spring
annular
axial direction
corrugated
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004091416A
Other languages
Japanese (ja)
Other versions
JP2005273851A (en
Inventor
知也 山谷
肇 渡邉
英樹 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2004091416A priority Critical patent/JP4289187B2/en
Publication of JP2005273851A publication Critical patent/JP2005273851A/en
Application granted granted Critical
Publication of JP4289187B2 publication Critical patent/JP4289187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pulleys (AREA)
  • Springs (AREA)

Description

本発明は、プーリユニット等の動力伝達装置、より詳しくは、脈動等の変動を含む入力回転から変動の少ない出力回転が取り出せるようにした動力伝達装置に関する。   The present invention relates to a power transmission device such as a pulley unit, and more particularly to a power transmission device that can extract an output rotation with little fluctuation from an input rotation including fluctuation such as pulsation.

自動車等の車両には、エンジンのクランクシャフトからベルトを介して駆動されるオルタネータ、エアコンディショナ用コンプレッサ、ウオーターポンプ、冷却ファン等の補機が装備されている。エンジンの回転動力をクランクシャフトからベルトを介して補機に伝達する場合、クランクシャフトの回転速度の変動に起因して、ベルトに滑りが起こって異音が発生する傾向となる。   Vehicles such as automobiles are equipped with auxiliary equipment such as an alternator, an air conditioner compressor, a water pump, and a cooling fan that are driven from a crankshaft of an engine via a belt. When the rotational power of the engine is transmitted from the crankshaft to the auxiliary machine via the belt, the belt tends to slip due to fluctuations in the rotational speed of the crankshaft, and abnormal noise tends to be generated.

このことを、補機類の一つであるオルタネータを例にとって説明すると、エンジンの動作工程により、クランクシャフトは、その回転中、常にその回転速度に変動がある。一方、オルタネータのロータは、大きな回転慣性を有しているから、当該ロータには慣性トルクがかかっている。このため、オルタネータのロータを、回転速度の変動を伴うクランクシャフトで駆動すると、ベルトの緩み側と張り側とが交互に入れ替わって張力変動が発生する一方で、該ベルトには、ロータの慣性トルクがかかる結果、ベルトに滑りが起こって異音が発生したり、耐久性が低下したりする傾向となりやすい。   This will be explained by taking an alternator as one of the auxiliary machines as an example. Due to the operation process of the engine, the rotation speed of the crankshaft always varies during the rotation. On the other hand, since the rotor of the alternator has a large rotational inertia, inertia torque is applied to the rotor. For this reason, when the alternator rotor is driven by a crankshaft with fluctuations in rotational speed, the slack side and the tension side of the belt are alternately switched to generate a fluctuation in tension, while the inertia torque of the rotor is applied to the belt. As a result, the belt tends to slip and generate abnormal noise, or the durability tends to decrease.

そのため、従来、オルタネータのロータ軸と、上記のベルトが巻き掛けられるプーリとの間に、動力伝達部材として一方向クラッチを用いた動力伝達装置が提案されている(特許文献1参照)。   Therefore, conventionally, a power transmission device using a one-way clutch as a power transmission member between a rotor shaft of an alternator and a pulley around which the belt is wound has been proposed (see Patent Document 1).

しかしながら、一方向クラッチ式の動力伝達装置では、入力回転の変動に応じて、クラッチのロック状態とフリー状態とが繰り返され、伝動状態の間に非伝動状態が介在することになる。入力側の大きな回転変動に伴ってフリー状態からロック状態に切り換わる場合、くさび部材としてのころやスプラグが急激にかみ合うから、出力側の回転にも比較的大きな変動が現れ、回転変動の吸収効果が不充分である。   However, in the one-way clutch type power transmission device, the clutch locked state and the free state are repeated according to the fluctuation of the input rotation, and the non-transmission state is interposed between the transmission states. When switching from the free state to the locked state due to large rotational fluctuations on the input side, the rollers and sprags as the wedge members suddenly engage with each other, so relatively large fluctuations appear in the rotation on the output side, and the effect of absorbing rotational fluctuations Is insufficient.

このような一方向クラッチ式の動力伝達装置に対して、動力伝達部材を、プーリとロータ軸との間に当該両者と回転方向に嵌合した状態で軸方向変位可能な伝動体と、該伝動体の軸方向両側に配置したコイルバネとで構成し、入力回転の変動に応じて伝動体をコイルバネのバネ力に抗して軸方向に変位させて回転変動を吸収する構成としたバネ式の動力伝達装置が提案されている。
特開2001−90751号公報
For such a one-way clutch type power transmission device, a power transmission member is axially displaceable in a state where the power transmission member is fitted between the pulley and the rotor shaft in the rotational direction, and the transmission Spring-type power consisting of coil springs arranged on both sides of the body in the axial direction and configured to absorb the rotational fluctuation by displacing the transmission body in the axial direction against the spring force of the coil spring according to the fluctuation of the input rotation A transmission device has been proposed.
JP 2001-90751 A

上記バネ式の動力伝達装置の場合、伝動体を軸方向に押圧するコイルバネの押圧力を所要値に設定するために、そのバネ定数を調整する必要がある。コイルバネのバネ定数の変更は、コイルバネの螺旋径を変えたりすることにより行われている。しかしながら、コイルバネのバネ定数の変更は必ずしも容易ではない。また、コイルバネのバネ強度を確保するには、コイルバネのサイズが大型化する必要があるが、当該コイルバネの収容空間を確保しにくい。コイルバネの収容空間の確保のためには、プーリやロータ軸のサイズを変更する必要もあり得る。   In the case of the spring-type power transmission device, the spring constant needs to be adjusted in order to set the pressing force of the coil spring that presses the transmission body in the axial direction to a required value. The spring constant of the coil spring is changed by changing the helical diameter of the coil spring. However, it is not always easy to change the spring constant of the coil spring. Further, in order to ensure the spring strength of the coil spring, it is necessary to increase the size of the coil spring, but it is difficult to ensure a space for accommodating the coil spring. In order to secure the space for accommodating the coil spring, it may be necessary to change the size of the pulley or the rotor shaft.

本発明による動力伝達装置は、径方向内側と外側に対向配置した2つの回転体と、両回転体間に配置された動力伝達部材とを備えた動力伝達装置であって、上記外側の回転体は、内周面に螺旋状および直線状の一方の形態をなす第1嵌合部を備え、上記内側の回転体は、外周面に螺旋状および直線状の他方の形態をなす第2嵌合部を備え、上記動力伝達部材は、外周面に上記第1嵌合部に対応した形状の第3嵌合部を備えかつ内周面に上記第2嵌合部に対応した形状の第4嵌合部を備えた環状伝動体と、該環状伝動体の軸方向両側それぞれに直列または並列に配置された複数のバネとからなることを特徴とするものである。   A power transmission device according to the present invention is a power transmission device including two rotating bodies arranged to face radially inward and outward, and a power transmitting member disposed between both rotating bodies, the outer rotating body described above. Is provided with a first fitting portion that forms one of a spiral shape and a linear shape on the inner peripheral surface, and the inner rotating body has a second fit that forms the other shape of the spiral shape and the linear shape on the outer peripheral surface. The power transmission member includes a third fitting portion having a shape corresponding to the first fitting portion on the outer peripheral surface, and a fourth fit having a shape corresponding to the second fitting portion on the inner peripheral surface. It is characterized by comprising an annular transmission provided with a joint and a plurality of springs arranged in series or in parallel on both sides in the axial direction of the annular transmission.

上記構成によれば、環状伝動体を軸方向両側に配置したバネの配置個数や配置の仕方等を変更することにより、当該バネ全体のバネ定数を変更して、容易に環状伝動体を押圧するバネ力を所望の値に設定することができる。   According to the above configuration, by changing the number of springs arranged on both sides in the axial direction, the manner of arrangement, etc., the spring constant of the whole spring is changed, and the annular transmission is easily pressed. The spring force can be set to a desired value.

例えば、皿バネの場合、これを並列に、すなわち、各皿バネの円錐面状の板面が他の皿バネの板面に重なるように並べると、バネ定数が大きくなる。皿バネを直列に、すなわち、隣り合う皿バネの小径部どうし、大径部どうしが接するように並べると、バネ定数が小さくなる。また、並列の並べ方と直列の並べ方を組み合わせて並べることもできる。   For example, in the case of disc springs, if they are arranged in parallel, that is, the conical surface of each disc spring is arranged so as to overlap the plate surface of another disc spring, the spring constant increases. When the disc springs are arranged in series, that is, the small diameter portions and the large diameter portions of adjacent disc springs are in contact with each other, the spring constant is reduced. Moreover, it is also possible to arrange by combining a parallel arrangement and a serial arrangement.

複数の皿バネを並列に並べて使用した場合、軸方向に狭いスペースを有効に活用できるほか、互いに重なる皿バネの板面の間ではすべりが生じるから、このすべりに伴う摩擦が環状伝動体の軸方向の動きに対する抵抗となり、回転変動の減衰効果が大きい。   When multiple disc springs are used side by side, it is possible to effectively utilize the narrow space in the axial direction, and slip occurs between the plate surfaces of the disc springs that overlap each other. It becomes resistance to the movement of the direction, and the attenuation effect of the rotation fluctuation is large.

上記のバネは、円周方向に波形に成形されたワッシャ状のバネ板材からなる波形環状バネや、ワッシャ状のバネ板材を螺旋状に連続した形状をなしかつ螺旋方向に波形に形成された波形螺旋状バネでもよい。   The above-mentioned spring is a corrugated annular spring made of a washer-like spring plate formed into a waveform in the circumferential direction, or a wave formed in a spiral shape with a washer-like spring plate in a spiral shape. A spiral spring may be used.

複数の波形環状バネを使用する場合、各波形環状バネは、隣り合う他の波形環状バネと波形凸部どうしが突き合う状態で互いに溶接等により結合されていることが望ましい。この構成では、一方の波形環状バネの波形凸部が、隣り合う他の波形環状バネの波形凹部内に嵌り込むことがなくなり、各波形環状バネの伸縮範囲を充分に広く確保できる。   When a plurality of corrugated annular springs are used, it is desirable that each corrugated annular spring is coupled to each other by welding or the like in a state where the corrugated convex portions face each other adjacent corrugated annular springs. In this configuration, the corrugated convex portion of one corrugated annular spring does not fit into the corrugated concave portion of the other corrugated annular spring, and a sufficiently wide expansion / contraction range of each corrugated annular spring can be secured.

なお、複数の波形環状バネにおいて、隣り合う波形環状バネの間にワッシャ状の部材を挟み込むことで、一方の波形環状バネの波形凸部が、隣り合う他の波形環状バネの波形凹部内に嵌り込むのを防止するようにしてもよい。複数の波形環状バネ全体のバネ定数を大きくしたい場合は、波形の位相を合わせて、各波形環状バネの波形板面が隣り合う波形環状バネの波形板面と全面的に接するよう重ねてもよい。   In addition, in a plurality of corrugated annular springs, by sandwiching a washer-shaped member between adjacent corrugated annular springs, the corrugated convex portion of one corrugated annular spring fits into the corrugated concave portion of another adjacent corrugated annular spring. May be prevented. When it is desired to increase the spring constant of the plurality of corrugated annular springs, the corrugated phases may be matched so that the corrugated plate surfaces of the corrugated annular springs are in contact with the corrugated plate surfaces of the adjacent corrugated annular springs. .

波形環状バネや、波形螺旋状バネは、比較的製造が容易であり、しかも、環状伝動体から過大な負荷が作用しても、軸方向に対向する部分が互いに密着して扁平に変形するのみで、塑性変形したり破損するようなことがない。   Corrugated annular springs and corrugated spiral springs are relatively easy to manufacture, and even when an excessive load is applied from the annular transmission, the axially facing portions are in close contact with each other and deformed flatly. Therefore, there is no plastic deformation or damage.

本発明によれば、軸方向に狭いスペース内で、バネ定数の変更が可能で、収容スペースの大きさを変えずに、環状伝動体を押圧する力を所要の値に設定することができる。   According to the present invention, the spring constant can be changed within a narrow space in the axial direction, and the force for pressing the annular transmission can be set to a required value without changing the size of the accommodation space.

以下、本発明の最良の形態を、図1および図2を参照して説明すると、図1は、最良の実施形態に係る動力伝達装置の半部の断面図、図2は、図1の装置の一部である環状伝動体の斜視図である。上記動力伝達装置は、自動車等のエンジンの補機であるオルタネータの入力部に装備されるものである。   The best mode of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 is a sectional view of a half of the power transmission device according to the best embodiment, and FIG. It is a perspective view of the annular transmission which is a part of. The power transmission device is installed in an input unit of an alternator that is an auxiliary machine for an engine of an automobile or the like.

これらの図を参照して、プーリ(駆動側回転体)1は、外周面にエンジンのクランクシャフトに連動して回送されるベルト(図示省略)が巻き掛けられるプーリ溝1aを有するとともに、内周面に軸方向直線状をなすスプライン(第1嵌合部としての直線状嵌合部)1sを備える。ロータ軸(従動側回転体)2は、プーリ1の径方向内側に配置され、外周面に、螺旋スプライン(第2嵌合部としての螺旋状嵌合部)2nを備える。   Referring to these drawings, a pulley (drive-side rotator) 1 has a pulley groove 1a around which a belt (not shown) wound around an outer peripheral surface of the pulley (not shown) is wound. A spline (linear fitting portion as a first fitting portion) 1s having a linear shape in the axial direction is provided on the surface. The rotor shaft (driven rotor) 2 is disposed on the radially inner side of the pulley 1 and includes a helical spline (spiral fitting portion as a second fitting portion) 2n on the outer peripheral surface.

転がり軸受3は、ロータ軸2をプーリ1に支持する深溝玉軸受であり、ロータ軸2の外周面の段部2aに設けられて、止め環2bにより軸方向不動に固定され、ロータ軸2に対してプーリ1の軸方向の位置決めをしている。   The rolling bearing 3 is a deep groove ball bearing that supports the rotor shaft 2 on the pulley 1. The rolling bearing 3 is provided on the step portion 2 a on the outer peripheral surface of the rotor shaft 2, and is fixed in the axial direction by a retaining ring 2 b. The pulley 1 is positioned in the axial direction.

環状伝動体4は、ロータ軸2の外周面とプーリ1の内周面との間の環状空間5内に軸方向に一定範囲変位しうる状態で設けられ、プーリ1への入力回転に含まれる脈動等の変動を吸収しつつ、当該プーリ1の回転動力をロータ軸2に伝達できるようになっている。   The annular transmission body 4 is provided in an annular space 5 between the outer peripheral surface of the rotor shaft 2 and the inner peripheral surface of the pulley 1 in a state that can be displaced within a certain range in the axial direction, and is included in the input rotation to the pulley 1. The rotational power of the pulley 1 can be transmitted to the rotor shaft 2 while absorbing fluctuations such as pulsation.

環状伝動体4は、内周面に、ロータ軸2の螺旋スプライン2nに対応して軸方向に螺旋状をなす螺旋スプライン(第3嵌合部としての螺旋状嵌合部)4nを備え、外周面に、プーリ1の直線スプライン1sに対応して軸方向に直線状をなす直線スプライン(第4嵌合部としての直線状嵌合部)4sを備える。   The annular transmission body 4 is provided with a spiral spline (spiral fitting portion as a third fitting portion) 4n spiraling in the axial direction corresponding to the helical spline 2n of the rotor shaft 2 on the inner peripheral surface. A straight spline (linear fitting portion as a fourth fitting portion) 4s that is linear in the axial direction corresponding to the linear spline 1s of the pulley 1 is provided on the surface.

以上の構成において、本実施形態では、動力伝達部材を、環状伝動体4と、当該環状伝動体4の軸方向両側に並列に配置されて該環状伝動体4を軸方向に押圧する複数の皿バネ6,7とにより構成している。   In the above configuration, in the present embodiment, the power transmission member is arranged in parallel on the annular transmission body 4 and on both sides in the axial direction of the annular transmission body 4 and presses the annular transmission body 4 in the axial direction. It comprises springs 6 and 7.

軸方向一方側(図1で左側)の皿バネ6は、それぞれ円錐凸板面6aと円錐凹板面6bとを備えた円錐台形状をなし、それぞれの円錐凸板面6aを環状伝動体4よりも軸方向外方に向けて、互いに円錐凸板面6aと円錐凹板面6bとが重なるように並列配列されている。これら皿バネ6の外端は、プーリ1の内径縁1bに当接するバネ受け8に受け止められている。   The disc spring 6 on one side in the axial direction (left side in FIG. 1) has a truncated cone shape having a conical convex plate surface 6a and a conical concave plate surface 6b, and each conical convex plate surface 6a serves as the annular transmission 4. Further, the conical convex plate surface 6a and the conical concave plate surface 6b are arranged in parallel so as to extend outward in the axial direction. The outer ends of these disc springs 6 are received by spring receivers 8 that are in contact with the inner diameter edge 1 b of the pulley 1.

軸方向他方側(図1で右側)の皿バネ7は、それぞれ円錐凸板面7aと円錐凹板面7bとを備え円錐台形状をなし、それぞれの円錐凸板面7aを環状伝動体4よりも軸方向外方に向けて、互いに円錐凸板面7aと円錐凹板面7bとが重なるように並列配列されている。これら皿バネ7は、転がり軸受3の内輪に当接するバネ受け9に受け止められている。   The disc spring 7 on the other side in the axial direction (the right side in FIG. 1) has a conical convex plate surface 7 a and a conical concave plate surface 7 b, each having a truncated cone shape, and each conical convex plate surface 7 a from the annular transmission 4. Also, the conical convex plate surface 7a and the conical concave plate surface 7b are arranged in parallel so as to face outward in the axial direction. These disc springs 7 are received by spring receivers 9 that are in contact with the inner ring of the rolling bearing 3.

環状伝動体4とプーリ1やロータ軸2との摺動部分である上記直線スプライン1s,4sと螺旋スプライン2n,4nそれぞれには、グリースが塗布されるか、あるいは、フッ素コート等の摩擦軽減用の被覆が施されている。プーリ1の内径縁1bには、ロータ軸2との間を密封するシール10が設けられている。   Grease is applied to each of the linear splines 1s, 4s and the spiral splines 2n, 4n, which are sliding portions between the annular transmission 4 and the pulley 1 or the rotor shaft 2, or for friction reduction such as fluorine coating. Coating is applied. A seal 10 is provided on the inner diameter edge 1 b of the pulley 1 to seal the space between the pulley 1 and the rotor shaft 2.

以上の構成において、プーリ1の回転動力は、プーリ1の直線スプライン1sと環状伝動体4の直線スプライン4sとの嵌合、および、当該環状伝動体4の螺旋スプライン4nとロータ軸2の螺旋スプライン2nの嵌合とにより、ロータ軸2に伝達される。   In the above configuration, the rotational power of the pulley 1 is such that the linear spline 1 s of the pulley 1 and the linear spline 4 s of the annular transmission 4 are fitted, and the helical spline 4 n of the annular transmission 4 and the helical spline of the rotor shaft 2. It is transmitted to the rotor shaft 2 by 2n fitting.

プーリ1が定常回転しているときは、環状伝動体4は図1に示す軸方向中間に位置しているが、プーリ1が図1の矢印イで示す手前側に向けて急激に増速変動すると、環状伝動体4は、プーリ1の回転に追随しようとして、軸方向一方側の皿バネ6のバネ力に抗して、環状伝動体4の螺旋スプラインnとロータ軸2の螺旋スプライン2nとの嵌合面に沿って、軸方向一方(図1で左方)に変位する。   When the pulley 1 is rotating normally, the annular transmission 4 is positioned in the middle in the axial direction shown in FIG. 1, but the pulley 1 suddenly fluctuates in speed toward the front side indicated by the arrow a in FIG. Then, the annular transmission 4 tries to follow the rotation of the pulley 1 and resists the spring force of the disc spring 6 on one axial side, and the helical spline n of the annular transmission 4 and the helical spline 2n of the rotor shaft 2. Is displaced in the axial direction (to the left in FIG. 1) along the fitting surface.

そして、環状伝動体4が軸方向一方に変位する間、プーリ1に対してロータ軸2の回転に遅れが生じ、プーリ1の回転のうち、急激な増速変動分はロータ軸2にはほとんど伝わらない。要するに、入力回転に含まれる回転変動は、環状伝動体4が軸方向に変位するエネルギーとして吸収される。したがって、回転変動に伴うベルトへの急激なテンションの作用を防止でき、ベルトやプーリ1の寿命を長くできる。   Then, while the annular transmission 4 is displaced in one axial direction, a delay occurs in the rotation of the rotor shaft 2 with respect to the pulley 1. I don't get it. In short, the rotational fluctuation included in the input rotation is absorbed as energy for displacing the annular transmission 4 in the axial direction. Therefore, the action of a sudden tension on the belt due to the rotation fluctuation can be prevented, and the life of the belt and the pulley 1 can be extended.

上記の場合、皿バネ6,7は並列に並べられているので、全体のバネ定数kは、皿バネ6,7の個数をn、軸方向の荷重をP、たわみ量をδとして、
k=n(P/δ) ………………(1)
となり、その値が大きく、環状伝動体4から皿バネ6(もしくは7)に作用する負荷が大きくても、これに大きな反発力で対応することができる。
In the above case, since the disc springs 6 and 7 are arranged in parallel, the overall spring constant k is such that the number of the disc springs 6 and 7 is n, the axial load is P, and the deflection amount is δ.
k = n (P / δ) (1)
Thus, even if the value is large and the load acting on the disc spring 6 (or 7) from the annular transmission body 4 is large, it is possible to cope with this with a large repulsive force.

また、複数の皿バネ6,7が圧縮変形された場合、互いに重なる皿バネ6,7の板面6a,6b:7a,7b間ではすべりが生じる。このすべりに伴う摩擦が環状伝動体4の軸方向の動きに対する抵抗となり、回転変動の減衰効果を高める。   When the plurality of disc springs 6 and 7 are compressed and deformed, slip occurs between the plate surfaces 6a and 6b of the disc springs 6 and 7 that overlap each other. The friction caused by this slip becomes resistance to the axial movement of the annular transmission 4 and enhances the effect of damping the rotational fluctuation.

なお、環状伝動体4から皿バネ6(もしくは7)に作用する負荷が小さい場合は、皿バネ6,7を直列に、すなわち隣り合う皿バネ6,7の円錐凸板面6a(小径部)どうし、円錐凹板面6b(大径部)どうしが接するように並べることで、全体のバネ定数を下げればよい。直列の場合のバネ定数kは、
k=(1/n)・(P/δ) ………………(2)
となり、並列の場合より大幅に小さい値となる。
When the load acting on the disc spring 6 (or 7) from the annular transmission 4 is small, the disc springs 6 and 7 are connected in series, that is, the conical convex plate surface 6a (small diameter portion) of the adjacent disc springs 6 and 7. What is necessary is just to lower | hang the whole spring constant by arranging so that the conical concave plate surface 6b (large diameter part) may contact | connect. The spring constant k in the case of series is
k = (1 / n) · (P / δ) (2)
Thus, the value is significantly smaller than that in the parallel case.

複数の皿バネ6,7は、並列の並べ方と直列の並べ方を組み合わせて並べてもよい。その場合のバネ定数は、複数の皿バネ6,7をすべて並列に並べた場合のバネ定数と、複数の皿バネ6,7をすべて直列に並べた場合のバネ定数との間の中間的な値となる。   The plurality of disc springs 6 and 7 may be arranged by combining a parallel arrangement method and a serial arrangement method. In this case, the spring constant is intermediate between the spring constant when all of the plurality of disc springs 6 and 7 are arranged in parallel and the spring constant when all of the plurality of disc springs 6 and 7 are arranged in series. Value.

プーリ1の回転が減速方向(図1に矢印ロで示す方向)に急激に変動すると、環状伝動体4は、プーリ1の回転に追随しようとして、皿バネ7のバネ力に抗して、ロータ軸2の螺旋スプライン2nと環状伝動体4の螺旋スプライン4nとの嵌合面に沿って減速方向ロに移動して、軸方向他方(図1で右方)に変位し、この変位により、プーリ1の回転に含まれる変動を吸収する。   When the rotation of the pulley 1 suddenly fluctuates in the deceleration direction (the direction indicated by the arrow B in FIG. 1), the annular transmission 4 tries to follow the rotation of the pulley 1 and resists the spring force of the disc spring 7 to rotate the rotor. It moves in the deceleration direction B along the fitting surface between the spiral spline 2n of the shaft 2 and the spiral spline 4n of the annular transmission 4, and is displaced in the other axial direction (rightward in FIG. 1). Absorbs fluctuations included in one rotation.

環状伝動体4を軸方向に押圧するバネとしては、皿バネ6,7に限らず、図3ないし図5に示すように、バネ板材からなる他種のバネを用いることができる。図3は、本発明の他の形態に係る動力伝達装置の要部の側面図で、半部を断面して示している。図4は、図3の要部に使用されるバネの単体を示す斜視図である。   The spring that presses the annular transmission body 4 in the axial direction is not limited to the disc springs 6 and 7, and other types of springs made of a spring plate material can be used as shown in FIGS. 3 to 5. FIG. 3 is a side view of a main part of a power transmission device according to another embodiment of the present invention, showing a half part in cross section. FIG. 4 is a perspective view showing a single spring used in the main part of FIG.

図3に示す形態では、環状伝動体4の軸方向両側に、それぞれ複数の波形環状バネ11,12が設けられている。波形環状バネ11,12は、図4にも示すように、ワッシャ状のバネ板材を円周方向に沿って波形に成形したもので、各波形環状バネ11,12は、円周方向に沿って一定角度毎に軸方向一方側に突出する波形凸部11a,12aと、軸方向他方側に突出する波形凸部11b,12bとを有する。   In the form shown in FIG. 3, a plurality of corrugated annular springs 11 and 12 are provided on both sides in the axial direction of the annular transmission 4. As shown in FIG. 4, the corrugated annular springs 11 and 12 are formed by forming a washer-like spring plate into a corrugated shape along the circumferential direction. The corrugated annular springs 11 and 12 are arranged along the circumferential direction. Corrugated convex portions 11a and 12a projecting to the one side in the axial direction and corrugated convex portions 11b and 12b projecting to the other axial direction are provided for each fixed angle.

複数の波形環状バネ11(もしくは12)は、環状伝動体4の軸方向両側でそれぞれ軸方向に並列され、隣り合う他の波形環状バネ11(もしくは12)と波形凸部11a,11b(もしくは12b,12a)どうしが突き合う状態で、例えば溶接により互いに結合されている。図3中、符号13は、波形凸部11a,11b(もしくは12b,12a)どうしの結合部を示している。   The plurality of corrugated annular springs 11 (or 12) are axially juxtaposed on both sides in the axial direction of the annular transmission 4, and are adjacent to the other corrugated annular springs 11 (or 12) and corrugated convex portions 11a, 11b (or 12b). 12a) are connected to each other, for example, by welding. In FIG. 3, the code | symbol 13 has shown the connection part of waveform convex part 11a, 11b (or 12b, 12a).

図3に示す形態において、環状伝動体4が軸方向一方に変位すると、変位側の波形環状バネ11(もしくは12)は、軸方向に扁平な形に圧縮される。環状伝動体4から過大な負荷が作用したときには、互いに密着して扁平に変形し、塑性変形したり破損するようなことがない。この波形環状バネ11,12は、例えば、平板状のバネ板材をワッシャ状に打ち抜いた上で、ワッシャ状となったバネ板材をプレス等により円周方向に沿って波形に成形すればよく、比較的容易に製造することができる。   In the form shown in FIG. 3, when the annular transmission 4 is displaced in one axial direction, the undulating annular spring 11 (or 12) on the displacement side is compressed into a flat shape in the axial direction. When an excessive load is applied from the annular transmission 4, they are brought into close contact with each other and deformed into a flat shape so that they are not plastically deformed or damaged. For example, the corrugated annular springs 11 and 12 may be formed by punching a flat spring plate material into a washer shape and then forming the washer-shaped spring plate material into a waveform along the circumferential direction by a press or the like. Can be manufactured easily.

環状伝動体4の軸方向両側には、図5に示すような波形螺旋状バネ14を設けてもよい。この波形螺旋状バネ14は、ワッシャ状のバネ板材を螺旋状に連続させた形状で、螺旋方向に沿って波形に成形したものであり、螺旋方向に沿って一定角度毎に軸方向一方側に突出する波形凸部14aと、軸方向他方側に突出する波形凸部14bとを有する。波形螺旋状バネ14では、各螺旋巻き部分の波形凸部14a,14bが隣り合う他の螺旋巻き部分の波形凸部14a,14bと突き合う状態になっていることが望ましい。   A corrugated spiral spring 14 as shown in FIG. 5 may be provided on both sides of the annular transmission 4 in the axial direction. The corrugated spiral spring 14 is formed by continuously forming a washer-like spring plate material in a spiral shape, and is formed into a corrugated shape along the spiral direction. It has a corrugated convex portion 14a that projects and a corrugated convex portion 14b that projects to the other side in the axial direction. In the corrugated spiral spring 14, it is desirable that the corrugated convex portions 14 a and 14 b of each spiral winding portion are in a state of abutting against the corrugated convex portions 14 a and 14 b of other spiral winding portions adjacent to each other.

波形螺旋状バネ14は、その螺旋長さを変えることで、環状伝動体4を押圧する力をほぼ無段階的に調整することができる。また、波形螺旋状バネ14は、螺旋状に連続しているから、組み込み途中等にばらけるようなことがなく、扱いが容易である。環状伝動体4から過大な負荷が作用したときには、各螺旋巻き部分が互いに密着して扁平に変形し、塑性変形したり破損するようなことがない。製造に当たっては、例えば、平板状のバネ板材をワッシャ状に打ち抜いた上で、ワッシャ状となったバネ板材の複数を互いに螺旋状に接続し、螺旋状となったバネ板材を螺旋方向に沿って波形に成形すればよく、面倒な工程を必要としない。   The wave helical spring 14 can adjust the force of pressing the annular transmission 4 almost steplessly by changing its helical length. Further, since the corrugated spiral spring 14 is continuous in a spiral shape, the corrugated spiral spring 14 is not scattered during the assembly process and is easy to handle. When an excessive load is applied from the annular transmission 4, the spirally wound portions are brought into close contact with each other and deformed into a flat shape without causing plastic deformation or damage. In manufacturing, for example, after punching a flat spring plate material into a washer shape, a plurality of washer-shaped spring plate materials are connected to each other in a spiral shape, and the spiral spring plate material is moved along the spiral direction. What is necessary is just to shape | mold into a waveform and a troublesome process is not required.

なお、環状伝動体4は、図1および図2に示す形態とは逆に、内周側のロータ軸2とは軸方向に沿った直線状のスプラインで嵌合し、外周側のプーリ2とは、螺旋スプラインで嵌合するようにしてもよい。また、環状伝動体4は、ロータ軸2とは螺旋スプライン4nで嵌合し、プーリ1とは、ロータ軸2との螺旋スプライン4nとは逆ねじ方向の螺旋スプラインで嵌合するようにしてもよい。さらに、環状伝動体4とロータ軸2との間、もしくは環状伝動体4とプーリ1との間に設けられる螺旋スプラインに替えて、リード角が大きなねじで嵌合するようにしてもよい。要するに、環状伝動体4に対して、外径側の回転体および内径側の回転体の少なくとも一方が、螺旋状嵌合部で嵌合していればよい。   1 and 2, the annular transmission body 4 is fitted with the inner peripheral rotor shaft 2 by a linear spline along the axial direction, and the outer peripheral pulley 2 and May be fitted with a helical spline. The annular transmission 4 is fitted to the rotor shaft 2 by a helical spline 4n, and the pulley 1 is fitted to the helical spline 4n to the rotor shaft 2 by a helical spline in the reverse screw direction. Good. Furthermore, instead of the spiral spline provided between the annular transmission body 4 and the rotor shaft 2 or between the annular transmission body 4 and the pulley 1, it may be fitted with a screw having a large lead angle. In short, it is sufficient that at least one of the outer diameter side rotating body and the inner diameter side rotating body is fitted to the annular transmission body 4 by the helical fitting portion.

本発明の最良の形態に係る動力伝達装置の半部の断面図。Sectional drawing of the half part of the power transmission device which concerns on the best form of this invention. 図1の装置の一部である環状伝動体の斜視図。The perspective view of the annular transmission body which is a part of apparatus of FIG. 本発明の他の形態に係る動力伝達装置の要部の側面図で、半部を断面して示している。In the side view of the principal part of the power transmission device which concerns on the other form of this invention, the half part is shown in cross section. 図3の要部に使用されるバネの斜視図。The perspective view of the spring used for the principal part of FIG. 本発明のさらに他の形態に使用されるバネの斜視図。The perspective view of the spring used for the further another form of this invention.

符号の説明Explanation of symbols

1 プーリ(駆動側回転体)
1s スプライン(直線状嵌合部)
2 ロータ軸(従動側回転体)
2n 螺旋スプライン(螺旋状嵌合部)
4 環状伝動体
4s スプライン(直線状嵌合部)
4n 螺旋スプライン(螺旋状嵌合部)
5 環状空間
6,7 皿バネ
11,12 波形環状バネ
14 波形螺旋状バネ
1 Pulley (drive-side rotating body)
1s spline (linear fitting part)
2 Rotor shaft (driven rotor)
2n Spiral spline (spiral fitting part)
4 annular transmission 4s spline (linear fitting part)
4n Spiral spline (spiral fitting part)
5 annular space 6, 7 disc spring 11, 12 corrugated annular spring 14 corrugated spiral spring

Claims (3)

径方向内側と外側に対向配置した2つの回転体と、両回転体間に配置された動力伝達部材とを備えた動力伝達装置であって、
上記外側の回転体は、内周面に螺旋状および直線状のうちの一方の形状をなす第1嵌合部を備え、上記内側の回転体は、外周面に螺旋状および直線状のうちの他方の形状をなす第2嵌合部を備え、
上記動力伝達部材は、外周面に上記第1嵌合部に対応した形状の第3嵌合部を備えかつ内周面に上記第2嵌合部に対応した形状の第4嵌合部を備えた環状伝動体と、該環状伝動体の軸方向両側それぞれに直列または並列に配置された複数のバネとからなる、ことを特徴とする動力伝達装置。
A power transmission device comprising two rotating bodies arranged opposite to each other on the radially inner side and the outer side, and a power transmission member arranged between both rotating bodies,
The outer rotating body includes a first fitting portion having one of a spiral shape and a linear shape on the inner peripheral surface, and the inner rotating body has a spiral shape and a linear shape on the outer peripheral surface. A second fitting portion having the other shape;
The power transmission member includes a third fitting portion having a shape corresponding to the first fitting portion on an outer peripheral surface and a fourth fitting portion having a shape corresponding to the second fitting portion on an inner peripheral surface. And a plurality of springs arranged in series or in parallel on both sides in the axial direction of the annular transmission.
上記バネは、円周方向に波形に成形されたワッシャ状のバネ板材からなる波形環状バネであり、上記環状伝動体の軸方向両側それぞれに複数配置した、ことを特徴とする請求項1に記載の動力伝達装置。   The said spring is a wave-like annular spring which consists of a washer-like spring board shape | molded by the waveform in the circumferential direction, and it has arrange | positioned two or more by the axial direction both sides of the said annular transmission body, It is characterized by the above-mentioned. Power transmission device. 上記バネは、ワッシャ状のバネ板材を螺旋状に連続した形状をなし、かつ、その螺旋方向に波形に形成された波形螺旋状バネであり、上記環状伝動体の軸方向両側それぞれに複数配置した、ことを特徴とする請求項1に記載の動力伝達装置。   The spring is a wave spiral spring formed in a spiral shape with a washer-like spring plate material in a spiral shape, and a plurality of springs are arranged on both sides in the axial direction of the annular transmission body. The power transmission device according to claim 1.
JP2004091416A 2004-03-26 2004-03-26 Power transmission device Expired - Fee Related JP4289187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004091416A JP4289187B2 (en) 2004-03-26 2004-03-26 Power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004091416A JP4289187B2 (en) 2004-03-26 2004-03-26 Power transmission device

Publications (2)

Publication Number Publication Date
JP2005273851A JP2005273851A (en) 2005-10-06
JP4289187B2 true JP4289187B2 (en) 2009-07-01

Family

ID=35173740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004091416A Expired - Fee Related JP4289187B2 (en) 2004-03-26 2004-03-26 Power transmission device

Country Status (1)

Country Link
JP (1) JP4289187B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017155804A (en) * 2016-03-01 2017-09-07 日本精工株式会社 Pulley unit
JP6658101B2 (en) * 2016-03-01 2020-03-04 日本精工株式会社 Pulley unit
JP7142532B2 (en) * 2018-10-19 2022-09-27 Nok株式会社 torsional damper

Also Published As

Publication number Publication date
JP2005273851A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
JP3446538B2 (en) Power transmission device
JPH09292003A (en) Power transmission
JP2006177548A (en) Pulley for power transmission member, separate starter-alternator fitted with such pulley, and engine drive system
WO2010005880A1 (en) Cam damped pulley for rotary devices
US6955252B2 (en) Device for isolating torque fluctuations
US7270606B2 (en) Power transmission device
JP4455858B2 (en) Torsion damper
JP3811569B2 (en) Engine crankshaft, accessory pulley unit
JP4289187B2 (en) Power transmission device
JPH10252857A (en) Power transmitting device
WO2010012078A1 (en) Dual mass flywheel with continuous non-linear system stiffness, overrunning ability, through axial translation against spring system
JP2007263315A (en) Pulley
JP2006038183A (en) Power transmission
JP2007232164A (en) Torque transmitting apparatus
JP2006009899A (en) Power transmission
CN105587797B (en) Space wedging type overrunning belt pulley capable of reducing torsional vibration and overrunning clutch
JP4103629B2 (en) Power transmission device
JP4352926B2 (en) Power transmission device
JP2002303333A (en) Binding cutoff device
JP5775407B2 (en) Torque fluctuation absorber
JP4287983B2 (en) Pulley unit
JP2005337398A (en) Power transmission device
JP4760952B2 (en) Torsion damper
JP2005299856A (en) Power transmitting apparatus
JP2004019678A (en) Power transmission device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees