JP4280021B2 - Simple assay for enterohemorrhagic Escherichia coli - Google Patents

Simple assay for enterohemorrhagic Escherichia coli Download PDF

Info

Publication number
JP4280021B2
JP4280021B2 JP2002094266A JP2002094266A JP4280021B2 JP 4280021 B2 JP4280021 B2 JP 4280021B2 JP 2002094266 A JP2002094266 A JP 2002094266A JP 2002094266 A JP2002094266 A JP 2002094266A JP 4280021 B2 JP4280021 B2 JP 4280021B2
Authority
JP
Japan
Prior art keywords
verotoxin
escherichia coli
coli
antibody
sensitized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002094266A
Other languages
Japanese (ja)
Other versions
JP2003284588A (en
Inventor
祐弘 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Seiken Co Ltd
Original Assignee
Denka Seiken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Seiken Co Ltd filed Critical Denka Seiken Co Ltd
Priority to JP2002094266A priority Critical patent/JP4280021B2/en
Publication of JP2003284588A publication Critical patent/JP2003284588A/en
Application granted granted Critical
Publication of JP4280021B2 publication Critical patent/JP4280021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、腸管出血性大腸菌の検出法に関する。具体的には、抗ベロ毒素抗体を感作させた担体粒子と大腸菌とを反応させ、大腸菌菌体のベロ毒素を検出する方法に関する。
【0002】
【従来の技術】
腸管出血性大腸菌は、ベロ毒素を産生することを特徴とし、出血性大腸炎、溶血性尿毒症症候群(HUS)による急性腎不全、血栓性血小板減少性紫斑病(TTP)等を引き起こし、しばしば感染者に死をもたらす。従って、腸管出血性大腸菌の感染の有無を早期に診断し、適切な治療を施し重篤な症状への移行を防止するために、腸管出血性大腸菌の感染の有無を短時間かつ正確に検出する必要がある。
【0003】
大腸菌はその表面LPS抗原のO抗原の血清型により約170種類に分類され、そのうちの約90種類がベロ毒素を産生する。ベロ毒素を産生する腸管出血性大腸菌の血清型は、O157:H7、O157:NM、O26:H11、O91:H21、O111:NM、O113:H21、O145:NM等がある。従来大腸菌O抗原の血清型を測定し、上記血清型の大腸菌が検出された場合、腸管出血性大腸菌に感染していると診断を下す方法があった(特開平10-339731号公報等)。しかし、腸管出血性大腸菌の血清型を有する大腸菌のすべての菌体がベロ毒素を産生しているのではなく、ある血清型を有する腸管出血性大腸菌のうちにベロ毒素を産生する菌体としない菌体がある。例えば、大腸菌O157は約95%がベロ毒素を産生し、他の血清型の大腸菌ではベロ毒素を産生する割合はもっと低い。従って、血清型からだけではベロ毒素産生大腸菌すなわち腸管出血性大腸菌か否かは判断できない。
【0004】
これに対して、ベロ毒素に対する抗体等を用いてベロ毒素の産生を検出することにより腸管出血性大腸菌の感染を間接的に診断する方法もあった。この方法においては、大腸菌を培養し、培養上清または菌体抽出液中の遊離したベロ毒素を検出する。しかし、ベロ毒素の分泌量は少なく培養上清中に検出できる程度のベロ毒素が産生分泌されるには、1日から数日の培養を要し、また抽出にも時間と手間がかかっていた。ベロ毒素を産生し得る大腸菌は、全大腸菌の一部に過ぎないので、ベロ毒素を検出する方法では、最初に糞便等の検体から大腸菌を分離培養して血清型を検出し、ついでベロ毒素を産生し得る大腸菌についてのみさらに培養し、ベロ毒素を検出していた。このような2段階の方法によれば、全ての大腸菌についてベロ毒素の検出を行う必要がないという利点があるものの、2回の培養を要するので、検出までにさらに時間を要していた。この方法は、菌体より一旦ベロ毒素を遊離させ単離するため、ベロ毒素を産生している菌体を直接検出しているのではなかった。特に、ベロ毒素は、2種類のタンパク質が6個集合して、はじめて有毒性を示すので、遊離したベロ毒素を検出する免疫化学的な方法は、個々のタンパク質に対して反応するため、時として、誤った測定結果を与える。また、検体の取り違え等により検出の正確度が低下し得るという問題があった。菌体より遊離したベロ毒素の検出法としては、逆受身ラテックス凝集法、EIA法、イムノクロマト法等があった。
【0005】
また、ベロ毒素遺伝子をPCR等の遺伝子増幅等により増幅し、ベロ毒素遺伝子を検出する方法もあった(特開平07-008280、特開平11-009281、特開平11-332599、特開2001-095576号公報)。しかし、この方法においては擬陽性を防ぐために検体の前処理を必要とするため、操作が煩雑であった。
【0006】
【発明が解決しようとする課題】
本発明は、ベロ毒素産生大腸菌すなわち腸管出血性大腸菌の検出に関する。具体的には、ベロ毒素を産生している腸管出血性大腸菌を直接ラテックス凝集法により検出する方法に関する。
【0007】
【課題を解決するための手段】
本発明者らは、上述の従来法の問題点を解決し、短時間で正確に腸管出血性大腸菌を検出する方法について鋭意検討を行った結果、抗ベロ毒素抗体を用いたスライド凝集法により、ベロ毒素を菌体から遊離させることなく、検体に菌体そのものを用いて、直接、腸管出血性大腸菌表面にあるベロ毒素を検出することにより、腸管出血性大腸菌を迅速かつ正確に検出し得る本発明を完成させるに至った。
上述のように、従来は、ベロ毒素を特異的に検出しようとする場合、腸管出血性大腸菌型ベロ毒素を遊離させ菌体と分離し、抗ベロ毒素抗体を感作させたラテックス粒子を用いた逆受身ラテックス凝集法等により検出していた。
【0008】
本発明者らは、ベロ毒素を遊離させずに大腸菌菌体そのものを検体として大腸菌表面に存在するベロ毒素を検出する方法について検討を行った。腸管出血性大腸菌により産生されたベロ毒素は、大腸菌の細胞壁と細胞膜の間のペリプラズミックスペースに貯えられる。ペリプラズミックスペースに貯えられたベロ毒素は、表面に露出しにくいため、菌体上のベロ毒素を抗体を用いて直接検出することは困難であった。本発明者等は、大腸菌の細胞壁を部分的に壊すことにより、ベロ毒素を露出させ、抗ベロ毒素抗体で測定できるようになることを見出し、本発明を完成させるに至った。
【0009】
すなわち、本発明は以下の通りである。
(1) 抗ベロ毒素抗体感作粒子と大腸菌菌体を反応させ、反応混合物の凝集の程度を測定することを含む腸管出血性大腸菌の検出方法、
(2) 大腸菌菌体をポリミキシンBで処理することを含む(1)の腸管出血性大腸菌の検出方法、
(3) 粒子がラテックス粒子である(1)または(2)の腸管出血性大腸菌の検出方法、
(4) ラテックス粒子の直径が0.1〜1μmである(3)の腸管出血性大腸菌の検出方法、
(5) スライド凝集法である(3)または(4)の腸管出血性大腸菌の検出方法、
(6) 抗ベロ毒素抗体感作粒子を含む、大腸菌菌体上のベロ毒素を検出するための腸管出血性大腸菌検出キット、および
(7) 感作粒子が感作ラテックス粒子である(6)の腸管出血性大腸菌検出キット。
【0010】
【発明の実施の形態】
以下、本発明について詳細に説明する。
1.抗ベロ毒素抗体感作粒子の調製
本発明は、抗ベロ毒素抗体を担体粒子に感作、すなわち結合または吸着させ、該感作粒子と腸管出血性大腸菌菌体を混合して反応させ、凝集体を作らせ、該凝集体の形成の有無により大腸菌の壁内に存在するベロ毒素を直接検出する。
【0011】
抗ベロ毒素抗体を感作する担体粒子としては、不溶性で、非特異的な反応を起こさず、かつ安定である限り、いかなる担体を使用してもよい。例えば、ラテックス粒子、ベントナイト、コロジオン、カオリン、固定羊赤血球等を使用することができるが、ラテックス粒子を使用するのが好ましい。ラテックス粒子としては、例えば、塩化ビニル、アクリロニトリル、酢酸ビニル、アクリル酸エステル、メタクリル酸エステル等のビニル系モノマーの単一重合体及び/又は共重合体の粒子、ポリスチレンラテックス粒子、スチレン-ブタジエン共重合体、メチルメタクリレート−ブタジエン共重合体等のブタジエン系共重合体ラテックス粒子、ポリビニルトルエンラテックス粒子等が挙げられる。なかでも、各種タンパク質、又は、ポリペプチド類等の吸着性に優れており、かつ生物学的活性を長期間安定に保持できる点で、ポリスチレン系のラテックス粒子が好ましい。上記ラテックス粒子の粒径は、好ましくは0.01〜1μmであり、さらに好ましくは0.1〜1μmである。粒径が0.01μm未満であると、微凝集が多発し、見かけの粒径が不均一となり、同時再現性等に悪影響が及ぶことがあり、また、抗体の数に対して充分な凝集が得られないことがある。粒径が1μmを超えると、自己凝集が進み、分散性が低下する。ラテックス粒子を使用する場合には、特別な処理をしなくても容易に抗体を担体に感作できるとともに、対象菌体と担体の反応により生じる凝集像が明瞭となり、対象菌体の担体に対する反応性を容易かつ精度よく判別できる点でさらに有利である。
【0012】
抗ベロ毒素抗体は、腸管出血性大腸菌よりベロ毒素を精製して、精製ベロ毒素を免疫原として公知の方法により得ることができる。ベロ毒素の精製は、例えばItoら、Microbial Pathogenesis 1988; 5: 189-195、Nodaら、Microbial Pathogenesis 1987; 2: 339-349等の方法で行うことができる。また、遺伝子工学的手法により作製した組換えベロ毒素を用いることもできる。ベロ毒素はベロ毒素1型(VT1)およびベロ毒素2型(VT2)の2種類が存在し、VT1のみまたはVT2のみを産生する腸管出血性大腸菌が存在するので、VT1を認識する抗体およびVT2を認識する抗体のどちらも調製する必要がある。VT1およびVT2を別々に免疫原として抗体を作製し、混合して用いることもできるし、両方を混合して免疫原として一度に両方を作製してもよい。また、抗VT1抗体と抗VT2抗体を別々に調製し、別々にラテックス粒子を感作して用いてもよい。この場合、各々の感作ラテックス粒子によりVT1とVT2を別々に検出し得る。VT1感作ラテックス粒子およびVT2感作ラテックス粒子を混合して用いてVT1およびVT2を同時に検出することもできる。また、VT1およびVT2はサブユニットAおよびBからなっているので、サブユニットを免疫原として用いてもよい。抗体はポリクローナル抗体でもモノクローナル抗体でもよい。ポリクローナル抗体は、精製したベロ毒素を免疫原として、ヤギ、ウサギ等の動物を免疫し、抗血清を得て抗血清から硫安塩析法、DEAEセルロース等の陰イオン交換体を利用するイオン交換クロマトグラフィー、分子量や構造によってふるいわける分子ふるいクロマトグラフィー、ヒドロキシアパタイトクロマトグラフィー、アフィニティークロマトグラフィー等の公知の方法を適宜に選択して、またはこれらを組み合わせることにより精製することができる。モノクローナル抗体は、ケーラーとミルステインの方法(Kohler, G. and Milstein, C., Nature, 256, 495-497, 1975)等の公知の方法により作製し得る。この際、精製したベロ毒素を免疫原として用いてもよいし、ベロ毒素を産生する腸管出血性大腸菌体をそのまま免疫原として用いても抗ベロ毒素モノクローナル抗体を得ることができる。上記免疫原で免疫したマウスの脾細胞またはリンパ節細胞とマウスのミエローマ細胞との細胞融合により得られるハイブリドーマを作製し、該ハイブリドーマの培養上清又は該ハイブリドーマを腹腔内に投与したマウスの腹水から調製することができる。被免疫動物は、マウスに限定されずラット、モルモット等も利用可能である。ミエローマ細胞は、一般に被免疫動物と同種の動物より得られたものを用いるが、異種間でも可能な場合がある。また、免疫されていない動物の脾細胞またはリンパ節をin vitroで免疫して、感作細胞を得ることもできる。ハイブリドーマのスクリーニングは、種々の免疫化学的方法で実施することができ、例えばELISA法、ウエスタンブロット法等が利用できる。抗体の精製が必要とされる場合は、上述の方法で精製することができる。また、市販のベロ毒素抗体を用いてもよい。市販の抗ベロ毒素抗体として例えば、バイロスタット社製のものが入手可能である。
【0013】
担体に抗体を感作する方法は、特に限定されない。例えば、抗体を担体に物理的に吸着させてもよいし、化学的に結合させてもよい。より具体的には、例えば、抗体と担体とを混和した後、30〜37℃で1〜2時間加温振盪することにより、抗体を担体に感作させることができる。更に、30〜37℃で1〜2時間加温振盪後、50℃、30分加温することが望ましい。担体に感作する抗体の量は、使用する担体の粒径に応じて適宜設定することができる。例えば、1重量%に調製したラテックス粒子懸濁液に0.1〜数mg/mLの抗体溶液を等量混合することによりラテックス粒子を感作し得る。抗体を担体に感作した後、担体表面上の未感作部分をウシ血清アルブミン、ヒト血清アルブミン、ウサギ血清アルブミン、卵白アルブミン等でブロッキングするのが好ましい。抗体を感作した担体は、対象菌株と反応させる時まで媒体分散液として保持しておくのが好ましい。この際、媒体としては、例えば、リン酸緩衝液、グリシン緩衝液等を使用することができる。モノクローナル抗体に感作した担体の含有量は、通常、媒体分散液に対して0.1〜1.0重量%とすることができるが、0.2〜0.5重量%とするのが好ましい。媒体中には、必要に応じてウシ血清アルブミン、ゼラチン、アラビアゴム等を添加してもよい。
【0014】
2.ラテックス凝集法
本発明の腸管出血性大腸菌検出法の検体としては、大腸菌に汚染されている試料を用いることができ、例えば、糞便、尿、血液、組織ホモジェネートなどを用いる。また、食品材料を用いてもよい。これらの検体の一部を採取し寒天培地上で培養する。この際、分離培地としてはDHL寒天やマッコンキー寒天などを用いることができる。
【0015】
6〜20時間培養後、寒天培地上に出現したコロニーを白金耳等で1〜3白金耳程度分を採取する。採取した大腸菌を大腸菌の細胞壁を溶解し得る試薬で処理し、細胞壁を破壊する。大腸菌の細胞壁を溶解し得る試薬として例えば、酵素、アルカリ溶液、ポリミキシンB溶液が挙げられる。ポリミキシンBを用いる場合は、1,000〜10,000 unit/mL、好ましくは3,000〜7,000 unit/mL、特に好ましくは4,000〜6,000 unit/mLの濃度で用いる。前記採取した大腸菌をポリミキシンB溶液中に懸濁させればよい。この際、反応を行わせるスライドガラス等の上にポリミキシンを数十μL、好ましくは10〜50μL滴下しておき、そこに採取した大腸菌を懸濁させればよい。
【0016】
大腸菌と抗ベロ毒素感作粒子との凝集反応は、スライドガラス上で行う。この場合、担体粒子の凝集程度は目視により測定することができる。また、プラスチックセル若しくはガラスセル内で行うこともできる。この場合、セル外部より可視光から近赤外域の光を照射し、吸光度変化又は散乱光の強度変化を検出して担体粒子の凝集の程度を測定する。凝集の測定は、例えば三菱化学株式会社のLPIA-S500ラテックス凝集全自動測定器、ロシュ・ダイアグノスティック・システムズ社のCOBAS FARA装置及びCOBAS MIRA装置、及び日立製作所の日立7070分析装置等を用いて行うことができる。
【0017】
凝集反応は、生理食塩液、pH5.0〜10の適当な緩衝液、例えば、リン酸緩衝液、ホウ酸緩衝液、トリス緩衝液等の溶液中で行わせればよい。この際、感作粒子と大腸菌との非特異的結合を抑制するために、TritonX-100、Tween20、Tween80等の適当な界面活性剤を添加してもよい。
【0018】
【実施例】
以下、実施例により、本発明を具体的に説明する。但し、本発明はこれらの実施例に限定されるものではない。
〔実施例1〕 感作粒子の調製
ラテックス粒子は、直径0.34μmのポリスチレンラテックス粒子を用いた(PROLABO社、estaporK035)。
ラテックス粒子への感作抗体は抗ベロ毒素ウサギ血清を精製ベロ毒素を結合させたアフィニティ カラムを用いて以下のようにして精製して得た精製抗体を用いた。
【0019】
A) 抗ベロ毒素血清作製方法
精製ベロ毒素1型または2型を下記スケジュールでウサギに接種し、採血した血液を1晩静置後、遠心上清を抗血清とした。
1週〜4週:精製ベロ毒素1型又は2型をアジュバントと混合しウサギ四肢皮下に毎週接種する。
5型〜8週:精製ベロ毒素1型又は2型をウサギ耳静脈に毎週接種する。
【0020】
B) 精製抗体作製方法
0.5M塩化ナトリウム含有0.075Mリン酸緩衝液(pH7.2)により5倍に希釈した抗ベロ毒素血清を精製ベロ毒素を結合して作製したアフィニティゲルに流し込み、抗ベロ毒素抗体を抗原抗体反応でゲルに結合させた後、2Mチオシアン酸ナトリウム水溶液により抗ベロ毒素抗体を溶出させた。次いで、この溶出液をPBSで平衡化したセファデックスG-25に加え、PBSで溶出し、精製抗体とする。
【0021】
精製した抗体を以下の方法でラテックス粒子へ感作した。
PBSで1重量%に調整したラテックス浮遊液に精製抗体溶液(1mg/mL)を等量混合し、37℃で1時間保温し更に50℃で30分間加温する。その後、0.5重量%ウシ血清アルブミン含有PBSを添加し16時間静置し、遠心によりラテックス粒子を集め0.5重量%アルブミン含有PBSに再浮遊して感作ラテックス液とする。
【0022】
〔実施例2〕 抗ベロ毒素抗体感作ラテックス粒子を用いた腸管出血性大腸菌の検出
大腸菌O26株、O1株、O18株、O157株、OUT株(ベロ毒素産生性株またはベロ毒素非産生株)をブレインハートインフュージョン寒天培地(DIFCO社製)上で培養した。
スライドグラスをガラス鉛筆で数区画に分割し、5,000unit/mLのポリミキシンB(ファイザー社製)を含む生理食塩液を各区画に25μL滴下した後、寒天培地上の上記大腸菌を白金耳で1白金耳分採取し、スライドグラス上のポリミキシンB溶液中に懸濁した。次いで、実施例1で作製した抗ベロ毒素抗体感作ラテックス粒子懸濁液を25μL添加し、スライドミキサーで5分間攪拌し凝集の形成状態を目視で観察し判定した。表1に結果を示す。
【0023】
【表1】

Figure 0004280021
【0024】
表1に示すように、ベロ毒素を産生する大腸菌は陽性となり、ベロ毒素を産生しない大腸菌は陰性となった。
なお、ベロ毒素産生大腸菌をポリミキシンB処理した後に遠心を行い、その上清中にベロ毒素が含まれていることを、逆受身ラテックス凝集法(RPLA)(デンカ生研製のキットを使用)で確認後、本発明の抗ベロ毒素感作ラテックス粒子と混合したところ凝集は認められなかった。しかし、同量の同株の大腸菌の菌体と実施例1の抗ベロ毒素抗体感作ラテックス粒子と反応させたところ、凝集が認められた。さらに、該大腸菌をポリミキシンBの代わりに生理食塩液で処理した後に、大腸菌の菌体と実施例1の抗ベロ毒素抗体感作ラテックスと反応させたところ凝集は認められなかった。この結果は、ポリミキシンB処理により、ベロ毒素が遊離するとともに、菌体表面に結合したベロ毒素が露出し菌体そのものを本発明の凝集法で検出できるようになることを示している。
【0025】
【発明の効果】
本発明の方法によれば、実施例2に示すように腸管出血性大腸菌の菌体そのものを試料として表面のベロ毒素を検出することができ、余分な培養操作を必要としないため簡便かつ迅速に腸管出血性大腸菌を検出することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for detecting enterohemorrhagic E. coli. Specifically, the present invention relates to a method of detecting verotoxin in E. coli cells by reacting carrier particles sensitized with an anti-verotoxin antibody with E. coli.
[0002]
[Prior art]
Enterohemorrhagic Escherichia coli is characterized by producing verotoxin, causing hemorrhagic colitis, acute renal failure due to hemolytic uremic syndrome (HUS), thrombotic thrombocytopenic purpura (TTP), etc. To death. Therefore, the presence or absence of enterohemorrhagic Escherichia coli is detected in a short time and accurately in order to diagnose the presence or absence of enterohemorrhagic Escherichia coli early and to take appropriate treatment to prevent the transition to severe symptoms. There is a need.
[0003]
Escherichia coli is classified into approximately 170 types according to the serotype of the O antigen of the surface LPS antigen, of which approximately 90 types produce verotoxin. Serotypes of enterohemorrhagic E. coli that produce verotoxin include O157: H7, O157: NM, O26: H11, O91: H21, O111: NM, O113: H21, O145: NM, and the like. Conventionally, there has been a method for measuring the serotype of E. coli O antigen and diagnosing that enterohemorrhagic E. coli is infected when E. coli of the above serotype is detected (JP-A-10-339731, etc.). However, not all cells of Escherichia coli that have enterohemorrhagic Escherichia coli serotypes produce verotoxin, but enterohemorrhagic Escherichia coli that has a certain serotype does not produce cells that produce verotoxin. There are fungus bodies. For example, about 95% of E. coli O157 produces verotoxin, and other serotypes of E. coli produce a lower percentage of verotoxin. Therefore, it cannot be determined from the serotype only whether it is verotoxin-producing Escherichia coli, that is, enterohemorrhagic Escherichia coli.
[0004]
In contrast, there has also been a method of indirectly diagnosing enterohemorrhagic Escherichia coli infection by detecting the production of verotoxin using an antibody against verotoxin or the like. In this method, Escherichia coli is cultured, and free verotoxin in the culture supernatant or bacterial cell extract is detected. However, in order to produce and secrete verotoxin with a small amount of verotoxin that can be detected in the culture supernatant, it took 1 to several days of culture, and extraction took time and effort. . Since E. coli capable of producing verotoxin is only a part of all E. coli, the method for detecting verotoxin is to first isolate and culture E. coli from a sample such as stool, then detect serotype, and then remove verotoxin. Only E. coli that could produce was further cultured to detect verotoxin. According to such a two-step method, there is an advantage that it is not necessary to detect verotoxin for all E. coli, but it requires two more cultures because it requires two cultures. In this method, since verotoxin is once released and isolated from the bacterial cells, the bacterial cells producing verotoxin were not directly detected. In particular, since verotoxin is toxic only when 6 kinds of two proteins are assembled, immunochemical methods for detecting released verotoxin react with individual proteins. Give incorrect measurement results. In addition, there is a problem that the accuracy of detection may be reduced due to sample misconception. As a method for detecting verotoxin released from bacterial cells, there were a reverse passive latex agglutination method, an EIA method, an immunochromatography method and the like.
[0005]
There are also methods for amplifying the verotoxin gene by gene amplification such as PCR and detecting the verotoxin gene (JP 07-008280, JP 11-009281, JP 11-332599, JP 2001-095576). Issue gazette). However, this method requires a pretreatment of the specimen in order to prevent false positives, so that the operation is complicated.
[0006]
[Problems to be solved by the invention]
The present invention relates to the detection of verotoxin-producing E. coli, ie enterohemorrhagic E. coli. Specifically, the present invention relates to a method for directly detecting enterohemorrhagic Escherichia coli producing verotoxin by a latex agglutination method.
[0007]
[Means for Solving the Problems]
The present inventors solved the above-mentioned problems of the conventional method, and as a result of earnestly examining the method for detecting enterohemorrhagic Escherichia coli accurately in a short time, as a result of the slide aggregation method using an anti-verotoxin antibody, A book that can detect enterohemorrhagic Escherichia coli quickly and accurately by detecting verotoxin on the surface of enterohemorrhagic Escherichia coli directly by using the bacteria itself as a specimen without releasing verotoxin from the cells. The invention has been completed.
As mentioned above, conventionally, when trying to specifically detect verotoxin, latex particles in which enterohemorrhagic Escherichia coli verotoxin is released and separated from cells and sensitized with anti-verotoxin antibody have been used. It was detected by the reverse passive latex agglutination method.
[0008]
The present inventors examined a method for detecting verotoxin present on the surface of E. coli using the Escherichia coli cell itself as a specimen without releasing verotoxin. Verotoxin produced by enterohemorrhagic E. coli is stored in the periplasmic space between the cell wall and cell membrane of E. coli. Since verotoxin stored in the periplasmic space is difficult to be exposed on the surface, it was difficult to directly detect verotoxin on bacterial cells using an antibody. The present inventors have found that verotoxin can be exposed by partially breaking the cell wall of E. coli and can be measured with an anti-verotoxin antibody, and the present invention has been completed.
[0009]
That is, the present invention is as follows.
(1) A method for detecting enterohemorrhagic Escherichia coli comprising reacting anti-verotoxin antibody-sensitized particles with Escherichia coli cells and measuring the degree of aggregation of the reaction mixture,
(2) The method for detecting enterohemorrhagic Escherichia coli according to (1), comprising treating E. coli cells with polymyxin B,
(3) The method for detecting enterohemorrhagic Escherichia coli according to (1) or (2), wherein the particles are latex particles,
(4) The method for detecting enterohemorrhagic E. coli according to (3), wherein the latex particles have a diameter of 0.1 to 1 μm,
(5) The method for detecting enterohemorrhagic Escherichia coli according to (3) or (4), which is a slide agglutination method,
(6) An enterohemorrhagic Escherichia coli detection kit for detecting verotoxin on E. coli cells, comprising anti-verotoxin antibody-sensitized particles, and (7) the sensitized particles are sensitized latex particles. Enterohemorrhagic Escherichia coli detection kit.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
1. Preparation of anti-verotoxin antibody-sensitized particles The present invention sensitizes anti-verotoxin antibodies to carrier particles, that is, binds or adsorbs them, mixes the sensitized particles with enterohemorrhagic Escherichia coli cells, reacts them, and aggregates. And verotoxin present in the wall of E. coli is directly detected based on the presence or absence of the aggregate.
[0011]
As the carrier particles for sensitizing the anti-verotoxin antibody, any carrier may be used as long as it is insoluble, does not cause a nonspecific reaction, and is stable. For example, latex particles, bentonite, collodion, kaolin, fixed sheep erythrocytes and the like can be used, but it is preferable to use latex particles. Examples of latex particles include homopolymer and / or copolymer particles of vinyl monomers such as vinyl chloride, acrylonitrile, vinyl acetate, acrylic acid esters, and methacrylic acid esters, polystyrene latex particles, and styrene-butadiene copolymers. Butadiene copolymer latex particles such as methyl methacrylate-butadiene copolymer, and polyvinyl toluene latex particles. Among these, polystyrene-based latex particles are preferable because they are excellent in adsorptivity for various proteins or polypeptides, and can retain biological activity stably for a long period of time. The particle size of the latex particles is preferably 0.01 to 1 μm, more preferably 0.1 to 1 μm. If the particle size is less than 0.01 μm, microaggregation occurs frequently, the apparent particle size becomes non-uniform, and the simultaneous reproducibility may be adversely affected, and sufficient aggregation is obtained for the number of antibodies. It may not be possible. When the particle size exceeds 1 μm, self-aggregation proceeds and the dispersibility decreases. When latex particles are used, the antibody can be easily sensitized to the carrier without any special treatment, and the aggregated image generated by the reaction between the target cell and the carrier becomes clear, and the reaction of the target cell to the carrier It is further advantageous in that the characteristics can be easily and accurately discriminated.
[0012]
The anti-verotoxin antibody can be obtained by purifying verotoxin from enterohemorrhagic Escherichia coli and using the purified verotoxin as an immunogen by a known method. Verotoxin can be purified by methods such as Ito et al., Microbial Pathogenesis 1988; 5: 189-195, Noda et al., Microbial Pathogenesis 1987; 2: 339-349. A recombinant verotoxin prepared by a genetic engineering technique can also be used. There are two types of verotoxin, verotoxin type 1 (VT1) and verotoxin type 2 (VT2). Since enterohemorrhagic Escherichia coli that produces only VT1 or VT2 exists, antibodies that recognize VT1 and VT2 Both of the recognized antibodies need to be prepared. Antibodies can be prepared by using VT1 and VT2 separately as immunogens and mixed, or both can be mixed to prepare both as immunogens at once. Alternatively, anti-VT1 antibody and anti-VT2 antibody may be prepared separately, and latex particles may be separately sensitized and used. In this case, VT1 and VT2 can be detected separately by each sensitized latex particle. VT1 and VT2 can also be detected simultaneously using a mixture of VT1-sensitized latex particles and VT2-sensitized latex particles. Moreover, since VT1 and VT2 are composed of subunits A and B, subunits may be used as immunogens. The antibody may be a polyclonal antibody or a monoclonal antibody. Polyclonal antibodies use purified verotoxin as an immunogen to immunize animals such as goats and rabbits, obtain antiserum, and use antiserum to deposit ammonium sulfate, and ion exchange chromatography using anion exchangers such as DEAE cellulose. It can be purified by appropriately selecting a known method such as molecular sieve chromatography, hydroxyapatite chromatography, affinity chromatography, etc., which is classified according to chromatography, molecular weight and structure, or a combination thereof. The monoclonal antibody can be produced by a known method such as the method of Kohler and Milstein (Kohler, G. and Milstein, C., Nature, 256, 495-497, 1975). At this time, purified verotoxin may be used as an immunogen, or an anti-verotoxin monoclonal antibody can be obtained by using an enterohemorrhagic Escherichia coli that produces verotoxin as it is as an immunogen. A hybridoma obtained by cell fusion of a spleen cell or lymph node cell of a mouse immunized with the above immunogen and a myeloma cell of a mouse is prepared, and the culture supernatant of the hybridoma or the ascites of a mouse administered intraperitoneally with the hybridoma Can be prepared. Immunized animals are not limited to mice, and rats, guinea pigs, and the like can also be used. Myeloma cells are generally obtained from the same species as the immunized animal, but may be possible between different species. Sensitized cells can also be obtained by immunizing in vitro spleen cells or lymph nodes of non-immunized animals. Hybridoma screening can be performed by various immunochemical methods such as ELISA and Western blotting. When antibody purification is required, it can be purified by the method described above. A commercially available verotoxin antibody may also be used. As a commercially available anti-verotoxin antibody, for example, one manufactured by Virostat is available.
[0013]
The method for sensitizing the antibody to the carrier is not particularly limited. For example, the antibody may be physically adsorbed on a carrier or chemically bound. More specifically, for example, after mixing an antibody and a carrier, the antibody can be sensitized to the carrier by heating and shaking at 30 to 37 ° C. for 1 to 2 hours. Furthermore, it is desirable to heat at 30 to 37 ° C. for 1 to 2 hours, followed by heating at 50 ° C. for 30 minutes. The amount of antibody sensitized to the carrier can be appropriately set according to the particle size of the carrier used. For example, latex particles can be sensitized by mixing an equal amount of 0.1 to several mg / mL antibody solution into a latex particle suspension prepared to 1% by weight. After sensitizing the antibody to the carrier, the non-sensitized portion on the carrier surface is preferably blocked with bovine serum albumin, human serum albumin, rabbit serum albumin, ovalbumin or the like. The carrier sensitized with the antibody is preferably retained as a medium dispersion until it is reacted with the target strain. At this time, as the medium, for example, a phosphate buffer, a glycine buffer, or the like can be used. The content of the carrier sensitized to the monoclonal antibody can usually be 0.1 to 1.0% by weight, preferably 0.2 to 0.5% by weight, based on the medium dispersion. Bovine serum albumin, gelatin, gum arabic and the like may be added to the medium as necessary.
[0014]
2. Latex agglutination method As a specimen of the enterohemorrhagic Escherichia coli detection method of the present invention, a sample contaminated with Escherichia coli can be used, for example, feces, urine, blood, tissue homogenate, and the like. Moreover, you may use food material. A part of these specimens is collected and cultured on an agar medium. At this time, DHL agar or McConkey agar can be used as the separation medium.
[0015]
After culturing for 6 to 20 hours, about 1 to 3 platinum ears are collected from the colony appearing on the agar medium with platinum ears or the like. The collected E. coli is treated with a reagent capable of lysing the cell wall of E. coli to destroy the cell wall. Examples of reagents that can dissolve the cell wall of E. coli include enzymes, alkaline solutions, and polymyxin B solutions. When polymyxin B is used, it is used at a concentration of 1,000 to 10,000 unit / mL, preferably 3,000 to 7,000 unit / mL, particularly preferably 4,000 to 6,000 unit / mL. The collected E. coli may be suspended in the polymyxin B solution. At this time, several tens of μL, preferably 10 to 50 μL of polymyxin may be dropped on a slide glass or the like to be reacted, and the collected E. coli may be suspended therein.
[0016]
The aggregation reaction between E. coli and anti-verotoxin-sensitized particles is performed on a glass slide. In this case, the degree of aggregation of the carrier particles can be measured visually. Moreover, it can also carry out in a plastic cell or a glass cell. In this case, visible light to near-infrared light is irradiated from the outside of the cell, and a change in absorbance or an intensity change of scattered light is detected to measure the degree of aggregation of carrier particles. Aggregation is measured using, for example, a fully automatic LPIA-S500 latex agglomeration measuring instrument manufactured by Mitsubishi Chemical Corporation, a COBAS FARA apparatus and a COBAS MIRA apparatus manufactured by Roche Diagnostics Systems, and a Hitachi 7070 analyzer manufactured by Hitachi, Ltd. It can be carried out.
[0017]
The agglutination reaction may be performed in a physiological saline solution or an appropriate buffer solution having a pH of 5.0 to 10, for example, a phosphate buffer solution, borate buffer solution, Tris buffer solution or the like. At this time, an appropriate surfactant such as Triton X-100, Tween 20, or Tween 80 may be added to suppress non-specific binding between the sensitized particles and E. coli.
[0018]
【Example】
Hereinafter, the present invention will be described specifically by way of examples. However, the present invention is not limited to these examples.
[Example 1] Preparation of sensitized particles As latex particles, polystyrene latex particles having a diameter of 0.34 µm were used (PROLABO, estapor K035).
As a sensitizing antibody to latex particles, a purified antibody obtained by purifying an anti-verotoxin rabbit serum using an affinity column bound with purified verotoxin as follows was used.
[0019]
A) Method for producing anti-verotoxin serum Purified verotoxin type 1 or type 2 was inoculated into rabbits according to the following schedule, and the collected blood was allowed to stand overnight, and the centrifuged supernatant was used as antiserum.
Weeks 1 to 4: Purified verotoxin type 1 or type 2 is mixed with an adjuvant and inoculated weekly into rabbit limbs.
Type 5-8 weeks: Rabbit ear vein is inoculated weekly with purified verotoxin type 1 or type 2.
[0020]
B) Purified antibody production method
Anti-verotoxin serum diluted 5 times with 0.075M phosphate buffer solution (pH 7.2) containing 0.5M sodium chloride is poured into an affinity gel prepared by binding purified verotoxin. After binding to the gel, anti-verotoxin antibody was eluted with 2M aqueous sodium thiocyanate. Next, this eluate is added to Sephadex G-25 equilibrated with PBS, and eluted with PBS to obtain a purified antibody.
[0021]
The purified antibody was sensitized to latex particles by the following method.
Equal volume of purified antibody solution (1mg / mL) is mixed with latex suspension adjusted to 1% by weight with PBS, kept at 37 ° C for 1 hour, and further heated at 50 ° C for 30 minutes. Thereafter, PBS containing 0.5% by weight bovine serum albumin is added and allowed to stand for 16 hours. Latex particles are collected by centrifugation and resuspended in PBS containing 0.5% by weight albumin to obtain a sensitized latex solution.
[0022]
[Example 2] Detection of enterohemorrhagic Escherichia coli using anti-verotoxin antibody-sensitized latex particles Escherichia coli O26 strain, O1, O18 strain, O157 strain, OUT strain (verotoxin-producing strain or verotoxin non-producing strain) Was cultured on a brain heart infusion agar medium (manufactured by DIFCO).
The slide glass is divided into several sections with a glass pencil, and 25 μL of physiological saline containing 5,000 unit / mL polymyxin B (manufactured by Pfizer) is dropped into each section. Ears were collected and suspended in polymyxin B solution on a slide glass. Next, 25 μL of the anti-verotoxin antibody-sensitized latex particle suspension prepared in Example 1 was added, stirred for 5 minutes with a slide mixer, and the formation of aggregates was visually observed and judged. Table 1 shows the results.
[0023]
[Table 1]
Figure 0004280021
[0024]
As shown in Table 1, Escherichia coli producing verotoxin became positive, and Escherichia coli not producing verotoxin became negative.
After veromixin-producing Escherichia coli was treated with polymyxin B, it was centrifuged and the supernatant was confirmed to contain verotoxin by reverse passive latex agglutination (RPLA) (using a Denka Seiken kit). Thereafter, when mixed with the anti-verotoxin-sensitized latex particles of the present invention, no aggregation was observed. However, when the same amount of Escherichia coli cells of the same strain were reacted with the anti-verotoxin antibody-sensitized latex particles of Example 1, aggregation was observed. Further, after the E. coli was treated with physiological saline instead of polymyxin B, the E. coli cells were reacted with the anti-verotoxin antibody-sensitized latex of Example 1, and no aggregation was observed. This result shows that, by polymyxin B treatment, verotoxin is liberated, and verotoxin bound to the cell surface is exposed so that the cell itself can be detected by the aggregation method of the present invention.
[0025]
【The invention's effect】
According to the method of the present invention, as shown in Example 2, the verotoxin on the surface can be detected using the microbial cells of enterohemorrhagic Escherichia coli itself as a sample, and no extra culturing operation is required. Enterohemorrhagic E. coli can be detected.

Claims (4)

大腸菌菌体をポリミキシンBで処理し、抗ベロ毒素抗体感作粒子とベロ毒素が菌体表面に結合している大腸菌菌体を反応させ、反応混合物の凝集の程度をスライド凝集法で測定することを含む腸管出血性大腸菌の検出方法。E. coli cells were treated with polymyxin B, anti-verotoxin antibody-sensitized particles and Vero toxin reacting the E. coli cells bound to the cell surface, measuring the degree of agglutination of the reaction mixture in a slide agglutination method A method for detecting enterohemorrhagic E. coli. 抗ベロ毒素抗体感作粒子に用いるラテックス粒子が直径が0.1〜1μmのポリスチレン系ラテックス粒子である請求項1記載の腸管出血性大腸菌の検出方法。  The method for detecting enterohemorrhagic Escherichia coli according to claim 1, wherein the latex particles used for the anti-verotoxin antibody-sensitized particles are polystyrene latex particles having a diameter of 0.1 to 1 µm. 1,000〜10,000unit/mLのポリミキシンBで処理する、請求項1又は2に記載の腸管出血性大腸菌の検出方法。The method for detecting enterohemorrhagic Escherichia coli according to claim 1 or 2, wherein the treatment is performed with 1,000 to 10,000 units / mL of polymyxin B. 請求項1〜3のいずれか1項に記載の腸管出血性大腸菌の検出方法に用いる腸管出血性大腸菌の検出用スライド凝集法キットであって、直径が0.1〜1μmのポリスチレン系ラテックス粒子に抗ベロ毒素抗体を感作させたラテックス粒子を含む、上記キット。A slide agglutination method kit for detecting enterohemorrhagic Escherichia coli for use in the method for detecting enterohemorrhagic Escherichia coli according to any one of claims 1 to 3, wherein the kit is anti-vero to polystyrene latex particles having a diameter of 0.1 to 1 µm. The above kit comprising latex particles sensitized with a toxin antibody.
JP2002094266A 2002-03-29 2002-03-29 Simple assay for enterohemorrhagic Escherichia coli Expired - Fee Related JP4280021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002094266A JP4280021B2 (en) 2002-03-29 2002-03-29 Simple assay for enterohemorrhagic Escherichia coli

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002094266A JP4280021B2 (en) 2002-03-29 2002-03-29 Simple assay for enterohemorrhagic Escherichia coli

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009021918A Division JP5202367B2 (en) 2009-02-02 2009-02-02 Simple assay for enterohemorrhagic Escherichia coli

Publications (2)

Publication Number Publication Date
JP2003284588A JP2003284588A (en) 2003-10-07
JP4280021B2 true JP4280021B2 (en) 2009-06-17

Family

ID=29238329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002094266A Expired - Fee Related JP4280021B2 (en) 2002-03-29 2002-03-29 Simple assay for enterohemorrhagic Escherichia coli

Country Status (1)

Country Link
JP (1) JP4280021B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5142725B2 (en) * 2005-12-01 2013-02-13 デンカ生研株式会社 Bacterial immunoagglutination assay
JP5751658B2 (en) * 2009-07-17 2015-07-22 栄研化学株式会社 Enterohemorrhagic Escherichia coli O157, O26, O111 selective separation medium

Also Published As

Publication number Publication date
JP2003284588A (en) 2003-10-07

Similar Documents

Publication Publication Date Title
Grant et al. Isolation of Mycobacterium paratuberculosis from milk by immunomagnetic separation
US4847199A (en) Agglutination immunoassay and kit for determination of a multivalent immune species using a buffered salt wash solution
JP2779509B2 (en) Detection method
Arao et al. Measurement of urinary lactoferrin as a marker of urinary tract infection
Cooley et al. Evaluation of multiplex-based antibody testing for use in large-scale surveillance for yaws: a comparative study
Prevost et al. Commercial cryptococcal latex kit: clinical evaluation in a medical center hospital
US4141965A (en) Assay of immune complexes
EP2904394A1 (en) Multi-analyte assay
SE448577B (en) A DIRECT AGGLUTINATION TEST FOR ANTIGEN DETECTION IN BODY WETS
TWI757328B (en) Antibody assay method using antigen-immobilized insoluble-carrying particles with antigen immobilized in different ways, reagent for antibody assay
JP4268358B2 (en) Antibody and immunological assay
JP4280021B2 (en) Simple assay for enterohemorrhagic Escherichia coli
JP5202367B2 (en) Simple assay for enterohemorrhagic Escherichia coli
USRE33850E (en) Test kit and method for the determination of Streptococcus A antigen
US10288610B2 (en) Vitro assays for detecting Salmonella enterica serotype typhi
US4288426A (en) Serological test for syphilis
JP2682697B2 (en) Immunoassay reagents and immunoassays
JPH11133029A (en) Method and reagent for analyzing colon bacillus o157
EP0280557B1 (en) Test kit, extraction device and method for the determination of streptococcus a antigen
Kohno et al. Development of a simple and rapid latex test for rotavirus in stool samples
US5474900A (en) Process for preparing purified syphilis antigen from Treponema palljdum
US4937201A (en) Latex reagent for detection of the toxin of clostridium difficile
JP4107849B2 (en) Anthrax detection reagent
JPH0510954A (en) Product for detecting bacteroides-intermedius, bacteroides-gingivalis or actinobacillus -actinomycetermcomitans, test kit and sandwich assay
JPH0688824A (en) Examining method for infection with yellow staphylococus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4280021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees