JP4278994B2 - Thermal storage material life prediction method and apparatus - Google Patents

Thermal storage material life prediction method and apparatus Download PDF

Info

Publication number
JP4278994B2
JP4278994B2 JP2003014376A JP2003014376A JP4278994B2 JP 4278994 B2 JP4278994 B2 JP 4278994B2 JP 2003014376 A JP2003014376 A JP 2003014376A JP 2003014376 A JP2003014376 A JP 2003014376A JP 4278994 B2 JP4278994 B2 JP 4278994B2
Authority
JP
Japan
Prior art keywords
heat storage
storage material
substance
concentration
aliphatic hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003014376A
Other languages
Japanese (ja)
Other versions
JP2004226233A (en
Inventor
忠明 谷井
陽一郎 入谷
潤司 緒方
浩男 株根
誠司 澁谷
芳典 白方
朗 福田
正 塚野
敏浩 鈴木
敏雄 田代
隆夫 横瀬
三嘉 射延
修二 角谷
宣夫 眞鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2003014376A priority Critical patent/JP4278994B2/en
Publication of JP2004226233A publication Critical patent/JP2004226233A/en
Application granted granted Critical
Publication of JP4278994B2 publication Critical patent/JP4278994B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Description

【0001】
【発明の属する技術分野】
本発明は、蓄熱材寿命予測方法及び装置に関する。
【0002】
【従来の技術】
最近、潜熱蓄熱物質を芯物質として微小なカプセル内に封入して構成した微小カプセルを水と混合してスラリー状態として流動性を持たせ(以下、このスラリーを微小カプセルスラリーと称す)、伝熱性能を向上させた蓄熱材を用いたシステムが考えられている。このシステムでは、蓄熱時に、微小カプセルスラリーを熱交換器により冷水またはブラインと熱交換させることで冷却することにより、微小カプセル内の潜熱蓄熱物質に冷熱を蓄える。また放熱時には、同様に微小カプセルスラリーを熱交換器により戻り冷水またはブラインと熱交換させることで加熱することにより、微小カプセル内の潜熱蓄熱物質から冷熱を取り出す。
【0003】
【発明が解決しようとする課題】
一般的に蓄熱材の使用年数は、機械設備の法定耐用年数15年に対して、20年程度であるケースが多い。このため蓄熱材の寿命は、経年劣化に対する設計性能として余裕を有するよう、例えば25年と設定されている。しかし、現状では上述した微小カプセルスラリーの蓄熱材の寿命を予測する方法がないため、この蓄熱材に対して、蓄熱システムの運転開始前(運転開始時)の蓄熱材寿命予測、あるいは運転時(運転中)の蓄熱材寿命予測ができず、蓄熱材の補充時期及びその補充量を予測できない状況にある。
【0004】
本発明の第1の目的は、蓄熱システムの運転開始前あるいは運転時において、蓄熱材の寿命を予測することができる蓄熱材寿命予測方法及び装置を提供することにある。
【0005】
本発明の第2の目的は、蓄熱システムの運転開始前あるいは運転時において、蓄熱材の補充時期と補充量を予測することができる蓄熱材寿命予測方法及び装置を提供することにある。
【0007】
【課題を解決するための手段】
課題を解決し目的を達成するために、本発明の蓄熱材寿命予測方法及び装置は以下の如く構成されている。
【0008】
(1)本発明の蓄熱材寿命予測方法は、有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材の寿命を予測する蓄熱材寿命予測方法であり、前記蓄熱材を充填した複数の容器を、それぞれ所定温度に維持し、所定時間経過毎に、前記各容器中の蓄熱材をサンプリングし、前記蓄熱材の劣化により膜から放出した芯物質の脂肪族炭化水素量に対して比例関係にある各所定物質(四塩化炭素抽出物質、ノルマルヘキサン抽出物質、あるいはガスクロマトグラフィによる測定物質、これを放出脂肪族炭化水素比例物質と以下称す)の濃度を測定し、経過時間と前記各所定物質の濃度との関係を表示し、この関係から温度と前記放出脂肪族炭化水素比例物質の濃度に達するまでの時間との関係を表示し、この関係から所定温度での前記放出脂肪族炭化水素比例物質の濃度と時間経過との関係を表示し、この関係から前記蓄熱材の寿命を予測する。
【0009】
(2)本発明の蓄熱材寿命予測方法は、有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材の寿命を予測する蓄熱材寿命予測方法であり、前記蓄熱材を系統内に充填し、所定回数循環させ、前記所定回数を経過した時点で、前記系統内の蓄熱材の劣化により膜から放出した放出脂肪族炭化水素比例物質の濃度を測定し、この放出脂肪族炭化水素比例物質の濃度と経過回数との関係を表示し、この関係から、前記蓄熱材の寿命を予測する。
【0010】
(3)本発明の蓄熱材寿命予測方法は上記(1)または(2)に記載の方法であり、かつ予測された寿命に応じて、 X=(A−B)/(A−C)×Y に、予測される放出脂肪族炭化水素比例物質の濃度A、補充する有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材の放出脂肪族炭化水素比例物質の濃度C、有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材交換後の放出脂肪族炭化水素比例物質の濃度B、全系統内の有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材量Yを代入することで、交換する有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材量Xを予測する。
【0012】
)本発明の蓄熱材寿命予測装置は、有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材の寿命を予測する蓄熱材寿命予測装置であり、前記蓄熱材を充填した複数の容器を、それぞれ所定温度に維持する手段と、所定時間経過毎にサンプリングされた前記各容器中の蓄熱材の劣化により膜から放出した放出脂肪族炭化水素比例物質の濃度を測定する手段と、経過時間と前記放出脂肪族炭化水素比例物質の濃度との関係を表示する手段と、この関係から温度と前記放出脂肪族炭化水素比例物質の濃度に達するまでの時間との関係を表示する手段と、この関係から所定温度での前記放出脂肪族炭化水素比例物質の濃度と時間経過との関係を表示する手段と、この関係から前記蓄熱材の寿命を予測する手段と、から構成されている。
【0013】
)本発明の蓄熱材寿命予測装置は、有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材の寿命を予測する蓄熱材寿命予測装置であり、系統内に充填された前記蓄熱材を所定回数循環させる手段と、前記所定回数を経過した時点で、前記系統内の蓄熱材の劣化により膜から放出した放出脂肪族炭化水素比例物質の濃度を測定する手段と、この放出脂肪族炭化水素比例物質の濃度と経過回数との関係を表示する手段と、この関係から、前記蓄熱材の寿命を予測する手段と、から構成されている。
【0014】
)本発明の蓄熱材寿命予測装置は上記(5)または(6)に記載の装置であり、かつ予測された寿命に応じて、 X=(A−B)/(A−C)×Y に、予測される放出脂肪族炭化水素比例物質の濃度A、交換する有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材の放出脂肪族炭化水素比例物質の濃度C、有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材交換後の所定物質の濃度B、全系統内の有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材量Yを代入することで、交換する有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材量Xを予測する手段を備えている。
【0016】
【発明の実施の形態】
本実施の形態の蓄熱材寿命予測方法及び装置では、蓄熱材の寿命予測を行ない、将来における蓄熱材交換対応を予測する。本実施の形態の概要は、以下の通りである。なお本実施の形態では、蓄熱材の目標耐用年数を25年とする。
【0017】
(1).本実施の形態で対象とする蓄熱材は、有機系膜物質からなる微小なカプセル内に脂肪族炭化水素からなる潜熱蓄熱物質を芯物質として封入したものと水との混合物である。よって、蓄熱材の寿命は有機系膜物質の寿命と置き換えることができると考える。これは、膜物質が損傷し破壊することにより、芯物質が膜内から放出され、熱交換器の熱交換容量が低下するからである。
【0018】
なお、各微小カプセル内に芯物質として封入されている潜熱蓄熱物質は、常温レベルで相変化し潜熱を蓄えるものである。この潜熱蓄熱物質としては、脂肪族炭化水素(パラフィン系炭化水素)であるテトラデカン(TD)とペンタデカン(PD)との混合物を用い、微小カプセルの皮膜としてはメラミン樹脂(有機系樹脂)を用いている。各微小カプセルに封入された潜熱蓄熱物質の全重量のうち、80%以上をテトラデカンとペンタデカンとの混合物が占めるとともに、前記潜熱蓄熱物質内に過冷却防止剤も添加されている。また、一つの微小カプセルの粒径は好ましくは1〜2μm程度であるが、20μm程度以下であれば実用可能である。
【0019】
(2).本実施の形態では有機系膜物質の寿命を、(a)化学的な経年劣化と、(b)芯物質の相変化(融解・凝固)に伴う膨張・収縮ならびに蓄熱材系統内における微小カプセルと壁面および微小カプセル同士の摺動等による機械的な繰り返し劣化とに起因すると考える。
【0020】
(3).有機系膜物質の寿命予測を、プラスチックスの寿命予測に用いられている下記のアウレニウスの式を利用して行なう。
【0021】
Ln(te)=ΔE/RT+定数
但し、te:寿命、ΔE:見かけの活性化エネルギー、R:気体定数、T:絶対温度
(4).化学的経年劣化加速試験から、化学的な経年劣化による劣化状況を示す下記の関係式(1)を得る。
【0022】
y1=f(x) …(1)
但し、y1:放出脂肪族炭化水素比例物質の濃度、x:経過時間
(5).同様に、化学的経年劣化及び機械的繰り返し劣化加速試験から、化学的な経年劣化及び機械的な繰り返し劣化による劣化状況を示す下記の関係式(2)を得る。
【0023】
y2=f(x) …(2)
但し、y2:放出脂肪族炭化水素比例物質の濃度、x:経過時間
(6).化学的経年劣化加速試験の結果から、上記式(1)で蓄熱材寿命を予測する。
【0024】
(7).同様に、化学的経年劣化及び機械的繰り返し劣化加速試験(ループ試験)から、上記式(2)で蓄熱材寿命を予測する。
【0025】
(8).上記(6)あるいは(7)を、蓄熱システムの運転開始前(運転開始時)あるいは運転時(運転中)に行なう。
【0026】
(9).上記(4)あるいは(5)の蓄熱材劣化状況を示す関係式から所定経過時間後(例えば、25年後)の予測される放出脂肪族炭化水素比例物質の濃度を求め、下記式(3)に、交換する有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材の放出脂肪族炭化水素比例物質の濃度、有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された蓄熱材を水と混合してスラリー状態とした微小カプセルスラリー補充後の放出脂肪族炭化水素比例物質の濃度、全系統内の有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材量を代入することで、系統から抜き出す有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材量あるいは系統へ交換する有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材量を予測する。
【0027】
X=(A−B)/(A−C)×Y …(3)
ここで、A:所定経過時間後での予測蓄熱材の劣化により膜から放出した放出脂肪族炭化水素比例物質の濃度、B:蓄熱材交換後蓄熱材の劣化により膜から放出した放出脂肪族炭化水素比例物質の濃度の期待値、C:交換蓄熱材の劣化により膜から放出した放出脂肪族炭化水素比例物質の濃度、X:有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材交換量、Y:系統内の全有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材量である。
【0028】
(第1実施例)
本第1実施例では、蓄熱システムにて冷熱専用蓄熱運転を行なう場合に、その運転開始前に化学的な経年劣化に伴う蓄熱材の寿命を予測する。
【0029】
1.その1
図1は、化学的経年劣化加速試験装置(蓄熱材寿命予測装置)の系統を示す構成図である。図1において、恒温保持系統は、上述した有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材(以下、蓄熱材と称す)を収納したガラス容器S1,S2,S3,S4がそれぞれ保管された恒温槽V1,V2,V3,V4、各容器S1,S2,S3,S4内の蓄熱材の温度をそれぞれ指示する温度指示計TE1,TE2,TE3,TE4、各容器S1,S2,S3,S4内の蓄熱材を均一にする撹拌機M1,M2,M3,M4、恒温槽ヒータH1,H2,H3,H4、及び各恒温槽ヒータH1,H2,H3,H4の温度を制御する温度制御器C1,C2,C3,C4からなる。
【0030】
排出系統は、各容器S1,S2,S3,S4にそれぞれ対応した、バルブV11,V12,V13、バルブV21,V22,V23、バルブV31,V32,V33、バルブV41,V42,V43、及びポンプP1,P2,P3,P4からなる。計測系統は、各容器S1,S2,S3,S4にそれぞれ対応し、劣化指標を示す油分濃度計D1,D2,D3,D4からなる。演算/出力装置CPは、各種指示、記録、演算、及び表記機能を有する。
【0031】
各容器S1,S2,S3,S4内の蓄熱材の温度は、各温度制御器C1,C2,C3,C4が、それぞれ各温度指示計TE1,TE2,TE3,TE4からの指示信号を入力し、その結果を恒温槽ヒータH1,H2,H3,H4へ出力制御することで維持されている。
【0032】
開閉バルブV11〜V13,V21〜V23,V31〜V33,V41〜V43の開閉指示、及びポンプP1,P2,P3,P4の運転停止の指示は、演算/出力装置CPでなされる。具体的には、開閉バルブV12,V22,V32,V42は、蓄熱材の初期取り出し時に排出用に開けられ、所定の状態になった時点で閉じられ、同時にバルブV13,V23,V33,V43が開けられる。これにより、各容器S1,S2,S3,S4からの蓄熱材がそれぞれ油分濃度計D1,D2,D3,D4へ導入される。
【0033】
油分濃度計D1,D2,D3,D4で測定された蓄熱材の油分濃度は、演算/出力装置CPに入力されて保存され、所定の演算がなされる。ここで、あらかじめ油分濃度計D1,D2,D3,D4の出力と、蓄熱材の膜劣化により膜から放出した芯物質の脂肪族炭化水素量に対して比例関係にある放出脂肪族炭化水素比例物質の濃度との相関関係を求めておく。演算/出力装置CPは、この関係式を収納しており、油分濃度計D1,D2,D3,D4で測定された油分抽出濃度から、前記した物質の濃度を推算する。
【0034】
また、演算/出力装置CPは、経過時間と蓄熱材の劣化により膜から放出した放出脂肪族炭化水素比例物質の濃度との関係を示すグラフ(例えば、後述する図2)の作成、このグラフからの各蓄熱材の劣化により膜から放出した放出脂肪族炭化水素比例物質の濃度における温度と各蓄熱材の劣化により膜から放出した放出脂肪族炭化水素比例物質の濃度に達するまでの時間の読み取り、このグラフ(図2)で読み取った各蓄熱材の劣化により膜から放出した放出脂肪族炭化水素比例物質の濃度における温度と各蓄熱材の劣化により膜から放出した放出脂肪族炭化水素比例物質の濃度に達するまでの時間との関係を示すグラフ(例えば、後述する図3)の作成を行なう。さらに演算/出力装置CPは、このグラフから7.5℃での各蓄熱材の劣化により膜から放出した放出脂肪族炭化水素比例物質の濃度と各蓄熱材の劣化により膜から放出した放出脂肪族炭化水素比例物質の濃度に達するまでの時間を読み取り、それらの関係を示すグラフ(例えば、後述する図4)の作成を行なう。そして演算/出力装置CPは、蓄熱材の寿命を予測し、また系統から抜き出す蓄熱材量あるいは系統へ交換する蓄熱材量を予測し、それらの結果を表示部等に出力する。
【0035】
以下、本第1実施例における蓄熱材寿命予測方法の手順を説明する。
【0036】
(1).50mlのガラス容器S1,S2,S3,S4に、それぞれ運転前の蓄熱材(新しい蓄熱材)を40g充填する。
【0037】
(2).恒温槽V1,V2,V3,V4を、それぞれ所定温度45℃、60℃、75℃、90℃に維持し、各恒温槽V1,V2,V3,V4内に、それぞれ蓄熱材を充填したガラス容器S1,S2,S3,S4を保管する。
【0038】
(3).所定時間経過毎に、各ガラス容器S1,S2,S3,S4中の蓄熱材をサンプリングし、放出脂肪族炭化水素比例物質の濃度を測定する。
【0039】
(4).図2に示すように、放出脂肪族炭化水素比例物質の濃度の経時変化を示すグラフを作成し、各所定温度45℃、60℃、75℃、90℃にて同一の濃度に達するまでの時間を読み取る。但し、図2は概念図である。
【0040】
(5).図3に示すように、放出脂肪族炭化水素比例物質の濃度と温度の逆数との関係を示すグラフを作成する。
【0041】
(6).図3から、図4のA−1に示すように所定温度(7.5℃)での時間経過と放出脂肪族炭化水素比例物質の濃度との関係を示すグラフを作成し、下記の関係式(4)を得る。
【0042】
y3=f(x) …(4)
但し、y3:放出脂肪族炭化水素比例物質の濃度、x:経過時間
(7).放出脂肪族炭化水素比例物質の濃度が1000mg/Lを超えると熱交換器の熱交換容量が1割低下するという知見から、1000mg/Lを蓄熱材劣化の基準値とする。図4のA−1から、放出脂肪族炭化水素比例物質の濃度が約100mg/Lである場合、その濃度に達する時間は約1×107hであると予測されるため、放出脂肪族炭化水素比例物質の濃度が約100mg/Lになる時点で、すでに目標耐用年数である25年=2.2×105hを越えていることが分かる。これにより、冷熱専用蓄熱運転前の蓄熱材では、その放出脂肪族炭化水素比例物質の濃度が1000mg/Lに達するまでの時間、すなわち蓄熱材の寿命は、目標耐用年数である25年を十分に越えることが予測される。
【0043】
2.その2
上記その1の(1)〜(6)の操作を行ない、図4に示すA−2の結果を得た。この場合、目標耐用年数である25年=2.2×105hを経過すると、放出脂肪族炭化水素比例物質の濃度が1000mg/Lを越えることが予測される。すなわちこの場合、蓄熱材の寿命は、目標耐用年数である25年を越えないことが予測される。
【0044】
このため、A−2から放出脂肪族炭化水素比例物質の濃度が500mg/Lであると予測される105h=11.4年の時点で、蓄熱システムの蓄熱材を入れ替えることを想定する。この場合、上記した式(3)の関係式で、11.4年後での予測される放出脂肪族炭化水素比例物質の濃度Aを500mg/L、補充する蓄熱材の放出脂肪族炭化水素比例物質の濃度Cを100mg/L、蓄熱材交換後の放出脂肪族炭化水素比例物質の濃度の期待値Bを200mg/Lとし、さらに抜き出し蓄熱材量と補充蓄熱材量とが等しいと仮定する。この場合、下記式
X=(500−200)/(500−100)×Y=0.75×Y
を得る。
【0045】
これにより、放出脂肪族炭化水素比例物質の濃度を500mg/Lから200mg/Lに低減するためには、蓄熱システムにおける全蓄熱材量の75%を補充蓄熱材(新しい蓄熱材)と交換する必要があることが分かる。
【0046】
3.その3
上記その1の(1)〜(6)の操作を行ない、図4に示すA−3の結果を得た。ここで使用した蓄熱材は、5年間実運転した後、蓄熱システムから取り出したものであり、この蓄熱材が今後どのような化学的な経年劣化をするかを予測する。
【0047】
この場合、あと20年=1.8×105hを経過すると、放出脂肪族炭化水素比例物質の濃度が1000mg/Lを十分越えることが予測される。すなわちこの場合も、蓄熱材の寿命は、目標耐用年数である25年を越えないことが予測される。
【0048】
このため、上記その2と同様にして、A−3の今後予定される時点で、予測される放出脂肪族炭化水素比例物質の濃度を期待する値に低減するために必要な補充蓄熱材と全蓄熱材量との量比関係を予測することができる。
【0049】
(第2実施例)
本第2実施例では、蓄熱システムにて冷熱専用蓄熱運転を行なう場合に、その運転開始前に化学的な経年劣化及び機械的な繰り返し劣化に伴う蓄熱材の寿命を予測する。
【0050】
1.その1
図5は、化学的経年劣化及び機械的繰り返し劣化加速試験装置(蓄熱材寿命予測装置)の系統を示す構成図である。図5において、循環系統は、蓄熱材が充填されている高温側熱交換器61から低温側熱交換器62の間の配管、蓄熱材の貯蔵槽71、高温側熱交換器61から低温側熱交換器62の間の配管に蓄熱材を循環させる循環ポンプ69、配管内温度計TC1,TCC2,TH1,THC2、貯蔵槽ヒータH0、配管ヒータH1、H2,H3,H4、温度制御器C1,C2,C3,C4、貯蔵槽ヒータH0の温度制御器C0、貯蔵槽71内の蓄熱材を均一にする撹拌機M0、蓄熱材の流量制御器70、及び演算/出力装置CP100からなる。
【0051】
演算/出力装置CP100は、流量制御器70、配管ヒータH1,H2,H3,H4、制御器C1,C2,C3,C4、貯蔵槽ヒータH0、及び制御器C0を制御する。
【0052】
高温側系統は、高温側熱交換器61の出口配管内の温度(THC2)を所定温度にするための温度計T1,T2、流量計FH、加熱ポンプ63、及び可動バルブ67を備えている。低温側系統は、低温側熱交換器62の出口配管内の温度(TCC2)を所定温度にするための温度計T3,T4、流量計FC、冷却ポンプ65、及び可動バルブ68を備えている。試料排出系統は、バルブV100、V101、V102からなる。計測系統は、蓄熱材の劣化指標を示す油分濃度計D300からなる。演算/出力装置CP200は、各種指示、記録、演算、及び表記機能を有する。
【0053】
ここで、演算/出力装置CP100は、例えば本第2実施例のその1(後述する図6のB−1の例)においては、TC1=11.25℃、TCC2=4.25℃、TH1=4.25℃、THC2=11.25℃、T1=12℃、T2=5.2℃、T3=3.5℃、T4=8.2℃となるように、可動バルブ67、可動バルブ68、及び流量制御器70を制御した0.27日の循環運転を行なう。
【0054】
続いて演算/出力装置CP100は、上記制御及び循環運転を停止した状態で、貯蔵槽ヒータH0と配管ヒータH1,H2,H3,H4を、それぞれ温度制御器C0と温度制御器C1,C2,C3,C4で制御し、TC1,TCC2,TH1,THC2における配管内温度を60℃に3.12日維持させた状態を1年相当の蓄熱材劣化とするサイクルを、25回繰り返すよう制御する。
【0055】
但し、60℃に3.12日維持する運転においても、均一撹拌のために撹拌機M0は運転しており、また循環ポンプ69も極少量運転している。また、演算/出力装置CP200の機能は、図1の化学的経年劣化加速試験装置で示したCPの機能と同様である。
【0056】
以下、本第2実施例における蓄熱材寿命予測方法の手順を説明する。
【0057】
(1).1年分の365回(1日で1回のため)の相変化(融解・凝固)、及び1年分の熱分解相当劣化を行なう。具体的には、365回の循環運転(高温側熱交換器61内にて融解、低温側熱交換器62内にて凝固)及び1年分の熱分解加速(60℃にて3.12日)を25回繰り返す。実際には、0.27日間の高速運転を1年分の循環運転とした。
【0058】
ここで、1年分の冷熱専用蓄熱が60℃で3.12日に相当する根拠を示す。1年分の化学的経年劣化加速試験を行なうために必要な時間の試算を、冷水(3〜12℃)のみを蓄熱する場合について算出した結果を、以下に示す。
【0059】
一般的に、温度が10℃上昇すると、化学反応速度は2〜3倍に増加することから、劣化反応速度は、温度が10℃上昇すると2〜3倍に増加すると想定し、本試験を行なうために必要な時間を算出した。
【0060】
a. 算定条件
a) 化学的経年劣化加速条件
温度が10℃上昇すれば、化学的経年劣化速度は2.5倍(上記の2〜3倍の平均)増加する。
【0061】
b) 蓄熱タンク内温度
・冷熱蓄熱運転時:α1=7.5℃(3℃と12℃の平均値)
・停止時:α2℃(停止期間中に想定される最高温度)
緊急時:α21℃
メンテナンス時:α22℃
台数制御時:α23℃
ここで、(α21,α22,α23)≦α2
また、シミュレーションの結果から、余裕をみてα2を40℃とする。
【0062】
c) 運転時間及び停止時間
・冷熱蓄熱期間:δ1=365−δ2日
・停止時:δ2日
緊急時:δ21日
メンテナンス時:δ22日
台数制御時:δ23日
代表として、δ2=1日とする。
【0063】
b. 算出方法
a) 化学的経年劣化加速温度での通常運転時で化学的な経年劣化に対する化学的経年劣化係数:
η1=1/[2.5^{(αmax℃−α1℃)/10℃}]
ここで、αmaxは化学的経年劣化加速温度とする。
【0064】
b) 化学的経年劣化加速温度での停止時における化学的な経年劣化に対する化学的経年劣化係数:
η2=1/[2.5^{(αmax℃−α2℃)/10℃}]
η2i=1/[2.5^{(αmax℃−α2i℃)/10℃}]
c) 1年間の化学的な経年劣化の化学的経年劣化加速温度での換算時間:β(日)
β=η1×δ1+η2×δ2
c.算出結果
下表に、化学的経年劣化加速温度αmaxを60℃とした場合の、1年間相当分の化学的な経年劣化の寿命加速温度での換算時間を示す。この結果、1年間相当分の化学的経年劣化加速試験を、化学的経年劣化加速温度αmaxを60℃として行なう場合には、3.12日が必要であることが分かる。
【0065】
【表1】

Figure 0004278994
【0066】
(2).使用前の蓄熱材を系統内に充填し、所定回数の循環を経過した時点で系統内の蓄熱材の放出脂肪族炭化水素比例物質の濃度を測定する。
【0067】
(3).図6に示すように、放出脂肪族炭化水素比例物質の濃度と経過回数(相当年数)との関係をグラフにし、下記の関係式(5)を得る。
【0068】
y1=f(x) …(5)
但し、y1:放出脂肪族炭化水素比例物質の濃度、x:経過回数(相当年数)
(4).図6から、冷熱専用蓄熱運転前の蓄熱材の放出脂肪族炭化水素比例物質の濃度が1000mg/Lに達するまでの時間を予測することができる。図6のB−1では、25年相当の機械的な繰り返し劣化及び化学的な経年劣化経過で、放出脂肪族炭化水素比例物質の濃度が約200mg/Lである。このため冷熱専用蓄熱運転前の蓄熱材では、その放出脂肪族炭化水素比例物質の濃度が1000mg/Lに達するまでの時間、すなわち蓄熱材の寿命は、目標耐用年数である25年を十分に越えることが予測される。
【0069】
2.その2
上記その1の(1)〜(4)の操作を行ない、図6に示すB−2の結果を得た。この場合、目標耐用年数である25年を経過すると、放出脂肪族炭化水素比例物質の濃度が1000mg/Lを越えることが予測される。
【0070】
このため、B−2から放出脂肪族炭化水素比例物質が500mg/Lであると予測される10年の時点で、蓄熱システムの蓄熱材を入れ替えることを想定する。この場合、上記した式(3)の関係式で、補充する蓄熱材の放出脂肪族炭化水素比例物質の濃度Cを100mg/L、蓄熱材交換後の放出脂肪族炭化水素比例物質の濃度の期待値Bを200mg/Lとし、さらに抜き出し蓄熱材量と補充蓄熱材量とが等しいと仮定する。この場合、下記式
X=(500−200)/(500−100)×Y=0.75Y
を得る。
【0071】
これにより、放出脂肪族炭化水素比例物質の濃度を500mg/Lから200mg/Lに低減するためには、蓄熱システムにおける全蓄熱材量の75%を補充蓄熱材(新しい蓄熱材)と交換する必要があることが分かる。
【0072】
3.その3
上記その1の(1)〜(6)の操作を行ない、図6に示すB−3の結果を得た。ここで使用した蓄熱材は、5年間実運転した後、蓄熱システムから取り出したものであり、この蓄熱材が今後どのような化学的な経年劣化をするかを予測する。
【0073】
この場合、あと10年経過すると放出脂肪族炭化水素比例物質の濃度が1000mg/Lを十分越えることが予測される。すなわちこの場合も、蓄熱材の寿命は、目標耐用年数である25年を越えないことが予測される。
【0074】
このため、上記その2と同様にして、B−3の今後予定される時点で、予測される放出脂肪族炭化水素比例物質の濃度を期待する値に低減するために必要な補充蓄熱材と全蓄熱材量との量比関係を予測することができる。
【0075】
(第3実施例)
本第3実施例では、蓄熱システムにて冷熱・冷温兼用蓄熱運転を行なう場合に、その運転開始前に化学的な経年劣化に伴う蓄熱材の寿命を予測する。なお本第3実施例では、図1に示した化学的経年劣化加速試験装置(蓄熱材寿命予測装置)を用いる。
【0076】
1.その1
以下、本第3実施例における蓄熱材寿命予測方法の手順を説明する。(1)〜(4)の手順は、第1実施例の(1)〜(4)の手順と基本的に同一であるため説明を省略する。
【0077】
(5).図7に示すように、放出脂肪族炭化水素比例物質の濃度と温度の逆数との関係を示すグラフを作成する。
【0078】
(6).図7から、図8のC−1に示すように、冷熱・冷温兼用蓄熱時における年平均温度(21.7℃)での時間経過と放出脂肪族炭化水素比例物質の濃度との関係を示すグラフを作成し、下記の関係式(6)を得る。
【0079】
y3=f(x) …(6)
但し、y3:放出脂肪族炭化水素比例物質の濃度、x:経過時間
ここで、冷熱・冷温兼用蓄熱時における年平均相当温度である21.7℃の試算方法を以下に示す。
【0080】
一般的に、温度が10℃上昇すると、化学反応速度は2〜3倍に増加することから、劣化反応速度は、温度が10℃上昇すると2〜3倍に増加すると想定し、本試験を行なうために必要な時間を算出した。
【0081】
a. 算定条件
a) 化学的経年劣化加速条件
温度が10℃上昇すれば、化学的経年劣化速度は2.5倍(上記の2〜3倍の平均)増加する。
【0082】
b) 蓄熱タンク内温度
・冷熱蓄熱運転時:α11=7.5℃(3℃と12℃の平均値)
温熱蓄熱運転時:α12=50℃
・停止時:α2℃(停止期間中に想定される最高温度)
緊急時:α21℃
メンテナンス時:α22℃
台数制御時:α23℃
ここで、(α21,α22,α23)≦α2
また、シミュレーションの結果から、余裕をみてα2を40℃とする。
【0083】
c) 運転時間及び停止時間
・冷熱蓄熱期間:δ11=365−(δ12+δ2)日
温熱蓄熱期間:δ12=121日
・停止時:δ2日
緊急時:δ21日
メンテナンス時:δ22日
台数制御時:δ23日
代表としてδ2=1日とする。
【0084】
b. 算出方法
a) 通常運転時での化学的経年劣化加速温度×期間:γ1
γ1=δ11×α11
b) 停止時における化学的経年劣化加速温度×期間:γ2
γ2=δ2×α2
c) 年平均相当温度:ε℃
ε=(δ11×α11+δ2×α2)/(δ11+δ2)
但し、δ11=365−δ12−δ1日,δ2=1日,δ12=121日
c.算出結果
下表に、冷熱・冷温兼用蓄熱時での年平均相当温度の試算結果を示す。この結果、年平均相当温度が21.7℃であることが分かる。
【0085】
【表2】
Figure 0004278994
【0086】
(7).図8のC−1から、冷熱・冷温兼用蓄熱運転前の蓄熱材の放出脂肪族炭化水素比例物質の濃度が約100mg/Lである場合、その濃度に達する時間は約6×105hであると予測されるため、放出脂肪族炭化水素比例物質の濃度が100mg/Lに達する時点で、すでに目標耐用年数である25年=2.2×105hを越えていることが分かる。これにより、冷熱・冷温兼用蓄熱運転前の蓄熱材では、その放出脂肪族炭化水素比例物質の濃度が1000mg/Lに達するまでの時間、すなわち蓄熱材の寿命は、目標耐用年数である25年を十分に越えることが予測される。
【0087】
2.その2
上記その1の(1)〜(7)の操作を行ない、図8に示すC−2の結果を得た。この場合、目標耐用年数である25年=2.2×105hを経過すると、放出脂肪族炭化水素比例物質の濃度が1000mg/Lを越えることが予測される。
【0088】
このため、上記第2実施例のその2と同様にして、C−2の今後予定される時点で、予測される放出脂肪族炭化水素比例物質の濃度を期待する値に低減するために必要な補充蓄熱材と全蓄熱材量との量比関係を予測することができる。
【0089】
2.その3
上記その1の(1)〜(7)の操作を行ない、図8に示すC−3の結果を得た。ここで使用した蓄熱材は、5年間実運転した後、蓄熱システムから取り出したものであり、この蓄熱材が今後どのような化学的な経年劣化をするかを予測する。
【0090】
この場合、あと20年経過すると放出脂肪族炭化水素比例物質の濃度が1000mg/Lを十分越えることが予測される。
【0091】
このため、上記その2と同様にして、C−3の今後予定される時点で、予測される放出脂肪族炭化水素比例物質の濃度を期待する値に低減するために必要な補充蓄熱材と全蓄熱材量との量比関係を予測することができる。
【0092】
(第4実施例)
本第4実施例では、蓄熱システムにて冷熱・冷温兼用蓄熱運転を行なう場合に、その運転開始前に化学的な経年劣化及び相変化に伴う蓄熱材の寿命を予測する。なお本第4実施例では、図5に示した化学的な経年劣化及び相変化劣化加速試験装置(蓄熱材寿命予測装置)を用いる。
【0093】
1.その1
以下、本第4実施例における蓄熱材寿命予測方法の手順を説明する。
【0094】
(1).1年分の365回(1日で融解・凝固各1回のため)の機械的な繰り返し劣化、及び1年分の化学的な経年劣化を行なう。具体的には、365回の循環運転(高温側熱交換器61内にて融解、低温側熱交換器62内にて凝固)及び1年分の化学的経年劣化加速(75℃にて12.8日)を25回繰り返す。実際には、0.27日間の高速運転を1年分の循環運転とした。
【0095】
ここで、1年分の冷熱・冷温兼用蓄熱が75℃で12.8日に相当する根拠を示す。1年分の化学的経年劣化加速試験を行なうために必要な時間の試算を、冷水(3〜12℃)のみを蓄熱する場合について算出した結果を、以下に示す。
【0096】
一般的に、温度が10℃上昇すると、化学反応速度は2〜3倍に増加することから、劣化反応速度は、温度が10℃上昇すると2〜3倍に増加すると想定し、本試験を行なうために必要な時間を算出した。
【0097】
a. 算定条件
a) 化学的経年劣化加速条件
温度が10℃上昇すれば、化学的経年劣化速度は2.5倍(上記の2〜3倍の平均)増加する。
【0098】
b) 蓄熱タンク内温度
・冷熱蓄熱運転時:α11=7.5℃(3℃と12℃の平均値)
温熱蓄熱運転時:α12=50℃
・停止時:α2℃(停止期間中に想定される最高温度)
緊急時:α21℃
メンテナンス時:α22℃
台数制御時:α23℃
ここで、(α21,α22,α23)≦α2
また、シミュレーションの結果から、余裕をみてα2を40℃とする。
【0099】
c) 運転時間及び停止時間
・冷熱蓄熱期間:δ11=365−(δ12+δ2)日
温熱蓄熱期間:δ12=121日
・停止時:δ2日
緊急時:δ21日
メンテナンス時:δ22日
台数制御時:δ23日
代表としてδ2=1日とする。
【0100】
b. 算出方法
a) 化学的熱経年劣化加速温度での通常運転時で化学的な経年劣化に対する化学的経年劣化係数:
η1i=1/[2.5^{(αmax℃−α1℃)/10℃}]
ここで、αmaxは化学的経年劣化加速温度とする。
【0101】
b) 化学的経年劣化加速温度での停止時における化学的な経年劣化に対する化学的経年劣化係数:
η2=1/[2.5^{(αmax℃−α2℃)/10℃}]
η2i=1/[2.5^{(αmax℃−α2i℃)/10℃}]
c) 1年間の化学的な経年劣化の化学的経年劣化加速温度での換算時間:β(日)
β=η1i×δ1i+η2×δ2
=η1i×δ1i+Σ(η2i×δ2i)
但し、δ11=365−δ12−δ2日,δ2=1日,δ12=121日
c.算出結果
下表に、化学的経年劣化加速温度αmaxを75℃とした場合の、1年間相当分の化学的経年劣化加速温度での換算時間を示す。この結果、1年間相当分の化学的経年劣化加速の試験を、化学的経年劣化加速温度αmaxを75℃として行なう場合には、12.8日が必要であることが分かる。
【0102】
【表3】
Figure 0004278994
【0103】
(2).使用前の蓄熱材を系統内に充填し、所定回数の循環を経過した時点で系統内の蓄熱材の放出脂肪族炭化水素比例物質の濃度を測定する。
【0104】
(3).図9に示すように、放出脂肪族炭化水素比例物質の濃度と経過回数(相当年数)との関係をグラフにし、下記の関係式(7)を得る。
【0105】
y1=f(x) …(7)
但し、y1:放出脂肪族炭化水素比例物質の濃度、x:経過回数(相当年数)
(4).図9から、冷熱・冷温兼用蓄熱運転前の蓄熱材の放出脂肪族炭化水素比例物質の濃度が1000mg/Lに達するまでの時間を予測することができる。図9のD−1では、25年相当の機械的な繰り返し劣化相及び化学的な経年劣化経過で、放出脂肪族炭化水素比例物質の濃度が約900mg/Lである。このため冷熱・冷温兼用蓄熱運転前の蓄熱材では、その放出脂肪族炭化水素比例物質の濃度が1000mg/Lに達するまでの時間、すなわち蓄熱材の寿命は、目標耐用年数である25年を十分に越えることが予測される。
【0106】
2.その2
上記その1の(1)〜(4)の操作を行ない、図9に示すD−2の結果を得た。この場合、あと15年経過すると放出脂肪族炭化水素比例物質の濃度が1000mg/Lを越えることが予測される。すなわちこの場合、蓄熱材の寿命は、目標耐用年数である25年を越えないことが予測される。
【0107】
このため、上記第2実施例のその2と同様にして、D−2の今後予定される時点で、予測される放出脂肪族炭化水素比例物質の濃度を期待する値に低減するために必要な交換蓄熱材と全蓄熱材量との量比関係を予測することができる。
【0108】
3.その3
上記その1の(1)〜(4)の操作を行ない、図9に示すD−3の結果を得た。ここで使用した蓄熱材は、2年間実運転した後、蓄熱システムから取り出したものであり、この蓄熱材が今後どのような劣化をするかを予測する。
【0109】
この場合、あと9年経過すると放出脂肪族炭化水素比例物質が1000mg/Lを十分越えることが予測される。すなわちこの場合も、蓄熱材の寿命は、目標耐用年数である25年を越えないことが予測される。
【0110】
このため、上記その2と同様にして、D−3の今後予定される時点で、予測される放出脂肪族炭化水素比例物質の濃度を期待する値に低減するために必要な交換蓄熱材と全蓄熱材量との量比関係を予測することができる。
【0111】
なお、各実施例のうち化学的な経年劣化及び機械的な繰り返し劣化に対する試験の方が化学的な経年劣化のみに対する試験よりも現実の劣化に即しているが、化学的な経年劣化のみに対する試験だけからでも簡便に蓄熱材の寿命を予測することが可能となる。
【0112】
参考例)
第1〜第4実施例では蓄熱材の寿命の予測を行なったのに対して、本参考例では、蓄熱システム内の蓄熱材の劣化により膜から放出した放出脂肪族炭化水素比例物質の濃度(実際は油分抽出量)とpHを自動計測することで、蓄熱材の評価(モニタリング)を行ない、異常時における迅速な対応を可能とする。
【0113】
ここで、蓄熱材の寿命評価に用いる指標は、膜劣化により膜から放出した放出脂肪族炭化水素比例物質の濃度である。本参考例では、例として油分濃度を指標とし、それと比例関係にある放出脂肪族炭化水素比例物質の濃度を推定する。
【0114】
すなわち、蓄熱システム内の蓄熱材の寿命評価は、サンプリング、油分濃度測定後に行なえるが、それぞれに時間を要するため、異常時における診断をすぐに行なうことができない。そこで、蓄熱システムから自動サンプリング、自動分析することで、現時点でのシステム内の蓄熱材の油分濃度をリアルタイムで監視でき、異常時に即対応することが可能となる。
【0115】
図10は、蓄熱システムに適用した蓄熱材評価装置の構成を示す図である。蓄熱システムは、蓄熱槽(潜熱蓄熱槽)1、熱交換器2、蓄熱材循環回路3、冷水循環回路4、及び冷凍機5等により構成されている。
【0116】
蓄熱槽1は、蓄熱材11を収容した容器である。蓄熱槽1には、蓄熱材ポンプ6を備えた蓄熱材循環回路3を介して熱交換器2が接続されている。さらに、熱交換器2には、冷水ポンプ8を備えた冷水循環回路4を介して冷凍機5内の蒸発器51が接続されている。
【0117】
したがって、蓄熱時及び放熱時は、ポンプ6を運転して蓄熱槽1内の蓄熱材11を、蓄熱材循環回路3を通じて熱交換器2へ供給する。また、冷水ポンプ8を運転して冷水を、冷水循環回路4を通じて熱交換器2へ供給する。これにより、熱交換器2において蓄熱材11と冷水の間で熱交換をすることができる。
【0118】
排出系統は、蓄熱材の代表サンプルを採取できる配管に接続されたバルブV1001,V1002,V1003、ポンプP1001からなる。計測系統は、膜劣化指標である油分濃度を測定する油分濃度計D1001からなる。演算/出力装置CP1001は、各種指示、記録、演算、及び表記機能を有する。
【0119】
バルブV1001,V1002,V1003の開閉、及びポンプP1001の運転停止の指示は、演算/出力装置CP1001でなされる。具体的には、開閉バルブV1001,V1002は蓄熱材の初期取り出し時に排出用に開けられ、所定の状態になった時点でバルブV1002が閉じられ、同時にバルブV1003が開けられる。これにより、蓄熱槽1からの蓄熱材11が油分濃度計D1001へ導入される。
【0120】
油分濃度計D1001で測定された蓄熱材の油分濃度は、演算/出力装置CP1001に入力されて保存され、所定の演算がなされる。ここで、あらかじめ油分濃度計D1001の出力と、蓄熱材の膜劣化により膜から放出した芯物質の脂肪族炭化水素量に対して比例関係にある四塩化炭素抽出物質、ノルマルヘキサン抽出物質、あるいはガスクロマトグラフィによる測定物質の濃度との相関関係を求めておく。演算/出力装置CP1001は、この関係式を収納しており、油分濃度計D1001で測定された油分抽出濃度から、前記した物質の濃度を推算する。
【0121】
以上の構成により、演算/出力装置CP1001は、経過時間と蓄熱材の劣化により膜から放出した放出脂肪族炭化水素比例物質の濃度との関係を示すことにより、蓄熱材の異常を診断することが可能となる。さらに、油分濃度計D1001の機能に,固形分濃度、pH測定機能を付加させることにより、蓄熱材の状態をリアルタイムで把握し、蓄熱システムの健全性評価を行なうことができる。
【0122】
ここで、3時間の固形分濃度測定は、膜劣化により膜から放出した芯物質の脂肪族炭化水素が蒸発することから、膜劣化の指標となる。また、蓄熱材は、pH7.5〜8.5の間においてその健全性が保たれることから、この範囲からはずれる場合はpH調整を行なう必要がある。
【0123】
すなわち、測定したpHが7.5〜8.5をはずれた場合には、pH=7.5〜8.5になるように、演算/出力装置CP1001でバルブV1004,V1005,V1006を開閉制御し、酸供給ポンプP1002またはアルカリ供給ポンプP1003を稼働させる。これにより、酸タンクT1010またはアルカリタンクT1020から、酸またはアルカリを蓄熱槽1内に供給する。さらに、pH測定計PH1000を配管内に設置しておくことも可能である。ここで、例えば酸として酢酸あるいは塩酸などを、またアルカリとして水酸化ナトリウムなどを使用する。
【0124】
本発明は上記実施の形態のみに限定されず、要旨を変更しない範囲で適宜変形して実施できる。
【0125】
【発明の効果】
本発明の蓄熱材寿命予測方法及び装置によれば、蓄熱システムの運転開始前あるいは運転時において、化学的な経年劣化に起因する蓄熱材の寿命を予測することができ、さらに有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材の交換時期を予測することができる。
【0126】
本発明の蓄熱材寿命予測方法及び装置によれば、蓄熱システムの運転開始前あるいは運転時において、化学的な経年劣化及び機械的な繰り返し劣化に起因する蓄熱材の寿命を予測することができ、さらに有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材の交換時期を予測することができる。
【0127】
本発明の蓄熱材寿命予測方法及び装置によれば、蓄熱システムの運転開始前あるいは運転時において、有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材の交換時期と交換量を予測することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る蓄熱材寿命予測装置の系統を示す構成図。
【図2】本発明の実施の形態に係る放出脂肪族炭化水素比例物質の濃度の経時変化を示す図。
【図3】本発明の実施の形態に係る放出脂肪族炭化水素比例物質の濃度と温度の逆数との関係を示す図。
【図4】本発明の実施の形態に係る所定温度(7.5℃)での時間経過と放出脂肪族炭化水素比例物質の濃度との関係を示す図。
【図5】本発明の実施の形態に係る蓄熱材寿命予測装置の系統を示す構成図。
【図6】本発明の実施の形態に係る放出脂肪族炭化水素比例物質の濃度と経過回数(相当年数)との関係を示す図。
【図7】本発明の実施の形態に係る放出脂肪族炭化水素比例物質の濃度と温度の逆数との関係を示す図。
【図8】本発明の実施の形態に係る年平均温度(21.7℃)での時間経過と放出脂肪族炭化水素比例物質の濃度との関係を示す図。
【図9】本発明の実施の形態に係る放出脂肪族炭化水素比例物質の濃度と経過回数(相当年数)との関係を示す図。
【図10】参考例に係る蓄熱材評価装置の構成を示す図。
【符号の説明】
S1〜S4…ガラス容器
V1〜V4…恒温槽
TE1〜TE4…温度指示計
H0〜H4…ヒータ
M1〜M4…撹拌機
C0〜C4…温度制御器
V11,V12,V13…バルブ
V21,V22,V23…バルブ
V31,V32,V33…バルブ
V41,V42,V43…バルブ
P1〜P4…ポンプ
D1〜D4…油分濃度計
CP…演算/出力装置
61…高温側熱交換器
62…低温側熱交換器
63…加熱ポンプ
67,68…可動バルブ
69…循環ポンプ
70…流量制御器
71…貯蔵槽
C1〜C4…制御器
CP100…演算/出力装置
T1〜T4…温度計
FH…流量計
FC…流量計
V100、V101、V102…バルブ
CP200…演算/出力装置
D300…油分濃度計
1…蓄熱槽
2…熱交換器
3…蓄熱材循環回路
4…冷水循環回路
5…冷凍機
6…蓄熱材ポンプ
7,8…冷水ポンプ
V1001〜V1006…バルブ
P1001〜P1003…ポンプ
CP1001…演算/出力装置
D1001…油分濃度計
T1010…酸タンク
T1020…アルカリタンク
PH1000…pH測定計[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat storage material life prediction method and a device. In place Related.
[0002]
[Prior art]
Recently, a microcapsule composed by encapsulating a latent heat storage material in a microcapsule as a core material is mixed with water to make it into a slurry state (hereinafter, this slurry is referred to as a microcapsule slurry) to transfer heat. Systems using heat storage materials with improved performance are being considered. In this system, at the time of heat storage, the microcapsule slurry is cooled by exchanging heat with cold water or brine using a heat exchanger, whereby cold heat is stored in the latent heat storage material in the microcapsules. Further, at the time of heat release, the microcapsule slurry is similarly returned by a heat exchanger and heated by heat exchange with cold water or brine, thereby extracting cold heat from the latent heat storage material in the microcapsules.
[0003]
[Problems to be solved by the invention]
In general, the heat storage material has a service life of about 20 years in many cases compared to the legal service life of 15 years for machinery and equipment. For this reason, the lifetime of the heat storage material is set to, for example, 25 years so as to have a margin as a design performance against aging deterioration. However, since there is currently no method for predicting the life of the heat storage material of the microcapsule slurry described above, the heat storage material life prediction before the start of operation of the heat storage system (at the start of operation) or the operation ( The life of the heat storage material during operation) cannot be predicted, and the replenishment timing and amount of heat storage material cannot be predicted.
[0004]
A first object of the present invention is to provide a heat storage material life prediction method and apparatus capable of predicting the life of a heat storage material before or during the start of operation of the heat storage system.
[0005]
A second object of the present invention is to provide a heat storage material life prediction method and apparatus capable of predicting the replenishment timing and amount of a heat storage material before or during operation of the heat storage system.
[0007]
[Means for Solving the Problems]
In order to solve the problems and achieve the object, the heat storage material life prediction method and apparatus of the present invention Is It is configured as follows.
[0008]
(1) The heat storage material life prediction method of the present invention is a heat storage material life prediction method for predicting the life of a heat storage material in which a microcapsule in which a core material made of an aliphatic hydrocarbon is enclosed in an organic film material is mixed with water. A plurality of containers filled with the heat storage material are each maintained at a predetermined temperature, and each time a predetermined time elapses, the heat storage material in each container is sampled, and the core material released from the film due to deterioration of the heat storage material Concentration of each specified substance (carbon tetrachloride extract, normal hexane extract, or gas chromatograph, this is referred to as released aliphatic hydrocarbon proportional substance) that is proportional to the amount of aliphatic hydrocarbons And the relationship between the elapsed time and the concentration of each predetermined substance is displayed, and from this relationship, the relationship between the temperature and the time required to reach the concentration of the released aliphatic hydrocarbon proportional substance is displayed. It displays the relationship between the discharge aliphatic concentration and time course of hydrocarbon proportional material at a predetermined temperature from the relationship, to predict the lifetime of the heat storage material from this relationship.
[0009]
(2) The heat storage material life prediction method of the present invention predicts the life of a heat storage material by predicting the life of the heat storage material obtained by mixing microcapsules in which a core material composed of an aliphatic hydrocarbon is enclosed in an organic film material with water. The heat storage material is filled in the system, circulated a predetermined number of times, and when the predetermined number of times has elapsed, the concentration of the released aliphatic hydrocarbon proportional substance released from the membrane due to deterioration of the heat storage material in the system is determined. Measure and display the relationship between the concentration of the released aliphatic hydrocarbon proportional substance and the number of elapsed times. From this relationship, the life of the heat storage material is predicted.
[0010]
(3) The heat storage material life prediction method of the present invention is the method described in (1) or (2) above, and according to the predicted life, X = (A−B) / (A−C) × Y is the predicted concentration A of the released aliphatic hydrocarbon proportional substance, and the released aliphatic substance of the heat storage material in which a microcapsule in which a core substance composed of an aliphatic hydrocarbon is encapsulated in an organic film substance to be supplemented is mixed with water. Concentration C of hydrocarbon proportional substance, Concentration B of released aliphatic hydrocarbon proportional substance after heat storage material exchange in which a microcapsule in which a core substance composed of aliphatic hydrocarbon is enclosed in an organic film substance is mixed with water, By substituting the amount of heat storage material Y obtained by mixing microcapsules in which a core material composed of an aliphatic hydrocarbon is encapsulated in the organic membrane material in the system with water, the aliphatic hydrocarbon is substituted into the organic membrane material to be exchanged. Heat storage material in which microcapsules filled with a core material made of water are mixed with water Predict the quantity X.
[0012]
( 4 ) The heat storage material life prediction device of the present invention is a heat storage material life prediction device that predicts the life of a heat storage material in which a microcapsule in which a core material composed of an aliphatic hydrocarbon is sealed in an organic film material is mixed with water. A means for maintaining each of the plurality of containers filled with the heat storage material at a predetermined temperature, and a released aliphatic hydrocarbon proportional substance released from the film due to deterioration of the heat storage material in each of the containers sampled every predetermined time. Means for measuring the concentration of the gas, the means for displaying the relationship between the elapsed time and the concentration of the released aliphatic hydrocarbon proportional substance, and the time from this relationship until reaching the temperature and the concentration of the released aliphatic hydrocarbon proportional substance. Means for displaying the relationship between the concentration of the released aliphatic hydrocarbon proportional substance at a predetermined temperature and the passage of time from this relationship, and means for predicting the life of the heat storage material from this relationship. And it is configured from.
[0013]
( 5 ) The heat storage material life prediction device of the present invention is a heat storage material life prediction device that predicts the life of a heat storage material in which a microcapsule in which a core material composed of an aliphatic hydrocarbon is sealed in an organic film material is mixed with water. A means for circulating the heat storage material filled in the system a predetermined number of times, and a concentration of the released aliphatic hydrocarbon proportional substance released from the membrane due to the deterioration of the heat storage material in the system at the time when the predetermined number of times has passed. It comprises means for measuring, means for displaying the relationship between the concentration of the released aliphatic hydrocarbon proportional substance and the number of elapsed times, and means for predicting the life of the heat storage material from this relationship.
[0014]
( 6 ) The heat storage material life prediction apparatus of the present invention is the apparatus described in the above (5) or (6), and according to the predicted life, X = (A−B) / (A−C) × Y , Predicted concentration A of the released aliphatic hydrocarbon proportional substance, heat-release material released aliphatic hydrocarbon in which microcapsules in which a core material made of aliphatic hydrocarbon is sealed in an organic membrane material to be exchanged are mixed with water Proportional substance concentration C, organic film substance with a concentration B after heat storage material exchange, mixed with water microcapsules filled with core material consisting of aliphatic hydrocarbons in organic film substance, organic film substance in all systems By substituting the amount of heat storage material Y obtained by mixing microcapsules in which a core material composed of aliphatic hydrocarbon is encapsulated with water, the core material composed of aliphatic hydrocarbon is encapsulated in the organic film material to be replaced. Equipped with a means to predict the amount of heat storage material X, which is a mixture of fine capsules with water It is.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
In the heat storage material life prediction method and apparatus of the present embodiment, the life prediction of the heat storage material is performed, and the future heat storage material replacement response is predicted. The outline of the present embodiment is as follows. In the present embodiment, the target useful life of the heat storage material is 25 years.
[0017]
(1). The target heat storage material in the present embodiment is a mixture of water in which a latent heat storage material made of an aliphatic hydrocarbon is sealed as a core material in a minute capsule made of an organic film material. Therefore, it is considered that the life of the heat storage material can be replaced with the life of the organic film material. This is because when the membrane material is damaged and destroyed, the core material is released from within the membrane, and the heat exchange capacity of the heat exchanger is reduced.
[0018]
In addition, the latent heat storage substance enclosed as a core substance in each microcapsule changes phase at a normal temperature level and stores latent heat. As the latent heat storage material, a mixture of tetradecane (TD), which is an aliphatic hydrocarbon (paraffinic hydrocarbon), and pentadecane (PD) is used, and a melamine resin (organic resin) is used as the film of the microcapsule. Yes. A mixture of tetradecane and pentadecane accounts for 80% or more of the total weight of the latent heat storage material enclosed in each microcapsule, and a supercooling inhibitor is also added to the latent heat storage material. The particle size of one microcapsule is preferably about 1 to 2 μm, but is practical if it is about 20 μm or less.
[0019]
(2). In the present embodiment, the lifetime of the organic film material is determined by: (a) chemical aging, (b) expansion / contraction associated with phase change (melting / solidification) of the core material, and microcapsules in the heat storage material system This is considered to be caused by repeated mechanical deterioration due to sliding between the wall surface and the microcapsules.
[0020]
(3). The lifetime prediction of the organic film material is performed using the following Aurenius equation used for the lifetime prediction of plastics.
[0021]
Ln (te) = ΔE / RT + constant
Where te: life, ΔE: apparent activation energy, R: gas constant, T: absolute temperature
(Four). From the chemical aging deterioration acceleration test, the following relational expression (1) indicating the deterioration state due to chemical aging is obtained.
[0022]
y1 = f (x) (1)
Where y1: concentration of the released aliphatic hydrocarbon proportional substance, x: elapsed time
(Five). Similarly, from the chemical aging deterioration and mechanical repeated deterioration acceleration test, the following relational expression (2) indicating the deterioration state due to chemical aging deterioration and mechanical repeated deterioration is obtained.
[0023]
y2 = f (x) (2)
Where y2: concentration of released aliphatic hydrocarbon proportional substance, x: elapsed time
(6). From the result of the chemical aging deterioration acceleration test, the life of the heat storage material is predicted by the above formula (1).
[0024]
(7). Similarly, the life of the heat storage material is predicted by the above formula (2) from the chemical aging deterioration and the mechanical repeated deterioration acceleration test (loop test).
[0025]
(8). The above (6) or (7) is performed before starting the operation of the heat storage system (at the start of operation) or during operation (during operation).
[0026]
(9). The predicted concentration of the released aliphatic hydrocarbon proportional substance after a predetermined elapsed time (for example, 25 years later) is obtained from the relational expression indicating the deterioration state of the heat storage material in (4) or (5) above, and the following expression (3) Furthermore, the concentration of the released aliphatic hydrocarbon proportional substance of the heat storage material in which the microcapsules in which the core material consisting of aliphatic hydrocarbon is sealed in the organic membrane material to be exchanged are mixed with water, the aliphatic in the organic membrane material Concentration of released aliphatic hydrocarbon proportional substance after replenishment of microcapsule slurry in which heat storage material encapsulated with hydrocarbon core material is mixed with water to make a slurry state, aliphatic in organic film material in all systems By substituting the amount of heat storage material obtained by mixing a microcapsule encapsulating a hydrocarbon core material with water, a microcapsule encapsulating an aliphatic hydrocarbon core material in an organic film material extracted from the system. There is amount of heat storage material mixed with water It predicts the heat storage material volume the microcapsules core substance consisting of aliphatic hydrocarbons organic film material to replace to the system is sealed and mixed with water.
[0027]
X = (A−B) / (A−C) × Y (3)
Here, A: concentration of the released aliphatic hydrocarbon proportional substance released from the film due to deterioration of the predicted heat storage material after a predetermined elapsed time, B: released aliphatic carbonization released from the film due to deterioration of the heat storage material after replacement of the heat storage material Expected value of concentration of hydrogen proportional substance, C: concentration of released aliphatic hydrocarbon proportional substance released from the membrane due to deterioration of exchange heat storage material, X: core material composed of aliphatic hydrocarbon enclosed in organic film substance The amount of heat storage material exchanged by mixing the microcapsules with water, and Y: the amount of heat storage material obtained by mixing the microcapsules in which the core material made of aliphatic hydrocarbons is encapsulated in all organic film materials in the system with water.
[0028]
(First embodiment)
In this 1st Example, when performing the thermal storage exclusive operation for cold storage in a thermal storage system, the lifetime of the thermal storage material accompanying chemical aged deterioration is estimated before the operation start.
[0029]
1. Part 1
FIG. 1 is a configuration diagram showing a system of a chemical aging acceleration test apparatus (heat storage material life prediction apparatus). In FIG. 1, the constant temperature holding system is a glass containing a heat storage material (hereinafter referred to as a heat storage material) in which a microcapsule in which a core material composed of an aliphatic hydrocarbon is sealed in the organic film material described above is mixed with water. Thermostats V1, V2, V3, V4 in which the containers S1, S2, S3, S4 are respectively stored, and temperature indicators TE1, TE2, TE3 for indicating the temperatures of the heat storage materials in the containers S1, S2, S3, S4, respectively. , TE4, stirrers M1, M2, M3, and M4 for uniformizing the heat storage materials in the containers S1, S2, S3, and S4, the thermostat heaters H1, H2, H3, and H4, and the thermostat heaters H1, H2, and so on. It consists of temperature controllers C1, C2, C3 and C4 for controlling the temperatures of H3 and H4.
[0030]
The discharge system corresponds to each of the containers S1, S2, S3, S4, valves V11, V12, V13, valves V21, V22, V23, valves V31, V32, V33, valves V41, V42, V43, and pumps P1, It consists of P2, P3 and P4. The measurement system includes oil concentration meters D1, D2, D3, and D4 corresponding to the respective containers S1, S2, S3, and S4 and indicating deterioration indicators. The calculation / output device CP has various instructions, recording, calculation, and notation functions.
[0031]
As for the temperature of the heat storage material in each container S1, S2, S3, S4, each temperature controller C1, C2, C3, C4 inputs an instruction signal from each temperature indicator TE1, TE2, TE3, TE4, The result is maintained by controlling the output to the thermostat heaters H1, H2, H3, and H4.
[0032]
Instructions for opening / closing the on-off valves V11-V13, V21-V23, V31-V33, V41-V43 and for stopping the operation of the pumps P1, P2, P3, P4 are made by the arithmetic / output device CP. Specifically, the opening / closing valves V12, V22, V32, and V42 are opened for discharge when the heat storage material is initially taken out, closed when a predetermined state is reached, and the valves V13, V23, V33, and V43 are simultaneously opened. It is done. Thereby, the heat storage material from each container S1, S2, S3, S4 is introduce | transduced into oil concentration meter D1, D2, D3, D4, respectively.
[0033]
The oil concentration of the heat storage material measured by the oil concentration meters D1, D2, D3, D4 is input to and stored in the calculation / output device CP, and a predetermined calculation is performed. Here, the output of the oil concentration meter D1, D2, D3, D4 and the released aliphatic hydrocarbon proportional substance that is proportional to the amount of aliphatic hydrocarbon of the core substance released from the film due to film deterioration of the heat storage material. The correlation with the concentration of is determined in advance. The arithmetic / output device CP stores this relational expression, and estimates the concentration of the substance from the extracted oil concentration measured by the oil concentration meters D1, D2, D3, D4.
[0034]
Further, the calculation / output device CP creates a graph (for example, FIG. 2 described later) showing the relationship between the elapsed time and the concentration of the released aliphatic hydrocarbon proportional substance released from the film due to deterioration of the heat storage material. Reading the temperature at the concentration of the released aliphatic hydrocarbon proportional substance released from the membrane due to the deterioration of each heat storage material and the time to reach the concentration of the released aliphatic hydrocarbon proportional substance released from the film due to the deterioration of each heat storage material, The temperature in the concentration of the released aliphatic hydrocarbon proportional substance released from the film due to deterioration of each heat storage material read in this graph (FIG. 2) and the concentration of the released aliphatic hydrocarbon proportional substance released from the film due to deterioration of each heat storage material A graph (for example, FIG. 3 to be described later) showing the relationship with the time until reaching is prepared. Further, from this graph, the arithmetic / output device CP calculates the concentration of the released aliphatic hydrocarbon proportional substance released from the film due to the deterioration of each heat storage material at 7.5 ° C. and the released aliphatic released from the film due to the deterioration of each heat storage material. The time taken to reach the concentration of the hydrocarbon proportional substance is read, and a graph showing the relationship (for example, FIG. 4 described later) is created. The arithmetic / output device CP predicts the life of the heat storage material, predicts the amount of heat storage material extracted from the system or the amount of heat storage material to be exchanged for the system, and outputs the result to a display unit or the like.
[0035]
Hereinafter, the procedure of the heat storage material lifetime prediction method in the first embodiment will be described.
[0036]
(1). A 50 ml glass container S1, S2, S3, S4 is filled with 40 g of a heat storage material (new heat storage material) before operation.
[0037]
(2). Constant temperature chambers V1, V2, V3, and V4 are maintained at predetermined temperatures of 45 ° C, 60 ° C, 75 ° C, and 90 ° C, respectively, and each of the thermostatic chambers V1, V2, V3, and V4 is filled with a heat storage material. Store S1, S2, S3, S4.
[0038]
(3) The heat storage material in each glass container S1, S2, S3, S4 is sampled every predetermined time, and the concentration of the released aliphatic hydrocarbon proportional substance is measured.
[0039]
(Four). As shown in FIG. 2, a graph showing the change over time of the concentration of the released aliphatic hydrocarbon proportional substance is prepared, and the time until the same concentration is reached at each of the predetermined temperatures of 45 ° C., 60 ° C., 75 ° C. and 90 ° C. Read. However, FIG. 2 is a conceptual diagram.
[0040]
(Five). As shown in FIG. 3, a graph showing the relationship between the concentration of the released aliphatic hydrocarbon proportional substance and the inverse of temperature is created.
[0041]
(6). From FIG. 3, a graph showing the relationship between the passage of time at a predetermined temperature (7.5 ° C.) and the concentration of the released aliphatic hydrocarbon proportional substance as shown by A-1 in FIG. (4) is obtained.
[0042]
y3 = f (x) (4)
Where y3: concentration of released aliphatic hydrocarbon proportional substance, x: elapsed time
(7). Based on the knowledge that when the concentration of the released aliphatic hydrocarbon proportional substance exceeds 1000 mg / L, the heat exchange capacity of the heat exchanger decreases by 10%, 1000 mg / L is set as a reference value for deterioration of the heat storage material. From A-1 in FIG. 4, when the concentration of the released aliphatic hydrocarbon proportional substance is about 100 mg / L, the time to reach the concentration is about 1 × 10 7 Therefore, when the concentration of the released aliphatic hydrocarbon proportional substance reaches about 100 mg / L, the target useful life of 25 years = 2.2 × 10 Five You can see that it exceeds h. As a result, in the heat storage material before the dedicated heat storage operation for cooling, the time until the concentration of the released aliphatic hydrocarbon proportional substance reaches 1000 mg / L, that is, the life of the heat storage material is sufficiently longer than the target service life of 25 years. Expected to exceed.
[0043]
2. Part 2
The above operations (1) to (6) were performed, and the result of A-2 shown in FIG. 4 was obtained. In this case, the target service life of 25 years = 2.2 × 10 Five After h, the concentration of released aliphatic hydrocarbon proportional substance is expected to exceed 1000 mg / L. That is, in this case, it is predicted that the life of the heat storage material does not exceed the target useful life of 25 years.
[0044]
For this reason, the concentration of the released aliphatic hydrocarbon proportional substance from A-2 is predicted to be 500 mg / L 10 Five It is assumed that the heat storage material of the heat storage system is replaced at the time of h = 11.4. In this case, in the relational expression (3) described above, the concentration of the released aliphatic hydrocarbon proportional substance A predicted after 11.4 is 500 mg / L, and the released aliphatic hydrocarbon proportional to the heat storage material to be replenished It is assumed that the substance concentration C is 100 mg / L, the expected value B of the concentration of the released aliphatic hydrocarbon proportional substance after replacement of the heat storage material is 200 mg / L, and that the amount of the extracted heat storage material and the amount of the supplemental heat storage material are equal. In this case, the following formula
X = (500−200) / (500−100) × Y = 0.75 × Y
Get.
[0045]
Thereby, in order to reduce the concentration of the released aliphatic hydrocarbon proportional substance from 500 mg / L to 200 mg / L, it is necessary to replace 75% of the total amount of the heat storage material in the heat storage system with a supplemental heat storage material (new heat storage material). I understand that there is.
[0046]
3. Part 3
The above operations (1) to (6) were performed, and the result of A-3 shown in FIG. 4 was obtained. The heat storage material used here was taken out of the heat storage system after 5 years of actual operation, and predicts what kind of chemical aging the heat storage material will undergo in the future.
[0047]
In this case, another 20 years = 1.8 × 10 Five After h, the concentration of the released aliphatic hydrocarbon proportional substance is expected to sufficiently exceed 1000 mg / L. That is, also in this case, it is predicted that the life of the heat storage material does not exceed the target useful life of 25 years.
[0048]
For this reason, in the same manner as the above-mentioned 2, the replenishment heat storage material and the total amount necessary for reducing the predicted concentration of the released aliphatic hydrocarbon proportional substance to the expected value at the time scheduled for A-3 in the future. The quantity ratio relationship with the amount of heat storage material can be predicted.
[0049]
(Second embodiment)
In the second embodiment, when a dedicated heat storage operation is performed in the heat storage system, the life of the heat storage material associated with chemical aging deterioration and mechanical repeated deterioration is predicted before the start of the operation.
[0050]
1. Part 1
FIG. 5 is a configuration diagram showing a system of a chemical aging deterioration and mechanical repeated deterioration acceleration test apparatus (heat storage material life prediction apparatus). In FIG. 5, the circulation system includes a pipe between the high temperature side heat exchanger 61 and the low temperature side heat exchanger 62 filled with the heat storage material, a storage tank 71 for the heat storage material, and a low temperature side heat from the high temperature side heat exchanger 61. Circulation pump 69 for circulating the heat storage material in the pipe between the exchangers 62, pipe thermometers TC1, TCC2, TH1, THC2, storage tank heater H0, pipe heaters H1, H2, H3, H4, temperature controllers C1, C2 , C3, C4, a temperature controller C0 of the storage tank heater H0, a stirrer M0 for making the heat storage material in the storage tank 71 uniform, a heat storage material flow rate controller 70, and an arithmetic / output device CP100.
[0051]
The arithmetic / output device CP100 controls the flow rate controller 70, the pipe heaters H1, H2, H3, H4, the controllers C1, C2, C3, C4, the storage tank heater H0, and the controller C0.
[0052]
The high temperature side system includes thermometers T1 and T2, a flow meter FH, a heating pump 63, and a movable valve 67 for setting the temperature (THC2) in the outlet pipe of the high temperature side heat exchanger 61 to a predetermined temperature. The low temperature side system includes thermometers T3 and T4, a flow meter FC, a cooling pump 65, and a movable valve 68 for setting the temperature (TCC2) in the outlet pipe of the low temperature side heat exchanger 62 to a predetermined temperature. The sample discharge system includes valves V100, V101, and V102. The measurement system is composed of an oil concentration meter D300 indicating a deterioration index of the heat storage material. The arithmetic / output device CP200 has various instructions, recording, arithmetic and notation functions.
[0053]
Here, the arithmetic / output device CP100, for example, in Part 1 of this second embodiment (example of B-1 in FIG. 6 described later), TC1 = 11.25 ° C., TCC2 = 4.25 ° C., TH1 = 4.25 ° C, THC2 = 11.25 ° C, T1 = 12 ° C, T2 = 5.2 ° C, T3 = 3.5 ° C, T4 = 8.2 ° C. And 0.27-day circulation operation in which the flow rate controller 70 is controlled.
[0054]
Subsequently, the arithmetic / output device CP100 stops the storage tank heater H0 and the pipe heaters H1, H2, H3, and H4 with the temperature controller C0 and the temperature controllers C1, C2, C3, respectively, in a state where the control and the circulation operation are stopped. , C4, and the cycle in which the temperature in the pipes at TC1, TCC2, TH1, and THC2 is maintained at 60 ° C. for 3.12 days is controlled to repeat the heat storage material deterioration equivalent to one year 25 times.
[0055]
However, in the operation maintained at 60 ° C. for 3.12 days, the agitator M0 is operated for uniform stirring, and the circulation pump 69 is also operated in a very small amount. The function of the arithmetic / output device CP200 is the same as that of the CP shown in the chemical aging acceleration test device of FIG.
[0056]
Hereinafter, the procedure of the heat storage material lifetime prediction method in the second embodiment will be described.
[0057]
(1). Phase change (melting / solidification) 365 times a year (because it is once a day) and deterioration equivalent to pyrolysis for 1 year. Specifically, 365 times of circulation operation (melting in the high temperature side heat exchanger 61 and solidification in the low temperature side heat exchanger 62) and acceleration of thermal decomposition for one year (3.12 days at 60 ° C) ) Is repeated 25 times. Actually, the high-speed operation of 0.27 days was set as the circulation operation for one year.
[0058]
Here, the grounds corresponding to 3.12 days at 60 ° C. for 1 year of dedicated cold energy storage are shown. The results of calculating the time required for conducting the chemical aging deterioration test for one year for the case of storing only cold water (3 to 12 ° C.) are shown below.
[0059]
In general, when the temperature rises by 10 ° C., the chemical reaction rate increases 2 to 3 times. Therefore, assuming that the temperature rises by 10 ° C., the deterioration reaction rate is assumed to increase 2 to 3 times. The time required for this was calculated.
[0060]
a. Calculation conditions
a) Conditions for accelerated chemical aging
If the temperature increases by 10 ° C., the chemical aging rate increases by 2.5 times (2 to 3 times the above average).
[0061]
b) Thermal storage tank temperature
・ Cool energy storage operation: α1 = 7.5 ° C (average value of 3 ° C and 12 ° C)
・ When stopped: α2 ℃ (maximum temperature expected during stoppage)
Emergency: α21 ° C
During maintenance: α22 ° C
Number control: α23 ° C
Here, (α21, α22, α23) ≦ α2
Further, from the simulation results, α2 is set to 40 ° C. with a margin.
[0062]
c) Operating time and stop time
・ Cool energy storage period: δ1 = 365−δ2 days
・ When stopped: δ2 days
Emergency: δ21 days
During maintenance: δ22 days
Unit control: δ23 days
As a representative, δ2 = 1 day.
[0063]
b. Calculation method
a) Chemical aging coefficient for chemical aging during normal operation at chemical aging acceleration temperature:
η1 = 1 / [2.5 ^ {(αmax ° C−α1 ° C) / 10 ° C}]
Here, αmax is a chemical aging acceleration temperature.
[0064]
b) Chemical aging coefficient for chemical aging during shutdown at accelerated chemical aging temperature:
η2 = 1 / [2.5 ^ {(αmax ° C−α2 ° C) / 10 ° C}]
η2i = 1 / [2.5 ^ {(αmax ° C.−α2i ° C.) / 10 ° C.}]
c) Conversion time for one year of chemical aging at the accelerated chemical aging temperature: β (days)
β = η1 × δ1 + η2 × δ2
c. Calculation results
The table below shows the conversion time at the lifetime acceleration temperature of the chemical aging deterioration equivalent to one year when the chemical aging acceleration temperature αmax is 60 ° C. As a result, it is found that 3.12 days are required when the chemical aging acceleration test corresponding to one year is performed at a chemical aging acceleration temperature αmax of 60 ° C.
[0065]
[Table 1]
Figure 0004278994
[0066]
(2). The heat storage material before use is filled in the system, and the concentration of the released aliphatic hydrocarbon proportional substance of the heat storage material in the system is measured when a predetermined number of cycles have passed.
[0067]
(3). As shown in FIG. 6, the relationship between the concentration of the released aliphatic hydrocarbon proportional substance and the number of elapsed times (equivalent years) is graphed, and the following relational expression (5) is obtained.
[0068]
y1 = f (x) (5)
Where, y1: concentration of released aliphatic hydrocarbon proportional substance, x: number of elapsed times (equivalent years)
(Four). From FIG. 6, it is possible to predict the time until the concentration of the released aliphatic hydrocarbon proportional substance in the heat storage material before the cold-only heat storage operation reaches 1000 mg / L. In B-1 of FIG. 6, the concentration of the released aliphatic hydrocarbon proportional substance is about 200 mg / L in the course of mechanical repeated deterioration and chemical aging for 25 years. Therefore, in the heat storage material before the dedicated heat storage operation for cold heat, the time until the concentration of the released aliphatic hydrocarbon proportional substance reaches 1000 mg / L, that is, the life of the heat storage material sufficiently exceeds the target service life of 25 years. It is predicted.
[0069]
2. Part 2
The above operations (1) to (4) were performed, and the result of B-2 shown in FIG. 6 was obtained. In this case, it is predicted that the concentration of the released aliphatic hydrocarbon proportional substance will exceed 1000 mg / L after 25 years, which is the target service life.
[0070]
For this reason, it is assumed that the heat storage material of the heat storage system is replaced at the time of 10 years when the released aliphatic hydrocarbon proportional substance is predicted to be 500 mg / L from B-2. In this case, in the relational expression (3) described above, the concentration C of the released aliphatic hydrocarbon proportional substance of the heat storage material to be supplemented is 100 mg / L, and the expected concentration of the released aliphatic hydrocarbon proportional substance after the heat storage material replacement is expected. Assume that the value B is 200 mg / L, and that the amount of the extracted heat storage material and the amount of the supplemental heat storage material are equal. In this case, the following formula
X = (500−200) / (500−100) × Y = 0.75Y
Get.
[0071]
Thereby, in order to reduce the concentration of the released aliphatic hydrocarbon proportional substance from 500 mg / L to 200 mg / L, it is necessary to replace 75% of the total amount of the heat storage material in the heat storage system with a supplemental heat storage material (new heat storage material). I understand that there is.
[0072]
3. Part 3
The above operations (1) to (6) were performed, and the result of B-3 shown in FIG. 6 was obtained. The heat storage material used here was taken out of the heat storage system after 5 years of actual operation, and predicts what kind of chemical aging the heat storage material will undergo in the future.
[0073]
In this case, the concentration of the released aliphatic hydrocarbon proportional substance is expected to sufficiently exceed 1000 mg / L after another 10 years. That is, also in this case, it is predicted that the life of the heat storage material does not exceed the target useful life of 25 years.
[0074]
For this reason, in the same manner as the above-mentioned 2, the supplementary heat storage material and the total amount necessary for reducing the predicted concentration of the released aliphatic hydrocarbon proportional substance to the expected value at the scheduled time of B-3 are as follows. The quantity ratio relationship with the amount of heat storage material can be predicted.
[0075]
(Third embodiment)
In the third embodiment, when performing the cold / cold heat storage operation in the heat storage system, the life of the heat storage material due to chemical aging is predicted before the start of the operation. In the third embodiment, the chemical aging acceleration test apparatus (heat storage material life prediction apparatus) shown in FIG. 1 is used.
[0076]
1. Part 1
Hereinafter, the procedure of the heat storage material life prediction method in the third embodiment will be described. Since the procedures (1) to (4) are basically the same as the procedures (1) to (4) of the first embodiment, a description thereof will be omitted.
[0077]
(Five). As shown in FIG. 7, a graph showing the relationship between the concentration of the released aliphatic hydrocarbon proportional substance and the inverse of temperature is created.
[0078]
(6). From FIG. 7, as shown to C-1 of FIG. 8, the relationship between the time passage in the annual average temperature (21.7 ° C.) at the time of cold / cold heat storage and the concentration of the released aliphatic hydrocarbon proportional substance is shown. A graph is created and the following relational expression (6) is obtained.
[0079]
y3 = f (x) (6)
Where y3: concentration of released aliphatic hydrocarbon proportional substance, x: elapsed time
Here, a trial calculation method of 21.7 ° C., which is an annual average equivalent temperature at the time of cold / cold heat storage, is shown below.
[0080]
In general, when the temperature rises by 10 ° C., the chemical reaction rate increases 2 to 3 times. Therefore, assuming that the temperature rises by 10 ° C., the deterioration reaction rate is assumed to increase 2 to 3 times. The time required for this was calculated.
[0081]
a. Calculation conditions
a) Conditions for accelerated chemical aging
If the temperature increases by 10 ° C., the chemical aging rate increases by 2.5 times (2 to 3 times the above average).
[0082]
b) Thermal storage tank temperature
・ Cool energy storage operation: α11 = 7.5 ° C (average value of 3 ° C and 12 ° C)
Thermal storage operation: α12 = 50 ° C
・ When stopped: α2 ℃ (maximum temperature expected during stoppage)
Emergency: α21 ° C
During maintenance: α22 ° C
Number control: α23 ° C
Here, (α21, α22, α23) ≦ α2
Further, from the simulation results, α2 is set to 40 ° C. with a margin.
[0083]
c) Operating time and stop time
-Cold storage period: δ11 = 365− (δ12 + δ2) days
Thermal storage period: δ12 = 121 days
・ When stopped: δ2 days
Emergency: δ21 days
During maintenance: δ22 days
Unit control: δ23 days
As a representative, δ2 = 1 day.
[0084]
b. Calculation method
a) Acceleration of chemical aging deterioration during normal operation x Duration: γ1
γ1 = δ11 × α11
b) Chemical aging acceleration temperature at the time of stop x period: γ2
γ2 = δ2 × α2
c) Annual average equivalent temperature: ε ℃
ε = (δ11 × α11 + δ2 × α2) / (δ11 + δ2)
However, δ11 = 365−δ12−δ1 days, δ2 = 1 day, δ12 = 121 days
c. Calculation results
The table below shows the results of a trial calculation of the annual average equivalent temperature during cold / cold heat storage. As a result, it can be seen that the annual average equivalent temperature is 21.7 ° C.
[0085]
[Table 2]
Figure 0004278994
[0086]
(7). From C-1 in FIG. 8, when the concentration of the released aliphatic hydrocarbon proportional substance of the heat storage material before the cold / cold heat storage operation is about 100 mg / L, the time to reach the concentration is about 6 × 10. Five Therefore, when the concentration of the released aliphatic hydrocarbon proportional substance reaches 100 mg / L, the target useful life of 25 years = 2.2 × 10 Five You can see that it exceeds h. Thus, in the heat storage material before the cold / cold heat storage operation, the time until the concentration of the released aliphatic hydrocarbon proportional substance reaches 1000 mg / L, that is, the life of the heat storage material is 25 years, which is the target service life. It is predicted that it will be sufficiently exceeded.
[0087]
2. Part 2
The above operations (1) to (7) were performed, and the result of C-2 shown in FIG. 8 was obtained. In this case, the target service life of 25 years = 2.2 × 10 Five After h, the concentration of released aliphatic hydrocarbon proportional substance is expected to exceed 1000 mg / L.
[0088]
For this reason, in the same manner as Part 2 of the second embodiment, it is necessary to reduce the predicted concentration of the released aliphatic hydrocarbon proportional substance to the expected value at the scheduled time of C-2. The quantity ratio relationship between the supplemental heat storage material and the total amount of heat storage material can be predicted.
[0089]
2. Part 3
The above operations (1) to (7) were performed, and the result of C-3 shown in FIG. 8 was obtained. The heat storage material used here was taken out of the heat storage system after 5 years of actual operation, and predicts what kind of chemical aging the heat storage material will undergo in the future.
[0090]
In this case, the concentration of the released aliphatic hydrocarbon proportional substance is expected to sufficiently exceed 1000 mg / L after another 20 years.
[0091]
For this reason, in the same manner as the above-mentioned 2, the replenishment heat storage material and the total amount necessary for reducing the predicted concentration of the released aliphatic hydrocarbon proportional substance to the expected value at the time point C-3 is scheduled in the future. The quantity ratio relationship with the amount of heat storage material can be predicted.
[0092]
(Fourth embodiment)
In the fourth embodiment, when performing the cold / cold heat storage operation in the heat storage system, the life of the heat storage material due to chemical aging and phase change is predicted before the start of the operation. In the fourth embodiment, the chemical aging deterioration and phase change deterioration acceleration test apparatus (heat storage material life prediction apparatus) shown in FIG. 5 is used.
[0093]
1. Part 1
Hereinafter, the procedure of the heat storage material life prediction method in the fourth embodiment will be described.
[0094]
(1). Mechanical repeated deterioration of 365 times per year (for melting and solidification once per day) and chemical aging for one year. Specifically, 365 times of circulation operation (melting in the high temperature side heat exchanger 61 and solidification in the low temperature side heat exchanger 62) and acceleration of chemical aging for one year (at 12.degree. 8 days) is repeated 25 times. Actually, the high-speed operation of 0.27 days was set as the circulation operation for one year.
[0095]
Here, the grounds corresponding to 12.8 days at 75 ° C. for 1 year of cold / cold heat storage are shown. The results of calculating the time required for conducting the chemical aging deterioration test for one year for the case of storing only cold water (3 to 12 ° C.) are shown below.
[0096]
In general, when the temperature rises by 10 ° C., the chemical reaction rate increases 2 to 3 times. Therefore, assuming that the temperature rises by 10 ° C., the deterioration reaction rate is assumed to increase 2 to 3 times. The time required for this was calculated.
[0097]
a. Calculation conditions
a) Conditions for accelerated chemical aging
If the temperature increases by 10 ° C., the chemical aging rate increases by 2.5 times (2 to 3 times the above average).
[0098]
b) Thermal storage tank temperature
・ Cool energy storage operation: α11 = 7.5 ° C (average value of 3 ° C and 12 ° C)
Thermal storage operation: α12 = 50 ° C
・ When stopped: α2 ℃ (maximum temperature expected during stoppage)
Emergency: α21 ° C
During maintenance: α22 ° C
Number control: α23 ° C
Here, (α21, α22, α23) ≦ α2
Further, from the simulation results, α2 is set to 40 ° C. with a margin.
[0099]
c) Operating time and stop time
-Cold storage period: δ11 = 365− (δ12 + δ2) days
Thermal storage period: δ12 = 121 days
・ When stopped: δ2 days
Emergency: δ21 days
During maintenance: δ22 days
Unit control: δ23 days
As a representative, δ2 = 1 day.
[0100]
b. Calculation method
a) Chemical aging coefficient for chemical aging during normal operation at chemical thermal aging acceleration temperature:
η1i = 1 / [2.5 ^ {(αmax ° C.−α1 ° C.) / 10 ° C.}]
Here, αmax is a chemical aging acceleration temperature.
[0101]
b) Chemical aging coefficient for chemical aging during shutdown at accelerated chemical aging temperature:
η2 = 1 / [2.5 ^ {(αmax ° C−α2 ° C) / 10 ° C}]
η2i = 1 / [2.5 ^ {(αmax ° C.−α2i ° C.) / 10 ° C.}]
c) Conversion time for one year of chemical aging at the accelerated chemical aging temperature: β (days)
β = η1i × δ1i + η2 × δ2
= Η1i × δ1i + Σ (η2i × δ2i)
However, δ11 = 365−δ12−δ2 days, δ2 = 1 day, δ12 = 121 days
c. Calculation results
The table below shows the conversion time at the chemical aging acceleration temperature corresponding to one year when the chemical aging acceleration temperature αmax is 75 ° C. As a result, it can be seen that 12.8 days are required when the chemical aging acceleration test corresponding to one year is conducted at a chemical aging acceleration temperature αmax of 75 ° C.
[0102]
[Table 3]
Figure 0004278994
[0103]
(2). The heat storage material before use is filled in the system, and the concentration of the released aliphatic hydrocarbon proportional substance of the heat storage material in the system is measured when a predetermined number of cycles have passed.
[0104]
(3). As shown in FIG. 9, the relationship between the concentration of the released aliphatic hydrocarbon proportional substance and the number of elapsed times (equivalent years) is graphed to obtain the following relational expression (7).
[0105]
y1 = f (x) (7)
Where, y1: concentration of released aliphatic hydrocarbon proportional substance, x: number of elapsed times (equivalent years)
(Four). From FIG. 9, it is possible to predict the time until the concentration of the released aliphatic hydrocarbon proportional substance of the heat storage material before the cold / cold heat storage operation reaches 1000 mg / L. In D-1 of FIG. 9, the concentration of the released aliphatic hydrocarbon proportional substance is about 900 mg / L in a mechanical repeated deterioration phase equivalent to 25 years and a chemical aging process. For this reason, in the heat storage material before the cold / cold heat storage operation, the time until the concentration of the released aliphatic hydrocarbon proportional substance reaches 1000 mg / L, that is, the life of the heat storage material is sufficient for the target service life of 25 years It is expected to exceed.
[0106]
2. Part 2
The above operations (1) to (4) were performed, and the result of D-2 shown in FIG. 9 was obtained. In this case, it is predicted that the concentration of the released aliphatic hydrocarbon proportional substance will exceed 1000 mg / L after another 15 years. That is, in this case, it is predicted that the life of the heat storage material does not exceed the target useful life of 25 years.
[0107]
For this reason, it is necessary to reduce the predicted concentration of the released aliphatic hydrocarbon proportional substance to the expected value at the scheduled time of D-2 in the same manner as in Part 2 of the second embodiment. The quantity ratio relationship between the exchange heat storage material and the total amount of heat storage material can be predicted.
[0108]
3. Part 3
The above operations (1) to (4) were performed, and the result of D-3 shown in FIG. 9 was obtained. The heat storage material used here is taken out from the heat storage system after operating for two years, and predicts what kind of deterioration this heat storage material will be in the future.
[0109]
In this case, it is predicted that the released aliphatic hydrocarbon proportional substance will sufficiently exceed 1000 mg / L after another 9 years. That is, also in this case, it is predicted that the life of the heat storage material does not exceed the target useful life of 25 years.
[0110]
For this reason, in the same manner as the second case, at the time when D-3 is scheduled in the future, the exchange heat storage material and the total amount necessary for reducing the predicted concentration of the released aliphatic hydrocarbon proportional substance to the expected value will be described. The quantity ratio relationship with the amount of heat storage material can be predicted.
[0111]
In each example, the test for chemical aging and mechanical repeated deterioration is more realistic than the test for only chemical aging, but only for chemical aging. It becomes possible to predict the life of the heat storage material simply from the test alone.
[0112]
( reference Example)
In the first to fourth embodiments, the life of the heat storage material was predicted, reference In the example, the thermal storage material is evaluated (monitored) by automatically measuring the concentration (exact amount of oil extracted) and pH of the released aliphatic hydrocarbon proportional substance released from the membrane due to deterioration of the heat storage material in the heat storage system, Enables quick response in the event of an abnormality.
[0113]
Here, the index used for the life evaluation of the heat storage material is the concentration of the released aliphatic hydrocarbon proportional substance released from the film due to film deterioration. Book reference In the example, the oil concentration is taken as an index as an example, and the concentration of the released aliphatic hydrocarbon proportional substance proportional to the oil concentration is estimated.
[0114]
That is, although the life evaluation of the heat storage material in the heat storage system can be performed after sampling and measurement of the oil concentration, it takes time for each, and thus diagnosis at the time of abnormality cannot be performed immediately. Therefore, by performing automatic sampling and automatic analysis from the heat storage system, the oil concentration of the heat storage material in the system at the present time can be monitored in real time, and it is possible to respond immediately in the event of an abnormality.
[0115]
FIG. 10 is a diagram illustrating a configuration of a heat storage material evaluation device applied to the heat storage system. The heat storage system includes a heat storage tank (latent heat storage tank) 1, a heat exchanger 2, a heat storage material circulation circuit 3, a chilled water circulation circuit 4, a refrigerator 5, and the like.
[0116]
The heat storage tank 1 is a container that houses a heat storage material 11. A heat exchanger 2 is connected to the heat storage tank 1 via a heat storage material circulation circuit 3 provided with a heat storage material pump 6. Furthermore, an evaporator 51 in the refrigerator 5 is connected to the heat exchanger 2 via a cold water circulation circuit 4 provided with a cold water pump 8.
[0117]
Therefore, during heat storage and heat dissipation, the pump 6 is operated to supply the heat storage material 11 in the heat storage tank 1 to the heat exchanger 2 through the heat storage material circulation circuit 3. Further, the cold water pump 8 is operated to supply cold water to the heat exchanger 2 through the cold water circulation circuit 4. Thereby, heat exchange can be performed between the heat storage material 11 and cold water in the heat exchanger 2.
[0118]
The discharge system includes valves V1001, V1002, V1003, and a pump P1001 connected to piping capable of collecting a representative sample of the heat storage material. The measurement system includes an oil concentration meter D1001 that measures an oil concentration that is a film deterioration index. The arithmetic / output device CP1001 has various instructions, recording, arithmetic and notation functions.
[0119]
Instructions for opening / closing the valves V1001, V1002, and V1003 and stopping the operation of the pump P1001 are made by the arithmetic / output device CP1001. Specifically, the open / close valves V1001 and V1002 are opened for discharge when the heat storage material is initially taken out, and the valve V1002 is closed and the valve V1003 is opened at the same time when it reaches a predetermined state. Thereby, the heat storage material 11 from the heat storage tank 1 is introduced into the oil concentration meter D1001.
[0120]
The oil concentration of the heat storage material measured by the oil concentration meter D1001 is input and stored in the calculation / output device CP1001, and a predetermined calculation is performed. Here, the carbon tetrachloride extract, normal hexane extract, or gas that is proportional to the output of the oil concentration meter D1001 in advance and the amount of aliphatic hydrocarbons of the core material released from the film due to film deterioration of the heat storage material Obtain a correlation with the concentration of the substance to be measured by chromatography. The arithmetic / output device CP1001 stores this relational expression, and estimates the concentration of the substance from the oil extracted concentration measured by the oil concentration meter D1001.
[0121]
With the above configuration, the arithmetic / output device CP1001 can diagnose the abnormality of the heat storage material by showing the relationship between the elapsed time and the concentration of the released aliphatic hydrocarbon proportional substance released from the film due to the deterioration of the heat storage material. It becomes possible. Furthermore, by adding a solid content concentration and pH measurement function to the function of the oil concentration meter D1001, the state of the heat storage material can be grasped in real time, and the soundness evaluation of the heat storage system can be performed.
[0122]
Here, the solid content concentration measurement for 3 hours is an index of film deterioration because the aliphatic hydrocarbon of the core substance released from the film evaporates due to film deterioration. Moreover, since the soundness of the heat storage material is maintained between pH 7.5 and 8.5, it is necessary to adjust the pH when it is out of this range.
[0123]
That is, when the measured pH deviates from 7.5 to 8.5, the valves V1004, V1005, and V1006 are controlled to open and close by the arithmetic / output device CP1001 so that the pH becomes 7.5 to 8.5. Then, the acid supply pump P1002 or the alkali supply pump P1003 is operated. Accordingly, acid or alkali is supplied into the heat storage tank 1 from the acid tank T1010 or the alkali tank T1020. Further, the pH meter PH1000 can be installed in the pipe. Here, for example, acetic acid or hydrochloric acid is used as the acid, and sodium hydroxide is used as the alkali.
[0124]
The present invention is not limited only to the above-described embodiment, and can be appropriately modified without departing from the scope of the invention.
[0125]
【The invention's effect】
According to the heat storage material life prediction method and apparatus of the present invention, the life of a heat storage material due to chemical aging can be predicted before or during the operation of the heat storage system. Further, it is possible to predict the replacement time of the heat storage material in which the microcapsules in which the core substance made of aliphatic hydrocarbon is sealed are mixed with water.
[0126]
According to the heat storage material life prediction method and apparatus of the present invention, it is possible to predict the life of the heat storage material due to chemical aging and mechanical repeated deterioration before or during operation of the heat storage system, Furthermore, it is possible to predict the replacement time of the heat storage material in which microcapsules in which a core material made of an aliphatic hydrocarbon is sealed in an organic film material are mixed with water.
[0127]
According to the heat storage material life prediction method and apparatus of the present invention, before or during the start of operation of the heat storage system, a microcapsule in which a core material composed of an aliphatic hydrocarbon is enclosed in an organic film material is mixed with water. The replacement time and amount of heat storage material can be predicted.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a system of a heat storage material life prediction apparatus according to an embodiment of the present invention.
FIG. 2 is a view showing a change over time in the concentration of a released aliphatic hydrocarbon proportional substance according to an embodiment of the present invention.
FIG. 3 is a graph showing the relationship between the concentration of a released aliphatic hydrocarbon proportional substance and the inverse of temperature according to an embodiment of the present invention.
FIG. 4 is a diagram showing the relationship between the time passage at a predetermined temperature (7.5 ° C.) and the concentration of the released aliphatic hydrocarbon proportional substance according to the embodiment of the present invention.
FIG. 5 is a configuration diagram showing a system of a heat storage material life prediction apparatus according to an embodiment of the present invention.
FIG. 6 is a diagram showing the relationship between the concentration of the released aliphatic hydrocarbon proportional substance and the number of elapsed times (equivalent years) according to the embodiment of the present invention.
FIG. 7 is a diagram showing the relationship between the concentration of released aliphatic hydrocarbon proportional substance and the inverse of temperature according to an embodiment of the present invention.
FIG. 8 is a diagram showing the relationship between the time passage at the annual average temperature (21.7 ° C.) and the concentration of the released aliphatic hydrocarbon proportional substance according to the embodiment of the present invention.
FIG. 9 is a view showing the relationship between the concentration of the released aliphatic hydrocarbon proportional substance and the number of elapsed times (equivalent years) according to the embodiment of the present invention.
FIG. 10 Reference example The figure showing the composition of the thermal storage material evaluation device concerning.
[Explanation of symbols]
S1 to S4 ... Glass containers
V1 to V4 ... constant temperature bath
TE1 to TE4 ... Temperature indicator
H0-H4 ... Heater
M1-M4 ... Stirrer
C0 to C4 ... Temperature controller
V11, V12, V13 ... Valve
V21, V22, V23 ... Valve
V31, V32, V33 ... Valve
V41, V42, V43 ... Valve
P1-P4 ... Pump
D1-D4 ... Oil concentration meter
CP ... Calculation / output device
61 ... High temperature side heat exchanger
62 ... Low temperature side heat exchanger
63 ... Heating pump
67, 68 ... movable valve
69 ... circulation pump
70 ... Flow controller
71 ... Storage tank
C1-C4 ... Controller
CP100 ... Calculation / output device
T1-T4 ... thermometer
FH ... Flow meter
FC ... Flow meter
V100, V101, V102 ... Valve
CP200 ... Calculation / output device
D300 ... Oil concentration meter
1 ... thermal storage tank
2 ... Heat exchanger
3. Heat storage material circulation circuit
4 ... Cold water circulation circuit
5 ... Refrigerator
6 ... heat storage material pump
7, 8 ... Cold water pump
V1001-V1006 ... Valve
P1001 to P1003 ... Pump
CP1001 ... Calculation / output device
D1001 ... Oil concentration meter
T1010 ... acid tank
T1020 ... Alkaline tank
PH1000 ... pH meter

Claims (6)

有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材の寿命を予測する蓄熱材寿命予測方法であり、
前記蓄熱材を充填した複数の容器を、それぞれ所定温度に維持し、
所定時間経過毎に、前記各容器中の蓄熱材をサンプリングし、前記蓄熱材の劣化により膜から放出した芯物質の脂肪族炭化水素量に対して比例関係にある各所定物質の濃度を測定し、
経過時間と前記各所定物質の濃度との関係を表示し、
この関係から温度と前記各所定物質の濃度に達するまでの時間との関係を表示し、
この関係から所定温度での前記各所定物質の濃度と時間経過との関係を表示し、
この関係から前記蓄熱材の寿命を予測することを特徴とする蓄熱材寿命予測方法。
It is a heat storage material life prediction method for predicting the life of a heat storage material in which a microcapsule in which a core material composed of an aliphatic hydrocarbon is enclosed in an organic film material is mixed with water.
Maintaining a plurality of containers filled with the heat storage material at a predetermined temperature,
Each time a predetermined time elapses, the heat storage material in each container is sampled, and the concentration of each predetermined material that is proportional to the amount of aliphatic hydrocarbons in the core material released from the membrane due to deterioration of the heat storage material is measured. ,
Display the relationship between the elapsed time and the concentration of each predetermined substance,
From this relationship, display the relationship between the temperature and the time to reach the concentration of each predetermined substance,
From this relationship, display the relationship between the concentration of each predetermined substance at a predetermined temperature and the passage of time,
A heat storage material life prediction method, wherein the life of the heat storage material is predicted from this relationship.
有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材の寿命を予測する蓄熱材寿命予測方法であり、
前記蓄熱材を系統内に充填し、所定回数循環させ、
前記所定回数を経過した時点で、前記系統内の蓄熱材の劣化により膜から放出した芯物質の脂肪族炭化水素量に対して比例関係にある所定物質の濃度を測定し、
この所定物質の濃度と経過回数との関係を表示し、
この関係から、前記蓄熱材の寿命を予測することを特徴とする蓄熱材寿命予測方法。
It is a heat storage material life prediction method for predicting the life of a heat storage material in which a microcapsule in which a core material composed of an aliphatic hydrocarbon is enclosed in an organic film material is mixed with water.
Fill the system with the heat storage material, circulate a predetermined number of times,
When the predetermined number of times has passed, the concentration of the predetermined substance that is proportional to the amount of aliphatic hydrocarbons of the core substance released from the film due to deterioration of the heat storage material in the system is measured,
Display the relationship between the concentration of this specified substance and the number of elapsed times,
From this relationship, the heat storage material life prediction method characterized by predicting the life of the heat storage material.
予測された寿命に応じて、
X=(A−B)/(A−C)×Y
に、予測される所定物質の濃度A、交換する有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材の所定物質の濃度C、有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材交換後の所定物質の濃度B、全系統内の有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材量Yを代入することで、交換する有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材量Xを予測することを特徴とする請求項1または2に記載の蓄熱材寿命予測方法
Depending on the expected lifetime,
X = (A−B) / (A−C) × Y
The concentration A of the predetermined substance to be predicted, the concentration C of the predetermined substance of the heat storage material in which the microcapsules in which the core substance made of aliphatic hydrocarbon is sealed in the organic film substance to be exchanged are mixed with water, the organic film Concentration B of a predetermined substance after heat storage material exchange in which a microcapsule in which a core substance made of aliphatic hydrocarbon is enclosed in water is mixed with water, and a core made of aliphatic hydrocarbon in the organic film material in all systems By substituting the amount Y of heat storage material obtained by mixing microcapsules filled with water with water, heat storage by mixing microcapsules filled with core material composed of aliphatic hydrocarbons with water in the organic membrane material to be exchanged The heat storage material life prediction method according to claim 1, wherein the material amount X is predicted .
有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材の蓄熱材寿命予測装置であり、
前記有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材を充填した複数の容器を、それぞれ所定温度に維持する手段と、
所定時間経過毎にサンプリングされた前記各容器中の有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材における劣化により膜から放出した芯物質の脂肪族炭化水素量に対して比例関係にある各所定物質の濃度を測定する手段と、
経過時間と前記各所定物質の濃度との関係を表示する手段と、
この関係から温度と前記各所定物質の濃度に達するまでの時間との関係を表示する手段と、
この関係から所定温度での前記所定物質の濃度と時間経過との関係を表示する手段と、
この関係から前記蓄熱材の寿命を予測する手段と、
を具備したことを特徴とする蓄熱材寿命予測装置。
It is a heat storage material life prediction device for a heat storage material in which a microcapsule in which a core material composed of an aliphatic hydrocarbon is enclosed in an organic film material is mixed with water.
Means for maintaining a plurality of containers filled with a heat storage material obtained by mixing microcapsules in which a core substance made of an aliphatic hydrocarbon is sealed in the organic film substance with water, respectively, at a predetermined temperature;
The core material released from the membrane due to deterioration in the heat storage material in which the microcapsules in which the core material made of aliphatic hydrocarbon is sealed in the organic film material in each container sampled every predetermined time has been mixed with water. Means for measuring the concentration of each predetermined substance proportional to the amount of aliphatic hydrocarbons;
Means for displaying the relationship between the elapsed time and the concentration of each predetermined substance;
Means for displaying the relationship between the temperature and the time to reach the concentration of each predetermined substance from this relationship;
Means for displaying the relationship between the concentration of the predetermined substance at a predetermined temperature and the passage of time from this relationship;
Means for predicting the life of the heat storage material from this relationship;
The thermal storage material lifetime prediction apparatus characterized by comprising.
有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材の寿命を予測する蓄熱材寿命予測装置であり、
系統内に充填された前記有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材を所定回数循環させる手段と、
前記所定回数を経過した時点で、前記系統内の蓄熱材の劣化により膜から放出した芯物質の脂肪族炭化水素量に対して比例関係にある各所定物質の濃度を測定する手段と、
この所定物質の濃度と経過回数との関係を表示する手段と、
この関係から、前記蓄熱材の寿命を予測する手段と、
を具備したことを特徴とする蓄熱材寿命予測装置。
It is a heat storage material life prediction device that predicts the life of a heat storage material in which a microcapsule in which a core material composed of an aliphatic hydrocarbon is enclosed in an organic film material is mixed with water,
Means for circulating a heat storage material obtained by mixing a microcapsule in which a core material composed of an aliphatic hydrocarbon is enclosed in the organic film material filled in a system with water a predetermined number of times;
Means for measuring the concentration of each predetermined substance in proportion to the amount of aliphatic hydrocarbons of the core substance released from the membrane due to deterioration of the heat storage material in the system when the predetermined number of times has passed;
Means for displaying the relationship between the concentration of the predetermined substance and the number of elapsed times;
From this relationship, means for predicting the life of the heat storage material,
The thermal storage material lifetime prediction apparatus characterized by comprising.
予測された寿命に応じて、
X=(A−B)/(A−C)×Y
に、予測される所定物質の濃度A、交換する有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材の所定物質の濃度C、有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材交換後の所定物質の濃度B、全系統内の有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材量Yを代入することで、交換する有機系膜物質内に脂肪族炭化水素からなる芯物質が封入された微小カプセルを水と混合した蓄熱材量Xを予測する手段を備えたことを特徴とする請求項またはに記載の蓄熱材寿命予測装置
Depending on the expected lifetime,
X = (A−B) / (A−C) × Y
The concentration A of the predetermined substance to be predicted, the concentration C of the predetermined substance of the heat storage material in which the microcapsules in which the core substance made of aliphatic hydrocarbon is sealed in the organic film substance to be exchanged are mixed with water, the organic film Concentration B of a predetermined substance after heat storage material exchange in which a microcapsule in which a core substance made of aliphatic hydrocarbon is enclosed in water is mixed with water, and a core made of aliphatic hydrocarbon in the organic film material in all systems By substituting the amount Y of heat storage material obtained by mixing microcapsules filled with water with water, heat storage by mixing microcapsules filled with core material composed of aliphatic hydrocarbons with water in the organic membrane material to be exchanged heat storage material life predicting device according to claim 4 or 5, further comprising a means for predicting the wood amount X.
JP2003014376A 2003-01-23 2003-01-23 Thermal storage material life prediction method and apparatus Expired - Fee Related JP4278994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003014376A JP4278994B2 (en) 2003-01-23 2003-01-23 Thermal storage material life prediction method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003014376A JP4278994B2 (en) 2003-01-23 2003-01-23 Thermal storage material life prediction method and apparatus

Publications (2)

Publication Number Publication Date
JP2004226233A JP2004226233A (en) 2004-08-12
JP4278994B2 true JP4278994B2 (en) 2009-06-17

Family

ID=32902449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003014376A Expired - Fee Related JP4278994B2 (en) 2003-01-23 2003-01-23 Thermal storage material life prediction method and apparatus

Country Status (1)

Country Link
JP (1) JP4278994B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2972217B1 (en) * 2013-03-14 2017-07-19 Fisher Controls International Llc Valve prognostics for polymeric components based on accelerated aging techniques

Also Published As

Publication number Publication date
JP2004226233A (en) 2004-08-12

Similar Documents

Publication Publication Date Title
Fopah-Lele et al. Lab-scale experiment of a closed thermochemical heat storage system including honeycomb heat exchanger
García-Romero et al. Influence of the experimental conditions on the subcooling of Glauber's salt when used as PCM
Xie et al. Experimental study on a small scale of gas hydrate cold storage apparatus
Zhang et al. Experimental investigation of effects of supercooling on microencapsulated phase-change material (MPCM) slurry thermal storage capacities
Belmonte et al. A simplified method for modeling the thermal performance of storage tanks containing PCMs
JP4602140B2 (en) Temperature control device
Wang et al. Experimental study on a novel three-phase absorption thermal battery with high energy density applied to buildings
Marinhas et al. Solid fraction modelling for CO2 and CO2–THF hydrate slurries used as secondary refrigerants
Que et al. Numerical simulation and experimental research progress of phase change hysteresis: A review
JP4278994B2 (en) Thermal storage material life prediction method and apparatus
JP4753244B2 (en) Hydrogen filling method and hydrogen filling monitoring device for hydrogen storage container
Taher et al. Inverse method to describe crystallization of undercooled water in cold storage tank
Porteiro et al. Experimental investigation of the thermal response of a thermal storage tank partially filled with different PCMs (phase change materials) to a steep demand
Rolka et al. Thermal properties of RT22 HC and RT28 HC phase change materials proposed to reduce energy consumption in heating and cooling systems
Müller-Trefzer et al. Experimental investigations on the design of a dual-media thermal energy storage with liquid metal
Farid et al. Performance of direct contact latent heat storage unit
CN107678462B (en) Constant-speed tank, constant-speed cooling system for constant-speed tank and constant-speed cooling method for constant-speed tank
CN205941417U (en) Experimental device for be used for testing high low -temperature stability of phase change energy storage material
Michel et al. First experimental characterization of CaCl2 coated heat exchanger for thermochemical heat transformer applications in industrial waste heat recovery
Pakalka et al. Effect of open and closed operation modes on the performance of phase change material based copper heat exchanger
CN207367079U (en) Constant speed groove and constant speed groove constant speed cooling system
Nakamura et al. Ammonia alum hydrate-based phase change materials for effective use of excess exhaust heat from gas engines
Kommandur et al. The impact of non-ideal phase change properties on phase change thermal energy storage device performance
Groleau PERFORMANCE ANALYSIS FOR A RESIDENTIAL-SCALE ICE THERMAL ENERGY STORAGE SYSTEM
Yedmel et al. A novel approach combining thermosiphon and phase change materials (PCM) for cold energy storage in cooling systems: A proof of concept

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4278994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090330

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20090721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees