JP4286042B2 - Ice thermal storage air conditioner - Google Patents

Ice thermal storage air conditioner Download PDF

Info

Publication number
JP4286042B2
JP4286042B2 JP2003093028A JP2003093028A JP4286042B2 JP 4286042 B2 JP4286042 B2 JP 4286042B2 JP 2003093028 A JP2003093028 A JP 2003093028A JP 2003093028 A JP2003093028 A JP 2003093028A JP 4286042 B2 JP4286042 B2 JP 4286042B2
Authority
JP
Japan
Prior art keywords
ice
heat storage
water level
ice making
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003093028A
Other languages
Japanese (ja)
Other versions
JP2004301389A (en
Inventor
順一 斎藤
信二 中原
一則 小内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003093028A priority Critical patent/JP4286042B2/en
Publication of JP2004301389A publication Critical patent/JP2004301389A/en
Application granted granted Critical
Publication of JP4286042B2 publication Critical patent/JP4286042B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は氷蓄熱式空気調和装置に係り、特に、氷蓄熱槽の水位を検知する水位センサに関する。
【0002】
【従来の技術】
従来、氷蓄熱式空気調和装置は、水または氷を貯溜する氷蓄熱槽を有し、この氷蓄熱槽の水を凍らせて製氷しており、水が凍ると体積が膨張し氷蓄熱槽の水位が上昇することから、この水位上昇の幅でもって製氷量を算出設定している。
【0003】
そして、製氷運転時には予め設定された製氷量になった時点、すなわち水位が予め設定された位置に達した時点で製氷運転を終了するようにしている。そのため、例えば、設定された水位位置に水位センサとしての温度センサを設け、この温度センサが水に浸り所定温度以下の低い温度を検知した時点で製氷の完了とし、製氷運転を終了している(例えば、特許文献1)。
【0004】
また、従来の氷蓄熱式空気調和装置は、空調能力の異なる複数種類の機種に同一形態の氷蓄熱槽を採用しており、機種毎に異なる製氷量が設定される。そのため、機種毎に製氷完了の水位位置が設定され機種毎に異なる位置に水位センサが取り付けられる。但し、注入される水量は機種が異なっても一定にしている。
【0005】
【特許文献1】
特開2002ー243215号公報
【0006】
【発明が解決しようとする課題】
ところで、上述したような氷蓄熱式空気調和装置では、空調能力の異なる機種であっても氷蓄熱槽が同一形態のものは、一連の機種として同じ時期に製造しており、水位センサの取付位置が機種毎に異なると、水位センサの取付位置を間違えて取り付けるおそれがあった。
【0007】
本発明は、上述した従来の問題点に鑑みてなされたものであり、複数の機種に同一形態の氷蓄熱槽を搭載する場合に、水位センサの取付位置が正しく取り付けられるようにした氷蓄熱式空気調和装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
前記目的を達成するために、請求項1記載の発明は、水または氷を貯溜する氷蓄熱槽と、この氷蓄熱槽に水没状態で配設される蓄熱熱交換器と、製氷完了の水位位置に設けられる水位センサとを備え、製氷運転時に前記水位センサが製氷完了の水位を検知したときに製氷運転を終了するようにした氷蓄熱式空気調和装置において、前記氷蓄熱槽内の上部には前記蓄熱熱交換器につながるU字管が配置され、このU字管には有底筒状のセンサ取付具が高さを変えて複数個取り付けられており、この変えた高さとは前記氷蓄熱槽を製氷量の異なる複数の機種に用いる場合それぞれの機種毎に製氷完了の水位位置を予め算定した高さであり、前記水位センサはその機種に応じた製氷完了の水位位置となるセンサ取付具に着脱自在に取り付けられていることを特徴とする。
【0010】
請求項2記載の発明は、請求項1記載の氷蓄熱式空気調和装置において、前記水位センサは温度を検知する温度センサであることを特徴とする。
【0011】
請求項3記載の発明は、請求項1〜2記載の氷蓄熱式空気調和装置において、前記水位センサは、製氷運転時に温度の高い冷媒が流れる冷媒管に密着して固定されることを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を、図1〜図5に基づき説明する。
【0013】
図1〜図3は、本発明に一実施形態における氷蓄熱式空気調和装置の冷媒回路図であり、図1は製氷運転時の冷媒の流れを示し、図2は氷利用冷房運転時の冷媒の流れを示し、図3は通常冷房運転時の冷媒の流れを示す。
【0014】
図1において、氷蓄熱式空気調和装置1は、室内機2と室外機3を備え、これら室内機2と室外機3が、ガス冷媒管4及び液冷媒管5からなるユニット間配管により連結されて構成され、更に制御装置6を有する。
【0015】
室内機2は、室内熱交換器7を備え、両端部がユニット間配管のガス冷媒4及び管液冷媒管5に接続される。
【0016】
室外機3は圧縮機室8と氷蓄熱室9(図4参照)とを備えており、圧縮機室8には、圧縮機11の吸込側に冷媒管を介して、アキュムレータ12及び四方弁13が順次接続され、また、圧縮機11の吐出側に前記四方弁13、室外熱交換器14及び室外膨張弁15が冷媒管を介して順次接続されて構成される。
【0017】
氷蓄熱室9には、氷蓄熱槽16を有しこの氷蓄熱槽16内に蓄熱熱交換器17が収納され、U字形冷媒管(以下U字管という)18、蓄熱膨張弁19、第1開閉弁21、第2開閉弁22、第3開閉弁23、第1逆止弁24、第2逆止弁25、室内用膨張弁26及び二方弁27が冷媒管により接続されて構成される。
【0018】
前記U字管18の一端は、冷媒管にて室外膨張弁15へ接続され、他端は2つに分岐されて、一方が蓄熱膨張弁19、第1開閉弁21、第1逆止弁24、室内用膨張弁26及びユニット管配管の液管5へ順次接続され、他方が第2開閉弁22及び第2逆止弁25へ順次接続されて、さらに蓄熱熱交換器17と二方弁27とにそれぞれ接続される。蓄熱熱交換器17の他端は、蓄熱膨張弁19と第1開閉弁21の間へ接続され、二方弁27の他端は、ユニット管配管のガス管4と四方弁13の間へ接続される。また、U字管18及び第2開閉弁間22と、第1逆止弁24及び室内用膨張弁26間とが、第3開閉弁23を介して冷媒管にて接続される。
【0019】
図4は室外機の内部を示した平面図、図5は氷蓄熱槽の縦断面を示す説明図である。
【0020】
図4、図5において、前記氷蓄熱槽16内には、二次媒体としての水が充填され、蓄熱熱交換器17は水没状態で配設される。そして、空気調和装置1の冷熱の蓄熱としての製氷運転時には、蓄熱熱交換器17内に室外熱交換器14からの一次媒体としての液冷媒が流入して蒸発し、これにより、蓄熱熱交換器17の冷媒管外周に氷が付着して形成される。水が氷になることにより、氷蓄熱槽16内は、水位が上昇する。また、蓄熱の放熱としての氷利用冷房運転時には、蓄熱熱交換器17内に圧縮機11からの高温高圧の冷媒が流入して蓄熱熱交換器17の外周に付着した氷を融解する。氷が融解することにより、氷蓄熱槽16内は、水位が下降する。
【0021】
ここで、本氷蓄熱式空気調和装置1は、圧縮機の出力が4、5、6馬力の3種類の機種で同一形態の氷蓄熱槽16を採用しており、室外機3は圧縮機の出力以外はぼ同じ形態をしている。これら3機種は機種毎に異なる製氷量が設定されており、氷蓄熱槽に注入される水量を一定にし、機種毎に製氷完了時の水位が算出設定される。この製氷完了時の水位の検出には水位センサとして上昇した水に接して水温を検知する温度センサが用いられている。
【0022】
次に、この温度センサと、この温度センサが取り付けられるセンサ取付具と、このセンサ取付具を固定する前記U字管について説明する。
【0023】
前記U字管18は氷蓄熱槽16内の上部に配置され、このU字管18には銅製で有底筒状の3つのセンサ取付具31、32、33がロー付けにて固定されている。これらセンサ取付具31、32、33は、同径でそれぞれ長さが異なり、その底面が機種に応じた製氷完了時の水位位置に合わせてある。そして製氷運転時に氷蓄熱槽16の水面上方に位置し、製氷運転の完了時に底面が水に漬かるようになっている。またセンサ取付具31、32、33は、熱伝導性が良く、外部の熱を内部に伝えやすくなっている。
【0024】
前記温度センサ34は信号線にて制御装置6に接続されており、センサ取付具31(または32、33)の上部開口から挿入され、温度センサ34の下端部がセンサ取付具31(または32、33)の底部に当接するように挿着される。またこの温度センサ34は各センサ取付具31、32、33に対して着脱自在に挿着できるので、搭載される機種に応じて付け替え可能になっている。これにより機種に応じて設定された製氷量がそれぞれ確保できると共に、付け間違えたときには容易に付け直すことができる。
【0025】
このように構成された温度センサ34、センサ取付具31、32、33及びU字管18において、U字管18には、製氷運転時に凝縮器としての室外熱交換器14から流出した温度の高い(30〜40℃)冷媒が流れ、温度センサ34は低くても5℃より高い温度に保たれる。蓄熱槽16の水位が上昇し、センサ取付具31、32、33が水に漬かれば、この水によりセンサ取付具31、32、33が冷却され温度センサ34が5℃以下の温度を検出する。温度センサ34が5℃以下の温度を検出したことにより、この検出温度が制御装置6に送信され、制御装置6は製氷が完了したことを認識する。これにより、制御装置6は圧縮機11の運転を停止し、製氷運転を終了する。
【0026】
前記制御装置6は、圧縮機11の運転及び停止、冷房運転または暖房運転等のための四方弁13の切り換え、室外膨張弁15、蓄熱膨張弁19及び室内用膨張弁26の開度、並びに第1開閉弁21、第2開閉弁22、及び第3開閉弁23及び二方弁27の開閉操作をそれぞれ制御する。
【0027】
この制御装置6よって空気調和装置が制御され、製氷運転、氷利用冷房運転、通常冷房運転、温水蓄熱運転、温水利用暖房運転及び通常暖房運転が選択して実施される。
【0028】
次に、製氷運転、氷利用冷房運転及び通常冷房運転について説明する。なお、温水蓄熱運転、温水利用暖房運転及び通常暖房運転については説明を省略する。
【0029】
(a)製氷運転(図1)
冷房運転を停止して氷蓄熱槽16内に製氷し、氷蓄熱を実施する。この場合には、蓄熱膨張弁19が開度制御され、室外膨張弁15及び二方弁27が開操作され、第1開閉弁21、第2開閉弁22、第3開閉弁23及び室内用膨張弁26が閉操作され、図1の太線に示す経路が形成される。
【0030】
圧縮機11から吐出された冷媒が、室外機3の四方弁13、室外熱交換器14、室外膨張弁(全開)15、蓄熱膨張弁(開度制御)19、蓄熱熱交換器17、二方弁27、四方弁13、アキュムレータ12を順次通り、圧縮機11へ戻るように循環する。これによって、室外熱交換器14が凝縮器、蓄熱熱交換器17が蒸発器として機能し、氷蓄熱槽16内に氷を作る。
【0031】
氷蓄熱槽16内に氷が生成され、水位が上昇し、水位が製氷運転の完了位置に達すると、温度センサが製氷運転完了を示す5℃以下の温度を検出し、この検出結果に基づいて制御装置6が圧縮機11を停止する。
【0032】
このように、温度センサ34は、製氷運転中に凝縮された暖かい冷媒が流れるU字管18に密着して設けられると共に、製氷運転中には水面より上方の位置に、製氷完了時には水没する位置に設けられるので、製氷運転中は低くても5℃以上を検出し、製氷運転完了時には5℃以下を検出する。この検出値の温度変化(温度低下)により、制御装置6が製氷完了時を認識し、圧縮機11を停止することができる。
【0033】
(b)氷利用冷房運転(図2)
氷蓄熱槽16内の氷を利用して氷利用冷房運転を実施する。この場合には、室外膨張弁15、第1開閉弁21、第2開閉弁22及び第3開閉弁23が開操作され、室内用膨張弁26が開度制御され、蓄熱膨張弁19及び二方弁27が閉操作され、図2の太線に示す経路が形成される。
【0034】
圧縮機11から吐出された冷媒は、室外機3の四方弁13、室外熱交換器14、室外膨張弁(全開)15を順次通り、蓄熱室9へ入る。蓄熱室9では2つに分岐され、一方は第3開閉弁23を経て室内用膨張弁(開度制御)26へ至り、他方は第2開閉弁22、第2逆止弁25、蓄熱熱交換器17、第1開閉弁21、第1逆止弁24を経て室内用膨張弁(開度制御)26へ至る。室内用膨張弁26で合流した冷媒が室内用膨張弁26で減圧され、室内熱交換器7、四方弁13、アキュムレータ12を順次通り、圧縮機11へ戻るように循環する。これによって、蓄熱熱交換器17が凝縮器、室内熱交換器7が蒸発器としてそれぞれ機能し、氷蓄熱槽の氷を利用した氷利用冷房運転を行う。
【0035】
(c)通常冷房運転(図3)
夏の夜間等、気温がさほど上昇しない(冷房負荷が小さい)ときには、通常冷房運転を実施する。この場合には、氷蓄熱室9において、第3開閉弁23が開操作され、室内用膨張弁26が開度制御され、蓄熱膨張弁19、第1開閉弁21及び第2開閉弁22が閉操作され、図3の太線に示す経路が形成される。
【0036】
圧縮機11から吐出された冷媒は、循環する。室外機3の四方弁13、室外熱交換器14、室外膨張弁15、第3開閉弁23、室内用膨張弁26、室内熱交換器7、四方弁13、アキュムレータ12を順次通り、圧縮機11へ戻るように循環する。これにより、室外熱交換器14が凝縮器、室内熱交換器7が蒸発器として機能し、氷蓄熱槽16内の氷を利用しない通常の冷房運転を行う。
【0037】
以上、一実施形態に基づいて本発明を説明したが、本発明はこれに限定されるものではなく、要旨を逸脱しない範囲で変更可能である。
【0038】
本実施形態では同一形態の氷蓄熱槽16を製氷量の異なる3種類の機種に採用しているが、2機種あるいは4機種以上に採用しても良い。
【0039】
【発明の効果】
以上説明したように、本発明の氷蓄熱式空気調和装置は、氷蓄熱槽を製氷量の異なる複数の機種に用いる場合、それぞれ機種毎の製氷完了時の水位位置を算定して設定し、それぞれの水位位置にセンサ取付具を設けるとともに、水位センサがセンサ取付具に着脱自在に取り付けられるので、それぞれの機種に合わせた製氷量を選出することができ、製氷量の変更も容易にすることができる。
【0040】
また、室外機の製造終了後にも容易に製氷量を変更できるので、製造工程の効率化が図れるとともに、空気調和装置の設置時の煩雑さを減らすことができる。
【図面の簡単な説明】
【図1】本発明の一実施形態における氷蓄熱式空気調和装置の冷媒回路図であり、製氷運転時の冷媒の流れを示す。
【図2】図1の冷媒回路図において氷利用冷房運転時の冷媒の流れを示す。
【図3】図1の冷媒回路図において通常冷房運転時の冷媒の流れを示す。
【図4】室外機の内部を示した平面図である。
【図5】氷蓄熱槽の縦断面を示す説明図である。
【符号の説明】
1 氷蓄熱式空気調和装置
2 室内機
3 室外機
6 制御装置
7 室内熱交換器
11 圧縮機
14 室外熱交換器
15 室外膨張弁
16 氷蓄熱槽
17 蓄熱熱交換器
18 U字形冷媒管
19 蓄熱膨張弁
21 第1開閉弁
22 第2開閉弁
23 第3開閉弁
26 室内用膨張弁
31、32、33 センサ取付具
34 温度センサ(水位センサ)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ice heat storage air conditioner, and more particularly to a water level sensor that detects the water level of an ice heat storage tank.
[0002]
[Prior art]
Conventionally, an ice heat storage air conditioner has an ice heat storage tank for storing water or ice, and the ice in the ice heat storage tank is frozen to produce ice. Since the water level rises, the ice making amount is calculated and set based on the width of the water level rise.
[0003]
During the ice making operation, the ice making operation is terminated when a preset ice making amount is reached, that is, when the water level reaches a preset position. Therefore, for example, a temperature sensor as a water level sensor is provided at a set water level position, and when the temperature sensor detects a low temperature below a predetermined temperature when the temperature sensor is immersed in water, the ice making is completed and the ice making operation is finished ( For example, Patent Document 1).
[0004]
Moreover, the conventional ice thermal storage type air conditioner employs the same type of ice thermal storage tank for a plurality of types of models having different air conditioning capabilities, and a different amount of ice making is set for each model. Therefore, a water level position for completion of ice making is set for each model, and a water level sensor is attached at a different position for each model. However, the amount of water injected is constant regardless of the model.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-243215 [0006]
[Problems to be solved by the invention]
By the way, in the ice heat storage type air conditioner as described above, the ice heat storage tanks having the same form are manufactured at the same time as a series of models even if the models have different air conditioning capabilities, and the position of the water level sensor is installed. However, if the model is different for each model, there is a risk of mounting the water level sensor in the wrong position.
[0007]
The present invention has been made in view of the above-described conventional problems, and in the case where an ice heat storage tank of the same form is mounted on a plurality of models, an ice heat storage type in which the mounting position of the water level sensor is correctly attached. An object is to provide an air conditioner.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 includes an ice heat storage tank for storing water or ice, a heat storage heat exchanger disposed in a submerged state in the ice heat storage tank, and a water level position at completion of ice making. In the ice heat storage type air conditioner, the ice storage operation is terminated when the water level sensor detects the water level of completion of ice making at the time of ice making operation. A U-shaped tube connected to the heat storage heat exchanger is arranged, and a plurality of bottomed cylindrical sensor fixtures are attached to the U-shaped tube at different heights. When the tank is used for a plurality of models with different ice making amounts, the height of the water level for completion of ice making is calculated in advance for each model, and the water level sensor is a sensor attachment that is the water level position for completion of ice making according to the model. Removably attached to And wherein the door.
[0010]
The invention according to claim 2 is the ice heat storage type air conditioner according to claim 1, wherein the water level sensor is a temperature sensor for detecting temperature.
[0011]
According to a third aspect of the present invention, in the ice heat storage air conditioner according to the first or second aspect, the water level sensor is fixed in close contact with a refrigerant pipe through which a high-temperature refrigerant flows during ice making operation. To do.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
[0013]
1 to 3 are refrigerant circuit diagrams of an ice heat storage air conditioner according to an embodiment of the present invention. FIG. 1 shows a flow of refrigerant during ice making operation, and FIG. 2 shows refrigerant during ice cooling operation. FIG. 3 shows the flow of the refrigerant during the normal cooling operation.
[0014]
In FIG. 1, an ice heat storage air conditioner 1 includes an indoor unit 2 and an outdoor unit 3, and the indoor unit 2 and the outdoor unit 3 are connected by an inter-unit pipe including a gas refrigerant pipe 4 and a liquid refrigerant pipe 5. And further includes a control device 6.
[0015]
The indoor unit 2 includes an indoor heat exchanger 7, and both ends thereof are connected to the gas refrigerant 4 and the pipe liquid refrigerant pipe 5 of the inter-unit pipe.
[0016]
The outdoor unit 3 includes a compressor chamber 8 and an ice heat storage chamber 9 (see FIG. 4). The compressor chamber 8 includes an accumulator 12 and a four-way valve 13 via a refrigerant pipe on the suction side of the compressor 11. Are sequentially connected, and the four-way valve 13, the outdoor heat exchanger 14, and the outdoor expansion valve 15 are sequentially connected to the discharge side of the compressor 11 via a refrigerant pipe.
[0017]
The ice heat storage chamber 9 has an ice heat storage tank 16 in which a heat storage heat exchanger 17 is housed. A U-shaped refrigerant pipe (hereinafter referred to as a U-shaped pipe) 18, a heat storage expansion valve 19, On-off valve 21, second on-off valve 22, third on-off valve 23, first check valve 24, second check valve 25, indoor expansion valve 26 and two-way valve 27 are connected by a refrigerant pipe. .
[0018]
One end of the U-shaped pipe 18 is connected to the outdoor expansion valve 15 by a refrigerant pipe, the other end is branched into two, one of which is a heat storage expansion valve 19, a first on-off valve 21, and a first check valve 24. Are connected sequentially to the indoor expansion valve 26 and the liquid pipe 5 of the unit pipe, and the other is sequentially connected to the second on-off valve 22 and the second check valve 25, and further, the heat storage heat exchanger 17 and the two-way valve 27. And connected respectively. The other end of the heat storage heat exchanger 17 is connected between the heat storage expansion valve 19 and the first on-off valve 21, and the other end of the two-way valve 27 is connected between the gas pipe 4 of the unit pipe and the four-way valve 13. Is done. The U-tube 18 and the second on-off valve 22 are connected to the first check valve 24 and the indoor expansion valve 26 via a third on-off valve 23 through a refrigerant pipe.
[0019]
FIG. 4 is a plan view showing the inside of the outdoor unit, and FIG. 5 is an explanatory view showing a longitudinal section of the ice heat storage tank.
[0020]
4 and 5, the ice heat storage tank 16 is filled with water as a secondary medium, and the heat storage heat exchanger 17 is disposed in a submerged state. During the ice making operation as the cold heat storage of the air conditioner 1, the liquid refrigerant as the primary medium from the outdoor heat exchanger 14 flows into the heat storage heat exchanger 17 and evaporates, whereby the heat storage heat exchanger Ice is formed on the outer periphery of the 17 refrigerant pipes. As water becomes ice, the water level rises in the ice heat storage tank 16. Further, at the time of cooling operation using ice as heat storage heat dissipation, high-temperature and high-pressure refrigerant from the compressor 11 flows into the heat storage heat exchanger 17 and melts the ice adhering to the outer periphery of the heat storage heat exchanger 17. As the ice melts, the water level falls in the ice heat storage tank 16.
[0021]
Here, the ice heat storage type air conditioner 1 employs the ice heat storage tank 16 having the same configuration with three types of compressor output of 4, 5, 6 horsepower, and the outdoor unit 3 is a compressor Except for the output, it has almost the same form. In these three models, different ice making amounts are set for each model, the amount of water injected into the ice heat storage tank is made constant, and the water level at the completion of ice making is calculated and set for each model. A temperature sensor that detects the water temperature in contact with the rising water is used as a water level sensor for detecting the water level when the ice making is completed.
[0022]
Next, the temperature sensor, the sensor fixture to which the temperature sensor is attached, and the U-shaped tube for fixing the sensor fixture will be described.
[0023]
The U-shaped tube 18 is disposed in the upper portion of the ice heat storage tank 16, and three sensor fittings 31, 32, 33 made of copper and having a bottomed cylindrical shape are fixed to the U-shaped tube 18 by brazing. . These sensor fixtures 31, 32, and 33 have the same diameter and different lengths, and their bottom surfaces are adjusted to the water level position when ice making is completed according to the model. It is located above the water surface of the ice heat storage tank 16 during the ice making operation, and the bottom surface is immersed in water when the ice making operation is completed. Moreover, the sensor fixtures 31, 32, and 33 have good thermal conductivity, and easily transmit external heat to the inside.
[0024]
The temperature sensor 34 is connected to the control device 6 by a signal line, inserted from the upper opening of the sensor fixture 31 (or 32, 33), and the lower end of the temperature sensor 34 is connected to the sensor fixture 31 (or 32, 33) so as to be in contact with the bottom. Further, since the temperature sensor 34 can be detachably attached to the respective sensor fixtures 31, 32, 33, the temperature sensor 34 can be changed according to the model to be mounted. As a result, the amount of ice making set according to the model can be ensured, and can be easily reattached if a mistake is made.
[0025]
In the temperature sensor 34, the sensor fixtures 31, 32, 33 and the U-shaped pipe 18 configured as described above, the U-shaped pipe 18 has a high temperature flowing out from the outdoor heat exchanger 14 as a condenser during the ice making operation. (30-40 ° C.) The refrigerant flows, and the temperature sensor 34 is kept at a temperature higher than 5 ° C. even if it is low. If the water level of the heat storage tank 16 rises and the sensor fixtures 31, 32, 33 are immersed in water, the sensor fixtures 31, 32, 33 are cooled by this water, and the temperature sensor 34 detects a temperature of 5 ° C. or less. . When the temperature sensor 34 detects a temperature of 5 ° C. or less, the detected temperature is transmitted to the control device 6, and the control device 6 recognizes that ice making is completed. As a result, the control device 6 stops the operation of the compressor 11 and ends the ice making operation.
[0026]
The control device 6 switches and switches the four-way valve 13 for operation and stop of the compressor 11, cooling operation or heating operation, the degree of opening of the outdoor expansion valve 15, the heat storage expansion valve 19 and the indoor expansion valve 26, and The opening / closing operations of the first opening / closing valve 21, the second opening / closing valve 22, the third opening / closing valve 23, and the two-way valve 27 are controlled.
[0027]
The air conditioner is controlled by the control device 6, and ice making operation, ice cooling operation, normal cooling operation, hot water heat storage operation, hot water heating operation and normal heating operation are selected and executed.
[0028]
Next, the ice making operation, the ice-utilizing cooling operation, and the normal cooling operation will be described. In addition, description is abbreviate | omitted about warm water heat storage operation, warm water utilization heating operation, and normal heating operation.
[0029]
(A) Ice making operation (Fig. 1)
The cooling operation is stopped, ice is made in the ice heat storage tank 16, and ice heat storage is performed. In this case, the opening degree of the heat storage expansion valve 19 is controlled, the outdoor expansion valve 15 and the two-way valve 27 are opened, the first on-off valve 21, the second on-off valve 22, the third on-off valve 23, and the indoor expansion. The valve 26 is closed to form a path indicated by a thick line in FIG.
[0030]
The refrigerant discharged from the compressor 11 is the four-way valve 13 of the outdoor unit 3, the outdoor heat exchanger 14, the outdoor expansion valve (full open) 15, the heat storage expansion valve (opening control) 19, the heat storage heat exchanger 17, two-way It circulates through the valve 27, the four-way valve 13, and the accumulator 12 in order to return to the compressor 11. Accordingly, the outdoor heat exchanger 14 functions as a condenser and the heat storage heat exchanger 17 functions as an evaporator, and ice is formed in the ice heat storage tank 16.
[0031]
When ice is generated in the ice heat storage tank 16, the water level rises and the water level reaches the completion position of the ice making operation, the temperature sensor detects a temperature of 5 ° C. or lower indicating the completion of the ice making operation, and based on this detection result The control device 6 stops the compressor 11.
[0032]
As described above, the temperature sensor 34 is provided in close contact with the U-shaped pipe 18 through which the warm refrigerant condensed during the ice making operation flows, and at a position above the water surface during the ice making operation, and a position where the ice is submerged when the ice making is completed. Therefore, at least 5 ° C. is detected during the ice making operation, and 5 ° C. or less is detected when the ice making operation is completed. Due to the temperature change (temperature decrease) of the detected value, the control device 6 can recognize the completion of ice making and can stop the compressor 11.
[0033]
(B) Cooling operation using ice (Figure 2)
Using the ice in the ice heat storage tank 16, an ice-based cooling operation is performed. In this case, the outdoor expansion valve 15, the first on-off valve 21, the second on-off valve 22, and the third on-off valve 23 are opened, the opening degree of the indoor expansion valve 26 is controlled, and the heat storage expansion valve 19 and the two-way valve The valve 27 is closed and a path shown by a thick line in FIG. 2 is formed.
[0034]
The refrigerant discharged from the compressor 11 passes through the four-way valve 13, the outdoor heat exchanger 14, and the outdoor expansion valve (fully open) 15 of the outdoor unit 3 and enters the heat storage chamber 9 in order. The heat storage chamber 9 is branched into two, one leading to the indoor expansion valve (opening control) 26 via the third on-off valve 23, and the other on the second on-off valve 22, the second check valve 25, and heat storage heat exchange. It reaches the indoor expansion valve (opening control) 26 through the container 17, the first on-off valve 21, and the first check valve 24. The refrigerant joined by the indoor expansion valve 26 is depressurized by the indoor expansion valve 26, and circulates back to the compressor 11 through the indoor heat exchanger 7, the four-way valve 13, and the accumulator 12 in order. Thereby, the heat storage heat exchanger 17 functions as a condenser and the indoor heat exchanger 7 functions as an evaporator, respectively, and performs ice-based cooling operation using ice in the ice heat storage tank.
[0035]
(C) Normal cooling operation (Fig. 3)
When the temperature does not rise so much (eg, the cooling load is small) such as at night in summer, a normal cooling operation is performed. In this case, in the ice heat storage chamber 9, the third on-off valve 23 is opened, the opening of the indoor expansion valve 26 is controlled, and the heat storage expansion valve 19, the first on-off valve 21, and the second on-off valve 22 are closed. By operating, a path shown by a thick line in FIG. 3 is formed.
[0036]
The refrigerant discharged from the compressor 11 circulates. The compressor 11 passes through the four-way valve 13, the outdoor heat exchanger 14, the outdoor expansion valve 15, the third on-off valve 23, the indoor expansion valve 26, the indoor heat exchanger 7, the four-way valve 13, and the accumulator 12 in this order. Cycle to return to. As a result, the outdoor heat exchanger 14 functions as a condenser and the indoor heat exchanger 7 functions as an evaporator, and a normal cooling operation that does not use ice in the ice heat storage tank 16 is performed.
[0037]
As mentioned above, although this invention was demonstrated based on one Embodiment, this invention is not limited to this, It can change in the range which does not deviate from a summary.
[0038]
In the present embodiment, the ice heat storage tank 16 having the same form is employed in three types of models having different ice making amounts, but may be employed in two types or four or more types.
[0039]
【The invention's effect】
As described above, the ice heat storage type air conditioner of the present invention calculates and sets the water level position at the time of completion of ice making for each model when the ice heat storage tank is used for a plurality of models with different ice making amounts, Since the sensor attachment is provided at the water level and the water level sensor is detachably attached to the sensor attachment, it is possible to select the ice making amount according to each model and to easily change the ice making amount. it can.
[0040]
Moreover, since the amount of ice making can be easily changed even after the manufacture of the outdoor unit is completed, the efficiency of the manufacturing process can be improved and the complexity of installing the air conditioner can be reduced.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram of an ice regenerative air conditioner according to an embodiment of the present invention, showing the flow of refrigerant during an ice making operation.
FIG. 2 is a refrigerant circuit diagram of FIG. 1 and shows a refrigerant flow during an ice-based cooling operation.
3 shows the flow of refrigerant during normal cooling operation in the refrigerant circuit diagram of FIG.
FIG. 4 is a plan view showing the inside of the outdoor unit.
FIG. 5 is an explanatory view showing a longitudinal section of an ice heat storage tank.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ice heat storage type air conditioner 2 Indoor unit 3 Outdoor unit 6 Control device 7 Indoor heat exchanger 11 Compressor 14 Outdoor heat exchanger 15 Outdoor expansion valve 16 Ice heat storage tank 17 Heat storage heat exchanger 18 U-shaped refrigerant pipe 19 Thermal storage expansion Valve 21 First on-off valve 22 Second on-off valve 23 Third on-off valve 26 Indoor expansion valves 31, 32, 33 Sensor fixture 34 Temperature sensor (water level sensor)

Claims (3)

水または氷を貯溜する氷蓄熱槽と、この氷蓄熱槽に水没状態で配設される蓄熱熱交換器と、製氷完了の水位位置に設けられる水位センサとを備え、製氷運転時に前記水位センサが製氷完了の水位を検知したときに製氷運転を終了するようにした氷蓄熱式空気調和装置において、前記氷蓄熱槽内の上部には前記蓄熱熱交換器につながるU字管が配置され、このU字管には有底筒状のセンサ取付具が高さを変えて複数個取り付けられており、この変えた高さとは前記氷蓄熱槽を製氷量の異なる複数の機種に用いる場合それぞれの機種毎に製氷完了の水位位置を予め算定した高さであり、前記水位センサはその機種に応じた製氷完了の水位位置となるセンサ取付具に着脱自在に取り付けられていることを特徴とする氷蓄熱式空気調和装置。An ice heat storage tank for storing water or ice, a heat storage heat exchanger disposed in a submerged state in the ice heat storage tank, and a water level sensor provided at a water level position where ice making is completed, and during the ice making operation, the water level sensor In the ice heat storage air conditioner that ends the ice making operation when the water level of ice making is detected, a U-shaped tube connected to the heat storage heat exchanger is arranged in the upper part of the ice heat storage tank. A plurality of bottomed cylindrical sensor fixtures are attached to the character tube at different heights, and this changed height means that the ice heat storage tank is used for a plurality of models with different ice making quantities. The ice storage type is characterized in that the water level position for completion of ice making is calculated in advance, and the water level sensor is detachably attached to a sensor fixture that is the water level position for completion of ice making according to the model. Air conditioner. 前記水位センサは温度を検知する温度センサであることを特徴とする請求項1に記載の氷蓄熱式空気調和装置。The ice heat storage type air conditioner according to claim 1 , wherein the water level sensor is a temperature sensor that detects temperature. 前記センサ取付具は、製氷運転時に温度の高い冷媒が流れる冷媒管に密着して固定されることを特徴とする請求項1〜2のいずれかに記載の氷蓄熱式空気調和装置。The ice storage type air conditioner according to any one of claims 1 to 2 , wherein the sensor fixture is fixed in close contact with a refrigerant pipe through which a high-temperature refrigerant flows during ice making operation.
JP2003093028A 2003-03-31 2003-03-31 Ice thermal storage air conditioner Expired - Fee Related JP4286042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003093028A JP4286042B2 (en) 2003-03-31 2003-03-31 Ice thermal storage air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003093028A JP4286042B2 (en) 2003-03-31 2003-03-31 Ice thermal storage air conditioner

Publications (2)

Publication Number Publication Date
JP2004301389A JP2004301389A (en) 2004-10-28
JP4286042B2 true JP4286042B2 (en) 2009-06-24

Family

ID=33405915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003093028A Expired - Fee Related JP4286042B2 (en) 2003-03-31 2003-03-31 Ice thermal storage air conditioner

Country Status (1)

Country Link
JP (1) JP4286042B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763544A (en) * 1993-08-31 1995-03-10 Tokimec Inc Ice thickness measuring device
JP3319363B2 (en) * 1997-07-08 2002-08-26 三菱電機株式会社 Ice storage system
JP2001124370A (en) * 1999-10-26 2001-05-11 Hitachi Air Conditioning System Co Ltd Method for controlling level of thermal storage medium of ice storage apparatus
JP3895935B2 (en) * 2001-02-14 2007-03-22 三洋電機株式会社 Ice thermal storage air conditioner
JP2004301400A (en) * 2003-03-31 2004-10-28 Sanyo Electric Co Ltd Ice cold energy storage type air conditioner

Also Published As

Publication number Publication date
JP2004301389A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
US20140230477A1 (en) Hot water supply air conditioning system
WO2012032680A1 (en) Refrigeration cycle apparatus
CN104634011A (en) Liquid storage tank and multi-connected air conditioner provided with same
WO1998020291A1 (en) Dual evaporator refrigeration unit and thermal energy storage unit therefore
EP2623889B1 (en) Thermal storage device and air conditioner provided with thermal storage device
JP2008241203A (en) Heat pump air-conditioning and heating water heater
CN102393098B (en) Composite system for household electrical appliance
CN106369877A (en) Heat pump system and defrosting control method thereof
EP2623893A1 (en) Heat storage device and air conditioner comprising the heat storage device
JP4634530B1 (en) Heat storage device and air conditioner equipped with the heat storage device
JP2012078012A (en) Heat storage apparatus and air conditioner with the same
JP4286042B2 (en) Ice thermal storage air conditioner
JP3584274B2 (en) Refrigerant amount adjustment method and refrigerant amount determination device
JP3895935B2 (en) Ice thermal storage air conditioner
EP2623912B1 (en) Heat storage device and air conditioner using same
CN211120159U (en) Air conditioning system
WO2012042687A1 (en) Heat storage device and air conditioner with the heat storage device
CN202267267U (en) Composite household appliance system
KR100746894B1 (en) Heat pump hot water supply machine
CN218495416U (en) Heat exchanger and air conditioner
JP2004301400A (en) Ice cold energy storage type air conditioner
KR200310320Y1 (en) Heat storage heat storage pump
CN109737630A (en) Defrost air-conditioning system is not shut down
CN216522077U (en) Air conditioner
CN218495415U (en) Heat exchanger and air conditioner

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees