JP4281051B2 - Punching machine and method of manufacturing roller with shaft - Google Patents

Punching machine and method of manufacturing roller with shaft Download PDF

Info

Publication number
JP4281051B2
JP4281051B2 JP2003124392A JP2003124392A JP4281051B2 JP 4281051 B2 JP4281051 B2 JP 4281051B2 JP 2003124392 A JP2003124392 A JP 2003124392A JP 2003124392 A JP2003124392 A JP 2003124392A JP 4281051 B2 JP4281051 B2 JP 4281051B2
Authority
JP
Japan
Prior art keywords
molded body
support
hole
drilling
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003124392A
Other languages
Japanese (ja)
Other versions
JP2004322296A (en
Inventor
裕充 松田
卓也 桐山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Corp filed Critical Inoac Corp
Priority to JP2003124392A priority Critical patent/JP4281051B2/en
Publication of JP2004322296A publication Critical patent/JP2004322296A/en
Application granted granted Critical
Publication of JP4281051B2 publication Critical patent/JP4281051B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、適宜の合成樹脂を材質とする所要形状の成形体に、有底孔または貫通孔を穿設する穿孔機およびこの穿孔機を用いたシャフト付きローラの製造方法に関するものである。
【0002】
【従来の技術】
ファクシミリ機やコピー機等の種々OA機器では、給紙部から排紙部に至る送紙ラインに、用紙を移送するためのローラが配設されている。このローラは、例えばウレタンフォーム等の適宜弾力性を有する合成樹脂を材質とするローラ本体と、該ローラ本体の長手方向における中心軸線に沿って貫通装着されたシャフト部材とから構成となっており、このシャフト部材の両端部分を所定位置に支持させることで回転自在に配設されるようになっている。
【0003】
ここで、ローラ本体およびシャフト部材とから構成される前記ローラは、その製造方法別に区分すると次の▲1▼〜▲3▼に大別される。
▲1▼別途予備成形した前記シャフト部材を成形型にセットしたもとで前記ローラ本体を成形することで、該ローラ本体にその中心軸線に沿ってシャフト部材を貫通装着するようにした所謂インサート成形に基づいて製造されるもの。
▲2▼ローラ本体をなす中実円柱状の成形体を成形した後に、該成形体の中心軸線に沿って長手方向へ貫通孔を穿設し、この貫通孔に別途予備成形した前記シャフト部材を貫通装着して製造されるもの。
▲3▼予備成形したシャフト部材を、成形型により貫通孔を同時に成形した中空円筒状の成形体に貫通装着して製造されるもの。
このうち前記▲2▼の製造方法に関しては、中実円柱体状の前記成形体における長手方向の中心軸線に沿って前記貫通孔を穿設する穿孔方法として、(a)円筒片刃による突切り加工、(b)スクリュー刃によるドリル加工、等が採用されていた。これに関連する技術は、例えば特許文献1等に開示されている。
【0004】
【特許文献1】
特開平06−218656号公報
【0005】
【発明が解決しようとする課題】
ところで、前述した(a)および(b)の各穿孔方法を実施する各々の穿孔機では、何れも次のような課題を内在していた。先ず、(a)の穿孔方法を実施する穿孔機では、比較的柔らかい合成樹脂から形成された成形体に対する貫通孔の穿設には適するものの、ある程度硬い合成樹脂から形成された成形体に対する貫通孔の穿設は不可能である。具体的には、アスカーCスケールで20度以下の合成樹脂から形成された成形体にしか適用できず、加工適用範囲が柔らかい材質のものに限定されてしまう課題があった。一方、(b)の穿孔方法を実施する穿孔機では、比較的硬い合成樹脂から形成された成形体にも対応し得るものの、高速回転する前記スクリュー刃が穿孔時に合成樹脂と接触するため摩耗するようになり、通常では概ね100回程度の穿孔加工毎に交換する必要があり、工具交換作業に伴う加工効率の低下および加工コストが嵩む等の課題があった。殊に、前述した(a)および(b)の各穿孔方法を実施する穿孔機では、穿孔長=300〜400mm程度の長い貫通孔を穿孔する作業や、孔径=5〜7mm程度の細い貫通孔を穿孔する作業には、穿設された貫通孔や有底孔が湾曲したり孔径が一定とならない等の共通した課題を有していた。
【0006】
そこで、前述した各穿孔方法に内在した課題を解決するものとして、熱溶融加工方法を採用した穿孔機、すなわち電熱ヒーターまたは熱媒体循環回路等を装備して、これにより穿孔ロッドの先端を合成樹脂の溶融温度以上に加熱したもとで、前記成形体に所要長および所要径の貫通孔または有底孔等を穿設する穿孔機が提案されている。しかしながら、このような構成の穿孔機では、前述した細径の貫通孔等を穿孔するための細長小径の穿孔ロッドの場合に、熱容量が小さいことにより充分な熱の供給が困難であり、該穿孔ロッドの先端を成形体の溶融温度以上に保持することができず、前述した長尺または細径の貫通孔または有底孔の穿孔作業に対応できない課題があった。
【0007】
【発明の目的】
本発明は、前述した課題を好適に解決するべく提案されたもので、誘導発熱原理に基づき、非接触状態にある誘導コイルにより穿孔部材を誘導発熱させ、所定温度に加熱した該穿孔部材を押圧接触させて貫通孔または有底孔を穿設するようにすることで、加工適用範囲の拡大、加工効率の向上、加工コストの低減等を可能とする穿孔機およびこの穿孔機を用いたシャフト付きローラの製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
前記課題を解決し、所期の目的を達成するため本発明は、
成樹脂を材質とする成形体に、貫通孔または有底孔を穿設する穿孔機であって、
前記成形体をセット保持可能な第1支持体と、
前記第1支持体と相互に近接および離間可能に設置され、前記成形体に前記貫通孔または有底孔を穿設する穿孔装置を備える第2支持体とからなり、
前記穿孔装置は、
前記両支持体の近接・離間方向に整列して該第2支持体に配設され、ロッド部材および該ロッド部材の先端に取り付けられた磁性体を材質とする穿孔部材を備える穿孔ロッドと、
前記穿孔部材を囲繞する位置に設置されて前記成形体の通過を許容し、該穿孔部材を該成形体の軟化温度以上に誘導発熱させる誘導コイルとからなり、
前記穿孔部材を誘導発熱させて前記軟化温度以上の温度に保持したもとで、前記成形体をセットした前記第1支持体および前記第2支持体を相互に近接移動させ、該穿孔部材を該成形体に押圧接触させることで前記貫通孔または有底孔を穿設し得るよう構成し
前記ロッド部材は、前記成形体に前記貫通孔または有底孔を穿設した後に、前記第2支持体から取外して該成形体にそのまま装着可能となっていることを特徴とする。
前記課題を解決し、所期の目的を達成するため本願の別の発明は、
合成樹脂を材質とする成形体に、貫通孔または有底孔を穿設してシャフト付きローラを製造する方法であって、
第1支持体に前記成形体をセット保持し、
前記第1支持体と相互に近接および離間可能に設置された第2支持体に設けられて、磁性体を材質とする穿孔部材を先端に取り付けたロッド部材を備える穿孔ロッドを、第1支持体に対して両支持体の近接・離間方向に整列し、
前記穿孔部材を囲繞する位置に設置されて前記成形体の通過を許容する誘導コイルによって該穿孔部材を誘導発熱させて、該穿孔部材を該成形体の軟化温度以上の温度に保持し、
前記成形体をセットした前記第1支持体および前記第2支持体を相互に近接移動させ、該穿孔部材を該成形体に押圧接触させることで前記貫通孔または有底孔を穿設し、
前記成形体に前記貫通孔または有底孔を穿設した後に、前記ロッド部材を前記第2支持体から取外して該成形体にそのまま装着するようにしたことを特徴とする。
【0009】
【発明の実施の形態】
次に、本発明に係る穿孔機およびこの穿孔機を用いたシャフト付きローラの製造方法につき、好適な実施例を挙げて、添付図面を参照しながら以下説明する。
【0010】
図1は、本発明の好適実施例に係る穿孔機の全体構成を概略的に示した斜視図である。本実施例の穿孔機10は、適宜の合成樹脂を材質とする所要形状の成形体に貫通孔または有底孔を穿設する基本構成において、図9(a)に例示するような中実円柱体状に発泡成形されたウレタンフォーム製の成形体Uに、その長手方向における中心軸線に沿って貫通孔S1を穿設することで中空円筒体U1(図9(b))を成形したり、或いは該成形体Uの長手方向における中心軸線に沿って所要長の有底孔S2を穿設することで有底中空円筒体U2(図9(c))を成形し得る構造としたものである。すなわち、実施例の穿孔機10により成形される前記中空円筒体U1や有底中空円筒体U2は、例えば前述したローラを構成するローラ本体等として実施可能なものである。
【0011】
具体的に本実施例の穿孔機10は、中実円柱体状の前記成形体Uをセット保持可能な第1支持体12と、この第1支持体12と相互に近接および離間可能に設置され、該成形体Uに対してその長手方向の中心軸線に沿って前記貫通孔S1または有底孔S2を穿設する穿孔装置40を備えた第2支持体14とから構成されている。これら第1支持体12および第2支持体14は、図示しない支持フレーム等に対して各々直列に配設され、該第2支持体14は該フレームに固定される一方、該第1支持体12は第2支持体14に対して近接移動および離間移動が可能に配設された構成となっている。
【0012】
第1支持体12は、図2および図3に例示するように、長手方向に分離可能で適宜の組付固定手段により相互に組付け可能な第1半体20Aおよび第2半体20Bからなり、前記成形体Uを収容可能な収容部22を内部に画成した筒状保持部材20と、フレーム等に固定された油圧シリンダ等の流体圧アクチュエータ16におけるロッド18の先端に連結される支持部材24とから構成されている。そして筒状保持部材20は、前記第1半体20Aおよび第2半体20Bを端部接合して筒体状に組立てた後、支持部材24に突設されたボス状の凸部26を第1端部20aの開口部から内部へ嵌入させることで、開口部21が形成された第2端部20bの側を前記第2支持体14へ指向させた水平状態に支持されている。これにより第1支持体12は、前記流体圧アクチュエータ16を前記ロッド18が前進するよう作動制御すると、その中心軸線に沿って前記第2支持体14へ近接移動して、後述すると共に図4(a),(b)に例示するように、第2支持体14に設けた筒状ガイド部材36内へ摺接的に挿入される。また、前記流体圧アクチュエータ16を前記ロッド18が後退するよう作動制御すると、その中心軸線に沿って前記第2支持体14から離間移動して、前記筒状ガイド部材36から抜出するようになる。
【0013】
前記筒状保持部材20を構成する前記第1半体20Aおよび第2半体20Bは、例えばFRP(ガラス繊維またはカーボン繊維強化エポキシ樹脂、ポリエステル樹脂)等を材質とした非磁性体から形成されている。そして、組立てられた筒状保持部材20の内径寸法E1は、前記成形体Uの外径寸法Dより0.2mm程度大きく設定してある(E1=D+0.2mm)。これにより、前記収容部22内へ収容して保持された前記成形体Uは、前記第1半体20Aおよび第2半体20Bにより上下方向から保持され、部分的な変形や全体的な撓曲変形等が防止された真直状態で適切に保持される。前記支持部材24の凸部26には、第1支持体12が第2支持体14に向けて最前進した際に(図4,図7)、前記穿孔装置40における穿孔部材44(後述)の進入を許容する凹部28が形成されている。また筒状保持部材20は、前述したように非磁性体であるため、後述する誘導コイル50に発生した磁束内を通過するに際して誘導電流が生起されることがなく、従って誘導発熱することがない。
【0014】
第2支持体14は、図2および図3に例示したように、図示しないフレーム等に固定される細長板状のベース体30の長手方向に所要間隔をおいて第1保持部材32および第2保持部材34が立設固定されると共に、これら保持部材32,34を利用して円筒状の筒状ガイド部材36が水平に架設支持されている。この筒状ガイド部材36は、後述するように、穿孔装置40により前記成形体Uに貫通孔S1または有底孔S2を形成するに際し、該成形体Uを収容保持した前記筒状保持部材20を収容保持しつつ案内するためのものである。従って前記筒状ガイド部材36は、前記第1支持体12の側に位置する第1保持部材32に対しては貫通支持されて、後述する誘導コイル50の内側を貫通するように延在しており、その第1端部36aに開設された挿通口38が該第1支持体12を指向している一方、第1支持体12とは反対側に位置する第2保持部材34に対しては第2端部36bが端部接続されている。そして、両保持部材32,34に支持された前記筒状ガイド部材36における長手方向の中心軸線は、前記筒状保持部材20における長手方向の中心軸線と一致している。
【0015】
前記筒状ガイド部材36は、例えばステンレス鋼(SUS303)、アルミニウムまたはガラス等を材質とした非磁性体から形成されており、前記誘導コイル50の内側に延在するように配設されていても、該誘導コイル50に発生した磁束により誘導電流が生起されることがなく、従って誘導発熱することがない。そして、その内径寸法E3は、外径寸法E2とされた前記筒状保持部材20が摺接状態で往復スライドし得るように設定してあり、前記流体圧アクチュエータ16をロッド18が前進するよう作動制御する際には、図4に例示したように、中心軸線に沿って前進する該筒状保持部材20が、前記筒状ガイド部材36内へスムーズに進入するようになる。これにより、筒状ガイド部材36に徐々に収容される筒状保持部材20は、自由端となっている第2端部20bの側が半径方向へ変位したり撓むこと等が防止される。
【0016】
前記第2支持体14に配設される穿孔装置40は、前記第1支持体12および第2支持体14の近接・離間方向(筒状ガイド部材36の長手方向の中心軸線に沿った方向)に整列して該第2支持体14に配設され、磁性体を材質とする穿孔部材44を先端に備える穿孔ロッド42と、前記穿孔部材44を囲繞する位置に設置して前記成形体Uおよび該成形体Uを保持した筒状保持部材20の通過を許容し、コイルへの通電時に前記穿孔部材44を該成形体Uの軟化温度T以上に誘導発熱させる誘導コイル50とから基本的に構成されている。すなわち穿孔装置40は、公知の誘導発熱原理を利用したものであって、前記誘導コイル50に所定周波数(50Hz〜40MHz)の交流電流を通電して磁束を発生させることで、該誘導コイル50に非接触状態に配設されてその磁束中に存在する前記穿孔部材44に誘導電流を生起させ、これにより該穿孔部材44を誘導発熱させる構造となっている。ここで、前述した軟化温度T以上とは、前記成形体Uに対して前記穿孔ロッド42を押圧接触させた際に、該穿孔ロッド42の突入が許容されて前記貫通孔S1または有底孔Sの穿孔作業が可能となる温度を意味するもので、前記穿孔部材42により該成形体Uが軟化状態または融解状態となる温度である。例えば、成形体Uがウレタンフォーム製である場合には、該成形体Uが適度に軟化した状態で前記穿孔ロッド42の突入が許容されて穿孔作業が可能である。
【0017】
前記穿孔ロッド42は、前記筒状ガイド部材36の長手方向の中心軸線に沿って該筒状ガイド部材36の内部を貫通するよう配設されるロッド部材46の先端に、後述の断熱部材60を取付けると共に、この断熱部材60に前記穿孔部材44を取付けて構成されている。従って穿孔ロッド42は、前記誘導コイル50に交流電流を通電しながら、前記穿孔部材44を前記軟化温度T以上の温度に誘導発熱させたもとで、前記第1支持体12を第2支持体14の側へ近接移動させて両支持体12,14を相互に近接させることで、該穿孔部材44に接触した前記成形体Uの部位を軟化または融解させつつその内部へ突入するようになる。なお、前記第1支持体12および第2支持体14の近接移動時における該第1支持体12の移動量(ストローク量)の設定に基づき、成形体Uに対する穿孔ロッド42の突入量が決定されるため、このストローク量を大きく設定すれば前記貫通孔S1の穿設が可能であり、小さく設定すれば前記有底孔S2の穿設が可能であって、これら貫通孔S1または有底孔S2を選択的に穿設可能である。
【0018】
前記ロッド部材46は、前記ベース体30の端部に立設固定された第3支持部材35と前記第1保持部材32との配設間隔よりも長く設定されたパイプ状部材であり、該第3支持部材35および前記第2保持部材34に後端側を貫通させることで、前記筒状ガイド部材36の内部を長手方向軸線に沿って真直に延在するよう支持され、先端に取付けた前記穿孔部材44を前記誘導コイル50の略中間位置に臨ませるようになっている。そして、成形体Uに形成される前記貫通孔S1(または有底孔S2)の内径寸法Bに対して0.5〜1.0mm小さい外径寸法F1に設定され、例えばアルミニウム、銅、真鍮、ステンレス鋼(SUS303)、セラミックス(アルミナ等)等を材質とした非磁性体から形成されており、前記誘導コイル50に発生した磁束中に存在しても誘導電流が生起されず、従って誘導発熱しないようになっている。またロッド部材46の外表面には、例えばセラミックス等によるコーティング層48が被覆形成され、前記穿孔部材44により軟化状態または融解状態となった成形体Uの内壁面が該ロッド部材46に密着して焼き付くことを防止するようになっている。なおロッド部材46は、第3支持部材35に螺合されると共にナット52により固定されている。
【0019】
前記穿孔部材44は、先端側を球面状に成形した円柱体形状に形成され、成形体Uに穿設される貫通孔S1(または有底孔S2)の内径寸法Bと略同一の外径寸法F2に設定されている。そして図5に例示するように、後側に凹設した雌ねじ54に後述の断熱部材60に突設した雄ねじ62を螺合させることで、該断熱部材60の前側に取付けられるようになっている。このような穿孔部材44は、例えば鋼等を材質とした磁性体から形成されており、かつ常には前記誘導コイル50で発生した磁束中に存在するように配設されているため、この磁束により誘導電流が生起されて誘導発熱するようになっている。また、前記穿孔部材44の外表面には、例えばセラミックス、フッ素樹脂またはエポキシ樹脂等によるコーティング層58が被覆形成され、当該穿孔部材44により軟化状態または融解状態となった成形体Uの内壁面が該穿孔部材44に密着して焼き付くことを防止するようになっている。なお前記コーティング層58の材質は、穿孔作業時の加熱温度によって選択されるもので、加熱温度が高い場合にはセラミックス等が採用され、また加熱温度が低い場合はフッ素樹脂またはエポキシ樹脂等が採用される。
【0020】
前記穿孔部材44と前記ロッド部材46との間に介在される断熱部材60は、図5に例示したように、例えばセラミックス、フッ素樹脂、エポキシ樹脂等から形成されたフランジ状部材であって、その前端面には前記穿孔部材44に凹設した前記雌ねじ54に螺合する前記雄ねじ62が突設されると共に、その後端面には前記ロッド部材46の先端面に凹設された雌ねじ56に螺合する雄ねじ64が突設されている。また、前記雄ねじ64および前記雄ねじ62の軸線に沿って電線挿通用の貫通孔66が穿設されている。このような断熱部材60は、前記穿孔部材44とロッド部材46との間に位置することで、誘導発熱して前記軟化温度T以上に加熱された前記穿孔部材44の熱がロッド部材46へ移動するのを阻止して、該穿孔部材44の温度降下を防止すると同時に、該ロッド部材46の外表面の温度上昇を防止するべく機能する。従って、前記成形体Uに貫通孔S1または有底孔S2を穿設するに際し、前記軟化温度T以上に誘導発熱された前記穿孔部材44の温度降下が防止されて該穿孔部材44による穿孔作業の効率化が図られる一方、前記ロッド部材46はこの軟化温度Tよりかなり低い温度に保持されているため、該穿孔部材44によって軟化状態または融解状態となった成形体Uの内壁面は、該ロッド部材46の外面に接触することで冷却されて硬化が促進される。
【0021】
また、前記穿孔部材44の内部には、必要に応じて温度検知用の温度センサー68が配設され、前記誘導コイル50により誘導発熱した該穿孔部材44の温度を検知し得るようになっている。なお、前記温度センサー68に接続されている電線70は、前記断熱部材60に設けた貫通孔66および前記ロッド部材46の内部空間を利用して、該ロッド部材46の後端側へ配線されている。
【0022】
前記誘導コイル50は、例えば直径6mm程度の銅管を、必要インピーダンスを形成するために所要径・所要ピッチの螺旋状に必要回数だけ巻回成形したもので、前記穿孔ロッド42の穿孔部材44がその内側の略中心に位置にするように前記ベース体30に固定されている。そして、その内径寸法Gは、前述したように、前記筒状保持部材20の外径寸法E2より適宜大きく設定されており(前記筒状ガイド部材36の外径寸法より適宜大きく設定されており)、前記第1支持体12を第2支持体14に近接移動させるに際し、成形体Uを収容保持した該筒状保持部材20の通過を許容し得ると共に、該筒状保持部材20と接触しない様になっている。また、誘導コイル50の両端は、図示しない交流電流供給源と電気的に接続されており、該交流電流供給源から前記穿孔部材44の大きさに適した所定周波数の交流電流を通電すると磁束が発生し、これにより該磁束中に存在する前記穿孔部材44を前記軟化温度T以上に誘導発熱させることが可能となる。なお、前記交流電流供給源による前記誘導コイル50への印加電流は、例えば待機時は2Aに、穿孔時は5Aに自動的または手動的に切替え可能となっており、穿孔部材44の加熱時間の短縮化およびこれに伴う穿孔作業サイクルの短縮化を図り得る。
【0023】
このように、実施例の穿孔機10に搭載した穿孔装置40は、誘導発熱原理に基づき、誘導コイル50に交流電流を通電させることで、該誘導コイル50と非接触状態にある穿孔ロッド42の穿孔部材44を誘導発熱させ、軟化温度T以上の温度に加熱した該穿孔部材44を成形体Uに押圧接触させることで貫通孔S1または有底孔S2を穿設するようになっている。すなわち、交流電流供給源から前記誘導コイル50に対して所定の交流電流を継続的に通電するようにすれば、前記穿孔部材44だけが常に軟化温度T以上に保持されるようになるため、長尺または細径の貫通孔S1または有底孔S2の穿設を好適に実行し得る。しかも、前記穿孔部材44に対して前記成形体Uを軽く押圧接触させるだけで前記貫通孔S1または有底孔S2の穿設が可能であるため、穿孔ロッド42への負荷荷重が小さくなって該ロッド42の撓み等が防止されると共に、これによって真直な貫通孔S1または有底孔S2の穿設が可能となっている。
【0024】
【実施例の作用】
次に、前述のように構成された本実施例の穿孔機10により、図9(a)に例示した成形体Uに、その長手方向における中心軸線に沿って貫通孔S1を穿設して、図9(b)に例示した中空円筒体U1を成形する場合につき、図6〜図8を引用して説明する。
【0025】
前記流体圧アクチュエータ16をロッド18が後退するよう制御して、前記第1支持体12を第2支持体14から離間移動させたもとで、別途予備成形した中実円柱体状の前記成形体Uを挟み込むように前記第1半体20Aと第2半体20Bとを組付けて、前記筒状保持部材20の収容部22へ該成形体Uをセット保持させる(図2、図3)。一方、図示しない交流電流供給源から穿孔条件に対応した所定周波数の交流電流を前記誘導コイル50へ通電して、該誘導コイル50に磁束を発生させ、この磁束中にある前記穿孔部材44に誘導電流を生起させて、該穿孔部材44を前記軟化温度T以上の所要温度まで誘導発熱させる。
【0026】
筒状保持部材20の収容部22に対する前記成形体Uのセット作業が完了すると共に、誘導コイル50の設定電流を保温条件から穿孔条件へ切替えることで前記穿孔部材44が軟化温度T以上の所要温度に到達したら、前記流体圧アクチュエータ16をロッド18が一定速度で前進するよう作動制御する。これにより第1支持体12が、前記第2支持体14に向けて一定速度で近接移動するようになり、前記成形体Uをセット保持した筒状保持部材20の第2端部20b(先端)が、筒状ガイド部材36の挿通口38から該部材36の内部へ進入するようになる(図6(a))。
【0027】
そして、前記筒状保持部材20が筒状ガイド部材36に案内されて前進し、該筒状保持部材20の第2端部20bが誘導コイル50の略中間に到達すると、図6(b)に示すように、前記成形体Uの側端面における略中央に、該成形体Uの軟化温度T以上の温度に保持されている前記穿孔部材44の先端が接触して押付けられるようになり、該成形体Uは該穿孔部材44が接触した部位から軟化または融解するようになる。更に、第1支持体12を一定速度で第2支持体14に近接移動すると(穿孔ロッド42に成形体Uを一定圧力で押し当てていくと)、該第2支持体14に固定されている穿孔ロッド42は、前記穿孔部材44が成形体Uの内部に押圧接触しながら該成形体Uにおける長手方向の中心軸線に沿って徐々に突入するようになる(図6(c))。
【0028】
そして、前記第1支持体12が予め設定してあるストローク量だけ移動して停止した時点では、図7に例示するように、前記穿孔部材44は成形体Uの他方の側端面から突き出て前記凹部28内へ進入するようになり、穿孔ロッド42は成形体Uを完全に貫通するようになる。そして、加熱されている穿孔部材44が凹部28内へ突入するので、殆ど加熱されていない前記ロッド部材46が成形体Uの内部に位置するようになり、軟化状態または融解状態となっていた成形体Uの内壁面が冷却されて硬化が促進されるようになる。
【0029】
第1支持体12が停止したら、直ちに交流電流供給源から保温条件に対応した所定周波数の交流電流を前記誘導コイル50へ通電して、前記穿孔部材44を保温状態に切替える。そして適時に、前記流体圧アクチュエータ16をロッド18が後退するよう作動制御して、第1支持体12を第2支持体14から一定速度で離間移動させ、成形体Uを貫通していた穿孔ロッド42を該成形体U内から引抜くようにする(図8)。これにより、前記穿孔ロッド42が存在していた部分に貫通孔S1が穿設され、図9(b)に例示した前記中空円筒体U1の成形が完了する。
【0030】
【穿孔試験例】
本願出願人は、前述した構成の穿孔機10により、次に例示した条件下で穿孔試験を実施した。
1.成形体Uおよび中空円筒体U1の諸寸法
・全長L=400mm
・外径D=16mm
・材質=ポリウレタン(硬度:アスカーCスケールで20度)
・貫通孔S1の内径B=8mm
2.穿孔機10の諸元
・誘導コイル50の内径G=32mm
・誘導コイル50に対する印加周波数:25KHz
・誘導コイル50に対する印加電力:10kW
・誘導コイル50に対する印加電流:保温時 2A
穿孔時 5A
・穿孔部材44の外径F2=7.5mm
・第1支持体12の移送速度(穿孔速度):2m/min
【0031】
このように、アスカーCスケールで20度とされる比較的硬質なポリウレタンを材質とする前記成形体Uに対し、該成形体Uの長手方向の中央軸線に沿う全長L=400mm、内径B=8mmの貫通孔S1の穿孔作業を実施したところ、約20秒間で該貫通孔S1の穿設を行なうことができた。しかも、比較的長尺でかつ細径の貫通孔S1を、短時間でかつ曲がり無く穿設することが可能であることが実証された。
【0032】
このように実施例の穿孔機10は、誘導発熱原理を利用して穿孔ロッド42の先端に配設した穿孔部材44を成形体Uの軟化温度T以上に誘電発熱させ、このもとで該穿孔部材44を成形体Uに押圧接触させることで貫通孔S1または有底孔S2を穿設するようになっているので、当該成形体Uが比較的硬質な合成樹脂から形成されていても短時間でかつ曲がり無く穿設作業を完了することができ、従来の穿孔機と比較して加工適用範囲の拡大を図り得る。また、成形体Uに対して前記貫通孔S1または有底孔S2を穿孔するに際して穿孔部材44の摩耗が殆どないので、該穿孔部材44の交換やメンテナンス作業を頻繁に行なう必要がなく、加工効率の向上や加工コストの低減をも図り得る。
【0033】
そして実施例の穿孔機10は、前述したように、交流電流供給源から前記誘導コイル50に対して所定の交流電流を継続的に通電することで、前記穿孔部材44だけを常に軟化温度T以上に保持することができるため、長尺または細径の貫通孔S1または有底孔S2を好適に穿設し得る。しかも、前記穿孔部材44に対して前記成形体Uを軽く押圧接触させるようにするだけで前記貫通孔S1または有底孔S2を穿設できるため、穿孔ロッド42に対する負荷荷重が小さくなって該ロッド42の撓み等が防止でき、これによって真直な貫通孔S1または有底孔S2の穿設が可能である。
【0034】
また実施例の穿孔機10では、前記穿孔ロッド42におけるロッド部材46を中空体とすると共に、前記断熱部材60に貫通孔66を穿設して、前記穿孔部材44の内部に温度センサー68を取付けてあるため、該穿孔部材44の温度制御および管理を正確に行なうことが可能である。
【0035】
なお、前記穿孔部材44の誘導発熱温度は、誘導発熱原理に基づき、▲1▼誘導コイル50に通電する交流電流の電力や周波数の増減設定、▲2▼誘導コイル50の巻数や巻径(内径寸法G)の大小設定等により、適宜に変更調整可能である。
【0036】
また前記穿孔部材44は、前記実施例に例示の外形形状・サイズのものに限定されるものではなく、成形体Uに押圧接触させた際に該成形体Uを効率的に軟化または融解させながら該成形体U内へスムーズに突入し得る形状となっていればよく、例えば円錐形状や円筒形状等としてもよい。
【0037】
前記実施例の穿孔機10では、前記成形体Uを保持するための第1支持体12を、両支持体12,14の近接・離間方向に沿った軸線を中心として回転しない構成のものを例示したが、該第1支持体12を該軸線を中心とした回転が可能に配設するようにしてもよい。すなわち、第1支持体12を回転可能な構成とした場合には、該第1支持体12の筒状保持部材20にセット保持した前記成形体Uを所要の回転速度(例えば100〜150rpm)で回転させたもとで、前記穿孔ロッド42の穿孔部材44を該成形体Uに突入させて、前記貫通孔S1または有底孔S2を穿設し得るようになる。このように成形体Uを回転させるようにすれば、穿孔ロッド42の先端に取付けた前記穿孔部材44の先端が常に該成形体Uの回転中心を指向するようになり、長尺または細径の貫通孔S1または有底孔S2を穿設するに際し、曲がりの無い穿孔作業を実施することができる。
【0038】
更に実施例の穿孔機10では、前記成形体Uに貫通孔S1または有底孔S2を穿設する前記穿孔ロッド42を、両支持体12,14の近接・離間方向に沿った軸線を中心として回転しない構成のものを例示したが、該穿孔ロッド42を該軸線を中心とした回転が可能に配設するようにしてもよい。すなわち、前記穿孔ロッド42を回転可能な構成とした場合には、前記第1支持体12の筒状保持部材20にセット保持した前記成形体Uに対して、所要の回転速度(例えば100〜150rpm)で回転させた前記穿孔ロッド42の穿孔部材44を突入させながら、前記貫通孔S1または有底孔S2を穿設し得るようになる。このように穿孔ロッド42を回転させるようにすれば、穿孔ロッド42の先端に取付けた前記穿孔部材44が成形体Uに突入し易くなり、長尺または細径の貫通孔S1または有底孔S2を穿設するに際して曲がりの無い穿孔作業を実施することができる。
【0039】
なお、前記第1支持体12および前記穿孔ロッド42は、何れか一方のみが回転する構成としてもよいし、また両方が同時に回転する構成としてもよい。更に、前記第1支持体12および前記穿孔ロッド42は、両方向への回転が可能となるようにすれば、例えば所要時間毎(所要回転数毎)に正・逆回転させながらの穿孔作業を行なうことが可能となり、前記貫通孔S1または有底孔S2を穿設する際の更なる効率化および高精度化等が期待できる。
【0040】
更に前記実施例では、前記第1支持体12および第2支持体14が、水平状態に配設されて相互に水平方向へ近接・離間移動する水平作動形態の穿孔機10を例示したが、これら第1支持体12および第2支持体14を、垂直状態に配設して相互に垂直方向へ近接・離間移動する垂直作動形態の穿孔機10としてもよい。このような垂直作動形態の穿孔機の場合は、前記第1支持体12の筒状保持部材20内にセット保持した成形体Uが、重力により長手方向の中心軸線と直交する方向へ撓むような不都合の発生を適切に回避できる。
【0041】
更に、前記実施例の穿孔機10では、前記ロッド部材46を第2支持体14に対して着脱可能に装着する形態とすれば、前記穿孔部材44および前記断熱部材60を該ロッド部材46に対して着脱可能となっているので、前記成形体Uに前記貫通孔S1を穿設した当該ロッド部材46を、該貫通孔S1から引抜かずに第2支持体14から取外し、中空円筒体U1にそのまま貫通装着させることも可能である。このため、前述したローラのように、円筒形状のローラ本体に対してシャフト部材を貫通装着して構成されるものでは、該シャフト部材を前記ロッド部材46として前記第2支持体14に組付けると共に、該シャフト部材の先端に前記断熱部材60および穿孔部材44を組付けたもとで、前述のような穿孔作業を行なえば、前記成形体Uに対する貫通孔S1の穿設工程と、該貫通孔S1に対するシャフト部材の装着作業とを同時に行なうことが可能となる。
【0042】
また前記実施例では、前記穿孔部材44が成形体Uから完全に突出するように第1支持体12の移動ストロークの設定することで、該成形体Uにその長手方向の中心軸線に沿った貫通孔S1を穿設し、図9(b)の中空円筒体U1を成形する場合を例示した。しかしながら前述したように、前記流体圧アクチュエータ16による前記第1支持体12のストローク量をこれより短く設定し、該第1支持体12の近接移動完了時に前記穿孔部材44が該成形体Uから突出しないように設定すれば、該成形体Uにその長手方向の中心軸線に沿った所要長の有底孔S2を穿設し、図9(c)に例示した有底中空円筒体U2を成形することが可能である。すなわち実施例の穿孔機10では、流体圧アクチュエータ16による第1支持体12の設定ストローク量を調整することで、換言すると前記第1支持体12および第2支持体14の近接移動時におけるストローク量の設定に基づき、前記成形体Uに対して前記貫通孔S1または有底孔S2を選択的に穿設可能である。
【0043】
更に前記実施例では、前記第2支持体14を固定的に配設すると共に第1支持体12を移動可能に配設して、該第2支持体14に対して該第1支持体12を往復移動させることで、両支持体12,14が相互に近接・離間し得る構成とした穿孔機を例示した。しかしこれとは逆に、前記第2支持体14を移動可能に配設すると共に前記第1支持体12を固定的に配設し、該第1支持体12に対して該第2支持体14を往復移動させることで、両支持体12,14が相互に近接・離間し得る構成としても、該第1支持体12にセットした成形体Uに対して貫通孔または有底孔を好適に穿設し得る。
【0044】
なお前記実施例では、図9(a)に例示した中実円柱体状の成形体Uに、その長手方向の中心軸線に沿って貫通孔S1または有底孔S2を成形するのに適した穿孔機10を例示したが、穿孔対象とされる成形体Uの形状はこれに限定されるものではなく、様々な外形形状のものが対象とされる。また、外形形状が異なる成形体Uの場合には、当然のことながら、前記第1支持体12の筒状保持部材20、第2支持体14の筒状ガイド部材36、誘導コイル50等の形状が変更される。
【0045】
一方、前記実施例では、ポリウレタンを発泡成形したウレタンフォーム製の成形体Uに貫通孔S1または有底孔S2を穿設する場合を例示したが、本実施例の穿孔機10によれば、例えばインジェクション成形した所謂ソリッドタイプの成形体Uに対しても貫通孔S1または有底孔S2を穿設可能である。但し、ソリッドタイプの成形体Uの場合は、前記穿孔部材44の温度を、前記軟化温度Tより高い融解温度以上に設定することが望ましく、また該穿孔部材44により融解させた溶融樹脂の排出処理を行なうことが必要となる場合がある。このような場合は、例えば▲1▼前記ロッド部材46の外面に長手方向に沿った溝を延設して、該溝を利用して溶融樹脂を順次流通排出させる方法、▲2▼前記ロッド部材46が中空体であるから、溶融樹脂を該ロッド部材46の内部空間へ通入させて順次流通排出させる方法、等が実施可能である。なお成形体Uは、熱可塑性の合成樹脂から成形されたもの、および熱硬化性の合成樹脂から成形されたものの何れであっても、前記貫通孔S1または有底孔S2の穿設が可能である。
【0046】
また、成形体Uが前述したソリッドタイプの場合には、前記第1支持体12の構造を変更可能である。すなわち、前記成形体Uに撓み変形等が発生し難いので、前記筒状保持部材20に代替して該成形体Uの端部のみを把持するような保持形態とし、かつ該成形体Uを前記筒状ガイド部材36内へ進入させるようにしてもよい。
【0047】
【発明の効果】
以上説明した如く、本発明に係る穿孔機およびこの穿孔機を用いたシャフト付きローラの製造方法によれば、誘導発熱原理を利用して穿孔ロッドの先端に配設した穿孔部材を成形体の軟化温度以上に誘電発熱させ、このもとで該穿孔部材を成形体に押圧接触させることで貫通孔または有底孔を形成するようになっている。このため、前記成形体が比較的硬質な合成樹脂から形成されていても貫通孔または有底孔を短時間でかつ曲がり無く穿設することができ、従来の穿孔機と比較して加工適用範囲の拡大を図り得る利点がある。また、成形体に対して貫通孔または有底孔を穿孔するに際して穿孔部材の摩耗が殆どないので、該穿孔部材の交換やメンテナンス作業を頻繁に行なう必要がなく、加工効率の向上や加工コストの低減をも図り得る等の効果を奏する。
【図面の簡単な説明】
【図1】本発明の好適実施例に係る穿孔機の全体構成を概略的に示した斜視図である。
【図2】図1に例示した実施例の穿孔機を構成する第1支持体および第2支持体と、中実円柱体状に予備成形された成形体とを斜視状態で示した説明図である。
【図3】図1に例示した実施例の穿孔機を構成する第1支持体および第2支持体と、中実円柱体状に予備成形された成形体とを断面状態で示した説明図である。
【図4】 (a)は、第1支持体を第2支持体に近接移動させ、第2成形体に設けた穿孔装置の穿孔ロッドを、第1支持体に設けた筒状保持部材にセット保持した成形体へ貫通させることで、該成形体に貫通孔を穿設した状態を示した平断面図であり、(b)は、該成形体に貫通孔を穿設した状態を示した側断面図である。
【図5】穿孔装置を構成する穿孔ロッドおよび誘導コイルを断面状態で示した説明図である。
【図6】第1支持体を第2支持体に近接移動させた穿孔作業の初期段階を経時的に示した説明図であって、(a)は、穿孔ロッドの穿孔部材が成形体に接触する前の状態を示し、(b)は、穿孔部材が成形体の側端面に接触し始めた状態を示し、(c)は、成形体に押圧接触させた穿孔部材が該成形体に突入し始めた状態を示している。
【図7】第1支持体を所定のストローク量だけ移動させることで、穿孔部材が成形体を貫通した状態を示した説明図である。
【図8】第1支持体を第2支持体から離間移動させることで穿孔ロッドが成形体から引抜かれ、長手方向の中心軸線に沿って貫通孔を有する中空円筒体を成形した状態を示した説明図である。
【図9】 (a)は、中実円柱体状に予備成形された成形体の斜視図であり、(b)は、(a)に例示した成形体にその長手方向の中心軸線に沿って貫通孔を穿設することで成形された中空円筒体の斜視図であり、(c)は、(a)に例示した成形体にその長手方向の中心軸線に沿って所要長の有底孔を穿設することで成形された有底中空円筒体の斜視図である。
【符号の説明】
12 第1支持体
14 第2支持体
40 穿孔装置
42 穿孔ロッド
44 穿孔部材
46 ロッド部材
48 コーティング層
50 誘導コイル
58 コーティング層
60 断熱部材
S1 貫通孔
S2 有底孔
T 軟化温度
U 成形体
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a drilling machine for drilling a bottomed hole or a through hole in a molded body of a required shape made of an appropriate synthetic resin.And manufacturing method of roller with shaft using this punching machineIt is about.
[0002]
[Prior art]
In various OA devices such as a facsimile machine and a copier, a roller for transferring paper is disposed on a paper feed line from a paper feed unit to a paper discharge unit. This roller is composed of, for example, a roller body made of a synthetic resin having elasticity as appropriate, such as urethane foam, and a shaft member penetratingly mounted along the central axis in the longitudinal direction of the roller body. The shaft member is rotatably arranged by supporting both end portions of the shaft member at predetermined positions.
[0003]
Here, the roller composed of the roller body and the shaft member is roughly divided into the following (1) to (3) when classified according to the manufacturing method.
(1) So-called insert molding in which the roller member is molded with the shaft member separately preformed set in a mold so that the shaft member is inserted through the roller body along its central axis. Manufactured based on
(2) After forming a solid cylindrical molded body constituting the roller body, a through hole is formed in the longitudinal direction along the central axis of the molded body, and the shaft member separately preformed in the through hole It is manufactured by mounting through.
(3) Manufactured by penetrating a preformed shaft member into a hollow cylindrical molded body in which through holes are simultaneously formed by a molding die.
Of these, regarding the manufacturing method of (2) above, as a drilling method for drilling the through hole along the central axis in the longitudinal direction of the solid cylindrical shaped molded body, (a) parting off with a cylindrical single blade (B) Drilling with a screw blade or the like was employed. A technique related to this is disclosed in, for example, Patent Document 1.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 06-218656
[0005]
[Problems to be solved by the invention]
By the way, in each drilling machine that implements each of the drilling methods (a) and (b) described above, the following problems are inherent. First, in the punching machine that performs the drilling method of (a), although it is suitable for drilling a through hole in a molded body formed from a relatively soft synthetic resin, a through hole in a molded body formed from a somewhat hard synthetic resin Drilling is impossible. Specifically, it can be applied only to a molded body formed from a synthetic resin of 20 degrees or less on the Asker C scale, and there is a problem that the processing application range is limited to a soft material. On the other hand, in the punching machine that performs the drilling method of (b), although it can correspond to a molded body formed of a relatively hard synthetic resin, the screw blade that rotates at high speed is worn because it contacts the synthetic resin during drilling. In general, it is necessary to replace the punching process approximately every 100 times, and there are problems such as a reduction in processing efficiency and an increase in processing cost associated with the tool replacement work. In particular, in a punching machine that implements each of the above-described drilling methods (a) and (b), drilling a long through hole with a drilling length of about 300 to 400 mm, or a narrow through hole with a hole diameter of about 5 to 7 mm In the operation of drilling, there are common problems such as the drilled through hole and the bottomed hole are curved and the hole diameter is not constant.
[0006]
Therefore, as a solution to the problems inherent in each of the above-described drilling methods, a drilling machine adopting a hot melt processing method is equipped, that is, an electric heater or a heat medium circulation circuit, etc., so that the tip of the drilling rod is made of synthetic resin. There has been proposed a drilling machine for drilling a through-hole or a bottomed hole having a required length and a required diameter in the molded body while being heated to the melting temperature or higher. However, in the drilling machine having such a configuration, in the case of the narrow and small diameter drilling rod for drilling the above-described small diameter through hole or the like, it is difficult to supply sufficient heat due to the small heat capacity. There was a problem that the tip of the rod could not be maintained at a temperature equal to or higher than the melting temperature of the molded body, and the above-described drilling operation for a long or small through hole or bottomed hole could not be handled.
[0007]
OBJECT OF THE INVENTION
  The present invention has been proposed to suitably solve the above-described problems. Based on the principle of induction heat generation, the perforation member is induction-heated by an induction coil in a non-contact state, and the perforation member heated to a predetermined temperature is pressed. A drilling machine that can expand the processing application range, improve the processing efficiency, reduce the processing cost, etc. by making the through hole or the bottomed hole in contact with each otherAnd manufacturing method of roller with shaft using this punching machineThe purpose is to provide.
[0008]
[Means for Solving the Problems]
  In order to solve the above-mentioned problems and achieve the intended purpose, the present invention provides:
  TogetherMade of synthetic resinRuA drilling machine for drilling a through hole or a bottomed hole in a shape,
  A first support that can hold the molded body as a set;
  A second support provided with a perforation device that is installed so as to be close to and away from the first support, and that drills the through hole or the bottomed hole in the molded body;
  The punching device is
  Arranged in the second support aligned in the proximity / separation direction of the two supports,A rod member and attached to the tip of the rod memberPerforated member made of magnetic materialBe equippedA perforating rod
  An induction coil installed at a position surrounding the perforated member to allow passage of the molded body, and to induce the heat generation of the perforated member above the softening temperature of the molded body;
  The first support body and the second support body on which the molded body is set are moved close to each other while the perforation member is heated by induction heat and maintained at a temperature equal to or higher than the softening temperature. The through hole or the bottomed hole can be formed by pressing the molded body.,
  The rod member can be attached to the molded body as it is after being pierced with the through hole or the bottomed hole in the molded body and then being removed from the second support body.It is characterized by that.
  In order to solve the above problems and achieve the intended purpose, another invention of the present application is:
  A method of manufacturing a roller with a shaft by drilling a through hole or a bottomed hole in a molded body made of a synthetic resin,
The molded body is set and held on the first support,
A piercing rod provided with a rod member attached to a tip of a piercing member made of a magnetic material, provided on a second support body that is installed so as to be close to and away from the first support body. Align in the proximity and separation direction of both supports against
An induction coil installed at a position surrounding the piercing member and allowing the molded body to pass therethrough, the piercing member is inductively heated, and the piercing member is maintained at a temperature equal to or higher than the softening temperature of the molded body;
The first support body and the second support body on which the molded body is set are moved close to each other, and the through hole or the bottomed hole is formed by pressing the punching member against the molded body.
After the through hole or the bottomed hole is formed in the molded body, the rod member is detached from the second support body and attached to the molded body as it is.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
  Next, the drilling machine according to the present inventionAnd manufacturing method of roller with shaft using this punching machineA preferred embodiment will be described below with reference to the accompanying drawings.
[0010]
FIG. 1 is a perspective view schematically showing the overall configuration of a drilling machine according to a preferred embodiment of the present invention. The punching machine 10 of the present embodiment is a solid cylinder as illustrated in FIG. 9A in a basic configuration in which a through hole or a bottomed hole is drilled in a molded body of a required shape made of a suitable synthetic resin. A hollow cylindrical body U1 (FIG. 9 (b)) is formed by forming a through-hole S1 along a central axis in the longitudinal direction of a molded body U made of urethane foam that is foam-molded into a body shape, Alternatively, a bottomed hollow cylindrical body U2 (FIG. 9 (c)) can be formed by drilling a bottomed hole S2 having a required length along the central axis in the longitudinal direction of the molded body U. . That is, the hollow cylindrical body U1 and the bottomed hollow cylindrical body U2 formed by the punching machine 10 according to the embodiment can be implemented as, for example, a roller main body that constitutes the roller described above.
[0011]
Specifically, the punching machine 10 of the present embodiment is installed so that the solid cylindrical body-shaped molded body U can be set and held, and the first support 12 can be brought close to and away from each other. The second support 14 is provided with a punching device 40 for drilling the through hole S1 or the bottomed hole S2 along the central axis in the longitudinal direction of the molded body U. The first support 12 and the second support 14 are arranged in series with respect to a support frame (not shown), and the second support 14 is fixed to the frame, while the first support 12 Is configured so that it can be moved close to and away from the second support 14.
[0012]
As illustrated in FIGS. 2 and 3, the first support 12 includes a first half 20 </ b> A and a second half 20 </ b> B that are separable in the longitudinal direction and can be assembled to each other by appropriate assembly fixing means. A cylindrical holding member 20 having a housing portion 22 in which the molded body U can be housed, and a support member connected to the tip of a rod 18 of a fluid pressure actuator 16 such as a hydraulic cylinder fixed to a frame or the like. 24. After the cylindrical holding member 20 is assembled into a cylindrical body by joining the first half 20A and the second half 20B to the end, the boss-like convex part 26 protruding from the support member 24 is formed in the first cylindrical body 20A. By being fitted into the inside from the opening of the first end 20a, the second end 20b on which the opening 21 is formed is supported in a horizontal state directed toward the second support 14. As a result, when the fluid pressure actuator 16 is controlled so that the rod 18 moves forward, the first support 12 moves close to the second support 14 along its central axis, which will be described later with reference to FIG. As illustrated in a) and (b), it is slidably inserted into a cylindrical guide member 36 provided on the second support 14. Further, when the fluid pressure actuator 16 is controlled so that the rod 18 moves backward, the fluid pressure actuator 16 moves away from the second support body 14 along the central axis thereof, and is extracted from the cylindrical guide member 36. .
[0013]
The first half body 20A and the second half body 20B constituting the cylindrical holding member 20 are formed of a nonmagnetic material made of, for example, FRP (glass fiber or carbon fiber reinforced epoxy resin, polyester resin). Yes. The inner diameter E1 of the assembled cylindrical holding member 20 is set to be about 0.2 mm larger than the outer diameter D of the molded body U (E1 = D + 0.2 mm). Accordingly, the molded body U accommodated and held in the accommodating portion 22 is held from the vertical direction by the first half body 20A and the second half body 20B, and is partially deformed or entirely bent. It is properly held in a straight state in which deformation or the like is prevented. The convex portion 26 of the support member 24 has a punching member 44 (described later) in the punching device 40 when the first support 12 is most advanced toward the second support 14 (FIGS. 4 and 7). A recess 28 that allows entry is formed. Further, since the cylindrical holding member 20 is a non-magnetic material as described above, no induced current is generated when passing through the magnetic flux generated in the induction coil 50 described later, and therefore no induction heat is generated. .
[0014]
As illustrated in FIGS. 2 and 3, the second support member 14 includes the first holding member 32 and the second holding member 32 at a predetermined interval in the longitudinal direction of the elongated plate-like base body 30 fixed to a frame or the like (not shown). A holding member 34 is fixed upright and a cylindrical guide member 36 is supported horizontally by using the holding members 32 and 34. As will be described later, when the cylindrical guide member 36 forms the through-hole S1 or the bottomed hole S2 in the molded body U by the punching device 40, the cylindrical guide member 36 accommodates and holds the molded body U. It is for guiding while holding and holding. Therefore, the cylindrical guide member 36 is supported so as to penetrate the first holding member 32 located on the first support 12 side, and extends so as to penetrate the inside of the induction coil 50 described later. The insertion port 38 opened at the first end 36a is directed to the first support 12 while the second holding member 34 is located on the opposite side of the first support 12. The second end 36b is connected to the end. The central axis in the longitudinal direction of the cylindrical guide member 36 supported by both the holding members 32 and 34 coincides with the central axis in the longitudinal direction of the cylindrical holding member 20.
[0015]
The cylindrical guide member 36 is formed of a nonmagnetic material made of, for example, stainless steel (SUS303), aluminum, glass, or the like, and may be disposed so as to extend inside the induction coil 50. Inductive current is not generated by the magnetic flux generated in the induction coil 50, and therefore no induction heat is generated. The inner diameter dimension E3 is set so that the cylindrical holding member 20 having the outer diameter dimension E2 can slide back and forth in a sliding contact state, and the fluid pressure actuator 16 is operated so that the rod 18 moves forward. When controlling, as illustrated in FIG. 4, the cylindrical holding member 20 moving forward along the central axis smoothly enters the cylindrical guide member 36. Thereby, the cylindrical holding member 20 gradually accommodated in the cylindrical guide member 36 is prevented from being displaced or bent in the radial direction on the side of the second end portion 20b which is a free end.
[0016]
The perforating apparatus 40 disposed on the second support 14 is in the proximity / separation direction of the first support 12 and the second support 14 (the direction along the longitudinal central axis of the cylindrical guide member 36). Are arranged on the second support 14 and are provided with a piercing rod 42 having a piercing member 44 made of a magnetic material at the tip, and at a position surrounding the piercing member 44, the molded body U and It is basically configured from an induction coil 50 that allows the cylindrical holding member 20 holding the molded body U to pass therethrough and causes the perforated member 44 to generate induction heat above the softening temperature T of the molded body U when the coil is energized. Has been. That is, the perforating apparatus 40 uses a known induction heat generation principle, and the induction coil 50 is energized with an alternating current of a predetermined frequency (50 Hz to 40 MHz) to generate a magnetic flux. It is arranged in a non-contact state, and an induction current is generated in the piercing member 44 existing in the magnetic flux, thereby causing the piercing member 44 to generate induction heat. Here, the above-mentioned softening temperature T or higher means that when the piercing rod 42 is pressed into contact with the molded body U, the piercing rod 42 is allowed to enter and the through hole S1 or the bottomed hole S is used. Is a temperature at which the formed body U is softened or melted by the piercing member 42. For example, when the molded body U is made of urethane foam, the piercing rod 42 is allowed to enter in a state where the molded body U is softened moderately, so that a drilling operation can be performed.
[0017]
The perforated rod 42 is provided with a heat insulating member 60 (described later) at the tip of a rod member 46 disposed so as to penetrate the inside of the cylindrical guide member 36 along the longitudinal central axis of the cylindrical guide member 36. At the same time, the perforating member 44 is attached to the heat insulating member 60. Accordingly, the perforating rod 42 causes the first support 12 to be in contact with the second support 14 while the perforating member 44 is inductively heated to a temperature equal to or higher than the softening temperature T while passing an alternating current through the induction coil 50. When the support bodies 12 and 14 are moved closer to each other and moved closer to each other, the portion of the molded body U that is in contact with the piercing member 44 is softened or melted to enter the inside thereof. Note that, based on the setting of the movement amount (stroke amount) of the first support body 12 when the first support body 12 and the second support body 14 move close to each other, the amount of penetration of the perforated rod 42 with respect to the molded body U is determined. Therefore, if the stroke amount is set large, the through hole S1 can be drilled, and if the stroke amount is set small, the bottomed hole S2 can be drilled. The through hole S1 or the bottomed hole S2 can be drilled. Can be selectively drilled.
[0018]
The rod member 46 is a pipe-like member set longer than the arrangement interval between the third support member 35 erected and fixed to the end portion of the base body 30 and the first holding member 32, 3 By allowing the rear end side to pass through the support member 35 and the second holding member 34, the cylindrical guide member 36 is supported so as to extend straight along the longitudinal axis, and attached to the front end. The piercing member 44 is made to face a substantially intermediate position of the induction coil 50. The outer diameter F1 is set to be smaller by 0.5 to 1.0 mm than the inner diameter B of the through hole S1 (or the bottomed hole S2) formed in the molded body U. For example, aluminum, copper, brass, It is made of a non-magnetic material made of stainless steel (SUS303), ceramics (alumina, etc.), and no induced current is generated even if it is present in the magnetic flux generated in the induction coil 50, and therefore no induction heat is generated. It is like that. The outer surface of the rod member 46 is coated with a coating layer 48 made of, for example, ceramics, and the inner wall surface of the molded body U that has been softened or melted by the perforating member 44 is in close contact with the rod member 46. It is designed to prevent seizure. The rod member 46 is screwed to the third support member 35 and is fixed by a nut 52.
[0019]
The perforating member 44 is formed in a cylindrical body shape having a spherical shape at the tip side, and has an outer diameter dimension substantially the same as the inner diameter dimension B of the through hole S1 (or bottomed hole S2) drilled in the molded body U. It is set to F2. Then, as illustrated in FIG. 5, a male screw 62 projecting from a heat insulating member 60 described later is screwed into a female screw 54 recessed on the rear side, so that the screw can be attached to the front side of the heat insulating member 60. . Such a perforated member 44 is formed of a magnetic material made of, for example, steel or the like, and is always disposed so as to exist in the magnetic flux generated by the induction coil 50. An induction current is generated and induction heat is generated. The outer surface of the perforated member 44 is coated with a coating layer 58 made of, for example, ceramics, fluororesin or epoxy resin, and the inner wall surface of the molded body U that has been softened or melted by the perforated member 44. The perforating member 44 is prevented from being stuck and burned. The material of the coating layer 58 is selected according to the heating temperature at the time of drilling work. When the heating temperature is high, ceramics or the like is adopted, and when the heating temperature is low, fluorine resin or epoxy resin or the like is adopted. Is done.
[0020]
As illustrated in FIG. 5, the heat insulating member 60 interposed between the perforating member 44 and the rod member 46 is a flange-like member formed of, for example, ceramics, fluororesin, epoxy resin, etc. The front end surface is provided with a male screw 62 that is screwed into the female screw 54 that is recessed in the perforating member 44, and the rear end surface is screwed into a female screw 56 that is recessed in the front end surface of the rod member 46. A male screw 64 is projected. A through hole 66 for inserting an electric wire is formed along the axis of the male screw 64 and the male screw 62. Such a heat insulating member 60 is located between the perforating member 44 and the rod member 46, so that heat of the perforating member 44 heated to the softening temperature T or more due to induction heat generation moves to the rod member 46. It functions to prevent the temperature of the perforating member 44 from decreasing and at the same time to prevent the temperature of the outer surface of the rod member 46 from increasing. Therefore, when the through hole S1 or the bottomed hole S2 is drilled in the molded body U, the temperature drop of the punching member 44 that has been induction-heated to the softening temperature T or higher is prevented, and the punching work by the punching member 44 is prevented. While the efficiency is improved, the rod member 46 is maintained at a temperature considerably lower than the softening temperature T. Therefore, the inner wall surface of the molded body U that is softened or melted by the perforating member 44 is The contact with the outer surface of the member 46 cools and accelerates the curing.
[0021]
In addition, a temperature sensor 68 for temperature detection is provided inside the punching member 44 as necessary, and can detect the temperature of the punching member 44 that has induced heat by the induction coil 50. . The electric wire 70 connected to the temperature sensor 68 is wired to the rear end side of the rod member 46 using the through hole 66 provided in the heat insulating member 60 and the internal space of the rod member 46. Yes.
[0022]
The induction coil 50 is formed by winding a copper tube having a diameter of about 6 mm, for example, in a spiral shape with a required diameter and a required pitch in order to form a required impedance. It is fixed to the base body 30 so as to be positioned substantially at the center inside thereof. And, as described above, the inner diameter dimension G is appropriately set larger than the outer diameter dimension E2 of the cylindrical holding member 20 (set appropriately larger than the outer diameter dimension of the cylindrical guide member 36). When the first support 12 is moved close to the second support 14, the cylindrical holding member 20 that accommodates and holds the molded body U can be allowed to pass therethrough, and the first holding body 12 does not come into contact with the cylindrical holding member 20. It has become. Further, both ends of the induction coil 50 are electrically connected to an AC current supply source (not shown), and when an AC current having a predetermined frequency suitable for the size of the punching member 44 is supplied from the AC current supply source, a magnetic flux is generated. Thus, the piercing member 44 existing in the magnetic flux can be induced to generate heat at the softening temperature T or higher. Note that the current applied to the induction coil 50 by the AC current supply source can be automatically or manually switched to 2A during standby, or 5A during drilling, and the heating time of the drilling member 44 can be changed. It is possible to shorten the drilling operation cycle accompanying the shortening.
[0023]
As described above, the perforating apparatus 40 mounted on the perforating machine 10 according to the embodiment applies the alternating current to the induction coil 50 based on the principle of induction heat generation, so that the perforation rod 42 in a non-contact state with the induction coil 50 can be obtained. The through-hole S1 or the bottomed hole S2 is formed by inducing heat generation of the piercing member 44 and pressing the piercing member 44 heated to a temperature equal to or higher than the softening temperature T against the molded body U. That is, if a predetermined alternating current is continuously supplied from the alternating current supply source to the induction coil 50, only the punching member 44 is always maintained at the softening temperature T or higher. Drilling of the through-hole S1 or the bottomed hole S2 having a small or small diameter can be suitably performed. In addition, since the through-hole S1 or the bottomed hole S2 can be drilled only by lightly pressing the molded body U against the drilling member 44, the load applied to the drilling rod 42 is reduced. The rod 42 is prevented from being bent and the like, and a straight through hole S1 or a bottomed hole S2 can be formed.
[0024]
[Effect of the embodiment]
Next, by the punching machine 10 of the present embodiment configured as described above, a through-hole S1 is drilled along the central axis in the longitudinal direction in the molded body U illustrated in FIG. 9A. The case where the hollow cylindrical body U1 illustrated in FIG. 9B is molded will be described with reference to FIGS.
[0025]
By controlling the fluid pressure actuator 16 so that the rod 18 is moved backward, the first support 12 is moved away from the second support 14, and the solid U-shaped molded body U which is separately preformed is formed. The first half 20A and the second half 20B are assembled so as to be sandwiched, and the molded body U is set and held in the accommodating portion 22 of the cylindrical holding member 20 (FIGS. 2 and 3). On the other hand, an alternating current having a predetermined frequency corresponding to the punching condition is supplied to the induction coil 50 from an alternating current supply source (not shown) to generate a magnetic flux in the induction coil 50, and is guided to the punching member 44 in the magnetic flux. An electric current is generated to inductively generate heat to the perforated member 44 to a required temperature equal to or higher than the softening temperature T.
[0026]
The setting operation of the molded body U with respect to the accommodating portion 22 of the cylindrical holding member 20 is completed, and the set current of the induction coil 50 is switched from the heat retention condition to the drilling condition, so that the punching member 44 has a required temperature equal to or higher than the softening temperature T. Is reached, the fluid pressure actuator 16 is controlled so that the rod 18 moves forward at a constant speed. As a result, the first support 12 moves closer to the second support 14 at a constant speed, and the second end 20b (tip) of the cylindrical holding member 20 holding the molded body U is set. However, it comes to enter the inside of the member 36 from the insertion port 38 of the cylindrical guide member 36 (FIG. 6A).
[0027]
Then, when the cylindrical holding member 20 is guided and advanced by the cylindrical guide member 36 and the second end portion 20b of the cylindrical holding member 20 reaches substantially the middle of the induction coil 50, the state shown in FIG. As shown, the tip of the piercing member 44 held at a temperature equal to or higher than the softening temperature T of the molded body U comes into contact with and is pressed at substantially the center of the side end surface of the molded body U. The body U becomes softened or melted from the site where the piercing member 44 comes into contact. Further, when the first support 12 is moved close to the second support 14 at a constant speed (when the formed body U is pressed against the perforated rod 42 with a constant pressure), the first support 12 is fixed to the second support 14. The piercing rod 42 gradually enters along the central axis in the longitudinal direction of the molded body U while the piercing member 44 presses and contacts the inside of the molded body U (FIG. 6C).
[0028]
When the first support 12 moves by a predetermined stroke amount and stops, the piercing member 44 protrudes from the other side end surface of the molded body U as illustrated in FIG. The piercing rod 42 completely penetrates the molded body U. Then, since the heated piercing member 44 enters the recess 28, the rod member 46 that is hardly heated comes to be located inside the molded body U, and is in a softened or melted state. The inner wall surface of the body U is cooled to promote curing.
[0029]
When the first support 12 is stopped, an alternating current having a predetermined frequency corresponding to the heat insulation condition is immediately supplied from the alternating current supply source to the induction coil 50 to switch the punching member 44 to the heat insulation state. Then, at an appropriate time, the fluid pressure actuator 16 is controlled so that the rod 18 is retracted, and the first support 12 is moved away from the second support 14 at a constant speed, and the perforated rod that has penetrated the molded body U. 42 is pulled out from the molded body U (FIG. 8). As a result, the through hole S1 is formed in the portion where the piercing rod 42 was present, and the formation of the hollow cylindrical body U1 illustrated in FIG. 9B is completed.
[0030]
[Example of drilling test]
The applicant of the present application conducted a drilling test under the following conditions using the drilling machine 10 having the above-described configuration.
1. Dimensions of molded body U and hollow cylindrical body U1
・ Total length L = 400mm
・ Outer diameter D = 16mm
・ Material = Polyurethane (Hardness: 20 degrees on Asker C scale)
・ Inner diameter B of through-hole S1 = 8mm
2. Specifications of drilling machine 10
Induction coil 50 inner diameter G = 32 mm
-Frequency applied to induction coil 50: 25 KHz
-Applied power to the induction coil 50: 10 kW
・ Applied current to induction coil 50: 2A when keeping warm
When drilling 5A
・ Outer diameter F2 of the perforated member 44 = 7.5 mm
-Transfer speed (drilling speed) of the first support 12: 2 m / min
[0031]
Thus, for the molded body U made of a relatively hard polyurethane of 20 degrees on the Asker C scale, the total length L = 400 mm and the inner diameter B = 8 mm along the longitudinal central axis of the molded body U. When the through hole S1 was drilled, the through hole S1 could be drilled in about 20 seconds. In addition, it has been demonstrated that the relatively long and small through-hole S1 can be drilled in a short time without bending.
[0032]
In this way, the punching machine 10 of the embodiment uses the induction heat generation principle to cause the punching member 44 arranged at the tip of the punching rod 42 to generate dielectric heat above the softening temperature T of the molded body U. Since the through-hole S1 or the bottomed hole S2 is formed by pressing the member 44 against the molded body U, even if the molded body U is formed from a relatively hard synthetic resin, a short time is required. In addition, the drilling operation can be completed without bending, and the processing application range can be expanded as compared with a conventional drilling machine. Further, when the through-hole S1 or the bottomed hole S2 is drilled in the molded body U, there is almost no wear of the drilling member 44, so that it is not necessary to frequently replace and maintain the drilling member 44, and processing efficiency. Can be improved and the processing cost can be reduced.
[0033]
As described above, the punching machine 10 of the embodiment continuously energizes the induction coil 50 with a predetermined alternating current continuously from the alternating current supply source, so that only the punching member 44 is always above the softening temperature T. Therefore, the long or narrow through hole S1 or the bottomed hole S2 can be suitably drilled. Moreover, since the through hole S1 or the bottomed hole S2 can be drilled simply by making the molded body U lightly press contact with the drilling member 44, the load applied to the drilling rod 42 is reduced. Thus, it is possible to prevent the straight through-hole S1 or the bottomed hole S2 from being drilled.
[0034]
In the punching machine 10 of the embodiment, the rod member 46 in the punching rod 42 is a hollow body, the through hole 66 is drilled in the heat insulating member 60, and the temperature sensor 68 is attached inside the punching member 44. Therefore, the temperature control and management of the piercing member 44 can be performed accurately.
[0035]
The induction heat generation temperature of the piercing member 44 is based on the principle of induction heat generation: (1) Increase / decrease setting of power and frequency of alternating current supplied to the induction coil 50, (2) Number of turns and diameter of the induction coil 50 (inner diameter) It can be appropriately changed and adjusted by setting the size G).
[0036]
Further, the perforating member 44 is not limited to the outer shape and size exemplified in the above embodiment, and when the molded body U is softened or melted efficiently when pressed against the molded body U, The shape may be a shape that can smoothly enter the molded body U, and may be, for example, a conical shape or a cylindrical shape.
[0037]
In the punching machine 10 of the above-described embodiment, the first support 12 for holding the molded body U is configured so as not to rotate around the axis line along the approaching / separating direction of both the supports 12 and 14. However, the first support 12 may be disposed so as to be rotatable about the axis. That is, when the first support 12 is configured to be rotatable, the molded body U set and held on the cylindrical holding member 20 of the first support 12 is rotated at a required rotation speed (for example, 100 to 150 rpm). Under the rotation, the piercing member 44 of the piercing rod 42 is allowed to enter the molded body U, so that the through hole S1 or the bottomed hole S2 can be formed. If the molded body U is rotated in this way, the tip of the piercing member 44 attached to the tip of the piercing rod 42 is always directed to the center of rotation of the molded body U, and has a long or small diameter. When drilling the through hole S1 or the bottomed hole S2, a drilling operation without bending can be performed.
[0038]
Further, in the punching machine 10 of the embodiment, the punching rod 42 for drilling the through-hole S1 or the bottomed hole S2 in the molded body U is centered on the axis along the approaching / separating direction of both supports 12 and 14. Although an example of a configuration that does not rotate is illustrated, the perforating rod 42 may be disposed so as to be rotatable about the axis. That is, when the perforated rod 42 is configured to be rotatable, a required rotational speed (for example, 100 to 150 rpm) is applied to the molded body U that is set and held on the cylindrical holding member 20 of the first support 12. ), The through hole S1 or the bottomed hole S2 can be formed while the piercing member 44 of the piercing rod 42 rotated in the step is inserted. If the piercing rod 42 is rotated in this manner, the piercing member 44 attached to the tip of the piercing rod 42 can easily enter the molded body U, and the long or small diameter through hole S1 or bottomed hole S2 is obtained. When drilling, it is possible to carry out drilling work without bending.
[0039]
Note that only one of the first support 12 and the perforating rod 42 may be configured to rotate, or both may be configured to rotate simultaneously. Further, if the first support 12 and the piercing rod 42 can be rotated in both directions, for example, the piercing operation is performed while rotating forward / reversely for every required time (for each required number of rotations). Thus, further efficiency and high accuracy can be expected when the through hole S1 or the bottomed hole S2 is formed.
[0040]
Furthermore, in the said Example, although the said 1st support body 12 and the 2nd support body 14 were arrange | positioned in a horizontal state and illustrated the horizontal operation | movement drilling machine 10 which moves to a horizontal direction mutually, it moved apart. The first support body 12 and the second support body 14 may be arranged in a vertical state so as to be a vertical operation type drilling machine 10 that moves in the vertical direction toward and away from each other. In the case of such a vertical operation type punch, the molded body U that is set and held in the cylindrical holding member 20 of the first support 12 is bent in a direction perpendicular to the longitudinal central axis by gravity. Inconvenience can be appropriately avoided.
[0041]
Furthermore, in the punching machine 10 of the embodiment, if the rod member 46 is detachably mounted on the second support 14, the punching member 44 and the heat insulating member 60 are attached to the rod member 46. Therefore, the rod member 46 having the through-hole S1 formed in the molded body U is removed from the second support 14 without being pulled out from the through-hole S1, and the hollow cylindrical body U1 is left as it is. It is also possible to install through. For this reason, in the case where the shaft member is configured to penetrate through a cylindrical roller body like the roller described above, the shaft member is assembled to the second support 14 as the rod member 46. If the above-described drilling operation is performed with the heat insulating member 60 and the punching member 44 assembled at the tip of the shaft member, the step of drilling the through hole S1 in the molded body U and the through hole S1 are performed. It is possible to simultaneously perform the mounting operation of the shaft member.
[0042]
Moreover, in the said Example, by setting the movement stroke of the 1st support body 12 so that the said perforation member 44 may protrude completely from the molded object U, it penetrates to this molded object U along the center axis line of the longitudinal direction. The case where the hole S1 is formed and the hollow cylindrical body U1 of FIG. 9B is formed is illustrated. However, as described above, the stroke amount of the first support 12 by the fluid pressure actuator 16 is set shorter than this, and the piercing member 44 protrudes from the molded body U when the proximity movement of the first support 12 is completed. If not set, a bottomed hole S2 having a required length along the central axis in the longitudinal direction is formed in the formed body U, and the bottomed hollow cylindrical body U2 illustrated in FIG. 9C is formed. It is possible. That is, in the drilling machine 10 of the embodiment, by adjusting the set stroke amount of the first support 12 by the fluid pressure actuator 16, in other words, the stroke amount when the first support 12 and the second support 14 are moved in proximity. Based on this setting, the through hole S1 or the bottomed hole S2 can be selectively drilled in the molded body U.
[0043]
Further, in the embodiment, the second support 14 is fixedly arranged and the first support 12 is movably arranged so that the first support 12 is attached to the second support 14. An example of a drilling machine in which both supports 12 and 14 can be moved closer to and away from each other by reciprocal movement is illustrated. However, on the contrary, the second support 14 is movably disposed and the first support 12 is fixedly disposed, and the second support 14 is fixed to the first support 12. By reciprocating, the through holes or the bottomed holes are suitably drilled in the molded body U set on the first support body 12 even if the both support bodies 12 and 14 can be moved closer to and away from each other. Can be established.
[0044]
In addition, in the said Example, the perforation suitable for shape | molding the through-hole S1 or the bottomed hole S2 along the center axis line of the longitudinal direction in the solid cylindrical-shaped molded object U illustrated to Fig.9 (a). Although the machine 10 has been illustrated, the shape of the molded body U to be perforated is not limited to this, and can be various outer shapes. Further, in the case of the molded body U having a different outer shape, the shapes of the cylindrical holding member 20 of the first support 12, the cylindrical guide member 36 of the second support 14, the induction coil 50, etc. Is changed.
[0045]
On the other hand, in the said Example, although the case where the through-hole S1 or the bottomed hole S2 was pierced in the molded object U made from urethane foam which carried out foam molding of polyurethane, according to the punching machine 10 of this Example, for example, The through-hole S1 or the bottomed hole S2 can be drilled in a so-called solid type molded body U that has been injection-molded. However, in the case of a solid-type molded body U, it is desirable to set the temperature of the perforated member 44 to a melting temperature higher than the softening temperature T, and to discharge the molten resin melted by the perforated member 44 May need to be performed. In such a case, for example, (1) a method of extending a groove along the longitudinal direction on the outer surface of the rod member 46 and sequentially circulating and discharging the molten resin using the groove, (2) the rod member Since 46 is a hollow body, a method of allowing molten resin to pass through the internal space of the rod member 46 and sequentially circulating and discharging it can be implemented. The molded body U can be formed with the through hole S1 or the bottomed hole S2 regardless of whether it is molded from a thermoplastic synthetic resin or molded from a thermosetting synthetic resin. is there.
[0046]
Further, when the molded body U is the solid type described above, the structure of the first support 12 can be changed. That is, since it is difficult for bending deformation or the like to occur in the molded body U, instead of the cylindrical holding member 20, a holding configuration is adopted in which only the end of the molded body U is gripped, and the molded body U is You may make it enter into the cylindrical guide member 36. FIG.
[0047]
【The invention's effect】
  As explained above, the drilling machine according to the present invention.And manufacturing method of roller with shaft using this punching machineAccording to the above, by using the induction heat generation principle, the perforated member disposed at the tip of the perforated rod is caused to generate dielectric heat at a temperature higher than the softening temperature of the molded body, and under this condition, the perforated member is pressed and brought into contact with the molded body. A hole or a bottomed hole is formed. For this reason, even if the molded body is formed of a relatively hard synthetic resin, the through hole or the bottomed hole can be drilled in a short time without bending, and the processing application range compared to a conventional drilling machine There is an advantage that can be expanded. In addition, since there is almost no wear of the perforated member when drilling a through hole or a bottomed hole in the molded body, it is not necessary to frequently perform replacement and maintenance work of the perforated member. There are effects such as reduction.
[Brief description of the drawings]
FIG. 1 is a perspective view schematically showing an overall configuration of a drilling machine according to a preferred embodiment of the present invention.
FIG. 2 is an explanatory view showing a first support body and a second support body constituting the drilling machine of the embodiment illustrated in FIG. 1 and a molded body preformed into a solid cylindrical body in a perspective state. is there.
FIG. 3 is an explanatory view showing a first support body and a second support body constituting the drilling machine of the embodiment illustrated in FIG. 1 and a molded body preformed into a solid cylindrical body in a sectional state. is there.
FIG. 4 (a) moves the first support close to the second support, and sets the piercing rod of the piercing device provided on the second molded body to the cylindrical holding member provided on the first support. FIG. 5 is a plan sectional view showing a state in which a through-hole is formed in the molded body by penetrating the held molded body, and (b) is a side showing a state in which a through-hole is formed in the molded body It is sectional drawing.
FIG. 5 is an explanatory view showing a piercing rod and an induction coil constituting the piercing device in a cross-sectional state.
FIG. 6 is an explanatory view showing, over time, an initial stage of a drilling operation in which the first support is moved close to the second support, in which (a) shows the drilling member of the drilling rod in contact with the molded body. (B) shows a state where the perforated member starts to contact the side end surface of the molded body, and (c) shows a state where the perforated member pressed against the molded body enters the molded body. It shows the state that started.
FIG. 7 is an explanatory view showing a state in which the piercing member has penetrated the molded body by moving the first support body by a predetermined stroke amount.
FIG. 8 shows a state in which a hollow cylinder having a through-hole is formed along the central axis in the longitudinal direction by pulling the piercing rod from the molded body by moving the first support away from the second support. It is explanatory drawing.
9A is a perspective view of a molded body preformed into a solid cylindrical body, and FIG. 9B is a perspective view of the molded body illustrated in FIG. It is a perspective view of the hollow cylindrical body shape | molded by drilling a through-hole, (c) is a bottomed hole of required length along the central axis of the longitudinal direction in the molded object illustrated to (a). It is a perspective view of the bottomed hollow cylindrical body shape | molded by drilling.
[Explanation of symbols]
12 First support
14 Second support
40 Drilling device
42 Drilling rod
44 Perforated member
46 Rod member
48 Coating layer
50 induction coil
58 Coating layer
60 Thermal insulation member
S1 Through hole
S2 Bottomed hole
T softening temperature
U molded body

Claims (11)

成樹脂を材質とする成形体(U)に、貫通孔(S1)または有底孔(S2)を穿設する穿孔機であって、
前記成形体(U)をセット保持可能な第1支持体(12)と、
前記第1支持体(12)と相互に近接および離間可能に設置され、前記成形体(U)に前記貫通孔(S1)または有底孔(S2)を穿設する穿孔装置(40)を備える第2支持体(14)とからなり、
前記穿孔装置(40)は、
前記両支持体(12,14)の近接・離間方向に整列して該第2支持体(14)に配設され、ロッド部材(46)および該ロッド部材(46)の先端に取り付けられた磁性体を材質とする穿孔部材(44)を備える穿孔ロッド(42)と、
前記穿孔部材(44)を囲繞する位置に設置されて前記成形体(U)の通過を許容し、該穿孔部材(44)を該成形体(U)の軟化温度(T)以上に誘導発熱させる誘導コイル(50)とからなり、
前記穿孔部材(44)を誘導発熱させて前記軟化温度(T)以上の温度に保持したもとで、前記成形体(U)をセットした前記第1支持体(12)および前記第2支持体(14)を相互に近接移動させ、該穿孔部材(44)を該成形体(U)に押圧接触させることで前記貫通孔(S1)または有底孔(S2)を穿設し得るよう構成し
前記ロッド部材(46)は、前記成形体(U)に前記貫通孔(S1)または有底孔(S2)を穿設した後に、前記第2支持体(14)から取外して該成形体(U)にそのまま装着可能となっている
ことを特徴とする穿孔機。
To you the synthetic resin material forming feature (U), a through-hole (S1) or drilling machine for drilling a bottomed hole (S2),
A first support (12) capable of holding the molded body (U) as a set;
A punching device (40) is provided so as to be close to and away from the first support (12), and drills the through hole (S1) or the bottomed hole (S2) in the molded body (U). A second support (14),
The perforating device (40)
The magnets attached to the rod member (46) and the tip of the rod member (46) are arranged on the second support (14) so as to be aligned in the approaching / separating direction of the both supports (12, 14). Bei obtain piercing rod piercing member (44) to the body with the material (42),
It is installed at a position surrounding the perforated member (44) to allow the molded body (U) to pass through, and the perforated member (44) is induced to generate heat above the softening temperature (T) of the molded body (U). It consists of an induction coil (50),
The first support body (12) and the second support body on which the molded body (U) is set while the perforated member (44) is heated by induction heat and maintained at a temperature equal to or higher than the softening temperature (T). The through hole (S1) or the bottomed hole (S2) can be drilled by moving (14) close to each other and pressing the punch member (44) against the molded body (U). ,
The rod member (46) is removed from the second support (14) after the through hole (S1) or the bottomed hole (S2) is formed in the molded body (U), and the molded body (U ), Which can be mounted as it is .
前記ロッド部材(46)は、非磁性体から形成される請求項1記載の穿孔機。The drilling machine according to claim 1 , wherein the rod member (46) is formed of a non-magnetic material . 前記穿孔部材(44)は、常に前記誘導コイル(50)で発生した磁束中に存在するように配設される請求項1または2記載の穿孔機。The punching machine according to claim 1 or 2, wherein the punching member (44) is arranged so as to always exist in the magnetic flux generated by the induction coil (50) . 前記穿孔部材(44)と前記ロッド部材(46)との間に断熱部材(60)を介在させてある請求項1〜3の何れか一項に記載の穿孔機。The punching machine according to any one of claims 1 to 3, wherein a heat insulating member (60) is interposed between the punching member (44) and the rod member (46) . 前記第1支持体(12)は、長手方向に分離可能で組付固定手段により相互に組付け可能な第1半体(20A)および第2半体(20B)からなる筒状保持部材(20)を有し、該筒状保持部材(20)に内部画成した収容部(22)に円柱体状の前記成形体(U)がセット保持され、
前記第2支持体(14)は、前記穿孔部材(44)による成形体(U)への前記貫通孔(S1)または有底孔(S2)の穿設時に、前記筒状保持部材(20)を収容保持しつつ案内する筒状ガイド部材(36)を有している請求項1〜4の何れか一項に記載の穿孔機。
The first support (12) is a cylindrical holding member (20) composed of a first half (20A) and a second half (20B) that are separable in the longitudinal direction and can be assembled to each other by an assembly fixing means. ), The cylindrical shaped molded body (U) is set and held in the accommodating portion (22) defined internally in the cylindrical holding member (20),
The second support (14) is formed by the cylindrical holding member (20) when the through-hole (S1) or the bottomed hole (S2) is formed in the molded body (U) by the punching member (44). The drilling machine according to any one of claims 1 to 4, further comprising a cylindrical guide member (36) for guiding and holding the container .
前記成形体(U)は、ウレタンフォームからなる請求項1〜5の何れか一項に記載の穿孔機。The punching machine according to any one of claims 1 to 5, wherein the molded body (U) is made of urethane foam . 合成樹脂を材質とする成形体(U)に、貫通孔(S1)または有底孔(S2)を穿設してシャフト付きローラを製造する方法であって、A method of manufacturing a roller with a shaft by drilling a through hole (S1) or a bottomed hole (S2) in a molded body (U) made of synthetic resin,
第1支持体(12)に前記成形体(U)をセット保持し、  The molded body (U) is set and held on the first support (12),
前記第1支持体(12)と相互に近接および離間可能に設置された第2支持体(14)に設けられて、磁性体を材質とする穿孔部材(44)を先端に取り付けたロッド部材(46)を備える穿孔ロッド(42)を、第1支持体(12)に対して両支持体(12,14)の近接・離間方向に整列し、  A rod member (44) attached to the tip of a piercing member (44) made of a magnetic material provided on a second support (14) installed so as to be close to and away from the first support (12). 46) is aligned with the first support (12) in the approaching / separating direction of both supports (12, 14),
前記穿孔部材(44)を囲繞する位置に設置されて前記成形体(U)の通過を許容する誘導コイル(50)によって該穿孔部材(44)を誘導発熱させて、該穿孔部材(44)を該成形体(U)の軟化温度(T)以上の温度に保持し、  An induction coil (50) installed at a position surrounding the piercing member (44) and allowing the molded body (U) to pass therethrough induces heat generation of the piercing member (44), thereby causing the piercing member (44) to Hold the molded body (U) at a temperature equal to or higher than the softening temperature (T),
前記成形体(U)をセットした前記第1支持体(12)および前記第2支持体(14)を相互に近接移動させ、該穿孔部材(44)を該成形体(U)に押圧接触させることで前記貫通孔(S1)または有底孔(S2)を穿設し、  The first support body (12) and the second support body (14) on which the molded body (U) is set are moved close to each other, and the piercing member (44) is pressed into contact with the molded body (U). By drilling the through hole (S1) or the bottomed hole (S2),
前記成形体(U)に前記貫通孔(S1)または有底孔(S2)を穿設した後に、前記ロッド部材(46)を前記第2支持体(14)から取外して該成形体(U)にそのまま装着するようにした  After forming the through hole (S1) or the bottomed hole (S2) in the molded body (U), the rod member (46) is removed from the second support body (14), and the molded body (U) I tried to put it on
ことを特徴とするシャフト付きローラの製造方法。A method of manufacturing a roller with a shaft,
前記穿孔部材(44)と前記ロッド部材(46)との間に断熱部材(60)を介在させてある請求項7記載のシャフト付きローラの製造方法。The method for manufacturing a roller with a shaft according to claim 7, wherein a heat insulating member (60) is interposed between the perforated member (44) and the rod member (46). 前記ロッド部材(46)は、非磁性体から形成される請求項7または8記載のシャフト付きローラの製造方法。The method for manufacturing a roller with a shaft according to claim 7 or 8, wherein the rod member (46) is formed of a non-magnetic material. 前記第1支持体(12)は、長手方向に分離可能で組付固定手段により相互に組付け可能な第1半体(20A)および第2半体(20B)からなる筒状保持部材(20)を有し、該筒状保持部材(20)に内部画成した収容部(22)に前記成形体(U)がセット保持される請求項7〜9の何れか一項に記載のシャフト付きローラの製造方法。The first support (12) is a cylindrical holding member (20) composed of a first half (20A) and a second half (20B) that are separable in the longitudinal direction and can be assembled to each other by an assembly fixing means. The molded body (U) is set and held in a housing part (22) defined inside the cylindrical holding member (20). Roller manufacturing method. 前記穿孔部材(44)は、常に前記誘導コイル(50)で発生した磁束中に存在するように配設される請求項7〜10の何れか一項に記載のシャフト付きローラの製造方法。The method for manufacturing a roller with a shaft according to any one of claims 7 to 10, wherein the perforating member (44) is arranged so as to always exist in a magnetic flux generated by the induction coil (50).
JP2003124392A 2003-04-28 2003-04-28 Punching machine and method of manufacturing roller with shaft Expired - Fee Related JP4281051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003124392A JP4281051B2 (en) 2003-04-28 2003-04-28 Punching machine and method of manufacturing roller with shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003124392A JP4281051B2 (en) 2003-04-28 2003-04-28 Punching machine and method of manufacturing roller with shaft

Publications (2)

Publication Number Publication Date
JP2004322296A JP2004322296A (en) 2004-11-18
JP4281051B2 true JP4281051B2 (en) 2009-06-17

Family

ID=33501994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003124392A Expired - Fee Related JP4281051B2 (en) 2003-04-28 2003-04-28 Punching machine and method of manufacturing roller with shaft

Country Status (1)

Country Link
JP (1) JP4281051B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012006410B4 (en) * 2012-03-30 2013-11-28 Heraeus Quarzglas Gmbh & Co. Kg Process for producing a quartz glass hollow cylinder

Also Published As

Publication number Publication date
JP2004322296A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
KR101718967B1 (en) 3d printer having multiple induction heating head
JP2008529858A (en) Mold equipment for injection molding machines
CN105636716A (en) Device for forming metals
JP4281051B2 (en) Punching machine and method of manufacturing roller with shaft
CN110691914B (en) Fastening method and fastening device
CN110039690A (en) A kind of cable accessory silicon rubber heating sulfurizing mould
EP3808860B1 (en) Inductive hot crimping apparatus
CN107584756A (en) Heat-fusible wire rod broken end fusion splicer
JP2005161735A (en) Method and apparatus for bending resin tube
JP2014159037A (en) Hot processing device for steel pipe
CN212917063U (en) Constant temperature hot extrusion feed cylinder
CN112103754A (en) Automatic wire stripping machine
WO2007058155A1 (en) Swaging method and swaging apparatus
JP2000503258A (en) Apparatus for heating press tool, press having such apparatus, and manufacturing method
US20070235416A1 (en) Hole forming method and device
CN112714526A (en) Electromagnetic induction coil
CN210907714U (en) Hardware stamping die with riveting function
JP3257882B2 (en) Resin tube tip processing equipment
JP2002283355A (en) Mold for molding resin
KR101174968B1 (en) Apparatus and method for holding blank using magnetic force, and manufacturing method for the same
CN110691688B (en) Fastening device and method for determining quality of fastening device
CN216443053U (en) Be used for sharp forming device of plastics pipe
TWI363743B (en) Demolding mechanism and method
KR102103458B1 (en) A spacer automatic mounting and separating apparatus of a die casting device
CN117691203A (en) Cell ironing needle assembly, cell ironing hole device and cell ironing hole method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees