JP4279478B2 - Insulation barrier structure of switch - Google Patents

Insulation barrier structure of switch Download PDF

Info

Publication number
JP4279478B2
JP4279478B2 JP2001193031A JP2001193031A JP4279478B2 JP 4279478 B2 JP4279478 B2 JP 4279478B2 JP 2001193031 A JP2001193031 A JP 2001193031A JP 2001193031 A JP2001193031 A JP 2001193031A JP 4279478 B2 JP4279478 B2 JP 4279478B2
Authority
JP
Japan
Prior art keywords
ground
barrier
insulating barrier
phase
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001193031A
Other languages
Japanese (ja)
Other versions
JP2003007177A (en
Inventor
博光 伊藤
雅巳 池戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Energy Support Corp
Original Assignee
Energy Support Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Energy Support Corp filed Critical Energy Support Corp
Priority to JP2001193031A priority Critical patent/JP4279478B2/en
Publication of JP2003007177A publication Critical patent/JP2003007177A/en
Application granted granted Critical
Publication of JP4279478B2 publication Critical patent/JP4279478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、開閉器の絶縁バリヤ構造に関するものである。
【0002】
【従来の技術】
開閉器の絶縁バリヤ構造としては、例えば実開平6−74008号公報に示されるように、本体ケースに固定された底部絶縁バリヤと同じく上部絶縁バリヤとにより側部絶縁バリヤを挟持するようにしたものがある。各絶縁バリヤを開閉器の本体ケースに取り付ける場合には、まず、下部絶縁バリヤを本体ケースの内底面に対してボルトにより固定し、この後、下部絶縁バリヤの上面に形成された係合突起の係合溝に側部絶縁バリヤの下端縁を差し込む。次に、側部絶縁バリヤの上部に形成された係合突部に上部絶縁バリヤの係合溝を係合させた状態で、上部絶縁バリヤを本体ケースの固定部に対してボルトにより固定する。
【0003】
【発明が解決しようとする課題】
ところが、前記従来の開閉器の絶縁バリヤ構造には次のような問題があった。即ち、側部絶縁バリヤは、底部絶縁バリヤの上面に対して直交するように配設されていた。このため、側部絶縁バリヤ下端縁の真直度公差、及び底部バリヤ上面の平面度公差等により、側部絶縁バリヤと底部絶縁バリヤとの間に隙間が形成される場合があった。そして、相間バリヤと底部バリヤとの間に隙間が形成されると、対地間及び異相間の絶縁が確保できず、放電が発生するおそれがあった。これは小型化に伴い顕著となる。
【0004】
また、底部絶縁バリア及び上部絶縁バリヤは、それぞれボルト等により本体ケースに対して直接固定されていた。このため、絶縁バリヤの組立作業が煩雑なものとなり、組立作業効率が低下するという問題があった。
【0005】
本発明は前記問題点を解決するためになされたものであって、その第1の目的は、小型化しても、対地間及び異相間の絶縁を確保することができる開閉器のバリヤ構造を提供することにある。
【0006】
本発明の第2の目的は、組立作業効率を向上させることができる開閉器のバリヤ構造を提供することにある。
【0007】
【課題を解決するための手段】
請求項1に記載の発明は、本体ケースの内底面を覆うようにU字状に形成された底部対地間絶縁バリヤに対して、それぞれ板状に形成された側部対地間絶縁バリヤ及び異相間絶縁バリヤを取り付けるようにした開閉器の絶縁バリヤ構造において、前記U字状に形成された底部対地間絶縁バリヤにおける側部対地間絶縁バリヤ及び異相間絶縁バリヤの取付対応位置には、それぞれ対地間及び異相間の沿面距離を増大させる沿面距離増大構造を設け、前記沿面距離増大構造は、前記U字状に形成された底部対地間絶縁バリヤの内周面に沿って同相間方向に延びるように形成された複数の隔壁と、各隔壁には、同隔壁の全長に亘って形成されると共に側部対地間絶縁バリヤ及び異相間絶縁バリヤの下端縁をそれぞれ嵌挿可能に形成された溝とを備えたことをその要旨とする。
【0008】
請求項2に記載の発明は、請求項1に記載の発明において、本体ケースの内側壁には、各相毎に相対する電源側ブッシング及び負荷側ブッシングが貫通支持され、前記底部対地間絶縁バリヤの同相間方向における両側縁には、各相毎に相対する電源側ブッシング及び負荷側ブッシングをそれぞれ係合するように電源側係合凹部及び負荷側係合凹部が形成されていることをその要旨とする。
【0009】
作用)
請求項1に記載の発明においては、対地間及び異相間の沿面距離が増大する。即ち、開閉器全体を小型化しても、対地間及び異相間の絶縁距離の短縮による絶縁性能の低下は、対地間及び異相間の沿面距離が増大することにより補われる。また、側部対地間絶縁バリヤ及び異相間絶縁バリヤの下端縁をそれぞれ各隔壁の溝に差し込むだけで、側部対地間絶縁バリヤ及び異相間絶縁バリヤは底部対地間絶縁バリヤに固定される。
【0010】
請求項2に記載の発明においては、請求項1に記載の発明の作用に加えて、本体ケース内において、底部対地間絶縁バリヤの上方への移動が規制される。
【0012】
【発明の実施の形態】
以下、本発明を開閉器の絶縁バリヤ構造に具体化した一実施形態を図1〜図6に従って説明する。
【0013】
(全体構成)
図1及び図2に示すように、開閉器11の本体ケース12は、上部が開口した有底箱体状の底部ケース12a、及び下部が開口した有蓋箱体状の上部ケース12bを備えており、底部ケース12aの上部開口部は上部ケース12bにより閉塞されている。底部ケース12aと上部ケース12bとの間にはパッキン14が介在されており、これにより開閉器11の気密性が確保されている。
【0014】
底部ケース12aの互いに対向する両側壁には電源側ブッシング21及び負荷側ブッシング22が3相各相毎(図1においては1相分のみ示す。)に互いに対向するように貫通支持されている。
【0015】
電源側ブッシング21の内端部には電源側導電棒23を介して固定電極24が固定されていると共に、同固定電極24を覆うように合成樹脂製の消弧部材25が設けられている。また、電源側ブッシング21の内端部には、断面L字状の支持部材26が電源側導電棒23に挿通された状態で固定されており、同支持部材26の上面中央には棒状の電源側アーク電極27の基端部が螺合されている。
【0016】
負荷側ブッシング22の内端部には負荷側導電棒28を介して可動電極支持部材29がボルトにより固定されており、同可動電極支持部材29の先端側には軸30を介して可動電極31の基端部が回動可能に支持されている。可動電極31は一枚の鎌状の接触刃から構成されている。また、負荷側導電棒28の上面には、負荷側アーク電極32が可動電極支持部材29と前記ボルトにて共締め固定されている。尚、図2においては、負荷側アーク電極32の位置を1相分のみハッチングで示す(図2中、一番右側の相)。
【0017】
一方、本体ケース12内において、負荷側ブッシング22の内端部上方には、複数のリンク等からなる開閉機構部41を介して本体ケース12外部の操作ハンドル42に作動連結された回動軸43が設けられている。この回動軸43はレバー44、駆動リンク45及び連結部材46を介して可動電極31に作動連結されている。従って、前記操作ハンドル42の操作により、可動電極31は図1に実線で示す投入位置と二点鎖線で示す開放位置との間を移動する。
【0018】
(アレスタ取付部材)
図1及び図2に示すように、本体ケース12内において、電源側ブッシング21の内端部上方にはアレスタ取付部材51が配置されている。このアレスタ取付部材51は固定部材52を介して本体ケース12の内面に固定されている。アレスタ取付部材51には、下方に所定の角度だけ傾斜した傾斜面53が形成されており、同傾斜面53には避雷器54の基端部が各相毎にボルトによって固定されている。避雷器54の先端充電部は導電部材55を介して支持部材26の上面に接続されている。
【0019】
(飛散物防止部材)
図1及び図2に示すように、上部ケース12bの内面とアレスタ取付部材51との間には、飛散物防止部材61が配設されている。この飛散物防止部材61は、上部ケース12bの内面全体を覆うヘルメット状に形成されており、前記アレスタ取付部材51に対してボルトにより固定されている。即ち、飛散物防止部材61はアレスタ取付部材51を介して本体ケース12に対して固定されている。
【0020】
(絶縁バリヤ)
図1及び図2に示すように、本体ケース12内には絶縁バリヤ71が配設されており、同絶縁バリヤ71は底部対地間絶縁バリヤ72、2枚の側部対地間絶縁バリヤ73、及び2枚の異相間絶縁バリヤ74を備えている。絶縁バリヤ71は、例えば不飽和ポリエステル、ポリプロピレン及びポリアミド等の絶縁性及び難燃性を有する合成樹脂材料により形成されている。
【0021】
(底部対地間絶縁バリヤ)
図1及び図3に示すように、底部対地間絶縁バリヤ72は底部ケース12aの内底面に対して沿うU字状に形成されている。即ち、底部対地間絶縁バリヤ72の同相間方向における両側縁は、それぞれ底部ケース12aの両ブッシング固定壁内面に対して沿うように上方へ延びている。
【0022】
図6に示すように、底部対地間絶縁バリヤ72の同相間方向における両側縁には、それぞれ3つの円弧状の電源側係合凹部75及び負荷側係合凹部76が形成されている。各電源側係合凹部75及び各負荷側係合凹部76は、それぞれ各相の電源側ブッシング21及び各相の負荷側ブッシング22にそれぞれ対応するように、且つ電源側ブッシング21及び負荷側ブッシング22の外周面に沿うように形成されている。
【0023】
(沿面距離増大構造)
図4及び図5に示すように、底部対地間絶縁バリヤ72における両側部対地間絶縁バリヤ73,73及び両異相間絶縁バリヤ74,74の取付対応位置には、それぞれ両側部対地間絶縁バリヤ73,73及び両異相間絶縁バリヤ74,74が取り付けられている。本実施形態において、両側部対地間絶縁バリヤ73,73の取付対応位置とは、底部対地間絶縁バリヤ72の異相間方向における両側縁部である。両異相間絶縁バリヤ74,74の取付対応位置とは、底部対地間絶縁バリヤ72において、互いに隣り合う両電源側係合凹部75,75間の中央と同じく両負荷側係合凹部76,76間の中央とを底部対地間絶縁バリヤ72の上面に添うようにして結んだ線分を含む部分である。
【0024】
底部対地間絶縁バリヤ72の上面において、前記各取付対応位置には、所定の高さ及び所定の幅を有する隔壁77が同相間方向に延びるようにして形成されている。隔壁77の線端面中央には、両側部対地間絶縁バリヤ73,73の下端縁及び両異相間絶縁バリヤ74,74の下端縁をそれぞれ嵌挿可能とした溝78が同隔壁77の全長に亘って形成されている。そして、側部対地間絶縁バリヤ73の下端縁及び底部対地間絶縁バリヤ72の下端縁と、溝78の最奥部との間に隙間が形成されていても、対地間及び異相間の絶縁が確保される程度に、隔壁77の幅、隔壁77の底部対地間絶縁バリヤ72上面からの高さ、及び溝78の深さがそれぞれ設定されている。
【0025】
図4及び図5に示すように、溝78は、隔壁77の先端面に向かうにつれて拡開するテーパ状、即ち断面V字状に形成されている。隔壁77の先端面において、溝78の幅は、側部対地間絶縁バリヤ73の厚み及び異相間絶縁バリヤ74の厚みよりも若干大きくされている。溝78の最奥部における幅は、側部対地間絶縁バリヤ73の厚み及び異相間絶縁バリヤ74の厚みよりも若干小さくされている。
【0026】
図3及び図5に示すように、底部対地間絶縁バリヤ72の底面四隅には、それぞれ半球状の支持突部79が形成されている。従って、絶縁バリヤ71を底部ケース12a内に載置したとき、同底部ケース12aの内底面と絶縁バリヤ71の底面との間には、各支持突部79の高さ分の隙間が形成される。
【0027】
(側部対地間絶縁バリヤ・異相間絶縁バリヤ)
図6に示すように、側部対地間絶縁バリヤ73及び異相間絶縁バリヤ74は、それぞれ板状に形成されており、底部対地間絶縁バリヤ72の上方から各隔壁77の溝78に嵌挿されている。側部対地間絶縁バリヤ73及び異相間絶縁バリヤ74の下端縁両隅部はそれぞれ円弧状に形成されており、これにより、側部対地間絶縁バリヤ73及び異相間絶縁バリヤ74は、溝78に差込み可能となっている。また、側部対地間絶縁バリヤ73の上端縁負荷側には、U字状の凹部73aが形成されている。絶縁バリヤ71を底部ケース12a内に配設した状態において、前記凹部73a内には前記回動軸43が非接触状態で位置する。
【0028】
(配設状態)
図1及び図2に示すように、各電源側ブッシング21及び各負荷側ブッシング22の下面がそれぞれ各電源側係合凹部75及び各負荷側係合凹部76に係合するように、絶縁バリヤ71は底部ケース12a内に配設されている。また、側部対地間絶縁バリヤ73と隣接する異相間絶縁バリヤ74との間、及び両異相間絶縁バリヤ74間に、それぞれ各相の電源側ブッシング21内端部、負荷側ブッシング22内端部、固定電極24及び可動電極31が位置するように、絶縁バリヤ71は底部ケース12a内に配設されている。
【0029】
尚、前記各隔壁77は、対地間及び異相間の沿面距離を増大させる沿面距離増大構造を構成する。溝78は、隔壁77と側部対地間絶縁バリヤ73及び異相間絶縁バリヤ74とを互いに嵌合可能とする嵌合構造を構成する。
【0030】
(絶縁バリヤの組立手順)
次に、前記絶縁バリヤ71の組立手順について説明する。
まず、底部ケース12a内に底部対地間絶縁バリヤ72を載置する。そして、電源側導電棒23及び負荷側導電棒28が突設された電源側ブッシング21及び負荷側ブッシング22を、それぞれ底部ケース12aに貫通支持する。また、電源側ブッシング21の内端部下面及び負荷側ブッシング22の内端部下面を、それぞれ各ブッシング21,22の周上に密着させたゴム材からなるパッキン(図示略)を介して、電源側係合凹部75及び負荷側係合凹部76に対して係合させる。これにより、本体ケース12内において、底部対地間絶縁バリヤ72の上方への移動が規制される。
【0031】
次に、電源側導電棒23に対して、支持部材26、固定電極24及び消弧部材25等を組み付ける。また、負荷側導電棒28に対して、負荷側アーク電極32、可動電極支持部材29及び可動電極31等を組み付ける。尚、可動電極31には連結部材46を予め組み付けておく。
【0032】
次に、両側部対地間絶縁バリヤ73,73及び両異相間絶縁バリヤ74,74をそれぞれ各隔壁77の溝78に上方から差し込む。これにより、両側部対地間絶縁バリヤ73,73及び両異相間絶縁バリヤ74,74は、それぞれ底部対地間絶縁バリヤ72に対して固定される。複数の隔壁77及び同隔壁77の溝78により、対地間及び異相間における沿面距離の増大が図られている。このため、両側部対地間絶縁バリヤ73,73の下端縁と溝78の内底面との間、及び両異相間絶縁バリヤ74,74の下端縁と溝78の内底面との間に、それぞれ若干の隙間が形成された場合においても、対地間及び異相間の絶縁が確保される。従って、本体ケース12内において、対地間及び異相間の絶縁性能が向上する。
【0033】
次に、避雷器54が固定されたアレスタ取付部材51を固定部材52を介して底部ケース12aに対して固定する。そして、避雷器54の先端充電部に導電部材55の一端をボルト(図示略)により固定すると共に、同導電部材55の他端を支持部材26の上面に電源側アーク電極27の基端部を螺合することにより固定する。
【0034】
次に、底部ケース12aの内面に固定された軸受部材(図示略)を介して、レバー44が一体回動可能に固定された回動軸43を、底部ケース12a内の上部に回動可能に支持する。そして、レバー44の先端と前記連結部材46の先端との間を、駆動リンク45により連結する。最後に、飛散物防止部材61をアレスタ取付部材51に対してボルトにより固定して、上部ケース12bを底部ケース12aに対してパッキン14を介して固定する。以上で、開閉器11内部の組立作業は完了となる。
【0035】
(実施形態の効果)
従って、本実施形態によれば、以下の効果を得ることができる。
(1)底部対地間絶縁バリヤ72における側部対地間絶縁バリヤ73及び異相間絶縁バリヤ74の取付対応位置には、それぞれ対地間及び異相間の沿面距離を増大させる沿面距離増大構造を設けた。そして、各沿面距離増大構造に対して側部対地間絶縁バリヤ73及び異相間絶縁バリヤ74をそれぞれ取り付けるようにした。このため、開閉器全体の小型化に伴って対地間及び異相間の絶縁距離が短縮されることによる絶縁性能の低下は、対地間及び異相間の沿面距離が増大することにより補われる。従って、開閉器全体を小型化しても、対地間及び異相間の絶縁を確保することができる。
【0036】
(2)底部対地間絶縁バリヤ72における側部対地間絶縁バリヤ73及び異相間絶縁バリヤ74の取付対応位置には、それぞれ隔壁77を同相間方向に延びるように形成した。そして、隔壁77の先端面中央には側部対地間絶縁バリヤ73及び異相間絶縁バリヤ74を嵌挿可能とした溝78を形成した。このため、側部対地間絶縁バリヤ73の下端縁及び異相間絶縁バリヤの下端縁をそれぞれ溝78に差し込むだけで、側部対地間絶縁バリヤ73及び異相間絶縁バリヤ74は底部対地間絶縁バリヤ72に対して固定される。従って、絶縁バリヤ71の組立作業が簡単になる。ひいては、絶縁バリヤ71の組立作業効率が向上する。また、側部対地間絶縁バリヤ73の下端縁及び底部対地間絶縁バリヤ72の下端縁と、溝78の最奥部との間に隙間が形成されても、対地間及び異相間の絶縁が確保され、放電の発生が防止される。
【0037】
(3)隔壁77の溝78は、同隔壁77の先端面に向かうにつれて拡開するテーパ状となるように形成した。このため、例えば溝78の幅が一定である場合に比べて、側部対地間絶縁バリヤ73及び異相間絶縁バリヤ74を溝78に差し込みやすくなる。従って、絶縁バリヤ71の組立作業効率を向上させることができる。
【0038】
(別例)
尚、前記実施形態は以下のように変更して実施してもよい。
・本実施形態では、隔壁77に溝78を形成し、同溝78に側部対地間絶縁バリヤ73及び異相間絶縁バリヤ74を嵌挿するようにしたが、隔壁77の溝78と側部対地間絶縁バリヤ73の下端縁及び異相間絶縁バリヤ74の下端縁との凹凸関係を逆にするようにしてもよい。即ち、側部対地間絶縁バリヤ73の下端縁及び異相間絶縁バリヤ74の下端縁に、それぞれ隔壁77を上方から嵌挿可能とした溝を形成する。この側部対地間絶縁バリヤ73の下端縁及び異相間絶縁バリヤ74の下端縁に形成した溝は、隔壁77と側部対地間絶縁バリヤ73及び異相間絶縁バリヤ74とを互いに嵌合可能とする嵌合構造を構成する。尚、溝78は省略可能となる。
【0039】
・本実施形態では、溝78の形状を断面V字状に形成したが、例えば断面長方形状等、任意形状に形成するようにしてもよい。
・側部対地間絶縁バリヤ73の下端縁及び底部対地間絶縁バリヤ72の下端縁と、溝78の最奥部との間に隙間が形成されても、対地間及び異相間の絶縁が確保される程度であれば、隔壁77の幅、隔壁77の底部対地間絶縁バリヤ72上面からの高さ、及び溝78の深さを任意に変更するようにしてもよい。
【0040】
・側部対地間絶縁バリヤ73及び異相間絶縁バリヤ74の厚みを、任意に変更するようにしてもよい。側部対地間絶縁バリヤ73及び異相間絶縁バリヤ74の厚みの変化に対応するように隔壁77の幅及び溝78の幅等を変更する。
【0041】
(付記)
次に前記実施形態及び別例から把握できる技術的思想を以下に追記する。
・本体ケースの両側壁に、各相毎に相対するブッシングを貫通支持し、一方のブッシングの内端には固定電極を設けると共に、他方のブッシングの内端には前記固定電極に対して接離可能に対応する可動電極を回動可能に設け、両電極を絶縁バリアで覆うことによって、対地間及び異相間の絶縁を行うようにした開閉器において、前記絶縁バリヤは、本体ケースの内底面を覆う底部対地間絶縁バリヤと、同底部対地間絶縁バリヤに対して取付け可能とした側部対地間絶縁バリヤと、同じく異相間絶縁バリヤとを備え、前記底部対地間絶縁バリヤにおける側部対地間絶縁バリヤ及び異相間絶縁バリヤの取付対応位置には、それぞれ対地間及び異相間の沿面距離を増大させる沿面距離増大構造を設け、各沿面距離増大構造に対して側部対地間絶縁バリヤ及び異相間絶縁バリヤをそれぞれ取り付けるようにした開閉器。
【0042】
・前記隔壁に形成された溝は、隔壁の先端面に向かうにつれて拡開するテーパ状とされている請求項に記載の開閉器の絶縁バリヤ構造。
【0043】
【発明の効果】
請求項1に記載の発明によれば、対地間及び異相間の沿面距離を増大することにより、開閉器全体を小型化しても、対地間及び異相間の絶縁を確保することができる。また、側部対地間絶縁バリヤ及び異相間絶縁バリヤの下端縁をそれぞれ各隔壁の溝に差し込むだけのため、組立作業効率を向上させることができる。
【0044】
請求項2に記載の発明によれば、請求項1に記載の発明の効果に加えて、本体ケース内において、底部対地間絶縁バリヤの上方への移動が規制される。
【図面の簡単な説明】
【図1】 本実施形態における開閉器の正断面図。
【図2】 本実施形態における開閉器の側断面図。
【図3】 本実施形態における底部対地間絶縁バリヤの正面図。
【図4】 図3における1−1線断面図。
【図5】 本実施形態における底部対地間絶縁バリヤの平面図。
【図6】 本実施形態における絶縁バリヤの分解斜視図。
【符号の説明】
11…開閉器、12…本体ケース、71…絶縁バリヤ、
72…底部対地間絶縁バリヤ、73…側部対地間絶縁バリヤ、
74…異相間絶縁バリヤ、77…沿面距離増大構造を構成する隔壁、
78…嵌合構造を構成する溝。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an insulating barrier structure for a switch.
[0002]
[Prior art]
As an insulating barrier structure of a switch, for example, as shown in Japanese Utility Model Publication No. 6-74008, a side insulating barrier is sandwiched between an upper insulating barrier and a bottom insulating barrier fixed to a main body case. There is. When attaching each insulation barrier to the main body case of the switch, first, the lower insulation barrier is fixed to the inner bottom surface of the main body case with bolts, and then the engagement protrusions formed on the upper surface of the lower insulation barrier. Insert the lower edge of the side insulating barrier into the engaging groove. Next, the upper insulating barrier is fixed to the fixing portion of the main body case with the bolt in a state where the engaging groove of the upper insulating barrier is engaged with the engaging protrusion formed on the upper side of the side insulating barrier.
[0003]
[Problems to be solved by the invention]
However, the insulation barrier structure of the conventional switch has the following problems. That is, the side insulating barrier is disposed so as to be orthogonal to the upper surface of the bottom insulating barrier. For this reason, a gap may be formed between the side insulating barrier and the bottom insulating barrier due to the straightness tolerance of the lower edge of the side insulating barrier and the flatness tolerance of the upper surface of the bottom barrier. And if a gap is formed between the interphase barrier and the bottom barrier, insulation between the ground and between the different phases cannot be ensured, and there is a possibility that discharge occurs. This becomes conspicuous with downsizing.
[0004]
Further, the bottom insulating barrier and the upper insulating barrier are directly fixed to the main body case with bolts or the like. For this reason, there has been a problem that the assembling work of the insulation barrier becomes complicated and the assembling work efficiency is lowered.
[0005]
The present invention has been made to solve the above problems, and a first object thereof is to provide a barrier structure of a switch that can secure insulation between the ground and different phases even if it is downsized. There is to do.
[0006]
A second object of the present invention is to provide a barrier structure for a switch that can improve the assembly work efficiency.
[0007]
[Means for Solving the Problems]
According to the first aspect of the present invention, in contrast to the bottom-to-ground insulation barrier formed in a U shape so as to cover the inner bottom surface of the main body case, the side-to-ground insulation barrier and the different phase formed in a plate shape respectively. In the insulation barrier structure of a switch to which an insulation barrier is attached, the mounting correspondence positions of the side-to-ground insulation barrier and the inter-phase insulation barrier in the bottom-to-ground insulation barrier formed in the U shape are respectively And a creeping distance increasing structure for increasing the creeping distance between different phases, and the creeping distance increasing structure extends in the same phase direction along the inner peripheral surface of the bottom-to-ground insulating barrier formed in the U-shape. A plurality of formed partition walls, and each partition wall is formed over the entire length of the partition wall and a groove formed so that the lower end edge of the side-to-ground insulation barrier and the inter-phase insulation barrier can be respectively inserted. Preparation It and its gist.
[0008]
According to a second aspect of the present invention, in the first aspect of the invention, the power supply side bushing and the load side bushing facing each phase are penetrated and supported on the inner wall of the main body case, and the bottom-to-ground insulation barrier is provided. The power supply side engaging recess and the load side engaging recess are formed on both side edges in the in-phase direction so as to engage the power supply side bushing and the load side bushing facing each phase. And
[0009]
( Function)
In the first aspect of the present invention, the creepage distance between the ground and the different phases increases. That is, even if the entire switch is downsized, the decrease in the insulation performance due to the shortening of the insulation distance between the ground and the different phases is compensated by the increase of the creeping distance between the ground and the different phases. Further, the side-to-ground insulating barrier and the inter-phase insulating barrier are fixed to the bottom-to-ground insulating barrier only by inserting the lower end edges of the side-to-ground insulating barrier and the different-phase insulating barrier into the grooves of the respective partition walls.
[0010]
In the invention according to claim 2, in addition to the action of the invention according to claim 1, the upward movement of the bottom-to-ground insulation barrier is restricted in the main body case.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment in which the present invention is embodied in an insulating barrier structure of a switch will be described with reference to FIGS.
[0013]
(overall structure)
As shown in FIGS. 1 and 2, the main body case 12 of the switch 11 includes a bottomed box-shaped bottom case 12 a having an open top and a covered box-shaped top case 12 b having an open bottom. The upper opening of the bottom case 12a is closed by the upper case 12b. A packing 14 is interposed between the bottom case 12a and the upper case 12b, and thereby the airtightness of the switch 11 is secured.
[0014]
On both side walls of the bottom case 12a facing each other, a power supply side bushing 21 and a load side bushing 22 are penetrated and supported so as to face each other for each of the three phases (only one phase is shown in FIG. 1).
[0015]
A fixed electrode 24 is fixed to an inner end portion of the power supply side bushing 21 via a power supply side conductive rod 23, and an arc extinguishing member 25 made of synthetic resin is provided so as to cover the fixed electrode 24. A support member 26 having an L-shaped cross section is fixed to the inner end portion of the power supply side bushing 21 in a state of being inserted through the power supply side conductive rod 23. The base end portion of the side arc electrode 27 is screwed.
[0016]
A movable electrode support member 29 is fixed to the inner end portion of the load side bushing 22 by a bolt via a load side conductive rod 28, and a movable electrode 31 is connected to the distal end side of the movable electrode support member 29 via a shaft 30. The base end part of is supported so that rotation is possible. The movable electrode 31 is composed of a single sickle-shaped contact blade. A load-side arc electrode 32 is fastened and fixed to the upper surface of the load-side conductive rod 28 with the movable electrode support member 29 and the bolt. In FIG. 2, the position of the load side arc electrode 32 is indicated by hatching for only one phase (the rightmost phase in FIG. 2).
[0017]
On the other hand, in the main body case 12, a rotating shaft 43 operatively connected to an operation handle 42 outside the main body case 12 is provided above the inner end of the load side bushing 22 via an opening / closing mechanism 41 composed of a plurality of links. Is provided. The rotating shaft 43 is operatively connected to the movable electrode 31 through a lever 44, a drive link 45, and a connecting member 46. Accordingly, by operating the operation handle 42, the movable electrode 31 moves between a closing position indicated by a solid line and an open position indicated by a two-dot chain line in FIG.
[0018]
(Arrester mounting member)
As shown in FIGS. 1 and 2, an arrester mounting member 51 is disposed above the inner end of the power supply side bushing 21 in the main body case 12. The arrester mounting member 51 is fixed to the inner surface of the main body case 12 via a fixing member 52. The arrester mounting member 51 is formed with an inclined surface 53 inclined downward by a predetermined angle, and a base end portion of a lightning arrester 54 is fixed to the inclined surface 53 for each phase with a bolt. The tip charging portion of the lightning arrester 54 is connected to the upper surface of the support member 26 via a conductive member 55.
[0019]
(Splashing prevention member)
As shown in FIGS. 1 and 2, a scattered matter preventing member 61 is disposed between the inner surface of the upper case 12 b and the arrester mounting member 51. The scattered matter preventing member 61 is formed in a helmet shape that covers the entire inner surface of the upper case 12b, and is fixed to the arrester mounting member 51 with bolts. That is, the scattered matter preventing member 61 is fixed to the main body case 12 via the arrester mounting member 51.
[0020]
(Insulation barrier)
As shown in FIGS. 1 and 2, an insulating barrier 71 is disposed in the body case 12, and the insulating barrier 71 includes a bottom-to-ground insulating barrier 72, two side-to-ground insulating barriers 73, and Two interphase insulating barriers 74 are provided. The insulating barrier 71 is made of a synthetic resin material having insulating properties and flame retardancy, such as unsaturated polyester, polypropylene, and polyamide.
[0021]
(Bottom-to-ground insulation barrier)
As shown in FIGS. 1 and 3, the bottom-to-ground insulation barrier 72 is formed in a U shape along the inner bottom surface of the bottom case 12a. That is, both side edges in the in-phase direction of the bottom-to-ground insulating barrier 72 extend upward along the inner surfaces of both bushing fixing walls of the bottom case 12a.
[0022]
As shown in FIG. 6, three arc-shaped power-side engagement recesses 75 and load-side engagement recesses 76 are formed on both side edges of the bottom-to-ground insulation barrier 72 in the in-phase direction. Each power supply side engagement recess 75 and each load side engagement recess 76 correspond to the power supply side bushing 21 and the load side bushing 22 of each phase, respectively, and the power supply side bushing 21 and the load side bushing 22. It is formed along the outer peripheral surface.
[0023]
(Creepage distance increasing structure)
As shown in FIGS. 4 and 5, the side-to-ground insulation barriers 73 are located at the mounting corresponding positions of the side-to-ground insulation barriers 73 and 73 and the two-phase insulation barriers 74 and 74 in the bottom-to-ground insulation barrier 72. 73 and both-phase insulating barriers 74, 74 are attached. In the present embodiment, the attachment corresponding positions of the side-to-ground insulating barriers 73 and 73 are both side edges of the bottom-to-ground insulating barrier 72 in the different phase direction. The mounting corresponding positions of the two-phase insulation barriers 74 and 74 are the same between the load-side engagement recesses 76 and 76 in the bottom-to-ground insulation barrier 72 as in the center between the two power-side engagement recesses 75 and 75 adjacent to each other. This is a portion including a line segment that connects the center of the bottom and the top surface of the bottom-to-ground insulation barrier 72.
[0024]
On the top surface of the bottom-to-ground insulation barrier 72, a partition wall 77 having a predetermined height and a predetermined width is formed at each of the attachment corresponding positions so as to extend in the in-phase direction. In the center of the line end surface of the partition wall 77, a groove 78 that allows the lower end edges of the both-side insulating barriers 73, 73 and the lower end edges of both-phase insulating barriers 74, 74 to be fitted respectively extends over the entire length of the partition wall 77. Is formed. Even if a gap is formed between the lower end edge of the side-to-ground insulating barrier 73 and the lower end edge of the bottom-to-ground insulating barrier 72 and the innermost part of the groove 78, the insulation between the ground and different phases is not caused. The width of the partition wall 77, the height of the partition wall 77 from the top surface of the insulation barrier 72 between the ground, and the depth of the groove 78 are set to such an extent that they are secured.
[0025]
As shown in FIGS. 4 and 5, the groove 78 is formed in a tapered shape that expands toward the distal end surface of the partition wall 77, that is, in a V-shaped cross section. On the front end face of the partition wall 77, the width of the groove 78 is slightly larger than the thickness of the side-to-ground insulating barrier 73 and the thickness of the inter-phase insulating barrier 74. The width at the innermost portion of the groove 78 is slightly smaller than the thickness of the side-to-ground insulating barrier 73 and the thickness of the inter-phase insulating barrier 74.
[0026]
As shown in FIGS. 3 and 5, hemispherical support protrusions 79 are formed at the four corners of the bottom surface of the bottom-to-ground insulating barrier 72, respectively. Therefore, when the insulating barrier 71 is placed in the bottom case 12a, a gap corresponding to the height of each support protrusion 79 is formed between the inner bottom surface of the bottom case 12a and the bottom surface of the insulating barrier 71. .
[0027]
(Side-to-ground insulation barrier / different-phase insulation barrier)
As shown in FIG. 6, the side-to-ground insulation barrier 73 and the inter-phase insulation barrier 74 are each formed in a plate shape, and are inserted into the grooves 78 of the partition walls 77 from above the bottom-to-ground insulation barrier 72. ing. The corners of the lower edges of the side-to-ground insulation barrier 73 and the out-of-phase insulation barrier 74 are each formed in an arc shape, whereby the side-to-ground insulation barrier 73 and the out-of-phase insulation barrier 74 are formed in the groove 78. It can be inserted. Further, a U-shaped recess 73 a is formed on the upper edge load side of the side-to-ground insulation barrier 73. In a state where the insulating barrier 71 is disposed in the bottom case 12a, the rotating shaft 43 is positioned in a non-contact state in the recess 73a.
[0028]
(Disposition state)
As shown in FIGS. 1 and 2, the insulation barrier 71 is configured such that the lower surfaces of the power supply side bushings 21 and the load side bushings 22 engage with the power supply side engagement recesses 75 and the load side engagement recesses 76, respectively. Is disposed in the bottom case 12a. In addition, between the side-to-ground insulating barrier 73 and the adjacent inter-phase insulating barrier 74 and between the different-phase insulating barriers 74, the power supply side bushing 21 inner end portion and the load side bushing 22 inner end portion of each phase, respectively. The insulating barrier 71 is disposed in the bottom case 12a so that the fixed electrode 24 and the movable electrode 31 are positioned.
[0029]
Each partition wall 77 constitutes a creeping distance increasing structure that increases the creeping distance between the ground and between different phases. The groove 78 constitutes a fitting structure that allows the partition wall 77, the side-to-ground insulating barrier 73, and the inter-phase insulating barrier 74 to be fitted to each other.
[0030]
(Insulation barrier assembly procedure)
Next, a procedure for assembling the insulating barrier 71 will be described.
First, the bottom-to-ground insulation barrier 72 is placed in the bottom case 12a. Then, the power-side bushing 21 and the load-side bushing 22 on which the power-side conductive rod 23 and the load-side conductive rod 28 are projected are respectively supported by being penetrated into the bottom case 12a. The power supply side bushing 21 and the load side bushing 22 have an inner end lower surface through a packing (not shown) made of a rubber material in close contact with the circumference of each bushing 21, 22. The side engagement recess 75 and the load side engagement recess 76 are engaged. This restricts the upward movement of the bottom-to-ground insulation barrier 72 in the main body case 12.
[0031]
Next, the support member 26, the fixed electrode 24, the arc extinguishing member 25, and the like are assembled to the power supply side conductive rod 23. Further, the load side arc electrode 32, the movable electrode support member 29, the movable electrode 31, etc. are assembled to the load side conductive rod 28. A connecting member 46 is assembled in advance to the movable electrode 31.
[0032]
Next, both side-to-ground insulation barriers 73 and 73 and both-phase insulation barriers 74 and 74 are respectively inserted into the grooves 78 of the partition walls 77 from above. As a result, both side-to-ground insulating barriers 73 and 73 and both-phase insulating barriers 74 and 74 are fixed to the bottom-to-ground insulating barrier 72, respectively. The creepage distance between the ground and between different phases is increased by the plurality of partition walls 77 and the grooves 78 of the partition walls 77. For this reason, it is slightly between the lower end edge of the both-sides insulation barriers 73 and 73 and the inner bottom surface of the groove 78, and between the lower edge of both-phase insulation barriers 74 and 74 and the inner bottom surface of the groove 78, respectively. Even when the gap is formed, insulation between the ground and between different phases is ensured. Therefore, in the main body case 12, the insulation performance between the ground and different phases is improved.
[0033]
Next, the arrester mounting member 51 to which the lightning arrester 54 is fixed is fixed to the bottom case 12 a via the fixing member 52. Then, one end of the conductive member 55 is fixed to the front charging portion of the lightning arrester 54 with a bolt (not shown), and the other end of the conductive member 55 is screwed to the upper surface of the support member 26 and the base end portion of the power-side arc electrode 27 is screwed. Fix by joining.
[0034]
Next, via a bearing member (not shown) fixed to the inner surface of the bottom case 12a, the rotary shaft 43, to which the lever 44 is fixed so as to be integrally rotatable, can be rotated to the upper part in the bottom case 12a. To support. Then, the driving link 45 connects the tip of the lever 44 and the tip of the connecting member 46. Finally, the scattered matter preventing member 61 is fixed to the arrester mounting member 51 with bolts, and the upper case 12b is fixed to the bottom case 12a via the packing 14. Thus, the assembly work inside the switch 11 is completed.
[0035]
(Effect of embodiment)
Therefore, according to the present embodiment, the following effects can be obtained.
(1) The creeping distance increasing structure for increasing the creeping distance between the ground and between the different phases is provided at the mounting corresponding position of the side-to-ground insulating barrier 73 and the different-phase insulating barrier 74 in the bottom-to-ground insulating barrier 72, respectively. Then, the side-to-ground insulating barrier 73 and the inter-phase insulating barrier 74 are attached to each creeping distance increasing structure. For this reason, the decrease in the insulation performance due to the shortening of the insulation distance between the ground and the different phases with the miniaturization of the entire switch is compensated by the increase of the creeping distance between the ground and the different phases. Therefore, even if the entire switch is downsized, it is possible to ensure insulation between the ground and between different phases.
[0036]
(2) The partition walls 77 are formed at the positions corresponding to the side-to-ground insulation barrier 73 and the inter-phase insulation barrier 74 in the bottom-to-ground insulation barrier 72 so as to extend in the in-phase direction. Then, a groove 78 in which the side-to-ground insulating barrier 73 and the inter-phase insulating barrier 74 can be inserted is formed at the center of the front end surface of the partition wall 77. Therefore, the side-to-ground insulation barrier 73 and the out-of-phase insulation barrier 74 are simply inserted into the groove 78, respectively, so that the side-to-ground insulation barrier 73 and the bottom-to-ground insulation barrier 74 are provided with the bottom-to-ground insulation barrier 72. Fixed against. Therefore, the assembling work of the insulating barrier 71 is simplified. As a result, the assembly work efficiency of the insulation barrier 71 is improved. Further, even if a gap is formed between the lower edge of the side-to-ground insulating barrier 73 and the lower edge of the bottom-to-ground insulating barrier 72 and the innermost part of the groove 78, insulation between the ground and between different phases is ensured. The occurrence of discharge is prevented.
[0037]
(3) The groove 78 of the partition wall 77 is formed to have a tapered shape that expands toward the front end surface of the partition wall 77. For this reason, for example, compared with the case where the width of the groove 78 is constant, the side-to-ground insulating barrier 73 and the inter-phase insulating barrier 74 can be easily inserted into the groove 78. Therefore, the assembly work efficiency of the insulation barrier 71 can be improved.
[0038]
(Another example)
In addition, you may implement the said embodiment as follows.
In the present embodiment, the groove 78 is formed in the partition wall 77, and the side-to-ground insulation barrier 73 and the inter-phase insulation barrier 74 are fitted into the groove 78. The concavo-convex relationship between the lower end edge of the inter-layer insulating barrier 73 and the lower end edge of the inter-phase insulating barrier 74 may be reversed. That is, grooves are formed in the lower end edge of the side-to-ground insulation barrier 73 and the lower end edge of the inter-phase insulation barrier 74 so that the partition wall 77 can be inserted from above. The groove formed in the lower end edge of the side-to-ground insulating barrier 73 and the lower end edge of the inter-phase insulating barrier 74 enables the partition wall 77 and the side-to-ground insulating barrier 73 and the out-of-phase insulating barrier 74 to be fitted to each other. Configure the fitting structure. The groove 78 can be omitted.
[0039]
In the present embodiment, the groove 78 is formed in a V-shaped cross section, but may be formed in an arbitrary shape such as a rectangular cross section.
Even if a gap is formed between the lower end edge of the side-to-ground insulating barrier 73 and the lower end edge of the bottom-to-ground insulating barrier 72 and the innermost part of the groove 78, insulation between the ground and different phases is ensured. If necessary, the width of the partition wall 77, the height of the partition wall 77 from the top surface of the bottom-to-ground insulating barrier 72, and the depth of the groove 78 may be arbitrarily changed.
[0040]
The thicknesses of the side-to-ground insulation barrier 73 and the inter-phase insulation barrier 74 may be arbitrarily changed. The width of the partition wall 77 and the width of the groove 78 are changed so as to correspond to the change in the thickness of the side-to-ground insulation barrier 73 and the out-of-phase insulation barrier 74.
[0041]
(Appendix)
Next, a technical idea that can be grasped from the embodiment and another example will be added below.
・ Bushings facing each phase are penetrated and supported on both side walls of the main body case. A fixed electrode is provided at the inner end of one bushing, and the fixed electrode is attached to and separated from the inner end of the other bushing. In a switch configured to provide movable electrodes corresponding to each other in a rotatable manner, and to cover both electrodes with an insulating barrier so as to insulate between the ground and different phases, the insulating barrier has an inner bottom surface of the main body case. A bottom-to-ground insulating barrier, a side-to-ground insulating barrier that can be attached to the bottom-to-ground insulating barrier, and a different-phase insulating barrier; and a side-to-ground insulation in the bottom-to-ground insulating barrier. A creepage distance increasing structure that increases the creepage distance between the ground and between the different phases is provided at the mounting corresponding positions of the barrier and the different phase insulation barrier, and the side-to-ground insulation is provided for each creepage distance increasing structure. Switch that rear and heterophase insulating barrier to attach respectively.
[0042]
- formed in said partition wall groove, the insulating barrier structure of the switch according to claim 1 which is tapered to expanding toward the distal end surface of the partition wall.
[0043]
【The invention's effect】
According to the first aspect of the present invention, by increasing the creeping distance between the ground and between the different phases, insulation between the ground and between the different phases can be ensured even if the entire switch is downsized. Further, since the lower end edges of the side-to-ground insulating barrier and the inter-phase insulating barrier are merely inserted into the grooves of the respective partition walls, the assembling work efficiency can be improved.
[0044]
According to the invention described in claim 2, in addition to the effect of the invention described in claim 1, the upward movement of the bottom-to-ground insulation barrier is restricted in the main body case.
[Brief description of the drawings]
FIG. 1 is a front sectional view of a switch according to an embodiment.
FIG. 2 is a side sectional view of a switch according to the present embodiment.
FIG. 3 is a front view of a bottom-to-ground insulation barrier in the present embodiment.
4 is a sectional view taken along line 1-1 in FIG. 3;
FIG. 5 is a plan view of a bottom-to-ground insulation barrier in the present embodiment.
FIG. 6 is an exploded perspective view of an insulating barrier in the present embodiment.
[Explanation of symbols]
11 ... Switch, 12 ... Body case, 71 ... Insulation barrier,
72 ... Bottom-to-ground insulation barrier, 73 ... Side-to-ground insulation barrier,
74 ... Insulation barrier between different phases, 77 ... Partitions constituting the creeping distance increasing structure,
78 ... Grooves constituting the fitting structure.

Claims (2)

本体ケースの内底面を覆うようにU字状に形成された底部対地間絶縁バリヤに対して、それぞれ板状に形成された側部対地間絶縁バリヤ及び異相間絶縁バリヤを取り付けるようにした開閉器の絶縁バリヤ構造において、
前記U字状に形成された底部対地間絶縁バリヤにおける側部対地間絶縁バリヤ及び異相間絶縁バリヤの取付対応位置には、それぞれ対地間及び異相間の沿面距離を増大させる沿面距離増大構造を設け、
前記沿面距離増大構造は、前記U字状に形成された底部対地間絶縁バリヤの内周面に沿って同相間方向に延びるように形成された複数の隔壁と、各隔壁には、同隔壁の全長に亘って形成されると共に側部対地間絶縁バリヤ及び異相間絶縁バリヤの下端縁をそれぞれ嵌挿可能に形成された溝とを備えた開閉器の絶縁バリヤ構造。
A switch to which side-to-ground insulation barriers and inter-phase insulation barriers each formed in a plate shape are attached to a bottom-to-ground insulation barrier formed in a U shape so as to cover the inner bottom surface of the main body case. In the insulation barrier structure of
In the U-shaped bottom-to-ground insulation barrier, a side-to-ground insulation barrier and a different-phase insulation barrier are installed at positions corresponding to the side-to-ground insulation barrier and a different creepage distance increasing structure for increasing the creepage distance between the ground and the different phases, respectively. ,
The creeping distance increasing structure includes a plurality of partitions formed to extend in an in-phase direction along an inner peripheral surface of the bottom-to-ground insulating barrier formed in the U shape, and each partition includes An insulating barrier structure for a switch, comprising a groove formed over the entire length and formed so that the lower end edges of the side-to-ground insulating barrier and the inter-phase insulating barrier can be respectively inserted thereinto.
本体ケースの内側壁には、各相毎に相対する電源側ブッシング及び負荷側ブッシングが貫通支持され、前記底部対地間絶縁バリヤの同相間方向における両側縁には、各相毎に相対する電源側ブッシング及び負荷側ブッシングをそれぞれ係合するように電源側係合凹部及び負荷側係合凹部が形成されている請求項1に記載の開閉器の絶縁バリヤ構造 The power supply side bushing and the load side bushing that are opposed to each phase are penetrated and supported on the inner wall of the main body case, and the opposite side edges in the in-phase direction of the bottom-to-ground insulation barrier are on the power supply side that is opposed to each phase. The insulating barrier structure for a switch according to claim 1 , wherein a power supply side engaging recess and a load side engaging recess are formed so as to engage the bushing and the load side bushing, respectively .
JP2001193031A 2001-06-26 2001-06-26 Insulation barrier structure of switch Expired - Fee Related JP4279478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001193031A JP4279478B2 (en) 2001-06-26 2001-06-26 Insulation barrier structure of switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001193031A JP4279478B2 (en) 2001-06-26 2001-06-26 Insulation barrier structure of switch

Publications (2)

Publication Number Publication Date
JP2003007177A JP2003007177A (en) 2003-01-10
JP4279478B2 true JP4279478B2 (en) 2009-06-17

Family

ID=19031391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001193031A Expired - Fee Related JP4279478B2 (en) 2001-06-26 2001-06-26 Insulation barrier structure of switch

Country Status (1)

Country Link
JP (1) JP4279478B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4841875B2 (en) * 2005-06-29 2011-12-21 株式会社日立製作所 Vacuum insulated switchgear
US7902480B2 (en) 2007-06-13 2011-03-08 Hitachi, Ltd. Vacuum insulated switchgear
JP2009070780A (en) * 2007-09-18 2009-04-02 San'eisha Mfg Co Ltd Insulating barrier of power switch
JP7040885B2 (en) * 2016-07-25 2022-03-23 株式会社ダイヘン Switch

Also Published As

Publication number Publication date
JP2003007177A (en) 2003-01-10

Similar Documents

Publication Publication Date Title
US7102091B2 (en) Lever switch
KR100557263B1 (en) Low voltage multipole circuit breaker with high electrodynamic resistance, whereof the pole shaft is arranged in the compartment housing the poles
JP4279478B2 (en) Insulation barrier structure of switch
JP2001072116A (en) Electric junction box
BRPI1003518A2 (en) Power Tool Switching Devices
ES2214299T3 (en) MOBILE CONTACT WITH LOW ELECTRIC RESISTANCE.
JP2001283690A (en) Multi-contact input device
JP4022384B2 (en) Crossbar for conductor of rotary circuit breaker
CN213583664U (en) Plastic case circuit breaker
KR101752300B1 (en) Movable contactor assembly for molded case circuit breaker
JP3660222B2 (en) Switch insulation barrier
JPH037007Y2 (en)
JP3660159B2 (en) Switch
US6331684B1 (en) Modular switch mechanism
JP4321333B2 (en) Polyphase switch
JP4531669B2 (en) Switch
JP2002084606A (en) Interior-component supporting structure for switch
JP3660223B2 (en) Interior parts support for switches
JP3464758B2 (en) Rotary switch device
JP2003045298A (en) Switch
JPH06139904A (en) Circuit breaker
KR0140073B1 (en) Circuit breaker
JP2000322984A (en) Switch
JP4106282B2 (en) Multi-contact input device
JP3561405B2 (en) Rotary switch device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees