JP4284734B2 - Solid-liquid separator - Google Patents

Solid-liquid separator Download PDF

Info

Publication number
JP4284734B2
JP4284734B2 JP02710199A JP2710199A JP4284734B2 JP 4284734 B2 JP4284734 B2 JP 4284734B2 JP 02710199 A JP02710199 A JP 02710199A JP 2710199 A JP2710199 A JP 2710199A JP 4284734 B2 JP4284734 B2 JP 4284734B2
Authority
JP
Japan
Prior art keywords
liquid
vortex chamber
screen
solid
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02710199A
Other languages
Japanese (ja)
Other versions
JP2000225359A (en
Inventor
敏雄 中西
力 吉本
聡 川崎
敬一 三輪
健次 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP02710199A priority Critical patent/JP4284734B2/en
Publication of JP2000225359A publication Critical patent/JP2000225359A/en
Application granted granted Critical
Publication of JP4284734B2 publication Critical patent/JP4284734B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、水熱反応装置での処理後または処理途中で、無機懸濁物が分離堆積して詰まりを起こすのを防止するための固液分離装置に関するものである。
【0002】
【従来の技術】
パルプスラッジなどの有機廃棄物の減容化のための装置として水熱反応装置が開発されている。水熱反応装置は、温度200℃以上,圧力20気圧以上の水熱条件下で有機廃棄物を反応処理するもので、有機廃棄物は分解して可溶化し、無機物または無機物と有機物の混合の微粒子の残滓が残る。これらの微粒子の懸濁物は、バルブ、配管、背圧弁等に沈積して閉塞が発生するおそれがあるので、水熱反応装置での処理後または処理途中で液中から除去する必要がある。
【0003】
固液分離する装置として沈降式や流体サイクロン式などの分離装置があるが、処理時間、必要なスペース、分離能力などの点で流体サイクロン式の固液分離装置が適している。
【0004】
【発明が解決しようとする課題】
しかしながら、上記流体サイクロン式の固液分離装置では、粒子径が数μm〜100μmのものには適しているが、捕集した微小粒子が分離器内で再飛散してしまうなどの問題があるため、1μm以下のサブミクロン粒子や比重差の少ないものに対してはかなり難しい。なお、水熱反応装置の温度および圧力条件は被処理物により異なり、処理の困難なものについては、超臨界の温度・圧力条件下で行うものもある。
【0005】
本発明は、上記のような問題点を解決するために創案されたもので、流体サイクロン式を適用しつつ、分離器内での再飛散を防止し、粒子径が約1μm以下のサブミクロン粒子までも捕集できるような固液分離装置を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明によれば、水熱反応装置で反応処理された処理液を流入させて微小粒子と清澄液に分離する固液分離装置であって、上端に接線方向に処理液を流入して旋回流を形成するとともに、旋回流の速度を徐々に増大させながら流下させる上方が太く下方が細いテーパ管からなる上部渦室と、上部渦室の下端に連結した多数の貫通孔を有する円筒状のスクリーンと、スクリーンの下端に連結し旋回流の速度を徐々に減速させる上方が細く下方が太いテーパ管であり接線方向に清澄液を排出する下部渦室と、スクリーンを囲繞するように設けた円筒状の粒子補集室とからなり、粒子捕集室は内面にスクリュー状の溝が配設してあり、下端に微小粒子排出口が接続されている固液分離装置が提供される。
【0007】
下部渦室から排出した清澄液の一部をポンプで吸引して上部渦室の処理液流入口に送給する液循環回路を付加するのが好ましい。
【0008】
上部渦室の上板と下部渦室の底板の内面に、旋回流を安定させる上部コーンと下部コーンを配設するのが好ましい。
【0009】
次に本発明の作用について説明する。
図示しない水熱反応装置で反応処理された処理液を分離器の上方に流入する。処理液は分離器上部の接線方向に設けられている流入口から流入されるので、分離器内で旋回流が形成される。分離器の上部渦室は上方が太く下方が細いテーパ管で形成しており、分離器内で形成した旋回流は流下するにしたがって徐々に旋回速度を増大する。上部渦室の下端には多数の貫通孔を有する円筒状のスクリーンが連結されている。スクリーンの外側にはスクリーンを囲繞するように円筒状の粒子捕集室が設けられており、上部渦室壁面からスクリーン内を流下する処理液中の微小粒子は、遠心力によってスクリーンに設けられた多数の貫通孔を通過して粒子捕集室内へ飛び出し粒子捕集室の内面に当たる。粒子捕集室の内面には旋回流の回転方向と同方向のスクリュー溝が設けられており、粒子捕集室の内面に当たった微小粒子は溝内を降下するので、微小粒子の再飛散が防止される。溝内をらせん状にゆっくり降下した微小粒子は、粒子捕集室下端に配設されている排出口から排出する。スクリーンの下端には上方が細く下方が太いテーパ管で形成された下部渦室が連結されており、下部渦室でスクリーンから流下した旋回流の旋回速度を徐々に減速させ、下部渦室の下端に接線方向に設けられた排出口から清澄液として流出する。
【0010】
このように、処理液の旋回流の速度を徐々に増大させながら流下させ、スクリーン内において流速が最大になる。スクリーンでは上部渦室の壁面に沿って流下した微小粒子および処理液中にまだ懸濁状態の微小粒子に大きな遠心力を働かせて貫通孔を通ってスクリーン外に飛び出させる。スクリーンの外にはスクリュー溝が設けられており、微小粒子はその中を旋回しながら降下する。このように、スクリーンとスクリュー溝の相互作用により、微小粒子が再飛散して清澄液中に再度混入することはない。下方部では旋回流の速度を徐々に減速させるようにして分離器外に流出して旋回流の圧力損失の低減を図るようにした。したがって、粒子径が約1μm以下のサブミクロン粒子までも捕集できる。
【0011】
上部渦室の上板と下部渦室の底板の内面に、上部コーンと下部コーンを配設すると旋回流を安定させることができる。
【0012】
【本発明の実施の形態】
以下、本発明の好ましい一実施形態について図面を参照して説明する。
図1は本発明の固液分離装置の正面断面図である。図2は旋回流を示す図である。
図において、1は分離器で、図示しない水熱反応装置で反応処理された処理液15を流入させて微小粒子16と清澄液17に分離する。分離器1上端に接線方向に処理液15を流入して旋回流11を形成するとともに、旋回流11の速度を徐々に増大させながら流下させる上方が太く(半径R)下方が細い(半径r)テーパ管2aからなる上部渦室2と、上部渦室2の下端に連結した多数の貫通孔4aを有する円筒状のスクリーン4と、スクリーン4の下端に連結し旋回流11の速度を徐々に減速させる上方が細く下方が太いテーパ管3aであり接線方向に清澄液17を排出する下部渦室3と、スクリーン4を囲繞するように設けた円筒状の粒子捕集室5とからなり、粒子捕集室5は内面にスクリュー状の溝7が配設してあり、下端に微小粒子排出口10が接続されている。
【0013】
上部渦室2の上板内面2bには、上部コーン12が、下部渦室3の底板内面3bには、下部コーン13が配設されており、上部渦室2内および下部渦室3内で旋回流11を安定させるようになっている。
【0014】
スクリーン4は上部渦室2のテーパ管2aの下端の半径rと同一の半径の円筒状形状をしており、上部渦室2の下端に連結されている。スクリーン4内の旋回流11の速度は、上部渦室2下端の流速とほぼ等しく、遠心力が最大になっており、この遠心力により上部渦室2の壁面に沿って流下した微小粒子16やまだ処理液中に懸濁している微小粒子16をスクリーン4の貫通孔4aを通過させて粒子捕集室5へ飛び出させる。
【0015】
粒子捕集室5は、スクリーン4を囲繞して設けられ、上端がスクリーン4の上端に位置し、下端は下部渦室3のテーパ管3aの中間に位置するように設けられている。6は粒子捕集室5の外壁で、内面に旋回流11と同じ方向のスクリュー状の溝7を配設している。微小粒子排出口10は、溝7の下端に接続されており、溝7に沿って沈降してきた微小粒子16を排出する。旋回流11のつれまわり作用により粒子捕集室5内でも旋回流が発生しているが、スクリーン4で隔離されているので、流速は小さく微小粒子16の飛散を起こさせることはない。
【0016】
8は上部渦室2の上端に接線方向に配設した処理液流入口であり、9は下部渦室3の下端に接線方向に配設した清澄液流出口である。
【0017】
上部渦室2の円筒部の半径をR、スクリーン4の半径をrとし、旋回速度をCuとすると、CuはほぼR/r×Vとなり、微小粒子に働く遠心力は、∝Cu2 /r∝(R/r)22 1/rとなる。したがって、R/r比を大きくするほど旋回速度と遠心力を増大することができ、分離効率を増大してサブミクロン単位の微小粒子の捕集が可能となる。
【0018】
図3は請求項2に記載の固液分離装置の正面断面図であり、図4は旋回流を示す図である。
図において、18は一端を下部渦室3下端の清澄液排出口9に連結し、他端を上部渦室2上端の処理液流入口8に連結した液循環回路である。液循環回路18は、中間にポンプ14を設けていて、清澄液排出口9から排出された清澄液17の一部をポンプ14により処理液流入口8に送給し、処理液15と混入して分離器1内に流入する。なお、図1および図2に示す固液分離装置とは、液循環回路18を付加したほか、清澄液排出口9と微小粒子排出口10の接続方向が相違するだけで、他の構成は同じであり、重複する説明は省略する。
【0019】
流入速度は、一般に処理液の流量に依存するため、流量が少ないと流速が下がり分離効率が低下する。このように、分離器1の下部から排出した清澄液17の一部をポンプ14で吸引して処理液流入口8に送給する液循環回路18を付加して循環させれば、処理流量が少ない場合にも旋回速度を増大させて微小粒子の捕集と分離効率の向上を図ることができる。
【0020】
次に本実施形態の作用について述べる。
図示しない水熱反応装置で反応処理された処理液15を分離器1の上方に流入する。処理液15は分離器1上部の接線方向に設けられている流入口8から流入されるので、分離器1内で旋回流11が形成される。分離器1の上部渦室2は上方が太く(半径R)下方が細い(半径r)テーパ管2aで形成しており、分離器1内で形成した旋回流11は流下するにしたがって徐々に旋回速度を増大する。上部渦室2の下端には多数の貫通孔4aを有する円筒状のスクリーン4が連結されている。スクリーン4の外側にはスクリーン4を囲繞するように円筒状の粒子捕集室5が設けられており、スクリーン4内を流下する処理液15中の微小粒子16は、遠心力によってスクリーン4に設けられた多数の貫通孔4aを通過して粒子捕集室5内へ飛び出し粒子捕集室5の内面に当たる。粒子捕集室5の内面には旋回流11の回転方向と同方向のスクリュー溝7が設けられており、粒子捕集室5の内面に当たった微小粒子16は溝7内を降下するので、微小粒子16の再飛散が防止される。溝7内をらせん状にゆっくり降下した微小粒子16は粒子捕集室5下端に配設されている排出口10から排出する。スクリーン4の下端には上方が細く下方が太いテーパ管3aで形成された下部渦室3が連結されており、下部渦室3でスクリーン4から流下した旋回流11の旋回速度を徐々に減速させ、下部渦室3の下端に接線方向に設けられた排出口9から清澄液17として流出する。
【0021】
このように、処理液15の旋回流11の速度を徐々に増大させながら流下させ、スクリーン4内において流速が最大にする。スクリーン4では上部渦室2の壁面に沿って流下した微小粒子16および処理液15中にまだ懸濁状態の微小粒子16に大きな遠心力を働かせて貫通孔4aを通ってスクリーン4外に飛び出させる。スクリーン4の外にはスクリュー溝7が設けられており、微小粒子16はその中を旋回しながら降下する。このように、スクリーン4とスクリュー溝7の相互作用により、微小粒子16が再飛散して清澄液17中に再度混入することはない。下方部では旋回流11の速度を徐々に減速させるようにして分離器1外に流出して旋回流11の圧力損失の低減を図るようにした。したがって、粒子径が約1μm以下のサブミクロン粒子までも捕集できるようになった。
【0022】
本発明は、上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々変更し得ることは勿論である。
【0023】
【発明の効果】
以上説明したように、本発明によれば、処理液を分離器内で旋回させて、遠心力により微小粒子と清澄液に分離し、微小粒子はスクリーンの貫通孔を通って粒子捕集室壁面にぶつかり、そのスクリュー溝に沿って降下させて外部に排出するので、微小粒子が捕集室内で飛散し、再度清澄液中に混入することがなく、粒子径が約1μm以下のサブミクロン粒子までも捕集できるなどの優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明の固液分離装置の正面断面図である。
【図2】旋回流を示す図である。
【図3】請求項2に記載の固液分離装置の正面断面図である。
【図4】旋回流を示す図である。
【符号の説明】
1 分離器
2 上部渦室
2a テーパ管
3 下部渦室
3a テーパ管
4 スクリーン
4a 貫通孔
5 捕集室
6 外壁
7 スクリュー溝
8 処理液流入口
9 清澄液排出口
10 微小粒子排出口
11 旋回流
12 上部コーン
13 下部コーン
14 ポンプ
15 処理液
16 微小粒子
17 清澄液
18 液循環回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid-liquid separator for preventing clogging due to separation and deposition of inorganic suspensions after or during treatment in a hydrothermal reactor.
[0002]
[Prior art]
Hydrothermal reactors have been developed as devices for reducing the volume of organic waste such as pulp sludge. The hydrothermal reactor is a device that reacts organic waste under hydrothermal conditions at a temperature of 200 ° C. or higher and a pressure of 20 atm or higher. The organic waste is decomposed and solubilized, and the inorganic waste or a mixture of inorganic and organic matter is decomposed. A residue of fine particles remains. Since these fine particle suspensions may be deposited on valves, pipes, back pressure valves, etc., and clogging may occur, it is necessary to remove them from the liquid after or during the treatment in the hydrothermal reactor.
[0003]
As a device for solid-liquid separation, there are separation devices such as a sedimentation type and a fluid cyclone type, but a fluid cyclone type solid-liquid separation device is suitable in terms of processing time, required space, separation ability and the like.
[0004]
[Problems to be solved by the invention]
However, although the fluid cyclone type solid-liquid separation device is suitable for a particle size of several μm to 100 μm, there is a problem that the collected fine particles are scattered again in the separator. It is very difficult for submicron particles of 1 μm or less and those having a small specific gravity difference. It should be noted that the temperature and pressure conditions of the hydrothermal reactor vary depending on the object to be treated, and some that are difficult to process are performed under supercritical temperature and pressure conditions.
[0005]
The present invention was devised to solve the above-described problems. Sub-micron particles having a particle diameter of about 1 μm or less are prevented by applying a hydrocyclone method while preventing re-scattering in a separator. An object of the present invention is to provide a solid-liquid separation device that can collect even a small amount.
[0006]
[Means for Solving the Problems]
According to the present invention, there is provided a solid-liquid separation device for allowing a treatment liquid that has been subjected to a reaction treatment in a hydrothermal reaction device to flow into a fine particle and a clarified liquid. A cylindrical screen having an upper vortex chamber made of a tapered tube with a thick upper portion and a thin lower portion, and a large number of through holes connected to the lower end of the upper vortex chamber. And a lower vortex chamber that is connected to the lower end of the screen and gradually reduces the speed of the swirling flow, and has a thin upper part and a thicker lower part that discharges clarified liquid in a tangential direction, and a cylindrical shape that surrounds the screen There is provided a solid-liquid separation device in which a screw-like groove is disposed on the inner surface of the particle collection chamber, and a fine particle discharge port is connected to the lower end of the particle collection chamber.
[0007]
It is preferable to add a liquid circulation circuit that sucks a part of the clarified liquid discharged from the lower vortex chamber and feeds it to the processing liquid inlet of the upper vortex chamber.
[0008]
It is preferable to arrange an upper cone and a lower cone for stabilizing the swirl flow on the inner surfaces of the upper plate of the upper vortex chamber and the bottom plate of the lower vortex chamber.
[0009]
Next, the operation of the present invention will be described.
A treatment solution that has been subjected to a reaction treatment in a hydrothermal reaction device (not shown) flows into the upper part of the separator. Since the processing liquid flows in from the inlet provided in the tangential direction at the upper part of the separator, a swirling flow is formed in the separator. The upper vortex chamber of the separator is formed by a tapered tube having a thick upper portion and a thin lower portion, and the swirling flow formed in the separator gradually increases the swirling speed as it flows down. A cylindrical screen having a large number of through holes is connected to the lower end of the upper vortex chamber. A cylindrical particle collection chamber is provided outside the screen so as to surround the screen, and the fine particles in the processing liquid flowing down the screen from the wall of the upper vortex chamber are provided on the screen by centrifugal force. It passes through a large number of through holes, jumps out into the particle collection chamber, and hits the inner surface of the particle collection chamber. The inner surface of the particle collection chamber is provided with a screw groove in the same direction as the rotational direction of the swirl flow, and the fine particles that hit the inner surface of the particle collection chamber descend in the groove, so that the re-scattering of the fine particles is prevented. Is prevented. The fine particles slowly descending in a spiral manner in the groove are discharged from a discharge port provided at the lower end of the particle collection chamber. A lower vortex chamber formed of a tapered tube with a narrow upper part and a thick lower part is connected to the lower end of the screen, and the swirling speed of the swirling flow that flows down from the screen in the lower vortex chamber is gradually reduced so It flows out as a clarified liquid from a discharge port provided in a tangential direction.
[0010]
In this way, the processing liquid is caused to flow while gradually increasing the speed of the swirling flow, and the flow velocity becomes maximum in the screen. In the screen, a large centrifugal force is applied to the fine particles that have flowed down along the wall of the upper vortex chamber and the fine particles that are still suspended in the processing liquid, and then jumped out of the screen through the through holes. A screw groove is provided outside the screen, and the fine particles descend while swirling through the screw groove. Thus, the fine particles are not re-scattered and mixed into the clarified liquid again by the interaction between the screen and the screw groove. In the lower part, the speed of the swirling flow is gradually reduced to flow out of the separator to reduce the pressure loss of the swirling flow. Therefore, even submicron particles having a particle size of about 1 μm or less can be collected.
[0011]
If an upper cone and a lower cone are provided on the inner surface of the upper plate of the upper vortex chamber and the bottom plate of the lower vortex chamber, the swirling flow can be stabilized.
[0012]
[Embodiments of the Invention]
Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a front sectional view of the solid-liquid separation device of the present invention. FIG. 2 is a diagram showing a swirling flow.
In the figure, reference numeral 1 denotes a separator, which is supplied with a treatment liquid 15 that has been subjected to a reaction treatment in a hydrothermal reactor (not shown) and separates it into fine particles 16 and a clarification liquid 17. The processing liquid 15 flows into the upper end of the separator 1 in a tangential direction to form a swirling flow 11, and the upper portion where the swirling flow 11 is allowed to flow while gradually increasing the speed is thick (radius R) and the lower portion is thin (radius r). An upper vortex chamber 2 composed of a taper tube 2a, a cylindrical screen 4 having a number of through holes 4a connected to the lower end of the upper vortex chamber 2, and a speed of the swirling flow 11 connected to the lower end of the screen 4 are gradually reduced. The lower vortex chamber 3 for discharging the clarified liquid 17 in the tangential direction and the cylindrical particle collection chamber 5 provided so as to surround the screen 4 are a tapered tube 3a whose upper part is thin and whose lower part is thick. The collection chamber 5 is provided with a screw-like groove 7 on the inner surface, and a fine particle discharge port 10 is connected to the lower end.
[0013]
An upper cone 12 is disposed on the upper plate inner surface 2 b of the upper vortex chamber 2, and a lower cone 13 is disposed on the bottom plate inner surface 3 b of the lower vortex chamber 3. The swirl flow 11 is stabilized.
[0014]
The screen 4 has a cylindrical shape with the same radius as the radius r of the lower end of the tapered tube 2 a of the upper vortex chamber 2, and is connected to the lower end of the upper vortex chamber 2. The speed of the swirling flow 11 in the screen 4 is almost equal to the flow velocity at the lower end of the upper vortex chamber 2 and the centrifugal force is maximized, and the fine particles 16 that have flowed down along the wall surface of the upper vortex chamber 2 due to this centrifugal force. The fine particles 16 suspended in the processing liquid are allowed to pass through the through holes 4 a of the screen 4 and jump out to the particle collecting chamber 5.
[0015]
The particle collection chamber 5 is provided so as to surround the screen 4, and the upper end is located at the upper end of the screen 4, and the lower end is located in the middle of the tapered tube 3 a of the lower vortex chamber 3. 6 is an outer wall of the particle collecting chamber 5, and a screw-like groove 7 in the same direction as the swirling flow 11 is arranged on the inner surface. The fine particle discharge port 10 is connected to the lower end of the groove 7 and discharges the fine particles 16 that have settled along the groove 7. A swirling flow is also generated in the particle collecting chamber 5 due to the swirling action of the swirling flow 11, but since it is isolated by the screen 4, the flow velocity is small and the fine particles 16 are not scattered.
[0016]
Reference numeral 8 denotes a processing liquid inlet arranged tangentially at the upper end of the upper vortex chamber 2, and 9 denotes a clarified liquid outlet arranged tangentially at the lower end of the lower vortex chamber 3.
[0017]
If the radius of the cylindrical portion of the upper vortex chamber 2 is R, the radius of the screen 4 is r, and the swirl speed is Cu, Cu is approximately R / r × V, and the centrifugal force acting on the fine particles is ∝Cu 2 / r ∝ (R / r) 2 V 2 1 / r. Therefore, as the R / r ratio is increased, the swirling speed and centrifugal force can be increased, and the separation efficiency can be increased to collect fine particles in submicron units.
[0018]
FIG. 3 is a front sectional view of the solid-liquid separator according to claim 2, and FIG. 4 is a view showing a swirling flow.
In the figure, 18 is a liquid circulation circuit in which one end is connected to the clarified liquid discharge port 9 at the lower end of the lower vortex chamber 3 and the other end is connected to the processing liquid inlet 8 at the upper end of the upper vortex chamber 2. The liquid circulation circuit 18 is provided with a pump 14 in the middle, and a part of the clarified liquid 17 discharged from the clarified liquid discharge port 9 is fed to the processing liquid inlet 8 by the pump 14 and mixed with the processing liquid 15. And flows into the separator 1. The solid-liquid separation device shown in FIGS. 1 and 2 is the same in other configurations except that a liquid circulation circuit 18 is added and the connection direction of the clarified liquid discharge port 9 and the fine particle discharge port 10 is different. Therefore, a duplicate description is omitted.
[0019]
Since the inflow speed generally depends on the flow rate of the processing liquid, if the flow rate is small, the flow rate decreases and the separation efficiency decreases. Thus, if a part of the clarified liquid 17 discharged from the lower part of the separator 1 is circulated by adding the liquid circulation circuit 18 for sucking with the pump 14 and feeding it to the processing liquid inlet 8, the processing flow rate can be increased. Even when the amount is small, the swirl speed can be increased to improve the collection and separation efficiency of the fine particles.
[0020]
Next, the operation of this embodiment will be described.
A treatment liquid 15 that has been subjected to a reaction treatment in a hydrothermal reactor (not shown) flows into the upper portion of the separator 1. Since the processing liquid 15 flows in from the inlet 8 provided in the tangential direction on the upper part of the separator 1, a swirl flow 11 is formed in the separator 1. The upper vortex chamber 2 of the separator 1 is formed by a tapered tube 2a having a thick upper portion (radius R) and a thin lower portion (radius r), and the swirling flow 11 formed in the separator 1 swirls gradually as it flows down. Increase speed. A cylindrical screen 4 having a large number of through holes 4 a is connected to the lower end of the upper vortex chamber 2. A cylindrical particle collecting chamber 5 is provided outside the screen 4 so as to surround the screen 4, and the fine particles 16 in the processing liquid 15 flowing down in the screen 4 are provided on the screen 4 by centrifugal force. It passes through the numerous through-holes 4 a and jumps into the particle collecting chamber 5 and hits the inner surface of the particle collecting chamber 5. The inner surface of the particle collection chamber 5 is provided with a screw groove 7 in the same direction as the rotational direction of the swirl flow 11, and the microparticles 16 that hit the inner surface of the particle collection chamber 5 descend in the groove 7. The re-scattering of the fine particles 16 is prevented. The fine particles 16 that slowly descend in a spiral manner in the groove 7 are discharged from the discharge port 10 provided at the lower end of the particle collecting chamber 5. A lower vortex chamber 3 formed by a tapered tube 3a having a thin upper portion and a thick lower portion is connected to the lower end of the screen 4, and the swirling speed of the swirling flow 11 flowing down from the screen 4 in the lower vortex chamber 3 is gradually reduced. Then, it flows out as a clarified liquid 17 from a discharge port 9 provided in a tangential direction at the lower end of the lower vortex chamber 3.
[0021]
In this way, the processing liquid 15 is caused to flow down while gradually increasing the speed of the swirling flow 11 to maximize the flow velocity in the screen 4. In the screen 4, a large centrifugal force is applied to the microparticles 16 that have flowed down along the wall surface of the upper vortex chamber 2 and the microparticles 16 that are still suspended in the processing liquid 15, and are ejected out of the screen 4 through the through holes 4 a. . A screw groove 7 is provided outside the screen 4, and the microparticles 16 descend while swirling in the inside. Thus, the fine particles 16 are not re-scattered by the interaction between the screen 4 and the screw groove 7 and mixed into the clarified liquid 17 again. In the lower part, the speed of the swirling flow 11 is gradually reduced to flow out of the separator 1 to reduce the pressure loss of the swirling flow 11. Therefore, even submicron particles having a particle size of about 1 μm or less can be collected.
[0022]
The present invention is not limited to the above-described embodiment, and various changes can be made without departing from the scope of the present invention.
[0023]
【The invention's effect】
As described above, according to the present invention, the processing liquid is swirled in the separator and separated into fine particles and a clarified liquid by centrifugal force, and the fine particles pass through the through-holes of the screen, and the particle collecting chamber wall surface. Because it hits and falls down along the screw groove and is discharged to the outside, fine particles are not scattered in the collection chamber and mixed into the clarified liquid again, and even to submicron particles with a particle size of about 1 μm or less. It also has excellent effects such as being able to collect.
[Brief description of the drawings]
FIG. 1 is a front sectional view of a solid-liquid separator of the present invention.
FIG. 2 is a diagram showing a swirling flow.
FIG. 3 is a front cross-sectional view of the solid-liquid separation device according to claim 2;
FIG. 4 is a diagram showing a swirling flow.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Separator 2 Upper vortex chamber 2a Tapered tube 3 Lower vortex chamber 3a Tapered tube 4 Screen 4a Through-hole 5 Collection chamber 6 Outer wall 7 Screw groove 8 Process liquid inlet 9 Clarified liquid outlet 10 Microparticle outlet 11 Swirl 12 Upper cone 13 Lower cone 14 Pump 15 Treatment liquid 16 Fine particles 17 Clarification liquid 18 Liquid circulation circuit

Claims (3)

水熱反応装置で反応処理された処理液を流入させて微小粒子と清澄液に分離する固液分離装置であって、上端に接線方向に処理液を流入して旋回流を形成するとともに、旋回流の速度を徐々に増大させながら流下させる上方が太く下方が細いテーパ管からなる上部渦室と、上部渦室の下端に連結した多数の貫通孔を有する円筒状のスクリーンと、スクリーンの下端に連結し旋回流の速度を徐々に減速させる上方が細く下方が太いテーパ管であり接線方向に清澄液を排出する下部渦室と、スクリーンを囲繞するように設けた円筒状の粒子補集室とからなり、粒子捕集室は内面にスクリュー状の溝が配設してあり、下端に微小粒子排出口が接続されていることを特徴とする固液分離装置。This is a solid-liquid separation device that flows in the processing liquid that has been reacted in the hydrothermal reactor and separates it into fine particles and a clarified liquid. The processing liquid flows into the upper end in a tangential direction to form a swirling flow. An upper vortex chamber consisting of a tapered tube with a thick upper portion and a thin lower portion, a cylindrical screen having a number of through holes connected to the lower end of the upper vortex chamber, and a lower end of the screen. A lower vortex chamber that is connected to gradually reduce the speed of the swirling flow and is a tapered tube that is thin at the top and thick at the bottom and that discharges clarified liquid in the tangential direction, and a cylindrical particle collection chamber that is provided so as to surround the screen, A solid-liquid separation device comprising: a particle collecting chamber, wherein a screw-like groove is disposed on an inner surface, and a fine particle discharge port is connected to a lower end. 下部渦室から排出した清澄液の一部をポンプで吸引して上部渦室の処理液流入口に送給する液循環回路を付加した請求項1記載の固液分離装置。2. The solid-liquid separator according to claim 1, further comprising a liquid circulation circuit that sucks a part of the clarified liquid discharged from the lower vortex chamber and feeds it to the processing liquid inlet of the upper vortex chamber. 上部渦室の上板と下部渦室の底板の内面に、旋回流を安定させる上部コーンと下部コーンを配設した請求項1または請求項2記載の固液分離装置。The solid-liquid separator according to claim 1 or 2, wherein an upper cone and a lower cone for stabilizing swirl flow are disposed on the inner surface of the upper plate of the upper vortex chamber and the bottom plate of the lower vortex chamber.
JP02710199A 1999-02-04 1999-02-04 Solid-liquid separator Expired - Fee Related JP4284734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02710199A JP4284734B2 (en) 1999-02-04 1999-02-04 Solid-liquid separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02710199A JP4284734B2 (en) 1999-02-04 1999-02-04 Solid-liquid separator

Publications (2)

Publication Number Publication Date
JP2000225359A JP2000225359A (en) 2000-08-15
JP4284734B2 true JP4284734B2 (en) 2009-06-24

Family

ID=12211706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02710199A Expired - Fee Related JP4284734B2 (en) 1999-02-04 1999-02-04 Solid-liquid separator

Country Status (1)

Country Link
JP (1) JP4284734B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20020093D0 (en) * 2002-01-09 2002-01-09 Optimarin As Method of separating different particles and organisms with low self-weight from liquids in a hydrocyclone with a filter
JP4783058B2 (en) * 2005-05-12 2011-09-28 三菱電機エンジニアリング株式会社 Separator
CN113058370B (en) * 2021-06-02 2021-10-01 广州赛宝认证中心服务有限公司 System for separating sintering flue gas by increasing flue gas buffer through green diagnosis

Also Published As

Publication number Publication date
JP2000225359A (en) 2000-08-15

Similar Documents

Publication Publication Date Title
JP3587523B2 (en) Liquid / solid separation
US6596170B2 (en) Long free vortex cylindrical telescopic separation chamber cyclone apparatus
US4756729A (en) Apparatus for separating dust from gases
US3204772A (en) Sand separator
JP4359975B2 (en) Solid separation device
US4711720A (en) Tangentially staged hydrocyclones
GB2056325A (en) Hydrocyclone
JPS58214368A (en) Cyclone separator
JP4085501B2 (en) Solid-liquid separator
JPS62152556A (en) Solid-liquid separator
JP4284734B2 (en) Solid-liquid separator
US3558484A (en) Separating apparatus
CA1085317A (en) Centrifugal separator concentrator device and method
JP4406976B2 (en) Solid separation device
JP2001121038A (en) Solid separation apparatus
US20040149667A1 (en) Particle separator
JP4147362B2 (en) Solid-liquid separator
JPH04300381A (en) Screen device for removing knot from slurry carried by fluid of fiber and knot
JPH0663452A (en) Cyclone separator
CN111039432B (en) Oil-water separation device convenient for integration of cyclone air floatation process
US3406825A (en) Centripetal separation method and apparatus
JP2609537B2 (en) Solid-liquid separation method and apparatus by spherical cyclone
RU2030699C1 (en) Aggregate for dispersive materials drying
RU2299757C2 (en) Screen-separator
GB2108013A (en) Improvements in or relating to cyclone separators

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees