JP4286030B2 - Method for producing vapor grown carbon fiber - Google Patents

Method for producing vapor grown carbon fiber Download PDF

Info

Publication number
JP4286030B2
JP4286030B2 JP2003063780A JP2003063780A JP4286030B2 JP 4286030 B2 JP4286030 B2 JP 4286030B2 JP 2003063780 A JP2003063780 A JP 2003063780A JP 2003063780 A JP2003063780 A JP 2003063780A JP 4286030 B2 JP4286030 B2 JP 4286030B2
Authority
JP
Japan
Prior art keywords
catalyst
carbon
carbon fiber
reducing gas
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003063780A
Other languages
Japanese (ja)
Other versions
JP2004270088A (en
JP2004270088A5 (en
Inventor
寅吉 東
英二 神原
勝行 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2003063780A priority Critical patent/JP4286030B2/en
Publication of JP2004270088A publication Critical patent/JP2004270088A/en
Publication of JP2004270088A5 publication Critical patent/JP2004270088A5/ja
Application granted granted Critical
Publication of JP4286030B2 publication Critical patent/JP4286030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は気相法炭素繊維(例えば、カーボンナノチューブ等)を効率的に製造可能な方法に関する。
【0002】
【従来の技術】
カーボンナノチューブに代表される炭素繊維は、金属、合成樹脂等との各種複合材等の有用な用途を有するため、これらの炭素繊維の製造方法(例えば、気相法、基板法等)は従来より活発に研究されており、従って報告例も数多い。
【0003】
カーボンナノチューブの製造方法の中で、工業的には気相法が最も安価に炭素繊維を製造できることが知られている。このような気相法の炭素繊維の製造方法には種々の実施形態があるが、気相法による炭素繊維の製造方法においては、いずれも、炭素源となる炭素化合物と、触媒とを、キャリアガスを用いて高温反応器内で反応させる点においては共通している。このような製造方法の検討において、炭素化合物、触媒およびその反応形態についての報告は広くなされているが、キャリアガスに着目されたものはほとんど無い。
【0004】
例えば、特開昭59−152299号公報(特許文献1)には、水素と不活性ガスの混合物をキャリアガスとして用いることが提案されている。この文献では、不活性ガス/水素ガス=30/70〜0/100の範囲が好ましいとされているが、同文献の実施例によると、1160℃での反応でキャリアガス中の水素濃度を低下することで収率が低下することが開示されており、水素ガス濃度は高い方が有利であることが示されている。
【0005】
また、特開昭63−282313号公報(特許文献2)では、キャリアガスは30容積%以上の水素ガスが好ましく、特に50容積%以上とするのが好ましいとされているが、実施例もなく、従ってその内容が不明確であり、更に、その効果についても明らかにされていない。
【0006】
【特許文献1】
特開昭59−152299号公報
【特許文献2】
特開昭63−282313号公報
【0007】
【発明が解決しようとする課題】
本発明の目的は、気相法での炭素繊維の製造において、原料炭化水素の炭素繊維への転化率(収率)を向上させることが可能な製造方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは気相法におけるキャリアガスの効果について鋭意検討した結果、キャリアガス中の還元ガス濃度が収率に大きく影響を与えることを見出し、本発明を完成させるに至った。すなわち、本発明は以下の[1]〜[8]に関する。
【0009】
[1] 還元性のガスを含むキャリアガスの存在下で、炭素化合物と触媒とを加熱帯域で接触させることにより炭素繊維を製造する方法において;
キャリアガス中の還元ガス濃度が30容積%以上100容積%未満であり、加熱帯域の温度が1165℃〜1500℃であることを特徴とする気相法炭素繊維の製造方法。
【0010】
[2] 還元性のガスを含むキャリアガスの存在下で、炭素化合物と触媒とを加熱帯域で接触させることにより炭素繊維を製造する方法において;
キャリアガス中の還元ガス濃度が30容積%以上100容積%未満であり、且つ触媒が連続的に供給されることを特徴とする気相法炭素繊維の製造方法。
【0011】
[3] 還元ガスのキャリアガス中の濃度が30容積%から90容積%であることを特徴とする[1]または[2]に記載の気相法炭素繊維の製造方法。
【0012】
[4] 還元性のガスを含むキャリアガスの存在下で、炭素化合物と触媒とを加熱帯域で接触させることにより炭素繊維を製造する方法において;
下式に示す触媒金属濃度と還元ガス濃度の対数比が5以上、340以下であることを特徴とする気相法炭素繊維の製造方法。
【0013】
(触媒金属濃度と還元ガス濃度の対数比)=log(触媒金属の反応系中でのモル分率)/log(還元ガスの反応系中でのモル分率)
[5] 還元性のガスを含むキャリアガスの存在下で、炭素化合物と触媒とを加熱帯域で接触させることにより炭素繊維を製造する方法において;
前記キャリアガス中の還元ガス濃度が30容積%以上100容積%未満であり、加熱帯域の温度が1165℃〜1500℃、下式に示す触媒金属濃度と還元ガス濃度の対数比が5以上、340以下であることを特徴とする気相法炭素繊維の製造方法。
【0014】
(触媒金属濃度と還元ガス濃度の対数比)=log(触媒金属の反応系中でのモル分率)/log(還元ガスの反応系中でのモル分率)
[6] 前記還元性のガスが、水素、一酸化炭素、およびアンモニアガスからなる群より選ばれた少なくとも一種である[1]〜[5]のいずれかに記載の気相法炭素繊維の製造方法。
【0015】
[7] 前記炭素化合物が、一酸化炭素、メタン、エタン、プロパン、ブタン、エチレン、プロピレン、ブタジエン、アセチレン、ベンゼン、トルエン、キシレンからなる群より選ばれた少なくとも一種を含むことを特徴とする[1]〜[5]のいずれかに記載の気相法炭素繊維の製造方法。
【0016】
[8] 前記触媒が、18族型元素周期律表で言う3〜12族元素からなる群から選ばれた少なくとも一種の元素を含む[1]〜[5]のいずれかに記載の気相法炭素繊維の製造方法。
【0017】
【発明の実施の形態】
以下、必要に応じて図面を参照しつつ本発明を更に具体的に説明する。以下の記載において量比を表す「%」は、特に断らない限り質量基準とする。
(気相法炭素繊維の製造方法)
本発明の気相法炭素繊維の製造方法において、その特徴は、キャリアガス中の還元性のガス濃度を低下させることで、メタン等の副生物の生成を抑制し、収率を向上させることにある。従来技術においては、上記した特許文献1に記載されているように、還元性のガス濃度の低下は収率の低下をもたらすと言われていた。これに対して、反応条件を適切に制御することで、ある特定濃度域では逆に収率の向上が図れることを本発明者は見出した。
(キャリアガス)
本発明においてキャリアガスとしては、還元性ガスと不活性ガス成分の混合物が使用可能である。
(還元性ガス)
還元性ガスとしては、水素、一酸化炭素、アンモニアなど一般的に還元能を有するガスであれば、特に制限はない。これらの2種以上の混合物も好ましく使用することができる。この還元性ガスとしては、コスト、安全性の点からは、特に水素が好ましい。なお、一酸化炭素は炭素繊維の原料としての炭素化合物としての作用も有する。
(不活性ガス)
不活性ガスとしては、特に限定されないが、コスト、汎用性の点からは、窒素、アルゴン、ヘリウム、クリプトン、二酸化炭素、およびこれらの2種以上の混合物を使用することができる。なお、二酸化炭素を用いる場合は炭素化合物として働く場合がある。
(加熱帯域)
本発明の製造方法においては、還元性のガスを含むキャリアガスの存在下で、炭素化合物と触媒とを加熱帯域で接触させることにより炭素繊維を製造する。この加熱帯域の温度は、使用する炭素化合物、触媒にもある程度は依存するが、通常は1200〜1400℃で実施される。しかし、本発明が有効なのは1165〜1500℃で特に1200〜1300℃が最適である。加熱帯域の温度が1165低いと、収率が低下し、他方、加熱帯域の温度が1500℃より高いと、生成物への球状炭素の混入が顕著となるため好ましくない。
(還元性ガスの濃度)
キャリアガス中の還元性ガスの濃度としては、30容積%〜100容積%未満が好ましく、30〜80容積%が更に好ましく、特に35〜70容積%が最も好ましい。還元性ガスの濃度は用いる触媒金属の量によっても好ましい濃度範囲が変化し、下式で示した触媒金属濃度と還元ガス濃度の対数比(以降において「濃度比」と称する)で5以上、340以下が好ましく、5〜50が更に好ましく、12〜50が最適である。
【0018】
(触媒金属濃度と還元ガス濃度の対数比)=log(触媒金属の反応系中でのモル分率)/ log(還元ガスの反応系中でのモル分率)
この還元ガス濃度が80容積%より高いか、または濃度比が50より高いと収率が低下する傾向が生ずる。他方、この濃度比が5より低いと、生成物において球状の炭素粒子が主成分となり好ましくない。
(炭素化合物)
炭素繊維の原料となる炭素化合物としては、CCl4、CHCl3、CH2Cl2、CH3Cl、CO、CO2、CS2等が好適に使用可能である。加えて、これらの他の有機化合物全般も使用可能である。特に有用性の高い化合物は、コスト、汎用性の点からは、CO、CO2、脂肪族炭化水素および芳香族炭化水素である。
【0019】
また、これらの他、窒素、リン、酸素、硫黄、弗素、塩素、臭素、沃素等の元素を含んだ炭素化合物も使用することができる。これらの炭素化合物をガス状にし、反応器へ供給することも可能である。
【0020】
好ましい炭素化合物の一例を挙げると、CO、CO2等の無機ガス、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン等のアルカン類;エチレン、プロピレン、ブタジエン等のアルケン類;アセチレン等のアルキン類;ベンゼン、トルエン、キシレン、スチレン等の単環式芳香族炭化水素;インデン、ナフタリン、アントラセン、フェナントレン等の縮合環を有する多環式化合物;シクロプロパン、シクロペンタン、シクロヘキサン等のシクロパラフィン類;シクロペンテン、シクロヘキセン、シクロペンタジエン、ジシクロペンタジエン等のシクロオレフィン類;ステロイド等の縮合環を有する脂環式炭化水素化合物などが挙げられる。
【0021】
更に、これらの炭化水素に酸素、窒素、硫黄、リン、ハロゲン等が含まれた誘導体、例えば、メタノール、エタノール、プロパノール、ブタノール等の含酸素化合物;メチルチオール、メチルエチルスルフィド、ジメチルチオケトン等の含硫黄脂肪族化合物;フェニルチオール、ジフェニルスルフィド等の含硫黄芳香族化合物;ピリジン、キノリン、ベンゾチオフェン、チオフェン等の含硫黄又は含窒素複素環式化合物;クロロホルム、四塩化炭素、クロルエタン、トリクロルエチレン等のハロゲン化炭化水素;また単体ではないが天然ガス、ガソリン、灯油、重油、クレオソート油、ケロシン、テレピン油、樟脳油、松根油、ギヤー油、シリンダ油等も使用することができる。これらの混合物を用いることももちろん可能である。
【0022】
炭素繊維生成能、コストの点から更に好ましい炭素化合物として、CO、メタン、エタン、プロパン、ブタン、エチレン、プロピレン、ブタジエン、アセチレン、ベンゼン、トルエン、キシレンおよびこれらの混合物が挙げられる。
(触媒)
本発明の製造方法に使用すべき触媒は、炭素繊維の成長を促進する物質である限り、特に制限されない。好適な触媒としては、IUPACが1990年に勧告した18族型元素周期表でいう3〜12族からなる群から選ばれる少なくとも1種の金属を含む触媒が挙げられる。更には3、5,6,8,9,10族からなる群から選ばれる少なくとも1種の金属を含む触媒が好ましく、鉄、ニッケル、コバルト、ルテニウム、ロジウム、パラジウム、白金および希土類元素を含む触媒が特に好ましい。
(触媒前駆体化合物)
上記した触媒に代えて、または上記した触媒と組み合わせて、加熱帯域において熱分解し、場合によっては更に還元されて、上記触媒を与えることができる触媒前駆体化合物を、出発原料として使用することも可能である。なお、特許請求の範囲でいう、「触媒」には触媒前駆体化合物も含まれる。
【0023】
このような触媒前駆体化合物の一例を示すと、例えば、フェロセンは加熱帯域において熱分解し、触媒である鉄微粒子を生成する。よって、触媒前駆体化合物としては、上記の「触媒」の説明で示したような金属を与える化合物が好適に使用可能である。より具体的には、18族型元素周期律表の3〜12族からなる群から選ばれる少なくとも1種の元素を含む金属化合物が好ましく、更には3、5,6,8,9,10族からなる群から選ばれる少なくとも1種の元素を含む化合物が好ましく、特に、鉄、ニッケル、コバルト、ルテニウム、ロジウム、パラジウム、白金および希土類元素を含む化合物が最も好ましい。
【0024】
また、これらの主成分に1〜17族からなる群から選ばれる少なくとも1種の元素を含む金属化合物を触媒の修飾成分(いわゆる助触媒)として加えて、主成分である金属の触媒性能を修飾することも可能である。
(担体)
上記した触媒および/または触媒前駆体化合物を、必要に応じて担体に担持させて用いることも可能である。これらの担体としては、加熱帯域に於いて安定な化合物が好ましく、これらの化合物の一例として、アルミナ、シリカ、ゼオライト、マグネシア、チタニア、ジルコニア、グラファイト、活性炭、炭素繊維などが挙げられる。
(触媒等の使用量)
触媒、あるいは触媒前駆体化合物の使用量は、触媒金属のモル数と炭素化合物中の炭素モル数との比率にして0.000001〜1が好ましく、0.00001〜0.1が更に好ましく、0.0001〜0.005が最適である。このモル数の比が0.000001より小さいと、触媒が不足し炭素繊維数が減少したり炭素繊維径が増大する傾向が生ずるため好ましくない。他方、上記のモル数の比が1より大きいと、経済的でないばかりか、触媒として機能しなかった粗大化した触媒粒子が炭素繊維に混在する傾向が生ずるため好ましくない。なお、上記の炭素化合物中の炭素原子モル数比率の計算においては、炭素化合物だけでなく、触媒前駆体化合物や溶媒に由来する炭素原子も含めるものとする。
(イオウ化合物)
本発明においては更に、これらに炭素繊維径の制御に効果があるとされているイオウ化合物を必要に応じて併用してもよい。イオウ、チオフェン、硫化水素等の化合物をガス状にし、キャリアガスの一成分として用いることも可能であり、溶媒に溶解させて供給してもよい。もちろん該炭素化合物、該触媒前駆体化合物中にイオウを含有する物質を用いても良い。
【0025】
供給するイオウの総モル数は触媒の金属モル数の1000倍以下、好ましくは100倍以下、更に好ましくは10倍以下であることが望ましい。供給するイオウの量が多すぎると経済的でないばかりか、炭素繊維の成長を妨げる傾向を生ずるため好ましくない。
(添加成分)
更に、必要に応じて、炭素繊維の収率を向上させる効果のある添加成分を必要に応じて加えることも可能である。この添加成分としては、有機化合物、無機化合物のいずれも使用可能である。
(有機化合物)
このような添加成分として使用可能な有機化合物の例を挙げると、炭素数が10以上の飽和、不飽和炭化水素類および高級アルコール、オレフィン類、ハロゲン化エチレン類、ジエン類、アセチレン誘導体、スチレン誘導体、ビニルエステル誘導体、ビニルエーテル誘導体、ビニルケトン誘導体、アクリル酸・メタクリル酸誘導体、アクリル酸エステル誘導体、メタクリル酸エステル誘導体、アクリルアミド・メタクリルアミド誘導体、アクリロニトリル・メタクリロニトリル誘導体、マレイン酸・マレイミド誘導体、ビニルアミン誘導体、フェノール誘導体、メラミン類・尿素誘導体、アミン誘導体、カルボン酸・カルボン酸エステル誘導体、ジオール・ポリオール誘導体、イソシアナート・イソチオシアナート誘導体、からなる群から選ばれる少なくとも1種の有機化合物およびそれらの重合体が挙げられる。
【0026】
上記添加成分として更に好ましい化合物として、オクチルアルコール、デシルアルコール、セチルアルコール、ステアリルアルコール、オレイン酸、ステアリン酸、アジピン酸、リノール酸、エルカ酸、ベヘン酸、ミリスチン酸、ラウリン酸、カプリン酸、カプリル酸、ヘキサン酸およびそれらのナトリウム、カリウム塩、マロン酸ジメチル、マレイン酸ジメチル、フタル酸ジブチル、フタル酸エチルヘキシル、フタル酸ジイソノニル、フタル酸ジイソデシル、フタル酸ジウンデシル、フタル酸ジトリデシル、フタル酸ジブトキシエチル、フタル酸エチルヘキシルベンジル、アジピン酸エチルヘキシル、アジピン酸ジイソノニル、アジピン酸ジイソデシル、アジピン酸ジブトキシエチル、トリメリット酸エチルヘキシル、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシエチレングリコールモノメチルエーテル、ポリオキシエチレングリコールジメチルエーテル、ポリオキシエチレングリコールグリセリンエーテル、ポリオキシエチレングリコールラウリルエーテル、ポリオキシエチレングリコールトリデシルエーテル、ポリオキシエチレングリコールセチルエーテル、ポリオキシエチレングリコールステアリルエーテル、ポリオキシエチレングリコールオレイルエーテル、ポリプロピレングリコールジアリルエーテル、ポリオキシエチレングリコールノニルフェニルエーテル、ポリオキシエチレングリコールオクチルエーテル、ステアリン酸ポリプロピレングリコール、ジ2−エチルヘキシルスルホコハク酸ナトリウム、ポリエチレンオキシド、ポリプロピレンオキシド、ポリアセタール、ポリテトラヒドロフラン、ポリ酢酸ビニル、ポリビニルアルコール、ポリアクリル酸メチル、ポリメタクリル酸メチル、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリウレタン、不飽和ポリエステル、エポキシ樹脂、フェノール樹脂、ポリカーボネイト、ポリアミド、ポリフェニレンオキシド、ポリアクリロニトリル、ポリビニルピロリドンなどが挙げられる。
(無機化合物)
上記添加成分として使用可能な無機化合物の例としては、18族型元素周期表でいう2〜15族元素からなる群から選ばれる少なくとも1種の元素を含む無機化合物、更に好ましくはMg,Ca,Sr,Ba,Y,La,Ti,Zr,Cr,Mo,W,Fe,Co,Ni,Cu,Zn,B,Al,C,Si,Biからなる群から選ばれる少なくとも1種を含む無機化合物がよい。
【0027】
これらの金属を単体で用いることも可能であるが、一般に不安定であり、且つハンドリングや安定性に問題があるため、酸化物、窒化物、硫化物、炭化物やそれらの複塩として用いることが推奨される。更に加熱により分解し、これらの化合物となりうる硫酸塩、硝酸塩、酢酸塩、水酸化物等を用いてもよい。
【0028】
更に、添加成分として炭素を単体で用いてもよく、活性炭やグラファイト等も有効に用いることができる。また、炭素繊維自体を添加成分として用いることも可能であるが、供給時の簡便性を考慮するとアスペクト比が大きいものは適当ではなく、アスペクト比が1以上50以下で、かつ、平均繊維径が10nm以上300nm以下であるものが好ましい(アスペクト比の測定は電子顕微鏡写真を用い繊維径と繊維長さで測定し、繊維長さ/繊維長で求められる)。
【0029】
これらの無機化合物としては、酸化亜鉛、酸化アルミニウム、酸化カルシウム、酸化クロム(II,III,VI)、酸化コバルト(II,III)、酸化コバルト(II)アルミニウム、酸化ジルコニウム、酸化イットリウム、二酸化珪素、酸化ストロンチウム、酸化タングステン(IV,VI)、酸化チタン(II,III,IV)、酸化鉄(II,III)、酸化鉄(III)亜鉛、酸化鉄(III)コバルト(II)、酸化鉄(III)鉄(II)、酸化鉄(III)銅(II)、酸化銅(I,II)、酸化鉄(III)バリウム、酸化ニッケル、酸化ニッケル(II)鉄(III)、酸化バリウム、酸化バリウムアルミニウム、酸化ビスマス(III)、酸化ビスマス(IV)二水和物、酸化ビスマス(V)、酸化ビスマス(V)一水和物、酸化マグネシウム、酸化マグネシウムアルミニウム、酸化マグネシウム鉄(III)、酸化モリブデン(IV,VI)、酸化ランタン、酸化ランタン鉄、窒化亜鉛、窒化アルミニウム、窒化カルシウム、窒化クロム、窒化ジルコニウム、窒化チタン、窒化鉄、窒化銅、窒化硼素、硫化亜鉛、硫化アルミニウム、硫化カルシウム、硫化クロム(II,III)、硫化コバルト(II,III)、硫化チタン、硫化鉄、硫化銅(I,II)、硫化ニッケル、硫化バリウム、硫化ビスマス、硫化モリブデン、硫酸亜鉛、硫酸亜鉛アンムニウム、硫酸アルミニウム、硫酸アンモニウムアルミニウム、硫酸アンモニウムクロム、硫酸イットリウム、硫酸カルシウム、硫酸クロム(II,III)、硫酸コバルト(II)、硫酸チタン(III,IV)、硫酸鉄(II,III)、硫酸鉄アンモニウム、硫酸銅、硫酸ニッケル、硫酸ニッケルアンモニウム、硫酸バリウム、硫酸ビスマス、硫酸マグネシウム、硝酸亜鉛、硝酸アルミニウム、硝酸イットリウム、硝酸カルシウム、硝酸クロム、硝酸コバルト、硝酸ジルコニウム、硝酸ビスマス、硝酸鉄(II,III)、硝酸銅、硝酸ニッケル、硝酸バリウム、硝酸マグネシウム、硝酸マンガン、水酸化亜鉛、水酸化アルミニウム、水酸化イットリウム、水酸化カルシウム、水酸化クロム(II,III)、水酸化コバルト、水酸化ジルコニウム、水酸化鉄(II,III)、水酸化銅(I,II)、水酸化ニッケル、水酸化バリウム、水酸化ビスマス、水酸化マグネシウム、酢酸亜鉛、酢酸コバルト、酢酸銅、酢酸ニッケル、酢酸鉄、活性炭、グラファイト、炭素繊維、ゼオライト(アルミノシリケート)、リン酸カルシウム、リン酸アルミニウムなどが挙げられる。
【0030】
最も好ましい無機化合物の添加成分の一例を挙げると、工業的に入手が容易な粉末状で好ましくは平均粒子径が100μm以下の活性炭、グラファイト、シリカ、アルミナ、マグネシア、チタニア、ジルコニア、ゼオライト、燐酸カルシウム、燐酸アルミ、およびアスペクト比が50以下の炭素繊維等である。
(炭素繊維の製造方法)
炭素繊維の製造方法については、一般的に気相法で炭素繊維の合成に用いられる手法であれば特に限定されない。汎用性、経済性の点からは、一例として、図1に示すような反応装置が好適に使用可能である。
【0031】
横型の環状炉1中に石英製あるいは、炭化珪素などのセラミックス製の反応管2を設置し、入口部より、あらかじめ混合した、キャリアガスを導入する。
【0032】
触媒源、原料炭化水素はその形態によって、適切な供給方法が選択できる。原料炭素化合物が常温で気体の場合にはガスとしてキャリアーガスと混合して供給し、液体の場合には気化させてからキャリアーガスと混合して供給するか、もしくは液状で加熱帯域に噴霧することが好ましい。触媒として、担持型触媒を用いる場合は担持型触媒を予め反応ゾーンに設置し、加熱して必要な前処理を行った後に原料炭素化合物を供給するのが好ましい。前処理した担持型触媒を系外から連続、もしくはパルス的に供給するのが更に好ましい。
【0033】
触媒、あるいは触媒前駆体化合物を原料液体炭素化合物に溶解させたり、適当な溶媒に溶解させ、加熱帯域に連続的、あるいはパルス的にフィードする方法や触媒、あるいは触媒前駆体化合物を直接、気化あるいは固体状のまま、加熱帯域に連続的、あるいはパルス的にフィードする方法が最も好ましい。
(触媒前駆体化合物を供給する態様)
本発明の効果が最も顕著に現れるのは、フェロセン等の有機金属化合物を触媒前駆体化合物として原料炭素化合物とともに連続的に反応器に供給する場合である。このような系においては、前駆体化合物から生成する触媒粒子は反応帯域に高分散に存在するために、原料炭素化合物がメタンへと転化することで固体状の炭素化合物になることを抑制する効果がそのまま炭素繊維の収率向上に寄与するため、本発明の効果が最も顕著に現れる。あらかじめ反応域に触媒を充填しておくいわゆる基板法においても、本発明の収率向上効果を期待することはできるが、触媒が連続的に供給されない系においては触媒と炭素化合物あるいはその分解物との接触効率が収率を大きく支配するために、その効果は比較的限定されたものとなる傾向がある。
(反応器)
反応器の形式についても、特に限定されず、所定の加熱帯温度、滞留時間が得られれば一般的に炭素繊維の製造に用いられるものを使用することが可能である。汎用性、経済性の点からは、特に、図1で示したような横型反応器や、縦型反応器が好ましい。
(滞留時間)
本発明において、滞留時間は、加熱帯域の長さとキャリアーガスの流量により調整することができる。好ましい滞留時間は、使用する反応装置、炭素化合物の種類によって、大きく異なる可能性があるが、一般的には0.0001秒〜2時間以内がよく、0.001〜100秒が更に好ましく、0.01〜30秒が最も好ましい。滞留時間が短すぎると、炭素繊維が充分に成長しない傾向があり、他方、滞留時間が長すぎると、太い繊維が多く得られる傾向がある。
(炭素回収率)
本発明の製造方法によれば、炭素の回収率を向上させることができる。ここに、「炭素回収率」は、以下の式で定義される。
【0034】
炭素回収率=生成した固形物重量/使用した炭素化合物重量
【0035】
【実施例】
以下、実施例をあげて本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。
【0036】
以下の実施例においては、下記の試薬類を用いた。
〔試薬類〕
1.炭素化合物
ベンゼン:和光純薬工業(株)製特級試薬
2.触媒前駆体化合物
フェロセン:日本ゼオン(株)製
3.その他の成分
ポリプロピレングリコール:日本油脂(株)製D−400(分子量:400)
イオウ(粉末):関東化学(株)製 試薬
〔炭素繊維の合成〕
<実施例1〜、比較例1〜3、参考例1〜3
図2に示した石英製反応管12(内径31mm、外径36mm、加熱帯域の長さ約400mm)を備えた縦型炉にて、窒素気流中で1250℃にまで昇温し、その後、窒素の供給を絶ち、代わって、反応管内にキャリアーガスとして表1で示した割合で、水素および窒素を流した。
【0037】
温度が安定した後に、下記の表1に示した原料組成物を小型ポンプを用いて0.1g/minの流速で10分の間、原料噴霧ノズル1から供給した。尚、表中の反応液組成はベンゼン溶液中の質量%で表記した。
【0038】
反応の結果、反応管底部に灰色を帯びた蜘蛛の巣状の堆積物が生成した。降温後、この堆積物を回収し、回収量を使用したベンゼン量で除して炭素回収率を求めた。また、走査型電子顕微鏡で繊維状の生成物を観察した。その結果を表1に示した。
【0039】
【表1】

Figure 0004286030
【0040】
<実施例5、6
窒素ガスの代わりに、表2に示したガスを、表2に示した流速で用いた以外は、実施例と同様にして反応を行い、生成物を観察した。
【0041】
【表2】
Figure 0004286030
【0042】
<実施例7、8、比較例4、5>
表3に示したキャリアガスおよび、加熱帯域の温度以外は、実施例と同様に実施した。
【0043】
【表3】
Figure 0004286030
【0044】
【発明の効果】
上述したように本発明によれば、キャリアガス中の還元ガス濃度を最適化し、使用する触媒量に応じて、キャリアガス中の還元ガス濃度を調製することによって、炭素回収率を向上させ、効率的且つ安価に炭素繊維を製造することができる。
【図面の簡単な説明】
【図1】炭素繊維を製造するための横型反応器の一般的な例を示す模式断面図である。
【図2】実施例、比較例で炭素繊維を製造した縦型反応器を示す模式断面図である。
【符号の説明】
1…横型環状炉
2…反応管
3…回収容器
11…原料噴霧ノズル
12…反応管
13…縦型環状炉
14…回収容器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method capable of efficiently producing vapor grown carbon fibers (for example, carbon nanotubes).
[0002]
[Prior art]
Since carbon fibers typified by carbon nanotubes have useful applications such as various composite materials with metals, synthetic resins, etc., methods for producing these carbon fibers (for example, a gas phase method, a substrate method, etc.) have hitherto been used. It has been actively researched and therefore has many reports.
[0003]
Among the methods for producing carbon nanotubes, it is known industrially that the gas phase method can produce carbon fibers at the lowest cost. There are various embodiments of the carbon fiber production method of such a gas phase method. In the carbon fiber production method of the gas phase method, any of the carbon compound as a carbon source and a catalyst is used as a carrier. It is common in the point of making it react in a high temperature reactor using gas. In the examination of such a production method, reports on carbon compounds, catalysts, and reaction forms thereof have been widely made, but few have focused on carrier gas.
[0004]
For example, JP 59-152299 A (Patent Document 1) proposes using a mixture of hydrogen and an inert gas as a carrier gas. In this document, the range of inert gas / hydrogen gas = 30/70 to 0/100 is preferred, but according to the example of the document, the hydrogen concentration in the carrier gas is reduced by the reaction at 1160 ° C. It has been disclosed that the yield decreases, and a higher hydrogen gas concentration is advantageous.
[0005]
Japanese Patent Laid-Open No. 63-282313 (Patent Document 2) states that the carrier gas is preferably 30% by volume or more of hydrogen gas, particularly preferably 50% by volume or more, but there is no example. Therefore, the contents are unclear, and the effect is not clarified.
[0006]
[Patent Document 1]
JP 59-152299 A
[Patent Document 2]
JP-A 63-282313
[0007]
[Problems to be solved by the invention]
The objective of this invention is providing the manufacturing method which can improve the conversion rate (yield) of a raw material hydrocarbon to carbon fiber in manufacture of the carbon fiber by a gaseous-phase method.
[0008]
[Means for Solving the Problems]
As a result of intensive studies on the effect of the carrier gas in the gas phase method, the present inventors have found that the reducing gas concentration in the carrier gas greatly affects the yield, and have completed the present invention. That is, the present invention relates to the following [1] to [8].
[0009]
[1] In a method for producing carbon fiber by contacting a carbon compound and a catalyst in a heating zone in the presence of a carrier gas containing a reducing gas;
A method for producing vapor-grown carbon fibers, wherein the reducing gas concentration in the carrier gas is 30% by volume or more and less than 100% by volume, and the temperature in the heating zone is 1165 ° C to 1500 ° C.
[0010]
[2] In a method for producing carbon fiber by contacting a carbon compound and a catalyst in a heating zone in the presence of a carrier gas containing a reducing gas;
A method for producing vapor grown carbon fiber, characterized in that the reducing gas concentration in the carrier gas is 30% by volume or more and less than 100% by volume, and the catalyst is continuously supplied.
[0011]
[3] The method for producing vapor-grown carbon fiber according to [1] or [2], wherein the concentration of the reducing gas in the carrier gas is 30% by volume to 90% by volume.
[0012]
[4] In a method for producing carbon fiber by contacting a carbon compound and a catalyst in a heating zone in the presence of a carrier gas containing a reducing gas;
A method for producing vapor-grown carbon fiber, wherein the logarithmic ratio of the catalyst metal concentration and the reducing gas concentration represented by the following formula is 5 or more and 340 or less.
[0013]
(Logarithmic ratio of catalyst metal concentration and reducing gas concentration) = log (molar fraction of catalytic metal in reaction system) / log (molar fraction of reducing gas in reaction system)
[5] In a method for producing carbon fiber by bringing a carbon compound and a catalyst into contact in a heating zone in the presence of a carrier gas containing a reducing gas;
The reducing gas concentration in the carrier gas is 30% by volume or more and less than 100% by volume, the temperature of the heating zone is 1165 ° C. to 1500 ° C., and the logarithmic ratio of the catalytic metal concentration and the reducing gas concentration shown in the following formula is 5 or more and 340 The manufacturing method of the vapor grown carbon fiber characterized by the following.
[0014]
(Logarithmic ratio of catalyst metal concentration and reducing gas concentration) = log (molar fraction of catalytic metal in reaction system) / log (molar fraction of reducing gas in reaction system)
[6] Production of vapor grown carbon fiber according to any one of [1] to [5], wherein the reducing gas is at least one selected from the group consisting of hydrogen, carbon monoxide, and ammonia gas. Method.
[0015]
[7] The carbon compound includes at least one selected from the group consisting of carbon monoxide, methane, ethane, propane, butane, ethylene, propylene, butadiene, acetylene, benzene, toluene, and xylene. [1] A method for producing vapor grown carbon fiber according to any one of [5].
[0016]
[8] The gas phase method according to any one of [1] to [5], wherein the catalyst includes at least one element selected from the group consisting of Group 3 to 12 elements in the group 18 element periodic table. A method for producing carbon fiber.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described more specifically with reference to the drawings as necessary. In the following description, “%” representing the quantitative ratio is based on mass unless otherwise specified.
(Method for producing vapor grown carbon fiber)
In the method for producing vapor grown carbon fiber of the present invention, the feature is to reduce the concentration of reducing gas in the carrier gas, thereby suppressing the production of by-products such as methane and improving the yield. is there. In the prior art, as described in Patent Document 1 described above, it has been said that a reduction in reducing gas concentration causes a reduction in yield. In contrast, the present inventor has found that the yield can be improved in a specific concentration range by appropriately controlling the reaction conditions.
(Carrier gas)
In the present invention, a mixture of a reducing gas and an inert gas component can be used as the carrier gas.
(Reducing gas)
The reducing gas is not particularly limited as long as it is a gas having a general reducing ability such as hydrogen, carbon monoxide, and ammonia. A mixture of two or more of these can also be preferably used. As the reducing gas, hydrogen is particularly preferable from the viewpoint of cost and safety. Carbon monoxide also acts as a carbon compound as a raw material for carbon fibers.
(Inert gas)
Although it does not specifically limit as an inert gas, From a cost and versatility point, nitrogen, argon, helium, krypton, carbon dioxide, and these 2 or more types of mixtures can be used. When carbon dioxide is used, it may work as a carbon compound.
(Heating zone)
In the production method of the present invention, carbon fibers are produced by bringing a carbon compound and a catalyst into contact with each other in a heating zone in the presence of a carrier gas containing a reducing gas. The temperature in this heating zone depends on the carbon compound and catalyst used to some extent, but is usually carried out at 1200 to 1400 ° C. However, the present invention is effective at 1165 to 1500 ° C., particularly 1200 to 1300 ° C. If the temperature in the heating zone is 1165 low, the yield decreases. On the other hand, if the temperature in the heating zone is higher than 1500 ° C., the mixture of spherical carbon into the product becomes remarkable, which is not preferable.
(Reducing gas concentration)
The concentration of the reducing gas in the carrier gas is preferably 30% by volume to less than 100% by volume, more preferably 30 to 80% by volume, and most preferably 35 to 70% by volume. The preferred concentration range of the reducing gas varies depending on the amount of the catalyst metal used, and the logarithmic ratio (hereinafter referred to as “concentration ratio”) of the catalyst metal concentration and the reducing gas concentration represented by the following formula is 5 or more, 340 The following are preferable, 5 to 50 are more preferable, and 12 to 50 are optimal.
[0018]
(Log ratio of catalyst metal concentration and reducing gas concentration) = log (molar fraction of catalytic metal in reaction system) / log (molar fraction of reducing gas in reaction system)
If the reducing gas concentration is higher than 80% by volume or the concentration ratio is higher than 50, the yield tends to decrease. On the other hand, when the concentration ratio is lower than 5, spherical carbon particles are the main component in the product, which is not preferable.
(Carbon compound)
As a carbon compound used as a raw material of carbon fiber, CCl Four , CHCl Three , CH 2 Cl 2 , CH Three Cl, CO, CO 2 , CS 2 Etc. can be suitably used. In addition, these other organic compounds in general can also be used. Particularly useful compounds are CO and CO from the viewpoint of cost and versatility. 2 , Aliphatic hydrocarbons and aromatic hydrocarbons.
[0019]
In addition to these, carbon compounds containing elements such as nitrogen, phosphorus, oxygen, sulfur, fluorine, chlorine, bromine and iodine can also be used. It is also possible to make these carbon compounds gaseous and supply them to the reactor.
[0020]
Examples of preferred carbon compounds include CO, CO 2 Inorganic gases such as methane, ethane, propane, butane, pentane, hexane, heptane, octane, etc .; alkenes such as ethylene, propylene, butadiene; alkynes such as acetylene; benzene, toluene, xylene, styrene, etc. Monocyclic aromatic hydrocarbons; polycyclic compounds having condensed rings such as indene, naphthalene, anthracene, phenanthrene; cycloparaffins such as cyclopropane, cyclopentane, cyclohexane; cyclopentene, cyclohexene, cyclopentadiene, dicyclopentadiene, etc. And cycloaliphatic hydrocarbon compounds having a condensed ring such as steroid.
[0021]
Further, derivatives containing oxygen, nitrogen, sulfur, phosphorus, halogen, etc. in these hydrocarbons, for example, oxygen-containing compounds such as methanol, ethanol, propanol, butanol; methylthiol, methylethyl sulfide, dimethylthioketone, etc. Sulfur-containing aliphatic compounds; sulfur-containing aromatic compounds such as phenylthiol and diphenylsulfide; sulfur- or nitrogen-containing heterocyclic compounds such as pyridine, quinoline, benzothiophene, and thiophene; chloroform, carbon tetrachloride, chloroethane, trichloroethylene, etc. Although not a simple substance, natural gas, gasoline, kerosene, heavy oil, creosote oil, kerosene, turpentine oil, camphor oil, pine oil, gear oil, cylinder oil and the like can also be used. It is of course possible to use a mixture of these.
[0022]
More preferred carbon compounds in terms of carbon fiber-forming ability and cost include CO, methane, ethane, propane, butane, ethylene, propylene, butadiene, acetylene, benzene, toluene, xylene and mixtures thereof.
(catalyst)
The catalyst to be used in the production method of the present invention is not particularly limited as long as it is a substance that promotes the growth of carbon fibers. Suitable catalysts include catalysts containing at least one metal selected from the group consisting of groups 3 to 12 in the group 18 element periodic table recommended by IUPAC in 1990. Furthermore, a catalyst containing at least one metal selected from the group consisting of 3, 5, 6, 8, 9, 10 groups is preferable, and a catalyst containing iron, nickel, cobalt, ruthenium, rhodium, palladium, platinum and rare earth elements. Is particularly preferred.
(Catalyst precursor compound)
Instead of the above-mentioned catalyst or in combination with the above-mentioned catalyst, a catalyst precursor compound that can be thermally decomposed in a heating zone and further reduced in some cases to give the above-mentioned catalyst may be used as a starting material. Is possible. The “catalyst” referred to in the claims includes a catalyst precursor compound.
[0023]
As an example of such a catalyst precursor compound, for example, ferrocene is thermally decomposed in a heating zone to produce iron fine particles as a catalyst. Therefore, as the catalyst precursor compound, a compound that gives a metal as shown in the explanation of the “catalyst” can be preferably used. More specifically, a metal compound containing at least one element selected from the group consisting of Groups 3 to 12 of the Group 18 element periodic table is preferable, and further, Groups 3, 5, 6, 8, 9, and 10 are preferable. A compound containing at least one element selected from the group consisting of iron, nickel, cobalt, ruthenium, rhodium, palladium, platinum and a rare earth element is most preferable.
[0024]
In addition, a metal compound containing at least one element selected from the group consisting of groups 1 to 17 is added to these main components as a catalyst modifying component (so-called co-catalyst) to modify the catalytic performance of the main component metal. It is also possible to do.
(Carrier)
The above-described catalyst and / or catalyst precursor compound can be used by being supported on a carrier as necessary. These carriers are preferably compounds that are stable in the heating zone, and examples of these compounds include alumina, silica, zeolite, magnesia, titania, zirconia, graphite, activated carbon, and carbon fiber.
(Amount of catalyst used)
The amount of the catalyst or catalyst precursor compound used is preferably from 0.000001 to 1, more preferably from 0.00001 to 0.1, in terms of the ratio of the number of moles of catalyst metal to the number of moles of carbon in the carbon compound. 0.0001 to 0.005 is optimal. If the molar ratio is less than 0.000001, the catalyst is insufficient, and the number of carbon fibers tends to decrease or the carbon fiber diameter tends to increase. On the other hand, it is not preferable that the ratio of the number of moles is greater than 1, because not only is it economical, but also coarsened catalyst particles that do not function as a catalyst tend to be mixed in the carbon fiber. In addition, in calculation of the carbon atom mole number ratio in said carbon compound, not only a carbon compound but the carbon atom derived from a catalyst precursor compound or a solvent shall be included.
(Sulfur compound)
In the present invention, a sulfur compound which is considered to be effective in controlling the carbon fiber diameter may be used in combination as necessary. A compound such as sulfur, thiophene, hydrogen sulfide or the like can be used in the form of a gas and used as one component of the carrier gas, or may be supplied after being dissolved in a solvent. Of course, a substance containing sulfur in the carbon compound and the catalyst precursor compound may be used.
[0025]
The total number of moles of sulfur to be supplied is 1000 times or less, preferably 100 times or less, more preferably 10 times or less the number of moles of metal in the catalyst. An excessive amount of sulfur to be supplied is not preferable because it is not economical and tends to hinder the growth of carbon fibers.
(Additive ingredients)
Furthermore, it is also possible to add an additive component having an effect of improving the yield of carbon fiber as necessary. As this additive component, either an organic compound or an inorganic compound can be used.
(Organic compounds)
Examples of organic compounds that can be used as such additive components include saturated and unsaturated hydrocarbons having 10 or more carbon atoms and higher alcohols, olefins, halogenated ethylenes, dienes, acetylene derivatives, styrene derivatives. , Vinyl ester derivatives, vinyl ether derivatives, vinyl ketone derivatives, acrylic acid / methacrylic acid derivatives, acrylic acid ester derivatives, methacrylic acid ester derivatives, acrylamide / methacrylamide derivatives, acrylonitrile / methacrylonitrile derivatives, maleic acid / maleimide derivatives, vinylamine derivatives, Selected from the group consisting of phenol derivatives, melamines / urea derivatives, amine derivatives, carboxylic acid / carboxylic acid ester derivatives, diol / polyol derivatives, isocyanate / isothiocyanate derivatives At least one organic compound and a polymer thereof can be cited are.
[0026]
More preferable compounds as the additive component include octyl alcohol, decyl alcohol, cetyl alcohol, stearyl alcohol, oleic acid, stearic acid, adipic acid, linoleic acid, erucic acid, behenic acid, myristic acid, lauric acid, capric acid, and caprylic acid. , Hexanoic acid and their sodium, potassium salts, dimethyl malonate, dimethyl maleate, dibutyl phthalate, ethyl hexyl phthalate, diisononyl phthalate, diisodecyl phthalate, diundecyl phthalate, ditridecyl phthalate, dibutoxyethyl phthalate, phthalate Ethyl hexyl benzyl, ethyl hexyl adipate, diisononyl adipate, diisodecyl adipate, dibutoxyethyl adipate, ethyl hexyl trimellirate, polyethylene glycol Polypropylene glycol, polyoxyethylene glycol monomethyl ether, polyoxyethylene glycol dimethyl ether, polyoxyethylene glycol glycerin ether, polyoxyethylene glycol lauryl ether, polyoxyethylene glycol tridecyl ether, polyoxyethylene glycol cetyl ether, polyoxyethylene Glycol stearyl ether, polyoxyethylene glycol oleyl ether, polypropylene glycol diallyl ether, polyoxyethylene glycol nonyl phenyl ether, polyoxyethylene glycol octyl ether, polypropylene glycol stearate, sodium di-2-ethylhexyl sulfosuccinate, polyethylene oxide, polypropylene Koxide, polyacetal, polytetrahydrofuran, polyvinyl acetate, polyvinyl alcohol, polymethyl acrylate, polymethyl methacrylate, polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polyurethane, unsaturated polyester, epoxy resin, phenol resin, polycarbonate, Polyamide, polyphenylene oxide, polyacrylonitrile, polyvinyl pyrrolidone and the like can be mentioned.
(Inorganic compounds)
Examples of inorganic compounds that can be used as the additive component include inorganic compounds containing at least one element selected from the group consisting of Group 2 to 15 elements in the Group 18 element periodic table, more preferably Mg, Ca, Inorganic compound containing at least one selected from the group consisting of Sr, Ba, Y, La, Ti, Zr, Cr, Mo, W, Fe, Co, Ni, Cu, Zn, B, Al, C, Si, Bi Is good.
[0027]
Although these metals can be used alone, they are generally unstable and have problems in handling and stability, so that they can be used as oxides, nitrides, sulfides, carbides and their double salts. Recommended. Further, sulfates, nitrates, acetates, hydroxides and the like that can be decomposed by heating to become these compounds may be used.
[0028]
Furthermore, carbon may be used alone as an additive component, and activated carbon, graphite and the like can also be used effectively. Carbon fiber itself can also be used as an additive component, but in view of the convenience of supply, those having a large aspect ratio are not suitable, the aspect ratio is 1 or more and 50 or less, and the average fiber diameter is It is preferably 10 nm or more and 300 nm or less (the aspect ratio is measured by the fiber diameter and the fiber length using an electron micrograph, and is obtained by the fiber length / fiber length).
[0029]
These inorganic compounds include zinc oxide, aluminum oxide, calcium oxide, chromium oxide (II, III, VI), cobalt oxide (II, III), cobalt oxide (II) aluminum, zirconium oxide, yttrium oxide, silicon dioxide, Strontium oxide, tungsten oxide (IV, VI), titanium oxide (II, III, IV), iron oxide (II, III), iron oxide (III) zinc, iron oxide (III) cobalt (II), iron oxide (III ) Iron (II), iron (III) copper (II), copper oxide (I, II), iron (III) barium, nickel oxide, nickel (II) iron (III) oxide, barium oxide, barium aluminum oxide Bismuth oxide (III), bismuth oxide (IV) dihydrate, bismuth oxide (V), bismuth oxide (V) Hydrates, magnesium oxide, magnesium aluminum oxide, magnesium iron (III) oxide, molybdenum oxide (IV, VI), lanthanum oxide, lanthanum iron oxide, zinc nitride, aluminum nitride, calcium nitride, chromium nitride, zirconium nitride, titanium nitride , Iron nitride, copper nitride, boron nitride, zinc sulfide, aluminum sulfide, calcium sulfide, chromium sulfide (II, III), cobalt sulfide (II, III), titanium sulfide, iron sulfide, copper sulfide (I, II), sulfide Nickel, barium sulfide, bismuth sulfide, molybdenum sulfide, zinc sulfate, zinc ammonium sulfate, aluminum sulfate, ammonium aluminum sulfate, ammonium chromium sulfate, yttrium sulfate, calcium sulfate, chromium sulfate (II, III), cobalt sulfate (II), titanium sulfate ( III IV), iron sulfate (II, III), ammonium iron sulfate, copper sulfate, nickel sulfate, nickel ammonium sulfate, barium sulfate, bismuth sulfate, magnesium sulfate, zinc nitrate, aluminum nitrate, yttrium nitrate, calcium nitrate, chromium nitrate, nitric acid Cobalt, zirconium nitrate, bismuth nitrate, iron nitrate (II, III), copper nitrate, nickel nitrate, barium nitrate, magnesium nitrate, manganese nitrate, zinc hydroxide, aluminum hydroxide, yttrium hydroxide, calcium hydroxide, chromium hydroxide (II, III), cobalt hydroxide, zirconium hydroxide, iron hydroxide (II, III), copper hydroxide (I, II), nickel hydroxide, barium hydroxide, bismuth hydroxide, magnesium hydroxide, zinc acetate , Cobalt acetate, copper acetate, nickel acetate, iron acetate, active Examples include charcoal, graphite, carbon fiber, zeolite (aluminosilicate), calcium phosphate, and aluminum phosphate.
[0030]
An example of the most preferred additive component of the inorganic compound is activated carbon, graphite, silica, alumina, magnesia, titania, zirconia, zeolite, calcium phosphate, which is easily available in industrial form and preferably has an average particle size of 100 μm or less. , Aluminum phosphate, and carbon fibers having an aspect ratio of 50 or less.
(Method for producing carbon fiber)
The method for producing carbon fiber is not particularly limited as long as it is a method generally used for synthesis of carbon fiber by a gas phase method. From the viewpoint of versatility and economy, as an example, a reactor as shown in FIG. 1 can be suitably used.
[0031]
A reaction tube 2 made of quartz or ceramics such as silicon carbide is installed in a horizontal annular furnace 1, and a carrier gas mixed in advance is introduced from the inlet.
[0032]
An appropriate supply method can be selected depending on the form of the catalyst source and the raw material hydrocarbon. If the raw material carbon compound is a gas at normal temperature, supply it as a gas mixed with a carrier gas. If it is a liquid, supply it after being vaporized and then mixed with the carrier gas, or spray it in a liquid state in the heating zone. Is preferred. When a supported catalyst is used as the catalyst, it is preferable that the supported catalyst is installed in the reaction zone in advance and heated to perform the necessary pretreatment and then the raw material carbon compound is supplied. More preferably, the pretreated supported catalyst is supplied continuously or pulsed from outside the system.
[0033]
A method or catalyst in which a catalyst or catalyst precursor compound is dissolved in a raw liquid carbon compound, or dissolved in an appropriate solvent, and fed continuously or in a pulsed manner to a heating zone, or a catalyst precursor compound is directly vaporized or A method in which the solid is continuously fed to the heating zone continuously or in a pulse manner is most preferable.
(Aspect for supplying catalyst precursor compound)
The effect of the present invention appears most remarkably when an organometallic compound such as ferrocene is continuously supplied to the reactor together with the raw material carbon compound as a catalyst precursor compound. In such a system, the catalyst particles produced from the precursor compound are present in the reaction zone in a highly dispersed state, and therefore, the effect of suppressing the conversion of the raw material carbon compound to methane to become a solid carbon compound. Contributes to the improvement of the carbon fiber yield as it is, so that the effect of the present invention is most prominent. Even in the so-called substrate method in which the reaction zone is preliminarily filled with a catalyst, the yield improvement effect of the present invention can be expected. However, in a system in which the catalyst is not continuously supplied, the catalyst and the carbon compound or a decomposition product thereof Since the contact efficiency largely controls the yield, the effect tends to be relatively limited.
(Reactor)
The type of the reactor is not particularly limited, and those generally used for the production of carbon fibers can be used as long as a predetermined heating zone temperature and residence time can be obtained. From the viewpoint of versatility and economy, a horizontal reactor or a vertical reactor as shown in FIG. 1 is particularly preferable.
(Residence time)
In the present invention, the residence time can be adjusted by the length of the heating zone and the flow rate of the carrier gas. The preferred residence time may vary greatly depending on the reactor used and the type of carbon compound, but generally it is preferably within 0.0001 second to 2 hours, more preferably 0.001 to 100 seconds, 0.01 to 30 seconds is most preferable. If the residence time is too short, the carbon fibers tend not to grow sufficiently. On the other hand, if the residence time is too long, many thick fibers tend to be obtained.
(Carbon recovery rate)
According to the production method of the present invention, the carbon recovery rate can be improved. Here, the “carbon recovery rate” is defined by the following equation.
[0034]
Carbon recovery rate = generated solid weight / carbon compound weight used
[0035]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these.
[0036]
In the following examples, the following reagents were used.
[Reagents]
1. Carbon compound
Benzene: Special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.
2. Catalyst precursor compound
Ferrocene: manufactured by Nippon Zeon Co., Ltd.
3. Other ingredients
Polypropylene glycol: D-400 (Molecular weight: 400) manufactured by NOF Corporation
Sulfur (powder): Reagent manufactured by Kanto Chemical Co., Inc.
[Synthesis of carbon fiber]
<Examples 1 to 4 Comparative Examples 1 to 3 Reference examples 1 to 3 >
In a vertical furnace equipped with the quartz reaction tube 12 (inner diameter: 31 mm, outer diameter: 36 mm, heating zone length: about 400 mm) shown in FIG. 2, the temperature was raised to 1250 ° C. in a nitrogen stream, Instead, hydrogen and nitrogen were allowed to flow in the reaction tube at a rate shown in Table 1 as a carrier gas.
[0037]
After the temperature was stabilized, the raw material composition shown in Table 1 below was supplied from the raw material spray nozzle 1 at a flow rate of 0.1 g / min for 10 minutes using a small pump. In addition, the reaction liquid composition in a table | surface was described with the mass% in a benzene solution.
[0038]
As a result of the reaction, grayish spider web-like deposits were formed at the bottom of the reaction tube. After the temperature was lowered, this deposit was recovered, and the recovered amount was divided by the amount of benzene used to determine the carbon recovery rate. Further, the fibrous product was observed with a scanning electron microscope. The results are shown in Table 1.
[0039]
[Table 1]
Figure 0004286030
[0040]
<Example 5, 6 >
Examples were used except that the gas shown in Table 2 was used at the flow rate shown in Table 2 instead of nitrogen gas. 2 The reaction was carried out in the same manner as above and the product was observed.
[0041]
[Table 2]
Figure 0004286030
[0042]
<Example 7, 8 Comparative Examples 4 and 5>
Examples other than the carrier gas shown in Table 3 and the temperature of the heating zone 2 It carried out like.
[0043]
[Table 3]
Figure 0004286030
[0044]
【The invention's effect】
As described above, according to the present invention, the carbon recovery rate is improved by optimizing the reducing gas concentration in the carrier gas and adjusting the reducing gas concentration in the carrier gas according to the amount of catalyst used. Carbon fiber can be manufactured efficiently and inexpensively.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a general example of a horizontal reactor for producing carbon fibers.
FIG. 2 is a schematic cross-sectional view showing a vertical reactor in which carbon fibers are produced in Examples and Comparative Examples.
[Explanation of symbols]
1 ... Horizontal annular furnace
2 ... Reaction tube
3 ... Recovery container
11 ... Raw material spray nozzle
12 ... Reaction tube
13 ... Vertical annular furnace
14 ... Recovery container

Claims (5)

還元性のガスを含むキャリアガスの存在下で、炭素化合物と触媒とを加熱帯域で接触させることにより炭素繊維を製造する方法において;
キャリアガス中の還元ガス濃度が35〜70容積%であり、加熱帯域の温度が1165℃〜1500℃であり、且つ触媒が連続的に供給されることを特徴とする気相法炭素繊維の製造方法。
In a method for producing carbon fiber by contacting a carbon compound and a catalyst in a heating zone in the presence of a carrier gas containing a reducing gas;
Reducing gas concentration in the carrier gas is 35 to 70 volume%, Ri temperature 1165 ° C. to 1500 ° C. der heating zone, and the vapor grown carbon fibers, wherein the catalyst is continuously fed Production method.
還元性のガスを含むキャリアガスの存在下で、炭素化合物と触媒とを加熱帯域で接触させることにより炭素繊維を製造する方法において;
下式に示す触媒金属濃度と還元ガス濃度の対数比が5以上、340以下であることを特徴とする請求項1に記載の気相法炭素繊維の製造方法。
(触媒金属濃度と還元ガス濃度の対数比)=log(触媒金属の反応系中でのモル分率)/log(還元ガスの反応系中でのモル分率)
In a method for producing carbon fiber by contacting a carbon compound and a catalyst in a heating zone in the presence of a carrier gas containing a reducing gas;
2. The method for producing vapor-grown carbon fiber according to claim 1, wherein the logarithmic ratio of the catalyst metal concentration and the reducing gas concentration represented by the following formula is 5 or more and 340 or less.
(Logarithmic ratio of catalyst metal concentration and reducing gas concentration) = log (molar fraction of catalytic metal in reaction system) / log (molar fraction of reducing gas in reaction system)
前記還元性のガスが、水素、一酸化炭素、およびアンモニアガスからなる群より選ばれた少なくとも一種である請求項1または2に記載の気相法炭素繊維の製造方法。The method for producing vapor grown carbon fiber according to claim 1 or 2 , wherein the reducing gas is at least one selected from the group consisting of hydrogen, carbon monoxide, and ammonia gas. 前記炭素化合物が、一酸化炭素、メタン、エタン、プロパン、ブタン、エチレン、プロピレン、ブタジエン、アセチレン、ベンゼン、トルエン、キシレンからなる群より選ばれた少なくとも一種を含むことを特徴とする請求項1〜のいずれかに記載の気相法炭素繊維の製造方法。The carbon compound includes at least one selected from the group consisting of carbon monoxide, methane, ethane, propane, butane, ethylene, propylene, butadiene, acetylene, benzene, toluene, and xylene. 4. The method for producing a vapor grown carbon fiber according to any one of 3 above. 前記触媒が、18族型元素周期表で言う3〜12族元素からなる群から選ばれた少なくとも一種の元素を含む請求項1〜のいずれかに記載の気相法炭素繊維の製造方法。The method for producing vapor grown carbon fiber according to any one of claims 1 to 4 , wherein the catalyst contains at least one element selected from the group consisting of Group 3 to 12 elements referred to in the Group 18 element periodic table.
JP2003063780A 2003-03-10 2003-03-10 Method for producing vapor grown carbon fiber Expired - Fee Related JP4286030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003063780A JP4286030B2 (en) 2003-03-10 2003-03-10 Method for producing vapor grown carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003063780A JP4286030B2 (en) 2003-03-10 2003-03-10 Method for producing vapor grown carbon fiber

Publications (3)

Publication Number Publication Date
JP2004270088A JP2004270088A (en) 2004-09-30
JP2004270088A5 JP2004270088A5 (en) 2005-09-08
JP4286030B2 true JP4286030B2 (en) 2009-06-24

Family

ID=33125273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003063780A Expired - Fee Related JP4286030B2 (en) 2003-03-10 2003-03-10 Method for producing vapor grown carbon fiber

Country Status (1)

Country Link
JP (1) JP4286030B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200508431A (en) * 2003-08-26 2005-03-01 Showa Denko Kk Crimped carbon fiber and production method thereof
US8043596B2 (en) 2004-09-22 2011-10-25 Showa Denko K.K. Method for producing vapor grown carbon nanotube

Also Published As

Publication number Publication date
JP2004270088A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
KR100659991B1 (en) Method of producing vapor-grown carbon fibers
KR100594403B1 (en) Process for producing vapor-grown carbon fibers
KR101460373B1 (en) Method for the production of carbon nanotubes in a fluidized bed
US20090176100A1 (en) Vapor-grown carbon fiber and production process thereof
US5973186A (en) Process for producing acrylonitrile or methacrylonitrile from propane or isobutane by ammoxidation
US20080206125A1 (en) Catalyst System for a Multi-Walled Carbon Nanotube Production Process
JP2007191840A (en) Vapor grown carbon fiber and method for producing the same
JP4953606B2 (en) Vapor grown carbon fiber and method for producing the same
JP4693105B2 (en) Method and apparatus for producing vapor grown carbon fiber
JP6403144B2 (en) Process for producing vapor-deposited fine carbon fiber
JP4010974B2 (en) Method for producing vapor grown carbon fiber
JP4286030B2 (en) Method for producing vapor grown carbon fiber
Vesselényi et al. Production of carbon nanotubes on different metal supported catalysts
RU2258031C1 (en) Carbon material manufacturing process
JP2007169838A (en) Vapor grown carbon fiber and method for producing the same
EP0100202B1 (en) Process for the production of hydrocyanic acid from carbon monoxide and ammonia
TWI311544B (en)
KR100864418B1 (en) Vapor-grown carbon fiber and productiion process thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150403

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees