JP4284423B2 - Method for producing styrene derivative - Google Patents

Method for producing styrene derivative Download PDF

Info

Publication number
JP4284423B2
JP4284423B2 JP2003018369A JP2003018369A JP4284423B2 JP 4284423 B2 JP4284423 B2 JP 4284423B2 JP 2003018369 A JP2003018369 A JP 2003018369A JP 2003018369 A JP2003018369 A JP 2003018369A JP 4284423 B2 JP4284423 B2 JP 4284423B2
Authority
JP
Japan
Prior art keywords
styrene derivative
cinnamic acid
acid
reaction
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003018369A
Other languages
Japanese (ja)
Other versions
JP2004231524A (en
Inventor
野村英作
細田朝夫
谷口久次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wakayama Prefecture
Original Assignee
Wakayama Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wakayama Prefecture filed Critical Wakayama Prefecture
Priority to JP2003018369A priority Critical patent/JP4284423B2/en
Publication of JP2004231524A publication Critical patent/JP2004231524A/en
Application granted granted Critical
Publication of JP4284423B2 publication Critical patent/JP4284423B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、生分解性プラスチックなどの高分子材料、農薬、医薬品などのファインケミカル原料となるスチレン誘導体の製造方法に関する。
【0002】
【従来の技術】
桂皮酸およびその誘導体の多くは植物中に存在しており、香気成分の前駆体として重要な役割を持っている。これまで、桂皮酸誘導体から加熱による脱カルボキシル化については、食品中の加熱処理による香気成分の化学変化について報告(非特許文献1参照)がなされている。この反応では、アルコールを含む酸性水溶液中(pH1-6)において100℃で加熱することにより桂皮酸誘導体の脱カルボキシル化が進行することが示されているが、カフェー酸、イソフェルラ酸、フェルラ酸などの比較的反応の速いもので、10時間以上の時間が必要である。さらに、生成物の詳細については明らかではない。
【0003】
また、4-ヒドロキシ桂皮酸からp-ヒドロキシスチレンの合成と高分子化についても検討(非特許文献2参照)されている。この反応では、4-ヒドロキシベンズアルデヒドとマロン酸から4-ヒドロキシ桂皮酸を得た後、キノリン中で銅触媒を添加し、225℃で加熱する。その後、減圧蒸留を行い、不純物のヒドロキノン、重合物を除去することにより41%の収率でp-ヒドロキシスチレンが得られる。上記の反応においては、高温での反応、その後の蒸留精製課程において、重合物の生成を引き起こし、モノマーの収率は低下することが避けられない。
【0004】
さらに、3-メトキシ-4-ヒドロキシスチレンの生分解性ポリマーの合成についての報告(非特許文献3参照)がある。それによると、3-メトキシ-4-ヒドロキシスチレンが、3-メトキシ-4-ヒドロキシ桂皮酸(フェルラ酸)から上記の非特許文献2(Sovish)の手法を用いて、62%の収率で得られている。最近、米糠から得られるフェルラ酸を原料に、植物細胞中で3-メトキシ-4-ヒドロキシスチレンを微生物により製造する手法が報告(非特許文献4参照)されている。しかし、微生物による製造方法の場合、高濃度での合成ではその酵素による生成物阻害などによって高効率合成が困難であると同時に、工業的に製造する場合、高コスト化を招く可能性が高い。
【0005】
近年、化学物質の製造において、原料から製造工程、製品に至るまで環境への負荷を低減する、いわゆる環境に優しい化学(グリーンケミストリー)が求められている。マイクロ波エネルギーによる加熱についてもグリーンケミストリーの騎手の一つとして、化学反応への応用が期待されているところであるが、桂皮酸誘導体についての研究はなされていない。
【0006】
上記のように、これまで桂皮酸誘導体からスチレン誘導体を高収率で製造する手法についての研究はあまりなされて来なかった。しかし、最近、特に、フェルラ酸を米糠から工業的に大量に製造することが可能となり、このフェルラ酸からスチレン誘導体を効率よく製造する技術が得られるならば、例えば、生分解性プラスチックの原料をはじめ、その他のファインケミカル原料として有用となるものと考えられる。
【0007】
【非特許文献1】
T. Pyysalo, H. Torkkeli, E. Honkanen, Lebensm.-Wiss. u. -Technol., 10,145(1977).
【非特許文献2】
R. C. Sovish, J. Org. Chem., 24, 1345(1957).
【非特許文献3】
H. Hatakeyama, E. Hayashi, T. Haraguchi, Polymer, 18, 759(1977).
【非特許文献4】
米光ら、第6回高専シンポジウム、講演要旨集、p97(2001)
【0008】
【発明が解決しようとする課題】
本発明は、上記事情に鑑みて、桂皮酸誘導体からスチレン誘導体を高収率、省エネルギー、省溶媒で合成することができるスチレン誘導体の製造方法を提供することを目的としている。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明にかかるスチレン誘導体の製造方法(以下、「請求項1の製造方法」と記す)は、 下記の一般式(I)、
化3

Figure 0004284423
式I中、置換基R1は、メトキシ基もしくは水素のいずれかである。)
で示される桂皮酸誘導体を下記の一般式(II)
【0010】
化4
NR2R3R4 ・・・(II)
(式II中、R2、R3、R4は、水素もしくは炭素数1から8のアルキル基を示す)
で示される脂肪族アミン、ピペリジン、ピリジン、N,N−ジメチルアミノピリジンからなる群より選ばれた塩基の存在下でマイクロ波エネルギーにより加熱する工程を備えていることを特徴としている。
【0011】
本発明の請求項2に記載のスチレン誘導体の製造方法(以下、「請求項2の製造方法」と記す)は、請求項1の製造方法において、脂肪族アミンが、n‐ブチルアミン、n−オクチルアミン、トリエチレンアミン、n‐ヘキシルアミン、ジエチルアミンからなる群より選ばれたいずれかであることを特徴としている。
【0012】
本発明の請求項3に記載のスチレン誘導体の製造方法(以下、「請求項3の製造方法」と記す)は、請求項1または請求項2の製造方法において、加熱する工程を塩基とともに、エチレングリコール、ジエチレングリコール、ジメチルホルムアミドからなる群より選ばれた有機溶媒の存在下で行うことを特徴としている。
【0013】
本発明の請求項4に記載のスチレン誘導体の製造方法(以下、「請求項3の製造方法」と記す)は、請求項1〜請求項3のいずれかの製造方法において、桂皮酸誘導体がフェルラ酸であることを特徴としている。
【0014】
本発明のスチレン誘導体の製造方法では、以下の反応式のように、上記一般式(I)の桂皮酸誘導体から一般式(III)示すスチレン誘導体が反応生成される。
【0015】
【化5】
Figure 0004284423
(式III中、R1は水素あるいはメトキシ基、R2,R3,R4は水素もしくは炭素数1から8のアルキル基を示す。)
【0016】
また、上記一般式(I)で示される桂皮酸誘導体は、その二重結合における立体配置としてトランス体とシス体とが存在し、いずれの異性体に限定されるものではないが、その安定性から天然に得られるものを中心にトランス体が主である。
【0017】
具体的には、例えば、2-ヒドロキシ桂皮酸(R1=R2=H、R3=OH)、3-ヒドロキシ桂皮酸(R1=R3=H、R2=OH)、4-ヒドロキシ桂皮酸(R1=OH、R2=R3=H)、3-メトキシ-4-ヒドロキシ桂皮酸(フェルラ酸)(R1=OH、R2=OMe、R3=H)、3-ヒドロキシ-4-メトキシ桂皮酸(イソフェルラ酸)(R1= OMe、R2=OH、R3=H)、3,4-ジヒドロキシ桂皮酸(カフェー酸)(R1=OH、R2=OH、R3=H)などが挙げられ、これらの桂皮酸誘導体からそれぞれ、2-ヒドロキシスチレン、3-ヒドロキシスチレン、4-ヒドロキシスチレン、3-メトキシ-4-ヒドロキシスチレン、3-ヒドロキシ-4-メトキシスチレン、3、4-ジヒドロキシスチレンが得られる。いずれの桂皮酸誘導体においても目的のスチレン誘導体が得られるが、特にフェルラ酸を用いれば、スチレン誘導体を最も高収率で得ることが可能である。
【0018】
塩基は触媒として作用し、特に限定しないが、例えば、直鎖状、分岐状のものが含まれるアルキルアミン(メチル、エチル、炭素数3のアルキル基(n-プロピル、iso-プロピル)、炭素数4のアルキル基(n-ブチル、iso-ブチル、sec-ブチル、tert-ブチル)など炭素数20までのアルキルアミン)、ピペリジンおよびピロリジンなどの環状アミン類、アニリンなどの芳香族アミン類、ピリジンなどの含窒素芳香族化合物、水酸化ナトリウムなどのアルカリ金属水酸化物などがその具体例としてあげる事ができる。
【0019】
因みに、通常、安息香酸などのカルボン酸にアニリンなどの一、二級アミン類を等モル以上添加し、高温で加熱すると脱水反応の進行によるアミド化合物の生成が知られている(Org. Syn. Coll. Vol. 1, p82)。桂皮酸類においても下記反応式(2)に示すのと同様の反応が予想される。
【0020】
【化6】
Figure 0004284423
【0021】
しかし、本発明においては、特にフェルラ酸ではそのアミド化合物の生成は認められず、スチレン誘導体が生成する。また、スチレン誘導体の生成が少ないあるいは与えない桂皮酸誘導体、例えば、2-ヒドロキシ桂皮酸、3-ヒドロキシ桂皮酸、桂皮酸などにおいてはアミド化合物の生成量が多い。これらの生成を抑制するにはトリエチルアミン、ピリジンなどのアミドを生成させない塩基を用いることができる。
【0022】
また、上記反応式(1)で示される反応は、用いる塩基の種類によっては溶媒を添加することなく触媒として用いるアミン類などの塩基を溶媒として用いることも可能であるが、請求項4の製造方法のように、溶媒を添加することが好ましい。
【0023】
本発明の反応に用いる溶媒は、特に限定するものではないが、水、アルコール類、ジメチルホルムアミド、ジメチルスルホキシドなどの多くの一般溶媒並びにこれらの混合溶媒を利用する事ができる。特に、沸点の高いエチレングリコールなどの使用が高収率の生成物を与える。また、触媒として用いるアミン類などの塩基を溶媒として用い、他の溶媒を使用しないで反応を行うことも可能である。塩基を溶媒として用いる場合は、固体の桂皮酸誘導体が加熱により溶解する程度の量が必要である。その使用量は塩基によって異なる。また、溶媒を用いることにより、触媒として使用する塩基量を大幅に減らすことが可能となる。例えば、溶媒に塩基を添加することにより原料の桂皮酸誘導体に対して、1から1/100(モル比)の使用量で反応が進行する。塩基の量は多いと副反応を進行させやすく、少ないと反応の進行が遅くなり、好ましくは桂皮酸誘導体に対して、1/2から1/20(モル比)である。また、塩基の種類によっては反応が全く進行しない場合があり、この場合には少量の溶媒の添加によって反応を進行させることができる。これはアミンなどの塩基はフェルラ酸のカルボキシル基とアンモニウム塩を形成するため、これらが溶媒として用いた塩基類に溶解しないためと考えられる。
【0024】
本発明の反応を進行せしめるには、加熱が必要である。加熱温度は、特に限定されず、概ね50℃から250℃の加熱により反応が進行するが、好ましくは100℃以上の高温である。
【0025】
反応時の加熱方法は、特に限定されず、通常の加熱方法で構わないが、請求項3の製造方法のように、マイクロ波による加熱が好ましい。すなわち、オイルバスなどの通常の加熱では、例えば、100℃で20時間以上、150℃で1時間以上の反応時間が必要となるが、高温での長時間反応は副反応により生成物の収率を低下させる恐れがある。副反応には、生成物の重合反応も含まれる。このため、請求項3の製造方法のように、瞬時に加熱され、短時間で反応が終了し、副生成物の抑制が可能なマイクロ波による加熱が最も効率よく反応を進行させることができる。
【0026】
なお、マイクロ波による加熱では、原料の固体の桂皮酸誘導体を溶媒に溶解させる必要がなく、そのままの状態で少量の塩基を含む溶媒をしめらせる程度で反応が進行する。また、反応溶液を撹拌する必要もない。マイクロ波による加熱に用いる反応容器はバッチ式、あるいは連続流通式によって行うことができる。
反応終了後は、エーテル、酢酸エチルなどの有機溶媒に溶解させ、薄い酸で残存するアミンなどの塩基を除き、水洗、乾燥、溶媒を留去することにより95%以上の純度でスチレン誘導体が得られる。さらに、減圧蒸留により高純度のものが得られる。さらに、反応終了後に塩基を中和したのち、直ちに蒸留により精製することも可能である。
【0027】
【実施例】
以下、本発明の詳細について実施例によって具体的に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
【0028】
(実施例1)
フェルラ酸0.5gに表1に示す塩基を添加し、マイクロ波(電子レンジ、出力500W)で4分間加熱した。直ちに冷却した後、酢酸エチルに溶解して酢酸エチル溶液を0.1M塩酸水溶液、水(2回)、飽和食塩水で順次洗浄し、有機相を硫酸マグネシウムで乾燥した。硫酸マグネシウムを濾別し、溶媒を減圧留去して、スチレン誘導体を得た。生成物はカラムクロマトグラフィーにより精製した。得られたスチレン誘導体のスペクトルデータは次の通りである。
3-Methoxy-4-hydroxystyrene
oil; 1H NMR (CDCl3) (=3.90 (s, 3H, OCH2), 5.11 (dd, 1H, J=0.9, 10.8 Hz, =CH2), 5.73 (dd, 1H, J=0.9, 17.6 Hz, =CH), 5.63 (s, 1H, OH), 6.62 (dd, 1H, J=10.8, 17.6 Hz, =CH2), 6.85-6.93 (m, 3H, ArH); 13C NMR (CDCl3) (=55.8, 108.0, 111.4, 114.3, 120.6, 130.2, 136.58, 136.6, 145.6, 146.5; MS (ESI-TOF) calcd for [C9H11O2]+ 151.076, found 151.058 [M + H]+.
【0029】
【表1】
Figure 0004284423
【0030】
上記表1から、溶媒を加えない場合でも、フェルラ酸を塩基の存在下、マイクロ波加熱するようにすれば、スチレン誘導体としての3-Methoxy-4-hydroxystyreneを短時間かつ高い収率で得られることがわかる。
【0031】
(実施例2)
フェルラ酸0.5gにアミン類をフェルラ酸の対して1/2〜1/10モルの割合で表2に示す各種溶媒0.5mLに溶解したものを添加し、マイクロ波(電子レンジ、出力500W)で数分間加熱した。以下実施例1と同様に行い、結果を表2に示した。
【0032】
【表2】
Figure 0004284423
【0033】
表2に示すように、溶媒として水、エチレングリコールおよびジメチルホルムアミドをそれぞれ加え塩基を添加しない場合は、いずれもスチレン誘導体の生成は認められなかった。しかし、これらの溶媒にアミンなどの塩基を添加すると表2に示した収率で生成物が得られることがわかる。なお、表2のNo.1〜3の実験では、スチレン誘導体は生成せず原料の桂皮酸誘導体のみが回収された。
【0034】
(実施例3)
フェルラ酸0.5gに1/10モル比の各種アミンを0.5mlのエチレングリコールに溶解したものを添加し、マイクロ波(電子レンジ、出力500W)で数分間加熱した。以下、実施例1と同様に行った。その結果の一部を表3にまとめて示した。
【0035】
【表3】
Figure 0004284423
【0036】
表3から、エチレングリコールを溶媒として用いれば、いずれの塩基を用いてもスチレン誘導体を高収率で得られることがよくわかる。
【0037】
(実施例4)
各種桂皮酸誘導体0.5gにトリエチルアミンを桂皮酸誘導体および比較のための桂皮酸に対して1/10モルをエチレングリコールに溶解したものを添加し、マイクロ波(電子レンジ、出力500W)で数分間加熱した。以下、実施例1と同様に行った。その結果を表4にまとめて示した。
【0038】
なお、得られたスチレン誘導体のスペクトルデータを次に示す。
2-hydroxystyrene
oil; 1H NMR (CDCl3) (=5.06 (s, 1H, OH), 5.35 (dd, 1H, J=1.4, 11.2 Hz, =CH2), 5.76 (dd, 1H, J=1.4, 17.6 Hz, =CH), 6.78 (dd, 1H, J=1.1, 8.1 Hz, ArH), 6.93 (dd, 1H, J=11.2, 17.6 Hz, =CH2), 6.89-6.93 (m, 1H, ArH), 7.11-7.15 (m, 1H, ArH), 7.38 (dd,1H, J=1.7, 7.7 Hz, ArH); 13C NMR (CDCl3) (=115.82, 115.86, 120.9, 124.8, 127.3, 128.9, 131.5, 152.8; MS (ESI-TOF) calcd for [C8H9O]+ 121.065, found 121.054 [M + H]+.
4-hydroxystyrene
solid; Mp=70-74°C; 1H NMR (DMSO-d6) (=5.05 (dd, 1H, J=1.0, 10.9 Hz, =CH2), 5.57 (dd, 1H, J=1.0, 17.7 Hz, =CH), 6.59 (dd, 1H, J=10.9, 17.7 Hz, =CH2), 6.72 (d, 2H, J=8.6 Hz, ArH), 7.27 (d, 2H, J=8.6 Hz, ArH), 9.49 (brs, 1H, OH); 13C NMR (DMSO-d6) (=110.8, 115.5, 127.6, 128.4, 136.6, 157.6: MS (ESI-TOF) calcd for [C8H9O]+ 121.065, found 121.062 [M + H]+.
【0039】
【表4】
Figure 0004284423
【0040】
表4から塩基としてトリエチルアミンを使用した場合、桂皮酸誘導体によっては、スチレン誘導体が生成しないものがあることが判る。
【0041】
(実施例5)
各種桂皮酸誘導体および比較のための桂皮酸0.5gにn-ブチルアミンを溶媒として添加し、マイクロ波(電子レンジ、出力500W)で数分間加熱した。以下、実施例1と同様に行った。その結果を表5にまとめて示した。
【0042】
生成物のスペクトルデータは次の通りである。
3-hydroxystyrene
oil; 1H NMR (CDCl3) (=4.82 (s, 1H, OH), 5.23 (dd, 1H, J=0.7, 11.1 Hz, =CH2), 5.71 (dd, 1H, J=0.9, 17.6 Hz, =CH), 6.64 (dd, 1H, J=10.8, 17.6 Hz, =CH2), 6.71-6.73 (dd, 1H, J=2.1, 7.6 Hz, ArH), 6.87 (t, 1H, J=2.1 Hz, ArH), 6.97 (d, 1H, J=7.5 Hz, ArH), 7.18 (t,1H, J=7.9 Hz, ArH); 13C NMR (CDCl3) (=112.7, 114.3, 114.8, 119.1, 129.7, 136.4, 139.3, 155.7; MS (ESI-TOF) calcd for [C8H8ONa]+ 143.047, found 143.068 [M + Na]+.
Cinnamoyl n-butylamide
solid; Mp=75-78°C; 1H NMR (CDCl3) (=0.92 (t, 3H, J=7.3 Hz, CH3), 1.32-1.42 (m, 2H, CH2), 1.50-1.57 (m, 2H, CH2), 3.35-3.40 (m, 2H, CH2), 5.72 (brs, 1H, NH), 6.37 (d, 1H, J=15.6 Hz, =CH), 7.31-7.36 (m, 3H, ArH), 7.46-7.48 (m, 2H, ArH), 7.60 (d, 1H, J=15.6 Hz, =CH); 13C NMR (CDCl3) (=13.7, 20.1, 31.7, 39.5, 120.8, 127.7, 128.8, 129.6, 134.9, 140.8, 165.8; MS (ESI-TOF) calcd for [C13H18NO]+ 204.139, found 204.118 [M + H]+.
2-Hydroxycinnamoyl n-butylamide
solid; Mp=151-154°C; 1H NMR (DMSO-d6) (=0.88 (t, 3H, J=7.3 Hz, CH3), 1.25-1.34 (m, 2H, CH2), 1.38-1.45 (m, 2H, CH2), 3.12-3.17 (m, 2H, CH2), 6.63 (d, 1H, J=15.7 Hz, =CH), 6.78-6.88 (m, 2H, ArH), 7.13-7.18 (m, 1H, ArH), 7.38-7.58 (m, 1H, ArH), 7.60 (d, 1H, J=15.9 Hz, =CH), 8.01 (t, 1H, NH), 10.00 (brs, 1H, OH); 13C NMR (DMSO-d6) (=13.7, 20.1, 31.7, 39.5, 120.8, 127.7, 128.8, 129.6, 134.9, 140.8, 165.8; MS (ESI-TOF) calcd for [C13H18NO2]+ 220.134, found 220.121 [M + H]+.
3-Hydroxycinnamoyl n-butylamide
solid; Mp=104-106°C; 1H NMR (DMSO-d6) (=0.88 (t, 3H, J=7.3 Hz, CH3), 1.27-1.34 (m, 2H, CH2), 1.39-1.46 (m, 2H, CH2), 3.13-3.18 (m, 2H, CH2), 6.52 (d, 1H, J=15.7 Hz, =CH), 6.74-6.77 (m, 1H, ArH), 6.90-6.96 (m, 2H, ArH), 7.16-7.20 (m, 1H, ArH), 7.29 (d, 1H, J=15.7 Hz, =CH), 8.05 (t, 1H, NH), 9.56 (s, 1H, OH); 13C NMR (DMSO-d6) (=13.9, 19.8, 31.4, 38.5, 113.8, 116.7, 118.8, 122.3, 130.1, 136.4, 138.7, 157.9, 165.0; MS (ESI-TOF) calcd for [C13H18NO2]+ 220.134, found 220.123 [M + H]+.
【0043】
【表5】
Figure 0004284423
【0044】
上記表5から1級アミンのn-ブチルアミンを添加することにより脱カルボキシル化が進行しにくい桂皮酸誘導体あるいは桂皮酸は、塩基以外の溶媒を添加しなければ、脱水反応が優先しアミド化合物が生成することがわかる。
【0045】
(実施例6)
フェルラ酸0.5gに1/10モル比のトリエチルアミンをエチレングリコールに溶解したものを添加し、100℃でのオイルバスで20時間加熱した。以下、実施例1と同様に行った。その結果を表6にまとめて示した。
【0046】
【表6】
Figure 0004284423
【0047】
上記表6から、通常加熱によってもフェルラ酸からスチレン誘導体が得られるが、マイクロ波エネルギー利用による加熱と比較すると、長時間加熱による生成物による重合反応が進行するため、収率が低くなることがわかる。
【0048】
【発明の効果】
本発明のスチレン誘導体の製造方法は、以上のように構成されているので、フェルラ酸及び4−ヒドロキシ桂皮酸からスチレン誘導体を高収率、省エネルギー、省溶媒で合成することができる。特に、フェルラ酸については、天然物として米糠から大量に得られる桂皮酸誘導体であり、これを原料として合成されるスチレン誘導体は、生分解性プラスチックをはじめとする高分子材料、農薬、医薬品などのファインケミカル原料となる。
【0049】
また、マイクロ波加熱を利用すれば、より高収率、省エネルギー、省溶媒でスチレン誘導体を製造することができる。このことは、環境への負荷を著しく低減出来る製造方法であるといえる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a styrene derivative used as a raw material for fine chemicals such as polymer materials such as biodegradable plastics, agricultural chemicals and pharmaceuticals.
[0002]
[Prior art]
Cinnamic acid and many of its derivatives are present in plants and play an important role as precursors of aroma components. Until now, about the decarboxylation by a heating from a cinnamic acid derivative, the chemical change of the aromatic component by the heat processing in a foodstuff is reported (refer nonpatent literature 1). In this reaction, it has been shown that decarboxylation of cinnamic acid derivatives proceeds by heating at 100 ° C in an acidic aqueous solution containing alcohol (pH 1-6), but caffeic acid, isoferulic acid, ferulic acid, etc. It requires a time of 10 hours or more. Furthermore, the details of the product are not clear.
[0003]
In addition, synthesis and polymerization of p-hydroxystyrene from 4-hydroxycinnamic acid have been studied (see Non-Patent Document 2). In this reaction, 4-hydroxycinnamic acid is obtained from 4-hydroxybenzaldehyde and malonic acid, and then a copper catalyst is added in quinoline and heated at 225 ° C. Thereafter, distillation under reduced pressure is performed to remove impurities hydroquinone and polymer, whereby p-hydroxystyrene is obtained in a yield of 41%. In the above reaction, in the reaction at a high temperature and the subsequent distillation purification process, it is inevitable that the production of the polymer is caused and the yield of the monomer is lowered.
[0004]
Furthermore, there is a report on the synthesis of a biodegradable polymer of 3-methoxy-4-hydroxystyrene (see Non-Patent Document 3). According to this, 3-methoxy-4-hydroxystyrene was obtained in a yield of 62% from 3-methoxy-4-hydroxycinnamic acid (ferulic acid) using the method of Non-Patent Document 2 (Sovish) described above. It has been. Recently, a method for producing 3-methoxy-4-hydroxystyrene in a plant cell using microorganisms from ferulic acid obtained from rice bran as a raw material has been reported (see Non-Patent Document 4). However, in the case of a production method using microorganisms, it is difficult to synthesize at a high concentration due to inhibition of the product by the enzyme, etc., and at the same time, in the case of industrial production, there is a high possibility that the cost will increase.
[0005]
In recent years, in the manufacture of chemical substances, so-called environmentally friendly chemistry (green chemistry) that reduces the burden on the environment from raw materials to manufacturing processes and products has been demanded. Heating by microwave energy is expected to be applied to chemical reactions as one of the jockeys of Green Chemistry, but research on cinnamic acid derivatives has not been made.
[0006]
As described above, there has been little research on techniques for producing styrene derivatives from cinnamic acid derivatives in high yields. Recently, however, if it becomes possible to produce ferulic acid industrially in large quantities from rice bran and a technique for efficiently producing a styrene derivative from this ferulic acid can be obtained, for example, a raw material for biodegradable plastics can be used. First, it is considered useful as other fine chemical raw materials.
[0007]
[Non-Patent Document 1]
T. Pyysalo, H. Torkkeli, E. Honkanen, Lebensm.-Wiss.u.-Technol., 10,145 (1977).
[Non-Patent Document 2]
RC Sovish, J. Org. Chem., 24, 1345 (1957).
[Non-Patent Document 3]
H. Hatakeyama, E. Hayashi, T. Haraguchi, Polymer, 18, 759 (1977).
[Non-Patent Document 4]
Yonemitsu et al., 6th National College of Technology Symposium, Abstracts, p97 (2001)
[0008]
[Problems to be solved by the invention]
In view of the above circumstances, an object of the present invention is to provide a method for producing a styrene derivative capable of synthesizing a styrene derivative from a cinnamic acid derivative with high yield, energy saving, and solvent saving.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a method for producing a styrene derivative according to the present invention (hereinafter referred to as “production method of claim 1”) is represented by the following general formula (I),
[ Chemical 3 ]
Figure 0004284423
(In formula I, substituent R1 is either a methoxy group or hydrogen.)
A cinnamic acid derivative represented by the following general formula (II)
[0010]
[ Chemical 4 ]
NR2R3R4 ... (II)
(In Formula II, R2, R3, and R4 represent hydrogen or an alkyl group having 1 to 8 carbon atoms)
And a step of heating with microwave energy in the presence of a base selected from the group consisting of aliphatic amine, piperidine, pyridine, and N, N-dimethylaminopyridine .
[0011]
The method for producing a styrene derivative according to claim 2 of the present invention (hereinafter referred to as “production method of claim 2”) is the method according to claim 1, wherein the aliphatic amine is n-butylamine, n-octyl. It is any one selected from the group consisting of amine, triethyleneamine, n-hexylamine, and diethylamine .
[0012]
The method for producing a styrene derivative according to claim 3 of the present invention (hereinafter referred to as “production method of claim 3”) is the method of producing a styrene derivative according to claim 1 or 2, wherein the step of heating together with the base is ethylene. It is characterized in that it is carried out in the presence of an organic solvent selected from the group consisting of glycol, diethylene glycol and dimethylformamide .
[0013]
The method for producing a styrene derivative according to claim 4 of the present invention (hereinafter referred to as “production method of claim 3”) is the method according to any one of claims 1 to 3, wherein the cinnamic acid derivative is ferrule. It is characterized by being an acid .
[0014]
In the method for producing a styrene derivative of the present invention, a styrene derivative represented by the general formula (III) is produced by reaction from the cinnamic acid derivative represented by the general formula (I) as shown in the following reaction formula.
[0015]
[Chemical formula 5]
Figure 0004284423
(In Formula III, R 1 represents hydrogen or a methoxy group , and R 2, R 3, and R 4 represent hydrogen or an alkyl group having 1 to 8 carbon atoms .)
[0016]
In addition, the cinnamic acid derivative represented by the above general formula (I) has a trans isomer and a cis isomer as the configuration at the double bond, and is not limited to any isomer, but its stability trans isomer mainly those derived naturally from the Ru main der.
[0017]
Specifically, for example, 2-hydroxycinnamic acid (R 1 = R 2 = H, R 3 = OH), 3-hydroxy cinnamic acid (R 1 = R 3 = H, R 2 = OH), 4-hydroxy Cinnamic acid (R 1 = OH, R 2 = R 3 = H), 3-methoxy-4-hydroxycinnamic acid (ferulic acid) (R 1 = OH, R 2 = OMe, R 3 = H), 3-hydroxy -4-methoxycinnamic acid (isoferulic acid) (R 1 = OMe, R 2 = OH, R 3 = H), 3,4-dihydroxycinnamic acid (caffeic acid) (R 1 = OH, R 2 = OH, R 3 = H) and the like. From these cinnamic acid derivatives, 2-hydroxystyrene, 3-hydroxystyrene, 4-hydroxystyrene, 3-methoxy-4-hydroxystyrene, 3-hydroxy-4-methoxystyrene, 3,4-dihydroxystyrene is obtained. Any of the cinnamic acid derivatives can give the desired styrene derivative. However, when ferulic acid is used, the styrene derivative can be obtained in the highest yield.
[0018]
The base acts as a catalyst and is not particularly limited. For example, alkylamines including linear and branched ones (methyl, ethyl, alkyl groups having 3 carbon atoms (n-propyl, iso-propyl), carbon numbers 4 alkyl groups (alkylamines having up to 20 carbon atoms such as n-butyl, iso-butyl, sec-butyl, tert-butyl), cyclic amines such as piperidine and pyrrolidine, aromatic amines such as aniline, pyridine, etc. Specific examples thereof include nitrogen-containing aromatic compounds, alkali metal hydroxides such as sodium hydroxide, and the like.
[0019]
Incidentally, it is usually known that amide compounds are formed by the progress of dehydration reaction when equimolar or more of secondary amines such as aniline are added to carboxylic acid such as benzoic acid and heated at high temperature (Org. Syn. Coll. Vol. 1, p82). In cinnamic acids, the same reaction as shown in the following reaction formula (2) is expected.
[0020]
[Chemical 6]
Figure 0004284423
[0021]
However, in the present invention, formation of the amide compound is not observed particularly in ferulic acid, and a styrene derivative is formed. In addition, cinnamic acid derivatives that produce little or no styrene derivative, such as 2-hydroxycinnamic acid, 3-hydroxy cinnamic acid, and cinnamic acid, produce a large amount of amide compound. In order to suppress these generations, a base that does not generate an amide such as triethylamine or pyridine can be used.
[0022]
In the reaction represented by the reaction formula (1), a base such as an amine used as a catalyst can be used as a solvent without adding a solvent depending on the kind of the base used. It is preferred to add a solvent as in the method.
[0023]
The solvent used in the reaction of the present invention is not particularly limited, and many general solvents such as water, alcohols, dimethylformamide, dimethylsulfoxide, and mixed solvents thereof can be used. In particular, the use of ethylene glycol or the like having a high boiling point gives a high yield of product. It is also possible to carry out the reaction without using other solvents by using a base such as amines used as a catalyst as a solvent. When a base is used as a solvent, an amount that can dissolve the solid cinnamic acid derivative by heating is required. The amount used varies depending on the base. In addition, the use of a solvent can greatly reduce the amount of base used as a catalyst. For example, by adding a base to the solvent, the reaction proceeds at a usage amount of 1 to 1/100 (molar ratio) with respect to the raw cinnamic acid derivative. When the amount of the base is large, the side reaction is likely to proceed, and when it is small, the progress of the reaction is slow, and preferably from 1/2 to 1/20 (molar ratio) with respect to the cinnamic acid derivative. Depending on the type of base, the reaction may not proceed at all. In this case, the reaction can be proceeded by adding a small amount of solvent. This is probably because bases such as amines form a carboxyl group of ferulic acid and an ammonium salt, so that they do not dissolve in the bases used as solvents.
[0024]
Heating is required to allow the reaction of the present invention to proceed. The heating temperature is not particularly limited, and the reaction proceeds by heating generally from 50 ° C. to 250 ° C., but is preferably a high temperature of 100 ° C. or higher.
[0025]
The heating method during the reaction is not particularly limited, and a normal heating method may be used. However, heating by microwaves is preferable as in the manufacturing method of claim 3. That is, in normal heating of an oil bath or the like, for example, a reaction time of 20 hours or longer at 100 ° C. and 1 hour or longer at 150 ° C. is required. May decrease. The side reaction includes a polymerization reaction of the product. For this reason, as in the production method of claim 3, heating with microwaves that can be heated instantaneously, finish the reaction in a short time, and suppress by-products can proceed most efficiently.
[0026]
In the heating by microwave, it is not necessary to dissolve the raw solid cinnamic acid derivative in the solvent, and the reaction proceeds to such an extent that a solvent containing a small amount of base is used as it is. Moreover, it is not necessary to stir the reaction solution. The reaction vessel used for microwave heating can be performed by a batch method or a continuous flow method.
After completion of the reaction, it is dissolved in an organic solvent such as ether and ethyl acetate, the base such as amine remaining in a thin acid is removed, washed with water, dried, and the solvent is distilled off to obtain a styrene derivative with a purity of 95% or more. It is done. Furthermore, a high-purity thing is obtained by distillation under reduced pressure. Furthermore, it is possible to purify by distillation immediately after the completion of the reaction after neutralizing the base.
[0027]
【Example】
Hereinafter, the details of the present invention will be specifically described by way of examples. However, the scope of the present invention is not limited to these examples.
[0028]
Example 1
The base shown in Table 1 was added to 0.5 g of ferulic acid and heated for 4 minutes in a microwave (microwave oven, output 500 W). The mixture was immediately cooled, dissolved in ethyl acetate, and the ethyl acetate solution was washed successively with 0.1 M aqueous hydrochloric acid, water (twice) and saturated brine, and the organic phase was dried over magnesium sulfate. Magnesium sulfate was filtered off and the solvent was distilled off under reduced pressure to obtain a styrene derivative. The product was purified by column chromatography. The spectrum data of the obtained styrene derivative is as follows.
3-Methoxy-4-hydroxystyrene
oil; 1 H NMR (CDCl 3 ) (= 3.90 (s, 3H, OCH 2 ), 5.11 (dd, 1H, J = 0.9, 10.8 Hz, = CH 2 ), 5.73 (dd, 1H, J = 0.9, 17.6 Hz, = CH), 5.63 (s, 1H, OH), 6.62 (dd, 1H, J = 10.8, 17.6 Hz, = CH 2 ), 6.85-6.93 (m, 3H, ArH); 13 C NMR (CDCl 3 ) (= 55.8, 108.0, 111.4, 114.3, 120.6, 130.2, 136.58, 136.6, 145.6, 146.5; MS (ESI-TOF) calcd for [C 9 H 11 O 2 ] + 151.076, found 151.058 [M + H] + .
[0029]
[Table 1]
Figure 0004284423
[0030]
From Table 1 above, even when no solvent is added, 3-Methoxy-4-hydroxystyrene as a styrene derivative can be obtained in a short time and in a high yield if ferulic acid is heated in a microwave in the presence of a base. I understand that.
[0031]
(Example 2)
Add 0.5 g of ferulic acid dissolved in 0.5 mL of various solvents shown in Table 2 at a ratio of 1/2 to 1/10 mol of ferulic acid to ferulic acid, and microwave (microwave oven, output 500 W) Heated for several minutes. Thereafter, the same procedure as in Example 1 was performed, and the results are shown in Table 2.
[0032]
[Table 2]
Figure 0004284423
[0033]
As shown in Table 2, when water, ethylene glycol and dimethylformamide were added as solvents and no base was added, no styrene derivative was observed. However, it can be seen that when a base such as amine is added to these solvents, the products are obtained in the yields shown in Table 2. In the experiments of Nos. 1 to 3 in Table 2, no styrene derivative was produced, and only the raw cinnamic acid derivative was recovered.
[0034]
(Example 3)
A solution prepared by dissolving 1/10 molar ratio of various amines in 0.5 ml of ethylene glycol in 0.5 g of ferulic acid was added and heated in a microwave (microwave oven, output 500 W) for several minutes. Thereafter, the same operation as in Example 1 was performed. Some of the results are summarized in Table 3.
[0035]
[Table 3]
Figure 0004284423
[0036]
From Table 3, it can be seen that if ethylene glycol is used as a solvent, a styrene derivative can be obtained in a high yield regardless of which base is used.
[0037]
(Example 4)
Add 0.5 g of various cinnamic acid derivatives to cinnamic acid derivatives and 1/10 mol of cinnamic acid dissolved in ethylene glycol for comparison, and heat for several minutes in a microwave (microwave oven, output 500 W) did. Thereafter, the same operation as in Example 1 was performed. The results are summarized in Table 4.
[0038]
In addition, the spectrum data of the obtained styrene derivative are shown below.
2-hydroxystyrene
oil; 1 H NMR (CDCl 3 ) (= 5.06 (s, 1H, OH), 5.35 (dd, 1H, J = 1.4, 11.2 Hz, = CH 2 ), 5.76 (dd, 1H, J = 1.4, 17.6 Hz , = CH), 6.78 (dd, 1H, J = 1.1, 8.1 Hz, ArH), 6.93 (dd, 1H, J = 11.2, 17.6 Hz, = CH 2 ), 6.89-6.93 (m, 1H, ArH), 7.11-7.15 (m, 1H, ArH), 7.38 (dd, 1H, J = 1.7, 7.7 Hz, ArH); 13 C NMR (CDCl 3 ) (= 115.82, 115.86, 120.9, 124.8, 127.3, 128.9, 131.5, 152.8; MS (ESI-TOF) calcd for [C 8 H 9 O] + 121.065, found 121.054 [M + H] + .
4-hydroxystyrene
solid; Mp = 70-74 ° C; 1 H NMR (DMSO-d 6 ) (= 5.05 (dd, 1H, J = 1.0, 10.9 Hz, = CH 2 ), 5.57 (dd, 1H, J = 1.0, 17.7 Hz, = CH), 6.59 (dd, 1H, J = 10.9, 17.7 Hz, = CH 2 ), 6.72 (d, 2H, J = 8.6 Hz, ArH), 7.27 (d, 2H, J = 8.6 Hz, ArH ), 9.49 (brs, 1H, OH); 13 C NMR (DMSO-d 6 ) (= 110.8, 115.5, 127.6, 128.4, 136.6, 157.6: MS (ESI-TOF) calcd for [C 8 H 9 O] + 121.065, found 121.062 [M + H] + .
[0039]
[Table 4]
Figure 0004284423
[0040]
It can be seen from Table 4 that when triethylamine is used as the base, some cinnamic acid derivatives do not produce styrene derivatives.
[0041]
(Example 5)
N-Butylamine was added as a solvent to various cinnamic acid derivatives and 0.5 g of cinnamic acid for comparison, and heated in a microwave (microwave oven, output 500 W) for several minutes. Thereafter, the same operation as in Example 1 was performed. The results are summarized in Table 5.
[0042]
The spectral data of the product is as follows.
3-hydroxystyrene
oil; 1 H NMR (CDCl 3 ) (= 4.82 (s, 1H, OH), 5.23 (dd, 1H, J = 0.7, 11.1 Hz, = CH 2 ), 5.71 (dd, 1H, J = 0.9, 17.6 Hz , = CH), 6.64 (dd, 1H, J = 10.8, 17.6 Hz, = CH 2 ), 6.71-6.73 (dd, 1H, J = 2.1, 7.6 Hz, ArH), 6.87 (t, 1H, J = 2.1 Hz, ArH), 6.97 (d, 1H, J = 7.5 Hz, ArH), 7.18 (t, 1H, J = 7.9 Hz, ArH); 13 C NMR (CDCl 3 ) (= 112.7, 114.3, 114.8, 119.1, 129.7, 136.4, 139.3, 155.7; MS (ESI-TOF) calcd for [C 8 H 8 ONa] + 143.047, found 143.068 [M + Na] + .
Cinnamoyl n-butylamide
solid; Mp = 75-78 ° C; 1 H NMR (CDCl 3 ) (= 0.92 (t, 3H, J = 7.3 Hz, CH 3 ), 1.32-1.42 (m, 2H, CH 2 ), 1.50-1.57 ( m, 2H, CH 2 ), 3.35-3.40 (m, 2H, CH 2 ), 5.72 (brs, 1H, NH), 6.37 (d, 1H, J = 15.6 Hz, = CH), 7.31-7.36 (m, 3H, ArH), 7.46-7.48 (m, 2H, ArH), 7.60 (d, 1H, J = 15.6 Hz, = CH); 13 C NMR (CDCl 3 ) (= 13.7, 20.1, 31.7, 39.5, 120.8, 127.7, 128.8, 129.6, 134.9, 140.8, 165.8; MS (ESI-TOF) calcd for [C 13 H 18 NO] + 204.139, found 204.118 [M + H] + .
2-Hydroxycinnamoyl n-butylamide
solid; Mp = 151-154 ° C; 1 H NMR (DMSO-d 6 ) (= 0.88 (t, 3H, J = 7.3 Hz, CH 3 ), 1.25-1.34 (m, 2H, CH 2 ), 1.38- 1.45 (m, 2H, CH 2 ), 3.12-3.17 (m, 2H, CH 2 ), 6.63 (d, 1H, J = 15.7 Hz, = CH), 6.78-6.88 (m, 2H, ArH), 7.13- 7.18 (m, 1H, ArH), 7.38-7.58 (m, 1H, ArH), 7.60 (d, 1H, J = 15.9 Hz, = CH), 8.01 (t, 1H, NH), 10.00 (brs, 1H, OH); 13 C NMR (DMSO-d 6 ) (= 13.7, 20.1, 31.7, 39.5, 120.8, 127.7, 128.8, 129.6, 134.9, 140.8, 165.8; MS (ESI-TOF) calcd for [C 13 H 18 NO 2 ] + 220.134, found 220.121 [M + H] + .
3-Hydroxycinnamoyl n-butylamide
solid; Mp = 104-106 ° C; 1 H NMR (DMSO-d 6 ) (= 0.88 (t, 3H, J = 7.3 Hz, CH 3 ), 1.27-1.34 (m, 2H, CH 2 ), 1.39- 1.46 (m, 2H, CH 2 ), 3.13-3.18 (m, 2H, CH 2 ), 6.52 (d, 1H, J = 15.7 Hz, = CH), 6.74-6.77 (m, 1H, ArH), 6.90- 6.96 (m, 2H, ArH), 7.16-7.20 (m, 1H, ArH), 7.29 (d, 1H, J = 15.7 Hz, = CH), 8.05 (t, 1H, NH), 9.56 (s, 1H, OH); 13 C NMR (DMSO-d 6 ) (= 13.9, 19.8, 31.4, 38.5, 113.8, 116.7, 118.8, 122.3, 130.1, 136.4, 138.7, 157.9, 165.0; MS (ESI-TOF) calcd for [C 13 H 18 NO 2 ] + 220.134, found 220.123 [M + H] + .
[0043]
[Table 5]
Figure 0004284423
[0044]
From Table 5 above, cinnamic acid derivatives or cinnamic acid, which are difficult to decarboxylate by adding the primary amine n-butylamine, will give priority to dehydration and form an amide compound unless a solvent other than a base is added. I understand that
[0045]
(Example 6)
A solution prepared by dissolving 1/10 molar ratio of triethylamine in ethylene glycol to 0.5 g of ferulic acid was added and heated in an oil bath at 100 ° C. for 20 hours. Thereafter, the same operation as in Example 1 was performed. The results are summarized in Table 6.
[0046]
[Table 6]
Figure 0004284423
[0047]
From Table 6 above, styrene derivatives can be obtained from ferulic acid even by normal heating. However, compared with heating using microwave energy, the polymerization reaction by the product due to long-time heating proceeds, so the yield may be low. Recognize.
[0048]
【The invention's effect】
Since the manufacturing method of the styrene derivative of this invention is comprised as mentioned above, it can synthesize | combine a styrene derivative from ferulic acid and 4-hydroxycinnamic acid with a high yield, energy saving, and solvent saving. In particular, ferulic acid is a cinnamic acid derivative obtained in large quantities from rice bran as a natural product, and styrene derivatives synthesized using this as a raw material are polymer materials such as biodegradable plastics, agricultural chemicals, pharmaceuticals It becomes a fine chemical raw material.
[0049]
Further, if microwave heating is used, a styrene derivative can be produced with higher yield, energy saving, and solvent saving. This can be said to be a manufacturing method that can significantly reduce the load on the environment.

Claims (4)

下記の一般式(I)、
Figure 0004284423
式I中、置換基R 1 は、メトキシ基もしくは水素のいずれかである。)
で示される桂皮酸誘導体を下記の一般式(II)
【化2】
NR2R3R4 ・・・(II)
(式II中、R2、R3、R4は、水素もしくは炭素数1から8のアルキル基を示す)
で示される脂肪族アミン、ピペリジン、ピリジン、N,N−ジメチルアミノピリジンからなる群より選ばれた塩基の存在下でマイクロ波エネルギーにより加熱する工程を備えていることを特徴とするスチレン誘導体の製造方法。
The following general formula (I),
Figure 0004284423
(In formula I, the substituent R 1 is either a methoxy group or hydrogen.)
Cinnamic acid derivatives represented by the following general formula (II)
[Chemical formula 2]
NR2R3R4 ... (II)
(In Formula II, R2, R3, and R4 represent hydrogen or an alkyl group having 1 to 8 carbon atoms)
And a step of heating with microwave energy in the presence of a base selected from the group consisting of aliphatic amine, piperidine, pyridine and N, N-dimethylaminopyridine, Method.
脂肪族アミンが、n‐ブチルアミン、n−オクチルアミン、トリエチレンアミン、n‐ヘキシルアミン、ジエチルアミンからなる群より選ばれたいずれかである請求項1に記載のスチレン誘導体の製造方法。 The method for producing a styrene derivative according to claim 1, wherein the aliphatic amine is one selected from the group consisting of n-butylamine, n-octylamine, triethyleneamine, n-hexylamine, and diethylamine . 加熱する工程を塩基とともに、エチレングリコール、ジエチレングリコール、ジメチルホルムアミドからなる群より選ばれた有機溶媒の存在下で行う請求項1または請求項2に記載のスチレン誘導体の製造方法。 The method for producing a styrene derivative according to claim 1 or 2, wherein the heating step is performed together with a base in the presence of an organic solvent selected from the group consisting of ethylene glycol, diethylene glycol, and dimethylformamide . 桂皮酸誘導体がフェルラ酸である請求項1〜請求項3のいずれかに記載のスチレン誘導体の製造方法。 The method for producing a styrene derivative according to any one of claims 1 to 3, wherein the cinnamic acid derivative is ferulic acid .
JP2003018369A 2003-01-28 2003-01-28 Method for producing styrene derivative Expired - Lifetime JP4284423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003018369A JP4284423B2 (en) 2003-01-28 2003-01-28 Method for producing styrene derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003018369A JP4284423B2 (en) 2003-01-28 2003-01-28 Method for producing styrene derivative

Publications (2)

Publication Number Publication Date
JP2004231524A JP2004231524A (en) 2004-08-19
JP4284423B2 true JP4284423B2 (en) 2009-06-24

Family

ID=32948513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003018369A Expired - Lifetime JP4284423B2 (en) 2003-01-28 2003-01-28 Method for producing styrene derivative

Country Status (1)

Country Link
JP (1) JP4284423B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7586013B2 (en) * 2004-03-26 2009-09-08 E.I. Du Pont De Nemours And Company Method for preparing hydroxystyrenes and acetylated derivatives thereof
JP4802343B2 (en) * 2005-02-22 2011-10-26 和歌山県 Method for producing styrene derivative
US7759527B2 (en) * 2006-03-28 2010-07-20 Council Of Scientific & Industrial Research Microwave induced one pot process for the preparation of arylethenes
JP4719916B2 (en) * 2007-08-30 2011-07-06 和歌山県 Process for producing hydroxystyrene derivative and acetoxystyrene derivative
JP2012062292A (en) * 2010-09-17 2012-03-29 Uha Mikakuto Co Ltd Method for producing 4-vinyl catechol polymerization compound, or pharmaceutically acceptable salt thereof
JP6008201B2 (en) * 2013-05-10 2016-10-19 東レ・ファインケミカル株式会社 Method for producing styrene derivative
JP6332925B2 (en) * 2013-08-26 2018-05-30 住友ゴム工業株式会社 Cap tread rubber composition for passenger car tire, cap tread rubber for passenger car tire, and pneumatic tire for passenger car

Also Published As

Publication number Publication date
JP2004231524A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
Wang et al. The Knoevenagel condensation of aromatic aldehydes with malononitrile or ethyl cyanoacetate in the presence of CTMAB in water
JP2006117673A (en) Cyclobutanetetracarboxylate compound and its production method
JP4719916B2 (en) Process for producing hydroxystyrene derivative and acetoxystyrene derivative
JP4284423B2 (en) Method for producing styrene derivative
KR20010053294A (en) Method for producing ortho-alkylated benzoic acid derivatives
EP1178980A1 (en) Salts of 2,2-dimethyl-1,3-dioxane intermediates and process for the preparation thereof
CN108623455B (en) Intermediate of anti-heart failure medicine
JP2010505945A (en) Method for isolating methyl-4-formylbenzoate and dimethyl terephthalate
JP2012524044A (en) Process for the preparation of 2,4,6-octatrien-1-acid and 2,4,6-octatrien-1-ol
CN109796360B (en) Preparation process of 3-amino-2-naphthoic acid compound
JP4802343B2 (en) Method for producing styrene derivative
KR20170003387A (en) Preparation method of benzoic acid amide compounds
CN111848423A (en) Preparation method of tert-butyl 3-oxocyclobutylcarbamate
JP2008222703A (en) Method for producing entacapone
WO2014146581A1 (en) Method for preparing acrylate compound
JP2008222703A6 (en) Entacapone manufacturing method
CN117003718A (en) Synthetic method of caronic anhydride compound
KR100850558B1 (en) Process for preparing useful in synthesis of atorvastatin
Robles-Marín et al. A MILD PROCEDURE FOR THE SYNTHESIS OF ALLYL AND BENZYL a-HYDROXYESTERS USING O-ALLYL (BENZYL)-N, N’-DICYCLOHEXYLISOUREA
JPH01316352A (en) Production of 3-cyano-4-arylpyrrole
JP5504080B2 (en) Method for producing vinyl ether compound
KR100466693B1 (en) A preparing process of phenoxyacetamide derivative
JP3013022B2 (en) Method for producing alkyl 3-phthalidylideneacetate
JP2006265198A (en) Method for producing quinoline derivative
CN111848430A (en) Synthesis method of 2- ([1,1' -biphenyl ] -4-yl) -2-glycine compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250