JP4285057B2 - Servo control device - Google Patents

Servo control device Download PDF

Info

Publication number
JP4285057B2
JP4285057B2 JP2003111491A JP2003111491A JP4285057B2 JP 4285057 B2 JP4285057 B2 JP 4285057B2 JP 2003111491 A JP2003111491 A JP 2003111491A JP 2003111491 A JP2003111491 A JP 2003111491A JP 4285057 B2 JP4285057 B2 JP 4285057B2
Authority
JP
Japan
Prior art keywords
resonance frequency
vibration
machine
frequency
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003111491A
Other languages
Japanese (ja)
Other versions
JP2004318492A (en
JP2004318492A5 (en
Inventor
一男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2003111491A priority Critical patent/JP4285057B2/en
Publication of JP2004318492A publication Critical patent/JP2004318492A/en
Publication of JP2004318492A5 publication Critical patent/JP2004318492A5/ja
Application granted granted Critical
Publication of JP4285057B2 publication Critical patent/JP4285057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はサーボモータを駆動するサーボ制御装置に関し、特にサーボモータの負荷であるマシン(機械)の特性を抽出する機能を有するサーボ制御装置に関する。
【0002】
【従来の技術】
従来、マシンの特性を得るには図7のようにFFT解析測定器から正弦波信号をトルク指令に加え周波数掃引を行い、その応答から周波数特性を得ていた。つまり図6のように周波数加振して通常の応答振幅よりも振幅が大きく応答するものを共振、小さく応答するものを反共振としていた。或いは速度、位置や機械諸元等より動特性方程式を求め、イナーシャ、ねじりトルク等を得ていた(例えば、特許文献1参照)。または2慣性系機械としてモデル化し自由振動状態にして速度より2慣性系の機械的時定数を得ていた(例えば、特許文献2参照)。
【0003】
【特許文献1】
特開2000−112528号公報
【特許文献2】
特開平5−15186号公報
【0004】
【発明が解決しようとする課題】
ところが従来の技術では正弦波信号をトルク指令に加え周波数掃引を行い、その応答振幅の周波数特性を取るのが大変なのとその特性から幾つもある山や谷を抽出しないといけなかったので、周波数特性の山や谷が簡単に得られないという問題があった。また正確に得るために正弦波信号の振幅を大きくすると大きく振動して機械に大きなダメージを与えてしまった。特許文献1では機械諸元等が必要で、諸元が無い場合特性が正確に求められない問題があった。そして機械が振動すると上手くいかなかった。特許文献2では自由振動(共振)状態を作る必要があり応答速度から時定数を得るので、振動が大きくないといけないという問題があった。
そこで本発明は振動しやすい制御法で機械にモータより模擬外乱トルクで加振して、更に共振周波数を抑える制御法かフィルタ等共振周波数で振動を抑え、機械にモータより模擬外乱トルクで加振して、それらの応答から自動的に機械の特性を得て設定することを目的とする。
【0005】
【課題を解決するための手段】
上記課題を解決するため、本発明は次のように構成したものである。
請求項1に記載の発明は、サーボモータの負荷となる機械の共振周波数を検出して抽出する機械周波数特性抽出手段を備えたサーボ制御装置において、前記サーボモータ及び前記負荷のモデル、またはオブザーバを用いて算出した推定速度から実際の速度を差し引いた速度差と、所定の検出レベルとを比較して前記機械の振動成分を検出する振動検出手段と、前記速度差の振動成分の周波数解析を行う振動成分解析手段と、前記サーボ制御装置の制御ゲインを段階的に上げながら、前記サーボモータに対するトルク指令に模擬外乱トルクを印加して、前記振動成分解析手段の解析結果に基づいて、前記機械が剛体であるか共振周波数をもつものであるかを判断し、前記機械が共振周波数をもつものである場合、該共振周波数を抽出する処理手段と、を備え、前記機械周波数特性抽出手段が、前記振動検出手段と、前記振動成分解析手段と、前記処理手段と、で構成されたものである。
また、請求項2に記載の発明は、請求項1記載の発明における前記サーボ制御装置が、更に、前記機械の共振周波数を抑制する共振周波数抑制手段を備え、前記機械が共振周波数をもつものである場合、前記共振周波数抑制手段が、前記機械の共振周波数を抑制した後、前記処理手段が、前記サーボ制御装置の制御ゲインを更に段階的に上げながら、前記サーボモータに対するトルク指令に模擬外乱トルクを印加して、前記振動成分解析手段の解析結果に基づいて、前記機械の反共振周波数を抽出するものである。
【0006】
【発明の実施の形態】
以下、本発明の具体的実施例を図1に示して説明する。
図1において1は振動検出、2はマイクロコンピュータ、3は電流アンプ、4はベースドライブ回路、5はパワートランジスタモジュール、6はモータ、7はエンコーダ、8はマシン等の負荷、9はデータトレース、10は周波数解析である。
以上のように構成された回路において、その動作を図4のブロック図を用いて説明する。
まずマイクロコンピュータ2は位置や速度といった指令を外部のコントローラ等から受取る。そして例えば速度指令の場合は速度制御を行い、その出力の電流指令を電流アンプ3で電流制御を行い、ベースドライブ駆動回路4を通してパワートランジスタ5を駆動してモータを制御する。ここでマイクロコンピュータ2は、通常の制御以外に図4の速度制御の出力のトルク指令に、ステップ状の模擬外乱トルクを加えることができる。
本発明の機械特性の抽出方法を図9の概略フローチャートを用いて説明する。
まず最初に位置ループや速度ループといった制御系のゲインを低ゲインとしておき、図5のように運転して機械特有の振動レベルを検出する。この図では通常運転での差速度(推定速度−速度)の振動振幅の最大値を検出している。図9のフローチャートでは処理1を行う。
ここで振動検出1は差速度(推定速度−速度)がある振動レベルを超えた場合、振動として検出する。最初通常運転での振動レベルを検出して、その3倍等したものを、振動レベルとする。この振動レベルの倍率は単なる目安であり機械の用途、状況等に応じて決めても良い。差速度(推定速度−速度)は、図2のようにモータ及び負荷のモデル3から推定速度を算出して、それから速度を引いて、求める。或いは図3のようにオブザーバから推定速度を算出してそれから速度を引いて、求める。差速度(推定速度−速度)から振動検出や振動周波数を求めるのは、差し引いた後に振動成分のみが残るので、正確に振動振幅や振動周波数を求めやすいからである。
次に位置ループや速度ループといった制御系のゲインを低ゲインとしておき、図4の制御ブロック図のトルク指令τrefに模擬外乱トルクをステップ状に加えて、推定速度−速度の応答があるレベル以上あることを確認する。図9のフローチャートの2から3の処理を行う。ここで、あるレベル以上の応答がなければ、加えた模擬外乱トルクが機械負荷を超えられなかったと考え、模擬外乱トルクを大きくする。あらかじめ定めたレベルまで、応答が大きくなるように模擬外乱トルクを大きくする。この応答のレベルは前記図9のフローチャートの処理1にて、例えば通常の運転中の振動振幅の最大値を2倍等にする。そして模擬外乱トルクをあるレベルまで大きくしても応答が大きくならない場合、応答の検出レベルを下げる。このようにして模擬外乱トルクの大きさとその応答の検出レベルを調整する。
模擬外乱トルクの大きさを決めた後で、次に図6に示すような時間タイミングで段階的に制御ゲインを上げる。図9のフローチャート4〜7の処理のようにゲインを上げたところで、トルク指令に模擬外乱トルクを加え振動検出1にて、振動を確認する。振動検出1は図6のように推定速度−速度の振幅を振動検出レベルと比較し、大きい場合振動として検出する。振動レベルは前に調整した応答レベルの1.5倍等する。制御ゲインには1つの上限値を設定する。1つの上限値よりも低いレベルを幾つか設けて、剛体であるかどうかを判断することもできる。
模擬外乱トルクを加えた後にデータトレース9で推定速度−速度をトレースし、あるレベルを超えて振動を検出したら、データトレースは止めて周波数解析10にてデータトレースした速度差を解析して、振幅の大きな周波数を算出する。仮に制御ゲインをあるレベル迄上げても振動検出1で振動が検出されない場合、共振周波数のない剛体として判断する。そして振動した場合、この周波数が機械の共振周波数となる。
機械の周波数特性をとると図8のように共振周波数fhと反共振周波数flが現れることがある。共振周波数が無い場合は、ほぼ剛体として考えることができる。そして共振周波数fhをフィルタや高周波成分を抑える制御法(例えば制振制御)等で抑えて、制御ゲインが更に上げられるようになると次に反共振周波数flで振動が発生する。この周波数を測定すると反共振周波数が分かるので、共振周波数と反共振周波数の機械特性を得ることができる。周波数の測定は推定速度−速度の振動成分を図7のようにデータトレース9でデータトレースし、それを周波数解析10でFFT解析しその振幅の最大値の周波数を求める。求めた周波数が振動周波数となる。振動検出レベルを超える等振動振幅がある一定のレベルであるので、振幅もある程度大きいことになる。
次に図9のフローチャート7の処理で振動検出1にて振動を検出すると図6のようなタイミングで模擬外乱トルクを加えることを停止し、ゲインを振動しないレベル迄下げる(例えば、振動したゲインの半分あるいは、最初に設定した低いゲイン等)。あるいは、確実に振動を止めるため、トルク指令を絞るか、位置偏差を一瞬ゼロにする。図9のフローチャートの処理を行う。
測定した振動周波数f0を、振動抑制フィルタ、例えばノッチフィルタのノッチ周波数として設定する或いはオブザーバ等を用いて高周波の振動成分を抑える。
高周波の振動を抑えた後、前と同様に図6に示すような時間タイミングで段階的にゲインを上げる。図9のフローチャート10〜12の処理のようにゲインを上げたところで、トルク指令に模擬外乱トルクを加え振動検出1にて、同様に振動を確認する。
模擬外乱トルクを加えた後にデータトレース9で推定速度−速度をトレースし、あるレベルを超えて振動を検出したら、データトレースは止めて周波数解析10にてデータトレースした速度差を解析して、振幅の大きな周波数を算出する。この周波数が機械の反共振周波数となる。
次に図9のフローチャート12の処理で振動検出1にて振動を検出すると図6のようなタイミングで模擬外乱トルクを加えることを止め、同様にゲインを振動しないレベル迄下げる(例えば、振動したゲインの半分あるいは、最初に設定した低いゲイン等)。あるいは、確実に振動を止めるため、トルク指令を絞るか、位置偏差を一瞬ゼロにする。図9のフローチャート13の処理を行う。
このようにして機械が剛体であるか共振周波数及び反共振周波数を持った機械であっても適用できる。そして共振周波数、反共振周波数等の機械の特性が分かる。
【0007】
【発明の効果】
以上述べたように本発明によれば、特別の測定器等を使用することなく自動的に簡単に剛体、共振周波数や反共振周波数といった機械の特性を得ることができ、それを制御に使うことができる。
【図面の簡単な説明】
【図1】本発明の具体的実施例の構成図である。
【図2】本発明の制御ブロック図である。
【図3】本発明の別の実施例の制御ブロック図である。
【図4】制御ブロック図である。
【図5】通常運転した時の速度指令、速度、トルクの波形と振動レベルの測定タイミング図である。
【図6】ゲインを上げて振動を発生及び振動発生時のゲイン低下、振動周波数測定タイミング図である。
【図7】データトレース、FFT解析例である。
【図8】マシンの周波数特性である。
【図9】本発明の機械特性の抽出する概略フローチャートである。
【図10】従来の実施例の構成図である。
【符号の説明】
1 振動検出
2 マイクロコンピュータ
3 電流アンプ
4 ベースドライブ回路
5 パワートランジスタモジュール
6、26、36、46、106 モータ
7、107 エンコーダ
8、108 負荷
9 データトレース
10 周波数解析
11、311、411 速度制御
12 モータ及び負荷のモデル
13 オブザーバの負荷イナーシャ分
14 オブザーバの速度制御のゲイン
15、415 積分
16 オブザーバの速度制御の積分
17 オブザーバの全体
18 位置ループゲイン
19 周波数特性FFT解析測定器
20 サーボ制御装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a servo control device for driving a servo motor, and more particularly to a servo control device having a function of extracting characteristics of a machine that is a load of the servo motor .
[0002]
[Prior art]
Conventionally, in order to obtain machine characteristics, as shown in FIG. 7, a sine wave signal is added to a torque command from an FFT analysis measuring instrument, frequency sweep is performed, and frequency characteristics are obtained from the response. That is, as shown in FIG. 6, when the frequency is vibrated and the response is larger than the normal response amplitude, the resonance is resonated, and the response that is small is antiresonance. Alternatively, a dynamic characteristic equation is obtained from speed, position, machine specifications, etc., and inertia, torsion torque, etc. are obtained (for example, refer to Patent Document 1). Alternatively, it was modeled as a two-inertia machine and the mechanical time constant of the two-inertia system was obtained from the speed in a free vibration state (see, for example, Patent Document 2).
[0003]
[Patent Document 1]
JP 2000-112528 A [Patent Document 2]
Japanese Patent Laid-Open No. 5-15186
[Problems to be solved by the invention]
However, in the conventional technology, it is difficult to obtain a frequency characteristic of the response amplitude by adding a sine wave signal to the torque command and taking the frequency characteristic of the response amplitude. There was a problem that peaks and valleys of characteristics could not be obtained easily. In addition, if the amplitude of the sine wave signal is increased to obtain it accurately, it will vibrate greatly and damage the machine. In Patent Document 1, mechanical specifications are required, and there is a problem that characteristics cannot be obtained accurately when there are no specifications. And when the machine vibrated, it didn't work. In Patent Document 2, it is necessary to create a free vibration (resonance) state, and the time constant is obtained from the response speed.
Therefore, the present invention uses a control method that is easy to vibrate and applies vibration to the machine with simulated disturbance torque from the motor, and further suppresses vibration at the resonance frequency of a control method or filter such as a filter. The purpose is to automatically obtain and set machine characteristics from these responses.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is configured as follows.
According to a first aspect of the present invention, there is provided a servo control apparatus including a mechanical frequency characteristic extracting unit that detects and extracts a resonance frequency of a machine serving as a load of the servo motor , wherein the servo motor and the load model or observer are provided. A vibration detection means for detecting a vibration component of the machine by comparing a speed difference obtained by subtracting an actual speed from an estimated speed calculated by using a predetermined detection level, and performing frequency analysis of the vibration component of the speed difference. While increasing the control gain of the vibration component analysis means and the servo control device in stages, a simulated disturbance torque is applied to the torque command for the servo motor, and based on the analysis result of the vibration component analysis means, the machine A processing unit that determines whether the machine is a rigid body or has a resonance frequency, and if the machine has a resonance frequency, extracts the resonance frequency. When, wherein the mechanical frequency characteristic extracting means, and said vibration detecting means, the vibration component analyzing means, the processing means, in those that have been configured.
According to a second aspect of the present invention, the servo control device according to the first aspect of the present invention further comprises a resonance frequency suppressing means for suppressing a resonance frequency of the machine, and the machine has a resonance frequency. In some cases, after the resonance frequency suppression means suppresses the resonance frequency of the machine, the processing means further increases the control gain of the servo control device in steps, while the simulated disturbance torque is added to the torque command for the servo motor. And the anti-resonance frequency of the machine is extracted based on the analysis result of the vibration component analysis means.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a specific embodiment of the present invention will be described with reference to FIG.
In FIG. 1, 1 is vibration detection, 2 is a microcomputer, 3 is a current amplifier, 4 is a base drive circuit, 5 is a power transistor module, 6 is a motor, 7 is an encoder, 8 is a load such as a machine, 9 is a data trace, Reference numeral 10 denotes frequency analysis.
The operation of the circuit configured as described above will be described with reference to the block diagram of FIG.
First, the microcomputer 2 receives commands such as position and speed from an external controller or the like. For example, in the case of a speed command, speed control is performed, current control of the output current command is performed by the current amplifier 3, and the power transistor 5 is driven through the base drive drive circuit 4 to control the motor. Here, in addition to the normal control, the microcomputer 2 can add step-like simulated disturbance torque to the torque command output from the speed control in FIG.
The method for extracting mechanical characteristics of the present invention will be described with reference to the schematic flowchart of FIG.
First, the gain of the control system such as the position loop and the speed loop is set to a low gain, and the operation is performed as shown in FIG. 5 to detect the vibration level peculiar to the machine. In this figure, the maximum value of the vibration amplitude of the differential speed (estimated speed-speed) in normal operation is detected. Processing 1 is performed in the flowchart of FIG.
Here, the vibration detection 1 is detected as vibration when the differential speed (estimated speed−speed) exceeds a certain vibration level. First, the vibration level in normal operation is detected, and a value obtained by multiplying the vibration level by three times is used as the vibration level. The magnification of the vibration level is merely a guideline and may be determined according to the application and situation of the machine. The differential speed (estimated speed−speed) is obtained by calculating the estimated speed from the motor and load model 3 as shown in FIG. Alternatively, as shown in FIG. 3, the estimated speed is calculated from the observer, and the speed is subtracted from the estimated speed. The reason why the vibration detection and the vibration frequency are obtained from the differential speed (estimated speed−speed) is that since only the vibration component remains after the subtraction, it is easy to obtain the vibration amplitude and vibration frequency accurately.
Next, the gain of the control system such as the position loop and the speed loop is set to a low gain, and the simulated disturbance torque is added in steps to the torque command τref in the control block diagram of FIG. Make sure. Processes 2 to 3 in the flowchart of FIG. 9 are performed. Here, if there is no response of a certain level or more, it is considered that the applied simulated disturbance torque has not exceeded the mechanical load, and the simulated disturbance torque is increased. The simulated disturbance torque is increased so that the response is increased to a predetermined level. The level of this response is , for example, the maximum value of the vibration amplitude during normal operation is doubled in the process 1 of the flowchart of FIG. If the response does not increase even if the simulated disturbance torque is increased to a certain level, the response detection level is lowered. In this way, the magnitude of the simulated disturbance torque and the detection level of the response are adjusted.
After determining the magnitude of the simulated disturbance torque, the control gain is increased stepwise at the timing shown in FIG. When the gain is increased as in the processes of flowcharts 4 to 7 in FIG. 9, simulated disturbance torque is added to the torque command, and vibration is confirmed by vibration detection 1. The vibration detection 1 compares the estimated speed-speed amplitude with the vibration detection level as shown in FIG. The vibration level is 1.5 times the previously adjusted response level. One upper limit value is set for the control gain. Several levels lower than one upper limit value can be provided to determine whether the body is rigid.
After applying the simulated disturbance torque, the estimated speed-speed is traced by the data trace 9, and when the vibration is detected exceeding a certain level, the data trace is stopped and the frequency difference analyzed by the frequency analysis 10 is analyzed to analyze the amplitude. A large frequency is calculated. If no vibration is detected by the vibration detection 1 even if the control gain is increased to a certain level, it is determined that the body has no resonance frequency. And when it vibrates, this frequency becomes the resonance frequency of the machine.
If the frequency characteristic of the machine is taken, a resonance frequency fh and an anti-resonance frequency fl may appear as shown in FIG. When there is no resonance frequency, it can be considered as a substantially rigid body. When the resonance frequency fh is suppressed by a filter or a control method (for example, vibration suppression control) that suppresses high-frequency components and the control gain is further increased, vibration is then generated at the antiresonance frequency fl. By measuring this frequency, the anti-resonance frequency can be found, so that mechanical characteristics of the resonance frequency and the anti-resonance frequency can be obtained. In the measurement of the frequency, the vibration component of the estimated speed-speed is data-traced by the data trace 9 as shown in FIG. The obtained frequency becomes the vibration frequency. Since the equal vibration amplitude that exceeds the vibration detection level is a certain level, the amplitude is also somewhat large.
Next, when vibration is detected by the vibration detection 1 in the process of the flowchart 7 of FIG. 9, the application of the simulated disturbance torque is stopped at the timing as shown in FIG. 6, and the gain is lowered to a level that does not vibrate (for example, the Half or the first low gain set). Alternatively, in order to stop vibration reliably, the torque command is reduced or the positional deviation is set to zero for a moment. The process of the flowchart 8 of FIG. 9 is performed.
The measured vibration frequency f0 is set as a vibration suppression filter, for example, a notch frequency of a notch filter, or a high-frequency vibration component is suppressed using an observer or the like.
After suppressing the high frequency vibration, the gain is increased stepwise at the time timing as shown in FIG. 6 as before. When the gain is increased as in the processes of flowcharts 10 to 12 in FIG. 9, simulated disturbance torque is added to the torque command, and vibration is similarly confirmed by vibration detection 1.
After applying the simulated disturbance torque, the estimated speed-speed is traced by the data trace 9, and when the vibration is detected exceeding a certain level, the data trace is stopped and the frequency difference analyzed by the frequency analysis 10 is analyzed to analyze the amplitude. A large frequency is calculated. This frequency is the anti-resonance frequency of the machine.
Next, when vibration is detected by the vibration detection 1 in the process of the flowchart 12 of FIG. 9, the application of the simulated disturbance torque is stopped at the timing as shown in FIG. 6, and the gain is similarly lowered to a level that does not vibrate (for example, the vibration gain Half of that or the low gain you initially set). Alternatively, in order to stop vibration reliably, the torque command is reduced or the positional deviation is set to zero for a moment. The process of the flowchart 13 of FIG. 9 is performed.
In this way, even a machine having a rigid body or having a resonance frequency and an anti-resonance frequency can be applied. And machine characteristics such as resonance frequency and anti-resonance frequency can be understood.
[0007]
【The invention's effect】
As described above, according to the present invention, mechanical characteristics such as a rigid body, a resonance frequency, and an anti-resonance frequency can be easily and automatically obtained without using a special measuring instrument, and used for control. Can do.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a specific embodiment of the present invention.
FIG. 2 is a control block diagram of the present invention.
FIG. 3 is a control block diagram of another embodiment of the present invention.
FIG. 4 is a control block diagram.
FIG. 5 is a timing chart for measuring the speed command, speed, torque waveform and vibration level during normal operation.
FIG. 6 is a timing diagram of measuring the vibration frequency by increasing the gain to generate vibration, lowering the gain when the vibration is generated, and vibration frequency.
FIG. 7 is an example of data trace and FFT analysis.
FIG. 8 is a frequency characteristic of the machine.
FIG. 9 is a schematic flowchart for extracting mechanical characteristics of the present invention.
FIG. 10 is a configuration diagram of a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vibration detection 2 Microcomputer 3 Current amplifier 4 Base drive circuit 5 Power transistor module 6, 26, 36, 46, 106 Motor 7, 107 Encoder 8, 108 Load 9 Data trace 10 Frequency analysis 11, 311, 411 Speed control 12 Motor And load model 13 Observer load inertia 14 Observer speed control gain 15 415 Integration 16 Observer speed control integration 17 Observer overall 18 Position loop gain 19 Frequency characteristics FFT analysis measuring instrument 20 Servo control device

Claims (2)

サーボモータの負荷となる機械の共振周波数を検出して抽出する機械周波数特性抽出手段を備えたサーボ制御装置において、
前記サーボモータ及び前記負荷のモデル、またはオブザーバを用いて算出した推定速度から実際の速度を差し引いた速度差と、所定の検出レベルとを比較して前記機械の振動成分を検出する振動検出手段と、
前記速度差の振動成分の周波数解析を行う振動成分解析手段と、
前記サーボ制御装置の制御ゲインを段階的に上げながら、前記サーボモータに対するトルク指令に模擬外乱トルクを印加して、前記振動成分解析手段の解析結果に基づいて、前記機械が剛体であるか共振周波数をもつものであるかを判断し、前記機械が共振周波数をもつものである場合、該共振周波数を抽出する処理手段と、を備え、
前記機械周波数特性抽出手段が、前記振動検出手段と、前記振動成分解析手段と、前記処理手段と、で構成されたものであることを特徴とするサーボ制御装置。
In a servo control device equipped with a mechanical frequency characteristic extracting means for detecting and extracting a resonance frequency of a machine serving as a load of a servo motor,
Vibration detection means for detecting a vibration component of the machine by comparing a speed difference obtained by subtracting an actual speed from an estimated speed calculated using the servo motor and the load model or an observer with a predetermined detection level ; ,
Vibration component analysis means for performing frequency analysis of the vibration component of the speed difference;
While increasing the control gain of the servo control stepwise, applying a simulated disturbance torque to the torque command for the servo motor, and based on the analysis result of the vibration component analysis means, whether the machine is a rigid body or a resonance frequency And a processing means for extracting the resonance frequency if the machine has a resonance frequency, and
The servo control apparatus according to claim 1, wherein the mechanical frequency characteristic extracting means comprises the vibration detecting means, the vibration component analyzing means, and the processing means .
前記サーボ制御装置が、更に、前記機械の共振周波数を抑制する共振周波数抑制手段を備え、
前記機械が共振周波数をもつものである場合、前記共振周波数抑制手段が、前記機械の共振周波数を抑制した後、
前記処理手段が、前記サーボ制御装置の制御ゲインを更に段階的に上げながら、前記サーボモータに対するトルク指令に模擬外乱トルクを印加して、前記振動成分解析手段の解析結果に基づいて、前記機械の反共振周波数を抽出するものであることを特徴とする請求項1に記載のサーボ制御装置。
The servo control device further includes a resonance frequency suppression means for suppressing the resonance frequency of the machine,
When the machine has a resonance frequency, after the resonance frequency suppression means suppresses the resonance frequency of the machine,
The processing means applies simulated disturbance torque to the torque command for the servo motor while further increasing the control gain of the servo control device stepwise, and based on the analysis result of the vibration component analysis means, 2. The servo control device according to claim 1, wherein an anti-resonance frequency is extracted .
JP2003111491A 2003-04-16 2003-04-16 Servo control device Expired - Fee Related JP4285057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003111491A JP4285057B2 (en) 2003-04-16 2003-04-16 Servo control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003111491A JP4285057B2 (en) 2003-04-16 2003-04-16 Servo control device

Publications (3)

Publication Number Publication Date
JP2004318492A JP2004318492A (en) 2004-11-11
JP2004318492A5 JP2004318492A5 (en) 2006-05-11
JP4285057B2 true JP4285057B2 (en) 2009-06-24

Family

ID=33472028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003111491A Expired - Fee Related JP4285057B2 (en) 2003-04-16 2003-04-16 Servo control device

Country Status (1)

Country Link
JP (1) JP4285057B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5037065B2 (en) * 2006-08-09 2012-09-26 三菱電機株式会社 Machine control device
EP2120317A1 (en) 2008-05-14 2009-11-18 ABB Research LTD A method and a device for determining the mechanical resonant frequency of a vibration mode for a winding package of a transformer
CN102033201B (en) * 2010-10-25 2012-11-07 广州数控设备有限公司 Simulation device and method using AC servo motor as variable-torque load
US9122258B2 (en) 2011-05-24 2015-09-01 Mitsubishi Electric Corporation Motor control device
JP6708720B2 (en) * 2018-10-24 2020-06-10 ファナック株式会社 Servo control device, servo control method, and servo control program

Also Published As

Publication number Publication date
JP2004318492A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
JP3975812B2 (en) Resonant frequency detection device for motor control device
JP4285057B2 (en) Servo control device
JPWO2008065836A1 (en) Electric motor control device, output filter adjustment method, and output filter adjustment device
US7292001B2 (en) Gain adjusting method for servo control device
US7532951B2 (en) Method of automatically setting vibration suppression filter
JP4683198B2 (en) Setting method of vibration suppression filter
JP2005073476A (en) Method for extracting characteristics of machine
CN115508032A (en) Two-degree-of-freedom fatigue loading excitation device, system and control method for fan blade
JP4329438B2 (en) Electric motor control device
JP4771131B2 (en) Motor control device
JP2004086702A (en) Method for automatically setting oscillation suppressing filter
JP2003130629A (en) Device and method for measuring displacement
JP4356002B2 (en) Servo control device control gain adjustment method and machine adjustment method
JP5516682B2 (en) Vibration control device for feedback control system and motor control device provided with vibration detection device
CN112923839B (en) Stepping motor control method, device, equipment and storage medium
JPH09257562A (en) Abnormality diagnostic method of motor-driven machine
JP4367185B2 (en) How to set damping parameters
EP4212968A1 (en) Motor control device
JP4692266B2 (en) Vibration suppression method
JP2002186281A (en) Motor controller
JP4303072B2 (en) Engine evaluation device
JP2005080333A (en) Method for calculating load inertia
JP2004248386A (en) Vibration detection method
JP4390049B2 (en) Servo control device and limit gain extraction method thereof
CN116430224A (en) Calibration method and device for motor driving mode

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees