JP4282102B2 - Gas insulated switchgear - Google Patents

Gas insulated switchgear Download PDF

Info

Publication number
JP4282102B2
JP4282102B2 JP00219798A JP219798A JP4282102B2 JP 4282102 B2 JP4282102 B2 JP 4282102B2 JP 00219798 A JP00219798 A JP 00219798A JP 219798 A JP219798 A JP 219798A JP 4282102 B2 JP4282102 B2 JP 4282102B2
Authority
JP
Japan
Prior art keywords
main bus
line
main
bus
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00219798A
Other languages
Japanese (ja)
Other versions
JPH11205926A (en
Inventor
裕二 高橋
浩一 若鍋
顕仁 中島
靖憲 真田
賢一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Corp
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Plant Systems and Services Corp filed Critical Toshiba Corp
Priority to JP00219798A priority Critical patent/JP4282102B2/en
Publication of JPH11205926A publication Critical patent/JPH11205926A/en
Application granted granted Critical
Publication of JP4282102B2 publication Critical patent/JP4282102B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gas-Insulated Switchgears (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は変電所等で使用されるガス絶縁開閉装置に係り、特に主母線用接地開閉器の配置構成を改良したガス絶縁開閉装置に関する。
【0002】
【従来の技術】
周知のように、従来のガス絶縁開閉装置は、絶縁性及び消弧性に非常に優れたSF6 ガスなどを充填した容器内に、遮断器及び断路器等の機器を収納すると共に、母線等を組み合わせて構成されている。このガス絶縁開閉装置は、気中絶縁方式の開閉装置に比べて著しく小形に構成することが可能である。特に、近年は著しい地価高騰などにより、小形化が可能なガス絶縁開閉装置が変電所に多く採用されている。また、電力需要の増加に伴いガス絶縁開閉装置にも回線増設を行うことが増えている。
【0003】
このようなガス絶縁開閉装置を図9を参照して説明する。
図9はガス絶縁開閉装置が適用される二重母線方式の代表的な単線結線図である。すなわち、主母線(BUS1)31と主母線(BUS2)32は、それぞれ母線用の断路器(DS1)33と断路器(DS2)34を介して線路側機器である遮断器(CB1)35、作業用接地開閉器(ES1)36と(ES2)37、計器用変流器(CT1)38、計器用変圧器(PT1)39、線路側断路器(DS3)40、線路側接地開閉機(ES3)41、ケーブルヘッド(CH1)42を経て負荷(図示せず)に接続して1つの回線を構成しており、この回線が複数主母線(BUS1)31及び(BUS2)32に接続されている。また、主母線31,32には、それぞれ主母線用接地開閉器(BUS ES1)43,(BUS ES2)44が接続されている。
【0004】
図10は二重母線方式のガス絶縁開閉装置の平面図であり、図11は図10の1回線の側面図である。この図10及び図11において、下側の主母線(BUS2)側の主母線用接地開閉器(BUS ES2)は、主母線用接地開閉器(BUS ES1)と重なるので図示されていない。さらに、各回線間には万一の故障や保守点検の際に主母線31,32を引き出せるようにベロー45が挿入されている。なお、ベローを使用した従来例は、例えば特開昭63−220704号公報に示されている。
【0005】
ところで、主母線用断路器33,34は、主母線31,32と一体に構成した母線一体形断路器が一般に採用されている。この主母線用断路器33,34の構造を図12に示す。主母線容器57の内部には、3相の通電導体46が挿通され、着脱導体47及び分岐導体48と接続されて主母線60Aを構成している。分岐導体48は他端を絶縁スペーサ49に絶縁支持され、その先は図示しない隣接回線と接続されている。また通電導体46の他端も図示しない隣接回線と接続されている。主母線60Aと垂直方向には、線路側導体50が絶縁スペーサ51により支持され、その先は図示しない線路側機器に接続されている。また、線路側導体50の主母線側には、母線用断路器の固定電極52が配置され、可動電極53が上下方向に動作することで開閉が行われる。可動電極53は、図示しない駆動装置からの駆動力が蓋56に取り付けられた開閉機構部55,操作ロッド54を介して伝達されることにより、分岐導体48内を摺動自在に動作する。
【0006】
なお、端回線に使用される母線一体形断路器は、着脱導体47及び通電導体46がなく、主母線容器57に蓋を固着して構成される。
一方、図13は主母線用接地開閉器の構造を示している。すなわち、密閉容器66内には通電導体61と着脱導体58及び接続導体59が接続され、主母線60Bを構成している。通電導体61には固定電極62が配置され、図示しない駆動装置からの駆動力が蓋65に取り付けられた開閉機構部64を介して可動電極63に伝達され、可動電極63が上下に動作することで接地開閉器の開閉が行われる。
【0007】
ところで、主母線用接地開閉器(BUS ES1)43,(BUS ES2)44は、主母線を停止させての保守点検作業時等に、主母線を接地しておく機器であるが、回線数が多い大規模変電所では、主母線が長くなるので、大きな充電電荷を放電する必要があること、特に、海外においては主母線活線での誤投入にも耐えるよう、強制投入責務を要求されることが多いことなどから、他の作業用接地開閉器が手動操作など低速操作であるのに対し、ばね駆動などの高速操作になり、駆動装置も大形のものが必要になる。
【0008】
【発明が解決しようとする課題】
上述したように、主母線用接地開閉器を配置すると、ほぼ1回線分の主母線方向寸法が必要となるため、ガス絶縁開閉装置の主母線方向寸法(図10におけるx寸法)が長くなっていた。また、その駆動装置が大形かつ、主母線と垂直方向に動作するために、開閉装置部が主母線から出張ることにより主母線垂直方向寸法(図10におけるy寸法)も長くなっていた。従って、ガス絶縁開閉装置全体の据付面積が大きくなり、小形化を指向するガス絶縁開閉装置として問題であった。
【0009】
本発明(請求項1対応)は上記問題を解決するためになされたものであり、その目的は、主母線方向、主母線垂直方向共に寸法を縮小させることにより設置スペースの低減を可能としたガス絶縁開閉装置を提供することにある。
【0010】
本発明(請求項2乃至請求項5対応)の他の目的は、上記の如く設置スペースの低減を可能とすると共に、回線増設の容易なガス絶縁開閉装置を提供することにある。
【0015】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1は、密閉された主母線容器内に絶縁ガスを封入すると共に主母線の軸方向に複数の回線を連結する一方、前記主母線と略平行に開閉動作する主母線用接地開閉器を前記主母線の端部に設置すると共に、前記主母線用接地開閉器の固定電極及び開閉機構部を着脱できるようにすることにより、増設する回線の主母線の端部に、増設前の前記主母線より取り外した前記主母線用接地開閉器の固定電極と開閉機構部を取り付けたガス絶縁開閉装置において、前記主母線用接地開閉器の固定電極及び開閉機構部を分割容器に収納するとともに、前記主母線容器の前記分割容器が取り付けられる分岐部までの分岐長さを、他の回線の主母線容器の主母線分岐方向長さと同一寸法としたことを特徴とする。
【0016】
この請求項1によると、回線増設の際は、主母線用接地開閉器の固定接触部、開閉機構部を取り外し、増設回線の主母線を取り付けた後、増設回線の主母線の端部に取り外した主母線用接地開閉器の固定接触部、開閉機構部を取り付けるので、容易に回線増設を行うことができる。また、主母線用接地開閉器を収納した主母線容器の主母線用接地開閉器を取り付ける分岐部は、他の回線の主母線容器の主母線方向長さと同一寸法位置で分割されていることにより、回線増設後の主母線方向の寸法をさらに縮小することができる。さらに主母線容器が他回線と全く同一寸法、同一形状であるので、容器としての標準化を図ることができる。
【0021】
【発明の実施の形態】
まず、本発明の前提となる技術について図を参照して説明する。
図1は本発明の前提となる技術の断面図、図2はその平面図である。本技術が既に説明した図12の従来の母線一体形断路器と異なる構成は、通電導体46の代りにアダプターフランジ6及び主母線用接地開閉器8の固定電極4が着脱導体47に取り付けられている点と、主母線容器1内に主母線用接地開閉器8の開閉機構部2が蓋7と共に取り付けられている点であり、その他の構成は同一であるので、同一部分には同一符号を付して説明する。
【0022】
図に示すように、本発明の前提となる技術は、固定電極4の主母線軸上の対向する位置には、主母線容器1に蓋7を介して固定された開閉機構部2が配置されている。図示しない駆動装置からの駆動力は、開閉機構部2を介して可動電極3に伝達され、可動電極3が主母線と平行に動作することで主母線用接地開閉器8の開閉が行われる。
【0023】
この主母線容器1の分岐長さbは主母線用接地開閉器8を収納し、かつ着脱導体47までの導体分岐寸法aを図12におけるa寸法と同寸法になるようにする。すなわち、他の回線の主母線と全く同じ分岐導体48が使用できるように選択しているため、図12におけるb1 寸法より長くなっている。また、主母線用接地開閉器8を主母線容器1内に収納したことにより、従来主母線用接地開閉器のみで、ほぼ1回線分の寸法を要していた主母線方向寸法を縮小することができる(図2のx寸法)。上記したように主母線用接地開閉器8は、主母線と略平行に開閉動作するように配置したことにより、主母線と垂直方向に出っ張らなくなるので、主母線と垂直方向の寸法も縮小することができる(図2のy寸法)。
【0024】
図3は本発明の第実施例の断面図、図4はその平面図である。本実施例が上記前提となる技術と異なる構成は、既設部12に回線増設部11を増設するために、固定電極4,アダプターフランジ6が着脱導体47と着脱自在である点と、開閉機構部2を固定している蓋7が主母線容器1から着脱自在に構成されている点であり、その他の構成は同一であるので、増設部の同一部分には同一符号にaを付している。
【0025】
同図に示すように、本実施例によると、既設部12に設置されていた固定電極4,アダプターフランジ6を取り外し、回線増設部11の着脱導体47aに移設されている。既設部12の着脱導体47と回線増設部11の絶縁スペーサ49a間には増設導体10が接続され、既設部12の主母線と回線増設部11の主母線とを電気的に連結している。また、既設部12の主母線容器1に設置されていた開閉機構部2を固定する蓋7は回線増設部11の主母線容器9の片端に設置され、主母線容器1と回線増設部11の絶縁スペーサ49aの間にはベロー45aが配置されている。
【0026】
本実施例による回線の増設方法は以下のようにして行われる。
まず、既設部12の固定電極4及びアダプターフランジ6を取り外し、回線増設部11内に移設すると共に、既設部12の開閉機構部2を蓋7と共に回線増設部11に移設し、既設部12と回線増設部11の主母線間を増設導体10で接続する。
【0027】
図4はこのような回線増設方法にて回線増設を実施した後のガス絶縁開閉装置の平面図である。同図において、実線は既設部12、点線は回線増設部11を示している。
【0028】
以上説明したように、主母線の軸方向に複数の回線を連結したガス絶縁開閉装置において、主母線と略平行に開閉動作する主母線用接地開閉器を端回線の端部に設置すると共に、主母線用接地開閉器の固定電極、開閉機構部を着脱できる構成にすることにより、また回線増設において、主母線用接地開閉器の固定電極、開閉機構部を、既設部の端回線の主母線より取り外し、増設する回線の主母線の端部に取り付ける回線増設方法を実施することで、第1実施例と同等の設置スペースの縮小を達成できる上に、回線増設時に大規模な機器の移設作業や、複数回線の停電作業、広範囲のガス処理を行うことなく容易に短時間で回線増設を行うことができる。
【0029】
上記本発明の前提となる技術では、設置面積を縮小することができるが、主母線用接地開閉器を収納する主母線の隣に回線増設を行うことは増設回線の主母線と、既設回線の主母線を接続することが困難であるため、母線一体形断路器全体を図12の従来例の構造のものに交換する必要がある。すると、作業が大規模かつ隣接する回線の母線一体形断路器まで、絶縁ガスを抜いた作業を行わねばならず、停電回線が増え、作業時間も長時間にわたるなど将来回線増設を実施する可能性のある変電所には適用が困難であった。
【0030】
しかし、本実施例においては、容易に回線増設が実施できるようになる。主母線容器1は、図1における主母線容器すなわち既設部12の母線一体形断路器を収納している。一方、主母線容器9は回線増設により追加された回線増設部11の主母線容器であるので、この回線増設部11の既設部12と同一の部品には同一番号にaを付し、既設部12から取り外し、回線増設部11に移設した部品には図1と同一番号を付した。
【0031】
図5は本発明の第実施例の断面図、図6は平面図である。
本実施例が図1の前提となる技術と異なる構成は、一体に構成されていた主母線容器1が、分岐部16にて主母線容器13と分割容器14とに寸法b1 の位置で分割されている点であり、その他の構成は同一であるので、同一部分には同一符号を付して説明する。
【0032】
図に示すように、本実施例によると、寸法b1 の位置で分割したことにより主母線容器13は、従来例の主母線容器57と全く同じ寸法・形状、すなわち他の回線と全く同一の主母線容器を使用していることになる。また、着脱導体47には、アダプターフランジ6を介して主母線用接地開閉器15の固定電極4が設置されている。固定電極4の対向する位置には、開閉機構部2が蓋7を介して主母線容器13の端部に取り付けられた分割容器14に取り付けられている。
【0033】
以上説明したアダプターフランジ6,固定電極4,開閉機構部2,蓋7,分割容器14はいずれも着脱可能に取り付けられており、第1実施例と全く同じである。
【0034】
また、図6に示すように、主母線の軸方向に3回線が連結され、その端回線に、上述の主母線用接地開閉器15が取り付けられている。主母線用接地開閉器15を端回線に設置したために、従来のガス絶縁開閉装置に比べ、主母線方向(x寸法)、主母線と垂直方向(y寸法)共に上記各実施例と同様に縮小される。
【0035】
図7は図5のガス絶縁開閉装置に、回線増設を実施した後の、既設及び増設した主母線部分の構造を示している。
図においては、回線増設部20の既設部19と同一の部品には、同一番号にbを付し、既設部19から取り外し、回線増設部20に移設した部品には、図5と同一番号を付した。すなわち、既設部19に設置されていた固定電極4,アダプターフランジ6は取り外し、回線増設部20の着脱導体47bに移設されている。既設部19の着脱導体47と、回線増設部20の絶縁スペーサ49bの間には、増設導体17が接続され、既設部19の主母線と回線増設部20の主母線とを電気的に連結している。また、主母線容器13に取り付けていた分割容器14及び開閉機構部2,蓋7は、回線増設部20の主母線容器18の片端に設置され、既設部19の主母線容器13と回線増設部20の絶縁スペーサ49bの間にはベロー45bが配置されている。
【0036】
本実施例の回線増設方法は以下のように行われる。すなわち、既設部の固定電極4及びアダプターフランジ6を取り外し、回線増設部20内に移設すると共に、既設部19の分割容器14,開閉機構部2,蓋7を、回線増設部20に移設し、既設部19と回線増設部20の主母線間を増設導体17で接続する。
【0037】
図8は上記した回線増設方法で回線増設を実施した後のガス絶縁開閉装置の平面図である。
図において、実線は既設部19を、点線は回線増設部20を示している。図4と比較すると、主母線容器13と分割容器14に分けていて、増設時に分割容器14も移設する分だけ増設後の主母線の軸方向の寸法(図4におけるzと、図8におけるz)が縮小されている。また、図4においては、既設部12の端回線と回線増設部11の主母線容器が他の回線の主母線容器より長くなっているのに対し、図8においては、全ての回線の主母線容器が同一寸法・形状にできているので、容器製造時にも標準化され、生産効率が良くなる。誤組立(2種類の容器をとり違える)の防止などの効果がある。また外見上も整然と配置される。
【0038】
以上説明したように、主母線用接地開閉器を収納した主母線容器の主母線用接地開閉器を取り付ける分岐部を、他の回線の主母線容器と同一寸法の位置で分割することにより、また回線増設において、主母線用接地開閉器の固定電極、開閉機構部及び分割容器を既設部の端回線の主母線より取り外し、増設する回線の主母線の端部に取り付ける回線増設方法を実施することで、上記各実施例と同等の設置スペースの縮小を達成でき、容易に回線増設を行えることに加え、回線増設後の主母線軸方向の寸法を縮小することができ、主母線容器の標準化を達成することができる。
【0039】
【発明の効果】
以上説明したように、本発明によれば、主母線の軸方向、垂直方向共に寸法が縮小されて装置全体が小形化され、設置面積、建屋容積を大幅に縮小化することが可能になると共に、回線増設が容易に短時間で実施でき、停電回線の縮小、停電時間を短縮でき、増設後の寸法も縮小可能で、機器の標準化が図れるガス絶縁開閉装置及び容易に回線増設可能なガス絶縁開閉装置を提供できる。
【図面の簡単な説明】
【図1】 本発明の前提となる技術の断面図。
【図2】 図1の平面図。
【図3】 本発明の第実施例の断面図。
【図4】 図3の平面図。
【図5】 本発明の第実施例の断面図。
【図6】 図5の平面図。
【図7】 図5において、回線増設後のガス絶縁開閉装置の断面図。
【図8】 図7の平面図。
【図9】 代表的な二重母線方式の変電所の単線結線図。
【図10】 従来のガス絶縁開閉装置の平面図。
【図11】 図10の側面図。
【図12】 従来の母線一体形断路器の断面図。
【図13】 従来の主母線用接地開閉器の断面図。
【符号の説明】
1,9,13,18,57,66…主母線容器、2,55,55a,55b,64…開閉機構部、3,53,53a,53b,63…可動電極、4,52,62…固定電極、6…アダプターフランジ、7,56,56a,56b,65…蓋、8,15,43,44…主母線用接地開閉器、10,17…増設導体、11,20…回線増設部、12,19…既設部、14…分割容器、16…分岐部、31,32,60A,60B…主母線、33,34…母線用断路器、35…遮断器、36,37…作業用接地開閉器、38…計器用変流器、39…計器用変圧器、40…線路側断路器、41…線路側接地開閉器、42…ケーブルヘッド、45,45a,45b…ベロー、46,61…通電導体、47,47a,47b,58…着脱導体、48,48a,48b…分岐導体、49,49a,49b,51…絶縁スペーサ、50…線路側導体、54,54a,54b…操作ロッド、59…接続導体。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas-insulated switchgear used in a substation or the like, and more particularly to a gas-insulated switchgear having an improved arrangement configuration of a main bus grounding switch.
[0002]
[Prior art]
As is well known, a conventional gas insulated switchgear accommodates devices such as a circuit breaker and a disconnect switch in a container filled with SF 6 gas and the like having excellent insulation and arc extinguishing properties, as well as busbars, etc. It is configured by combining. This gas-insulated switchgear can be remarkably miniaturized as compared to an air-insulated switchgear. Particularly, in recent years, gas insulated switchgears that can be miniaturized have been widely used in substations due to a remarkable rise in land prices. In addition, as the demand for power increases, the number of lines for gas-insulated switchgear is increasing.
[0003]
Such a gas insulated switchgear will be described with reference to FIG.
FIG. 9 is a typical single line connection diagram of a double bus system to which the gas insulated switchgear is applied. That is, the main bus (BUS1) 31 and the main bus (BUS2) 32 are a circuit breaker (CB1) 35, which is a line side device, via a bus disconnector (DS1) 33 and a disconnector (DS2) 34, respectively. Earthing switches (ES1) 36 and (ES2) 37, current transformers (CT1) 38, instrument transformers (PT1) 39, line-side disconnectors (DS3) 40, line-side earthing switches (ES3) 41, is connected to a load (not shown) via a cable head (CH1) 42 to constitute one line, and this line is connected to a plurality of main buses (BUS1) 31 and (BUS2) 32. The main buses 31 and 32 are connected to main bus ground switches (BUS ES1) 43 and (BUS ES2) 44, respectively.
[0004]
FIG. 10 is a plan view of a double-bus type gas insulated switchgear, and FIG. 11 is a side view of one line of FIG. 10 and 11, the main bus ground switch (BUS ES2) on the lower main bus (BUS2) side is not shown because it overlaps with the main bus ground switch (BUS ES1). Further, bellows 45 are inserted between the lines so that the main buses 31 and 32 can be pulled out in the event of a failure or maintenance. A conventional example using bellows is disclosed in, for example, Japanese Patent Application Laid-Open No. 63-220704.
[0005]
By the way, as the main bus disconnecting devices 33 and 34, a bus integrated disconnector configured integrally with the main buses 31 and 32 is generally employed. The structure of the main bus disconnectors 33 and 34 is shown in FIG. A three-phase conducting conductor 46 is inserted into the main bus container 57 and connected to the detachable conductor 47 and the branch conductor 48 to constitute a main bus 60A. The other end of the branch conductor 48 is insulated and supported by an insulating spacer 49, and the other end is connected to an adjacent line (not shown). Further, the other end of the conducting conductor 46 is also connected to an adjacent line (not shown). In the direction perpendicular to the main bus 60A, a line-side conductor 50 is supported by an insulating spacer 51, and the other end is connected to a line-side device (not shown). Moreover, the fixed electrode 52 of the disconnector for busbars is arrange | positioned at the main bus line side of the line side conductor 50, and opening / closing is performed because the movable electrode 53 operate | moves to an up-down direction. The movable electrode 53 is slidably operated in the branch conductor 48 when a driving force from a driving device (not shown) is transmitted through the opening / closing mechanism 55 and the operation rod 54 attached to the lid 56.
[0006]
The bus-integrated disconnector used for the end line does not have the detachable conductor 47 and the current-carrying conductor 46, and is configured by fixing a lid to the main bus container 57.
On the other hand, FIG. 13 shows the structure of the main bus grounding switch. That is, the current-carrying conductor 61, the detachable conductor 58, and the connection conductor 59 are connected in the sealed container 66 to constitute the main bus bar 60B. A fixed electrode 62 is disposed on the current-carrying conductor 61, and driving force from a driving device (not shown) is transmitted to the movable electrode 63 via an opening / closing mechanism 64 attached to the lid 65, so that the movable electrode 63 moves up and down. The earthing switch is opened and closed at.
[0007]
By the way, the main bus grounding switches (BUS ES1) 43 and (BUS ES2) 44 are devices for grounding the main bus at the time of maintenance inspection with the main bus stopped. In many large substations, the main bus becomes long, so it is necessary to discharge a large charge. In particular, overseas, forced duty duty is required to withstand accidental power on the main bus. In many cases, other work grounding switches are operated at a low speed such as manual operation, whereas they are operated at a high speed such as a spring drive, and a large driving device is required.
[0008]
[Problems to be solved by the invention]
As described above, when the main bus grounding switch is arranged, the main bus direction dimension for one line is required, so the main bus direction dimension (x dimension in FIG. 10) of the gas insulated switchgear is long. It was. Further, since the drive device is large and operates in the direction perpendicular to the main bus, the vertical dimension of the main bus (y dimension in FIG. 10) is increased due to the travel of the switchgear from the main bus. Therefore, the installation area of the gas insulated switchgear as a whole has been increased, which has been a problem as a gas insulated switchgear aimed at downsizing.
[0009]
The present invention (corresponding to claim 1) was made to solve the above problem, and its purpose is to reduce the installation space by reducing the size in both the main bus direction and the main bus vertical direction. An object of the present invention is to provide an insulated switchgear.
[0010]
Another object of the present invention (corresponding to claims 2 to 5) is to provide a gas-insulated switchgear that can reduce the installation space as described above and can be easily expanded.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, an insulating gas is sealed in a sealed main bus container, and a plurality of lines are connected in the axial direction of the main bus while being substantially parallel to the main bus. The main bus grounding switch that opens and closes to the main bus is installed at the end of the main bus, and the fixed electrode and the switching mechanism of the main bus grounding switch can be attached and detached, so that In a gas-insulated switchgear in which a fixed electrode and a switching mechanism of the main bus grounding switch removed from the main bus before expansion are attached to the end of the bus, the fixed electrode and switching of the main bus grounding switch as well as housing the mechanism to split the vessel, the branch length of up to the divided container that is attached bifurcation of the main bus container, and a main line branch direction length and the same dimension of the main bus line containers other lines It is characterized by.
[0016]
According to this claim 1, when expanding the line, remove the fixed contact part and the switching mechanism of the main bus grounding switch, attach the main line of the expansion line, and then remove it from the end of the main line of the expansion line In addition, since the fixed contact part and the switching mechanism part of the main bus grounding switch are attached, the line can be easily expanded. Also, the branch part to which the main bus grounding switch of the main bus container containing the main bus grounding switch is attached is divided at the same size position as the main bus direction length of the main bus container of other lines. The dimensions in the main bus direction after the line expansion can be further reduced. Further, since the main bus container has exactly the same dimensions and shape as other lines, standardization as a container can be achieved.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
First , the technology which is the premise of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view of a technology that is a premise of the present invention, and FIG. 2 is a plan view thereof. The configuration different from the conventional bus-integrated disconnector of FIG. 12 which has already been described in this technology is that the adapter flange 6 and the fixed electrode 4 of the main bus grounding switch 8 are attached to the detachable conductor 47 instead of the conducting conductor 46. And the open / close mechanism 2 of the main bus grounding switch 8 together with the lid 7 in the main bus container 1, and the other components are the same. A description will be given.
[0022]
As shown in the figure, the technology that is the premise of the present invention is that an opening / closing mechanism 2 fixed to a main bus container 1 via a lid 7 is disposed at an opposing position on the main bus axis of the fixed electrode 4. ing. A driving force from a driving device (not shown) is transmitted to the movable electrode 3 via the opening / closing mechanism 2, and the movable electrode 3 operates in parallel with the main bus line, so that the main bus grounding switch 8 is opened and closed.
[0023]
The branch length b of the main bus container 1 accommodates the main bus grounding switch 8 and the conductor branch dimension a up to the detachable conductor 47 is the same as the dimension a in FIG. That is, since it is selected so that the same branch conductor 48 as the main bus of other lines can be used, it is longer than the dimension b 1 in FIG. Further, by storing the main bus grounding switch 8 in the main bus container 1, the size of the main bus in the direction of the main bus, which has been required for the size of only one line, can be reduced by using only the main bus grounding switch. (X dimension in FIG. 2). As described above, the main bus grounding switch 8 is arranged so as to open and close substantially parallel to the main bus, so that it does not protrude in the direction perpendicular to the main bus, so that the size in the direction perpendicular to the main bus can also be reduced. (Y dimension in FIG. 2).
[0024]
3 is a sectional view of the first embodiment of the present invention, and FIG. 4 is a plan view thereof. This embodiment is different from the presupposed technology in that the fixed electrode 4 and the adapter flange 6 are detachable from the detachable conductor 47 in order to add the line extension part 11 to the existing part 12, and the opening / closing mechanism part 2 is configured such that the lid 7 is detachable from the main busbar container 1 and the other configurations are the same. .
[0025]
As shown in the figure, according to the present embodiment, the fixed electrode 4 and the adapter flange 6 installed in the existing part 12 are removed and transferred to the detachable conductor 47a of the circuit extension part 11. The extension conductor 10 is connected between the detachable conductor 47 of the existing part 12 and the insulating spacer 49a of the line extension part 11, and electrically connects the main bus of the existing part 12 and the main bus of the line extension part 11. Further, a lid 7 for fixing the opening / closing mechanism 2 installed in the main bus container 1 of the existing section 12 is installed at one end of the main bus container 9 of the circuit extension section 11, and the main bus container 1 and the circuit extension section 11 are connected. A bellows 45a is disposed between the insulating spacers 49a.
[0026]
The line extension method according to this embodiment is performed as follows.
First, the fixed electrode 4 and the adapter flange 6 of the existing part 12 are removed and transferred to the line extension part 11, and the opening / closing mechanism part 2 of the existing part 12 is transferred to the line extension part 11 together with the lid 7. The main buses of the line extension unit 11 are connected by the extension conductor 10.
[0027]
FIG. 4 is a plan view of the gas-insulated switchgear after the line is expanded by such a line expansion method. In the figure, the solid line indicates the existing part 12 and the dotted line indicates the line extension part 11.
[0028]
As described above, in the gas-insulated switchgear in which a plurality of lines are connected in the axial direction of the main bus, the main bus grounding switch that opens and closes in parallel with the main bus is installed at the end of the end line, The fixed electrode and switching mechanism of the main bus grounding switch can be attached and detached, and in addition to the line expansion, the fixed electrode and switching mechanism of the main bus grounding switch can be connected to the main bus of the existing end circuit. The installation space can be reduced to the same extent as in the first embodiment by implementing the method of adding a line that is removed and attached to the end of the main bus of the line to be added. In addition, it is possible to easily add a line in a short time without performing a power outage work for a plurality of lines or performing a wide range of gas treatment.
[0029]
In the technology that is the premise of the present invention , the installation area can be reduced, but it is necessary to add a line next to the main bus that houses the main bus grounding switch. Since it is difficult to connect the main busbar, it is necessary to replace the entire busbar-integrated disconnector with the conventional structure shown in FIG. Then, it is necessary to carry out the work that drains the insulating gas to the large-scale and adjacent line-integrated disconnector of the adjacent line, and there is a possibility of expanding the line in the future, such as increasing the number of blackout lines and extending the work time. It was difficult to apply to some substations.
[0030]
However, in this embodiment, the line can be easily added. The main bus container 1 houses the main bus container in FIG. 1, that is, the bus bar integrated disconnector of the existing portion 12. On the other hand, since the main bus container 9 is a main bus container of the line expansion unit 11 added by the line expansion, the same parts as those of the existing unit 12 of the line expansion unit 11 are denoted by the same reference numerals, and the existing unit Parts removed from 12 and relocated to the line expansion unit 11 are assigned the same numbers as in FIG.
[0031]
FIG. 5 is a sectional view of a second embodiment of the present invention, and FIG. 6 is a plan view.
The present embodiment is different from the premise of FIG. 1 in that the integrally formed main bus container 1 is divided into the main bus container 13 and the split container 14 at the position of the dimension b 1 at the branching portion 16. Since the other configurations are the same, the same portions are denoted by the same reference numerals for description.
[0032]
As shown in the figure, according to this embodiment, the main bus container 13 is divided at the position of the dimension b 1 so that the main bus container 13 is exactly the same size and shape as the main bus container 57 of the conventional example, that is, the same as other lines. The main bus container is used. In addition, the fixed electrode 4 of the main bus grounding switch 15 is installed on the detachable conductor 47 via the adapter flange 6. At the position facing the fixed electrode 4, the opening / closing mechanism 2 is attached to a divided container 14 attached to the end of the main bus container 13 via the lid 7.
[0033]
The adapter flange 6, fixed electrode 4, opening / closing mechanism 2, lid 7, and divided container 14 described above are all detachably attached and are completely the same as in the first embodiment.
[0034]
Further, as shown in FIG. 6, three lines are connected in the axial direction of the main bus, and the main bus grounding switch 15 is attached to the end line. Since the main bus grounding switch 15 is installed on the end line, both the main bus direction (x dimension) and the main bus vertical direction (y dimension) are reduced in the same manner as in the above embodiments, compared to the conventional gas insulated switchgear. Is done.
[0035]
FIG. 7 shows the structure of the existing main bus portion and the expanded main bus portion after the line expansion is performed on the gas insulated switchgear of FIG.
In the figure, parts that are the same as the existing part 19 of the line expansion unit 20 are given the same number b, and parts that have been removed from the existing part 19 and moved to the line expansion part 20 are assigned the same numbers as in FIG. It was attached. That is, the fixed electrode 4 and the adapter flange 6 installed in the existing part 19 are removed and transferred to the detachable conductor 47 b of the line extension part 20. The extension conductor 17 is connected between the detachable conductor 47 of the existing part 19 and the insulating spacer 49b of the line extension part 20, and electrically connects the main bus of the existing part 19 and the main bus of the line extension part 20. ing. Further, the divided container 14 and the opening / closing mechanism section 2 and the lid 7 attached to the main bus container 13 are installed at one end of the main bus container 18 of the line expansion section 20, and the main bus container 13 and the circuit expansion section of the existing section 19 are installed. Bellows 45b are arranged between the 20 insulating spacers 49b.
[0036]
The line expansion method of this embodiment is performed as follows. That is, the fixed electrode 4 and the adapter flange 6 of the existing part are removed and transferred to the line extension part 20, and the split container 14, the opening / closing mechanism part 2 and the lid 7 of the existing part 19 are transferred to the line extension part 20, The main conductors of the existing part 19 and the line extension part 20 are connected by an extension conductor 17.
[0037]
FIG. 8 is a plan view of the gas-insulated switchgear after the line is expanded by the above-described line expansion method.
In the figure, the solid line indicates the existing part 19 and the dotted line indicates the line extension part 20. Compared with FIG. 4, the main bus container 13 and the divided container 14 are separated, and the dimension of the main bus bar in the axial direction after the expansion (z in FIG. 4 and z in FIG. ) Has been reduced. In FIG. 4, the end line of the existing section 12 and the main bus container of the line extension section 11 are longer than the main bus containers of other lines, whereas in FIG. Since the containers have the same dimensions and shape, they are standardized when the containers are manufactured, and the production efficiency is improved. There is an effect such as prevention of misassembly (mixing two kinds of containers). It is also arranged neatly in appearance.
[0038]
As described above, by dividing the branch portion for attaching the main bus grounding switch of the main bus container containing the main bus grounding switch at the same size position as the main bus container of other lines, In line expansion, remove the fixed electrode, switching mechanism, and dividing container of the main bus grounding switch from the main bus of the end line of the existing section, and implement the line expansion method that attaches to the end of the main bus of the additional line In addition to being able to achieve a reduction in installation space equivalent to each of the above embodiments, it is possible to easily increase the number of lines, as well as to reduce the dimensions in the main bus axis direction after the line expansion, and standardize the main bus container Can be achieved.
[0039]
【The invention's effect】
As described above, according to this onset bright, the axial direction of the main bus, the entire apparatus is reduced dimensions in the vertical directions is compact, it is possible to shrink significantly footprint, the building volume At the same time, line expansion can be easily performed in a short time, the power outage line can be reduced, the power outage time can be reduced, the dimensions after expansion can be reduced, and the gas insulation switchgear that can standardize equipment and gas that can be easily added to the line An insulated switchgear can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a technology that is a premise of the present invention.
FIG. 2 is a plan view of FIG.
FIG. 3 is a sectional view of the first embodiment of the present invention.
4 is a plan view of FIG. 3. FIG.
FIG. 5 is a cross-sectional view of a second embodiment of the present invention.
6 is a plan view of FIG. 5. FIG.
FIG. 7 is a cross-sectional view of the gas insulated switchgear after the addition of a line in FIG.
FIG. 8 is a plan view of FIG.
FIG. 9 is a single line connection diagram of a typical sub-bus type substation.
FIG. 10 is a plan view of a conventional gas insulated switchgear.
FIG. 11 is a side view of FIG.
FIG. 12 is a cross-sectional view of a conventional bus bar integrated disconnector.
FIG. 13 is a cross-sectional view of a conventional main bus grounding switch.
[Explanation of symbols]
1,9,13,18,57,66 ... main busbar container, 2,55,55a, 55b, 64 ... opening / closing mechanism, 3,53,53a, 53b, 63 ... movable electrode, 4,52,62 ... fixed Electrode, 6 ... Adapter flange, 7, 56, 56a, 56b, 65 ... Lid, 8, 15, 43, 44 ... Main bus ground switch, 10, 17 ... Additional conductors, 11, 20 ... Line expansion unit, 12 , 19 ... Existing part, 14 ... Dividing container, 16 ... Branch part, 31, 32, 60A, 60B ... Main bus bar, 33, 34 ... Disconnector for bus bar, 35 ... Circuit breaker, 36, 37 ... Ground switch for work 38 ... instrument current transformer, 39 ... instrument transformer, 40 ... line side disconnector, 41 ... line side ground switch, 42 ... cable head, 45, 45a, 45b ... bellows, 46, 61 ... conducting conductor , 47, 47a, 47b, 58 ... Detachable conductors, 48, 48 , 48b ... branch conductor, 49, 49a, 49b, 51 ... insulating spacers, 50 ... line-side conductors, 54, 54a, 54b ... operating rod, 59 ... connection conductor.

Claims (1)

密閉された主母線容器内に絶縁ガスを封入すると共に主母線の軸方向に複数の回線を連結する一方、
前記主母線と略平行に開閉動作する主母線用接地開閉器を前記主母線の端部に設置すると共に、前記主母線用接地開閉器の固定電極及び開閉機構部を着脱できるようにすることにより、増設する回線の主母線の端部に、増設前の前記主母線より取り外した前記主母線用接地開閉器の固定電極と開閉機構部を取り付けたガス絶縁開閉装置において、
前記主母線用接地開閉器の固定電極及び開閉機構部を分割容器に収納するとともに、
前記主母線容器の前記分割容器が取り付けられる分岐部までの分岐長さを、他の回線の主母線容器の主母線分岐方向長さと同一寸法としたことを特徴とするガス絶縁開閉装置。
While sealing the insulating gas in the sealed main bus container and connecting a plurality of lines in the axial direction of the main bus,
By installing a main bus grounding switch that opens and closes substantially parallel to the main busbar at the end of the main busbar, and by making it possible to attach and detach the fixed electrode and the switching mechanism of the main bus grounding switch In the gas insulated switchgear in which the fixed electrode and the switching mechanism of the ground bus switch for the main bus removed from the main bus before the expansion are attached to the end of the main bus of the line to be expanded ,
While storing the stationary electrode and the switching mechanism of the main bus grounding switch in a split container,
Said main the divided vessel branch length up to the branch portion that is mounted in the bus container, the gas insulated switchgear is characterized in that the main line branch direction length and the same dimension of the main bus line containers other lines.
JP00219798A 1998-01-08 1998-01-08 Gas insulated switchgear Expired - Fee Related JP4282102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00219798A JP4282102B2 (en) 1998-01-08 1998-01-08 Gas insulated switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00219798A JP4282102B2 (en) 1998-01-08 1998-01-08 Gas insulated switchgear

Publications (2)

Publication Number Publication Date
JPH11205926A JPH11205926A (en) 1999-07-30
JP4282102B2 true JP4282102B2 (en) 2009-06-17

Family

ID=11522644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00219798A Expired - Fee Related JP4282102B2 (en) 1998-01-08 1998-01-08 Gas insulated switchgear

Country Status (1)

Country Link
JP (1) JP4282102B2 (en)

Also Published As

Publication number Publication date
JPH11205926A (en) 1999-07-30

Similar Documents

Publication Publication Date Title
JP2782474B2 (en) Load switching equipment with three-position switch
KR20070008571A (en) Encapsulated, gas-insulated switching installation
KR20110016833A (en) Switch gear and operating method thereof
WO2000022708A1 (en) Gas insulated switchgear
JPS62193024A (en) High voltage metal-cladded electric equipment
Bolin et al. Gas insulated substation GIS
KR101097616B1 (en) Multipurpose case module of gas insulated switchgear
JP4282102B2 (en) Gas insulated switchgear
US20060138088A1 (en) Disconnecting switch assembly
JP2000253520A (en) Gas-insulated switch device
JP2007104752A (en) Gas-insulated switchgear
JP3507689B2 (en) Gas insulated electrical equipment
JPH11155209A (en) Gas-insulated cubicle
JP2736110B2 (en) Gas insulated switchgear
JP2672666B2 (en) Gas insulated switchgear
JPH0884411A (en) Gas-insulated switch device
JP4397671B2 (en) Gas insulated switchgear
JP3393509B2 (en) Main circuit switchgear
JP2000253519A (en) Gas-insulated switch device
JP2596153Y2 (en) Gas insulated switchgear
JPH03159506A (en) Gas insulated switchgear
JP2000041313A (en) Gas insulated switchgear and method for exchanging circuit breaker
JPH11178133A (en) Gas isolation switch
JPH11164426A (en) Gas insulation switching device
JPS60219905A (en) Gas insulated switching device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050107

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050218

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050824

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees