JP4278061B2 - In-building wireless power transmission system - Google Patents

In-building wireless power transmission system Download PDF

Info

Publication number
JP4278061B2
JP4278061B2 JP2006058966A JP2006058966A JP4278061B2 JP 4278061 B2 JP4278061 B2 JP 4278061B2 JP 2006058966 A JP2006058966 A JP 2006058966A JP 2006058966 A JP2006058966 A JP 2006058966A JP 4278061 B2 JP4278061 B2 JP 4278061B2
Authority
JP
Japan
Prior art keywords
waveguide
power
electromagnetic wave
building
wireless power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006058966A
Other languages
Japanese (ja)
Other versions
JP2007244015A (en
Inventor
真毅 篠原
友彦 三谷
紘 松本
龍彦 安達
直幹 丹羽
賢二 高木
研一 浜本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Kyoto University
Original Assignee
Kajima Corp
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Kyoto University filed Critical Kajima Corp
Priority to JP2006058966A priority Critical patent/JP4278061B2/en
Publication of JP2007244015A publication Critical patent/JP2007244015A/en
Application granted granted Critical
Publication of JP4278061B2 publication Critical patent/JP4278061B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Waveguide Aerials (AREA)

Description

本発明は建物内無線電力伝送システムに関し、とくにマイクロ波その他の電磁波を用いて建物内の電力消費部位に無線で電力を供給するシステムに関する。   The present invention relates to an in-building wireless power transmission system, and more particularly to a system for wirelessly supplying electric power to a power consuming part in a building using microwaves or other electromagnetic waves.

従来から、例えば特許文献1が開示するように、宇宙空間で太陽光発電により得た電力をマイクロ波に変換して地球上の電力消費地域に照射し、地上の受電用アンテナ(以下、レクテナという)でマイクロ波を電気に変換して電気機器の電力源とする宇宙太陽発電システム(Space Solar Power System)が提案されている。マイクロ波等の電磁波を用いる無線電力伝送は、電線を用いる有線電力伝送に比して設備コストを削減できる経済性を有しており、またレクテナさえあれば配線が困難な離島や被災地等にも電力を供給できる等の利点を有している。特許文献2及び非特許文献1は、この無線電力伝送の利点を建物内の電力供給に適用し、建物内の床や天井、壁等に配置した電磁波放射アンテナ(例えば導波管スロットアンテナ)から建物屋内の所定空間内に電磁波を放射し、その所定空間内で様々な電気機器をバッテリーなしで駆動可能とし又はコードレスで充電可能とする無線電力供給システムを提案している。   Conventionally, for example, as disclosed in Patent Document 1, electric power obtained by photovoltaic power generation in outer space is converted into microwaves and irradiated to a power consumption area on the earth, and a ground receiving antenna (hereinafter referred to as rectenna) ) Proposed a space solar power system that converts microwaves into electricity and uses it as a power source for electrical equipment. Wireless power transmission using electromagnetic waves such as microwaves has the economy of reducing equipment costs compared to wired power transmission using electric wires, and it can be used in remote islands and disaster areas where wiring is difficult with rectenna. Has the advantage of being able to supply power. Patent Document 2 and Non-Patent Document 1 apply the advantages of this wireless power transmission to power supply in a building, from an electromagnetic radiation antenna (for example, a waveguide slot antenna) placed on the floor, ceiling, wall, etc. in the building. A wireless power supply system that radiates electromagnetic waves into a predetermined indoor space and enables various electric devices to be driven without a battery or charged cordlessly within the predetermined space has been proposed.

本発明者等は、建物の床や天井、壁の内部の構造体や仕上げ材により生じる閉空間を電磁波伝送路として利用する建物内の無線電力伝送システムを開発し、特願2004-357114号(特開2006-166662号)に開示した。その無線電力伝送システムの一例を図12に示す。同図(A)は、多層構造建物1の各階の床2又は天井3(以下、床スラブ2ということがある)の内部閉空間に電磁波伝送路10を設けた電力伝送システムである。図示例の床スラブ2は、荷重負担用の複数の山・谷が長手方向に並列に形成されたデッキプレート11を鉄骨梁6上に支持して敷き詰め、そのデッキプレート11上にコンクリート5を打設して構築したものである。同図(B)は、デッキプレート11の長手方向と直交方向の床スラブ2の断面図を示す。このようなデッキプレート11は一般に鋼板等の導体製であるから、デッキプレート11のコンクリート打設側と反対側(開放された底面側)を導体製の遮蔽板12で塞ぐことにより、床スラブ2の底部にデッキプレート11の山部と遮蔽板12とで囲まれた複数の並列な電磁波伝送路10(以下、デッキプレート導波管ということがある)を形成できる。すなわち、建築部材であるデッキプレート11をそのまま利用して無線電力伝送の電磁波伝送路10とすることができる。 The present inventors have developed a wireless power transmission system in a building using the building floor and ceiling, the closed space caused by structure or finish of the inner wall as the electromagnetic wave transmission line, Japanese Patent Application No. 2004-357114 (JP No. 2006-166662) . An example of the wireless power transmission system is shown in FIG. FIG. 1A shows a power transmission system in which an electromagnetic wave transmission path 10 is provided in an internal closed space of a floor 2 or a ceiling 3 (hereinafter also referred to as a floor slab 2) of each floor of a multi-layered building 1. The floor slab 2 in the illustrated example supports and spreads a deck plate 11 formed with a plurality of load-carrying peaks and valleys in parallel in the longitudinal direction on a steel beam 6, and casts concrete 5 on the deck plate 11. It was established and constructed. FIG. 2B shows a cross-sectional view of the floor slab 2 in the direction orthogonal to the longitudinal direction of the deck plate 11. Since such a deck plate 11 is generally made of a conductor such as a steel plate, the floor slab 2 is formed by closing the opposite side (opened bottom side) of the deck plate 11 with a conductor shielding plate 12. A plurality of parallel electromagnetic wave transmission paths 10 (hereinafter sometimes referred to as deck plate waveguides) surrounded by the crests of the deck plate 11 and the shielding plate 12 can be formed at the bottom of the plate. That is, the deck plate 11 that is a building member can be used as it is to form the electromagnetic wave transmission path 10 for wireless power transmission.

同図(A)の床スラブ2には、デッキプレート導波管と共に、その長手方向と交差する向きに電磁波を送る給電導波管20が設けられている。給電導波管20には、適当な電力源53(例えば商用電力や燃料電池等)に接続されたマグネトロンその他の電磁波発生装置52から中継導波管29を介して、所要電力密度(例えば6W/cm2程度)の電磁波が供給される。長距離伝送による電磁波の減衰を避けるため、電磁波発生装置52は各階毎に設けることが望ましい。また電磁波発生装置52で発生させる電磁波の電力密度は、給電導波管20及びデッキプレート導波管の少なくとも一方の内部の電力密度に応じて制御することができる。図示例の給電導波管20は、例えば鋼板等を凹状に屈曲させて成形した樋状部材の頂端開口をデッキプレート導波管の底面との結合によって塞ぎ、電磁波が漏れないようにしたものである。給電導波管20からデッキプレート導波管内に電磁波を送り込むため、給電導波管20を取り付けるデッキプレート導波管の底面部分の遮蔽板12は予め設置しないでおくか又は取り外す。 The floor slab 2 in FIG. 2A is provided with a feed waveguide 20 for sending electromagnetic waves in a direction intersecting with the longitudinal direction thereof, along with a deck plate waveguide. The power supply waveguide 20 has a required power density (for example, 6 W / power) via a relay waveguide 29 from a magnetron or other electromagnetic wave generation device 52 connected to an appropriate power source 53 (for example, commercial power or a fuel cell). cm 2 ). In order to avoid attenuation of electromagnetic waves due to long-distance transmission, it is desirable to provide the electromagnetic wave generator 52 on each floor. The power density of the electromagnetic wave generated by the electromagnetic wave generator 52 can be controlled in accordance with the power density inside at least one of the feeding waveguide 20 and the deck plate waveguide. The power supply waveguide 20 in the illustrated example is such that, for example, the top end opening of a bowl-shaped member formed by bending a steel plate or the like into a concave shape is blocked by coupling with the bottom surface of the deck plate waveguide so that electromagnetic waves do not leak. is there. In order to send electromagnetic waves from the feed waveguide 20 into the deck plate waveguide, the shielding plate 12 at the bottom of the deck plate waveguide to which the feed waveguide 20 is attached is not installed or removed in advance.

同図(B)に示すように、給電導波管20からデッキプレート導波管に送られた電磁波の電力は、デッキプレート導波管の頂面又は底面(H面)の任意位置からレクテナ付き同軸プローブ60を利用して床スラブ2の床側又は天井側に取り出すことができる。また、マイクロ波整流回路やレギュレータ、蓄電池等で構成されるコンセントボックス55を設置することにより、用途に応じて直流電力を得ることもできる。コンセントボックス55には、コンセント56付き電線61を介して様々な電気機器57を接続できる。図中の符号57は、コンセントボックス55を介さず同軸プローブ60に直接接続された建物1内の照明その他の電気機器を示す。同図に示す無線電力伝送システムは、デッキプレート11をそのまま利用することからシステム導入コストを低く抑えることができる利点があり、電力取り出し位置を簡易に変更できることから給電場所の自由度の高いユビキタス電源としての役割も果たす。   As shown in FIG. 2B, the power of the electromagnetic wave sent from the feed waveguide 20 to the deck plate waveguide is provided with a rectenna from any position on the top surface or bottom surface (H surface) of the deck plate waveguide. The coaxial probe 60 can be used to take out to the floor side or the ceiling side of the floor slab 2. Further, by installing an outlet box 55 composed of a microwave rectifier circuit, a regulator, a storage battery, etc., direct current power can be obtained according to the application. Various electrical devices 57 can be connected to the outlet box 55 via an electric wire 61 with an outlet 56. Reference numeral 57 in the figure indicates lighting and other electrical equipment in the building 1 that is directly connected to the coaxial probe 60 without going through the outlet box 55. The wireless power transmission system shown in the figure has the advantage that the system introduction cost can be kept low because the deck plate 11 is used as it is, and the power extraction position can be easily changed, so the ubiquitous power supply with a high degree of freedom in the power supply location Also plays a role as.

特開2003−309938号公報JP 2003-309938 A 特開2005−261187号公報JP 2005-261187 A 特許第2733472号公報Japanese Patent No. 2733472 特開2005−093085号公報JP 2005-093085 A 篠原真毅他「無線電力空間の基礎研究」社団法人電子情報通信学会、信学技報SPS2003-18、2004年3月、pp.47-53Shinohara Shingo et al. “Basic Research on Wireless Power Space” The Institute of Electronics, Information and Communication Engineers, IEICE Technical Report SPS2003-18, March 2004, pp.47-53 高橋司他「スロットアレー用導波管電力分配器の側壁板による反射抑制」社団法人電子情報通信学会、信学技報A-P94-7、1994年4月、pp.45-50Tsukasa Takahashi et al. “Reflection suppression by side wall plate of waveguide power divider for slot array” The Institute of Electronics, Information and Communication Engineers, IEICE Technical Report A-P94-7, April 1994, pp.45-50 中島将光著「マイクロ波工学・基礎と原理」森北出版株式会社、1975年4月15日、pp.110-135Masamitsu Nakajima, “Microwave Engineering: Fundamentals and Principles”, Morikita Publishing Co., Ltd., April 15, 1975, pp.110-135 アハマド・ムニル他「人工誘電体を用いた導波管型共振器の特性改善」電子情報通信学会論文誌C、Vol.J87-C、No.12、2004年12月、pp.1024-1029Ahmad Munir et al. "Improvement of characteristics of waveguide resonators using artificial dielectrics" IEICE Transactions C, Vol. J87-C, No. 12, December 2004, pp.1024-1029

しかし、図12の無線電力伝送システムは、給電導波管20からデッキプレート導波管の全ての電磁波伝送路10に電磁波をほぼ均等に伝送しているため、電力エネルギーの効率的利用が難しい問題点がある。図11は、多層構造建物1の特定階において必要とされるコンセントボックス55の配置例を示す。同図に示すようにコンセントボックス55は廊下4を含む床スラブ2上にランダムに配置されるものであり、それに応じてデッキプレート導波管の電力使用状況も電磁波伝送路10毎に相違する。図12の無線電力伝送システムのエネルギー利用効率向上を図るためには、コンセントボックス55等が配置されていない電磁波伝送路10への電磁波分配を小さく抑え、給電導波管20の電磁波をコンセントボックス55が配置された電磁波伝送路10に効率的に分配することが有効である。   However, since the wireless power transmission system of FIG. 12 transmits electromagnetic waves almost uniformly from the feeding waveguide 20 to all the electromagnetic wave transmission paths 10 of the deck plate waveguide, it is difficult to use power energy efficiently. There is a point. FIG. 11 shows an arrangement example of the outlet box 55 required on a specific floor of the multi-layer structure building 1. As shown in the figure, the outlet box 55 is randomly arranged on the floor slab 2 including the corridor 4, and accordingly, the power usage status of the deck plate waveguide is different for each electromagnetic wave transmission path 10. In order to improve the energy utilization efficiency of the wireless power transmission system of FIG. 12, the distribution of electromagnetic waves to the electromagnetic wave transmission line 10 where the outlet box 55 or the like is not disposed is suppressed to a small amount, and the electromagnetic waves in the feeding waveguide 20 are reduced to the outlet box 55. It is effective to distribute efficiently to the electromagnetic wave transmission path 10 in which the

従来から導波管スロットアンテナ等の技術分野では、例えば特許文献3及び非特許文献2が開示するように、給電導波管の電磁波を複数の放射導波管へその振幅や位相が等しくなるように均等に分配する技術が提案されている。しかし、図11のように各電磁波伝送路10の電力使用状況が相違する場合に、給電導波管20の電磁波を各電磁波伝送路10の電力使用状況に応じていわば不均等に分配する適当な技術は開発されていない。また建物1内の電力使用状況は、竣工後に例えば設備の配置替えや間取りの変更等によって変化し得る。建物1内の無線電力伝送システムの実用化を図るためには、建物1内の電力使用状況の変化に応じて、給電導波管20から各電磁波伝送路10への電磁波の分配量(分岐部における結合度)を竣工後も容易に調節できる電力分配システムとすることが望ましい。   Conventionally, in the technical field such as a waveguide slot antenna, as disclosed in, for example, Patent Document 3 and Non-Patent Document 2, the amplitude and phase of electromagnetic waves in a feeding waveguide are equalized to a plurality of radiating waveguides. A technique for evenly distributing to each other has been proposed. However, when the power usage status of each electromagnetic wave transmission line 10 is different as shown in FIG. 11, the electromagnetic wave in the feed waveguide 20 is appropriately distributed according to the power usage status of each electromagnetic wave transmission path 10. Technology has not been developed. In addition, the power usage status in the building 1 can change after completion of construction, for example, by rearranging the equipment or changing the floor plan. In order to put the wireless power transmission system in the building 1 into practical use, the amount of electromagnetic waves distributed from the feed waveguide 20 to each electromagnetic wave transmission path 10 (branching part) in accordance with changes in the power usage in the building 1 It is desirable that the power distribution system can be easily adjusted after completion.

そこで本発明の目的は、建物内の各部分にその部分の電力使用量に応じた電磁波を分配できる建物内無線電力システムを提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide an in-building wireless power system capable of distributing electromagnetic waves according to the amount of power used in each part of the building.

図1の実施例を参照するに、本発明の建物内無線電力伝送システムは、建物1の床2、天井3(図12参照)又は壁の内部に並列に設けた複数の電磁波伝送路10a、10b、10c……、各電磁波伝送路10a、10b、10c……と交差する向きに重ねて設けた給電導波管20、並びに給電導波管20の電磁波を電磁波伝送路10a、10b、10c……毎に定めた割合で各電磁波伝送路10a、10b、10c……に分配する電力分配手段30を備えてなるものである。   Referring to the embodiment of FIG. 1, the in-building wireless power transmission system of the present invention includes a plurality of electromagnetic wave transmission lines 10a provided in parallel on the floor 2, ceiling 3 (see FIG. 12) or wall of the building 1, 10b, 10c..., The feed waveguide 20 provided to overlap each electromagnetic wave transmission path 10a, 10b, 10c..., And the electromagnetic waves in the feed waveguide 20 are transmitted to the electromagnetic wave transmission paths 10a, 10b, 10c. ... Are provided with power distribution means 30 that distributes the electromagnetic wave transmission paths 10a, 10b, 10c,...

例えば図1に示すように、給電導波管20に、各電磁波伝送路10a、10b、10c……と交差する向きに電磁波を送る主導波管21と、その主導波管21の管壁に穿った複数の窓25a、25b、25c……を各電磁波伝送路10a、10b、10c……に電磁的に結合する複数の分岐導波管22a、22b、22c……とを含め、電力分配手段30を主導波管21の各窓25a、25b、25c……の対向内壁にそれぞれ管内側へ突出させて設けた誘導性壁部材31a、31b、31c……とし、各誘導性壁部材31a、31b、31c……の突出量xa、xb、xc……(図2(B)参照)に応じた割合で主導波管21の電磁波を各分岐導波管22a、22b、22c……に分配する。 For example, as shown in FIG. 1, a main waveguide 21 that sends electromagnetic waves in a direction intersecting with each electromagnetic wave transmission path 10a, 10b, 10c... Including a plurality of branched waveguides 22a, 22b, 22c,... Electromagnetically coupling the plurality of windows 25a, 25b, 25c,... To the electromagnetic wave transmission paths 10a, 10b, 10c,. Inductive wall members 31a, 31b, 31c,... Provided on the inner walls facing each of the windows 25a, 25b, 25c... Of the main waveguide 21, respectively, and the inductive wall members 31a, 31b,. 31c ...... amount of projection x a, x b, x c ...... ( Fig 2 (B) refer) each branch waveguide 22a electromagnetic waves main waveguide 21 at a rate corresponding to, 22b, distributed 22c ...... To do.

この場合において好ましくは、電力分配手段30に主導波管21の各窓25a、25b、25c……の周縁にそれぞれ窓中央側へ突出させて設けた誘導性窓周縁部材32a、32b、32c……を含め、各誘導性壁部材31a、31b、31c……の突出量xa、xb、xc……と各誘導性窓周縁部材32a、32b、32c……の突出量ma、mb、mc……(図2(B)参照)とに応じた割合で主導波管21の電磁波を各分岐導波管22a、22b、22c……に分配する。更に好ましくは、電力分配手段30に、各誘導性壁部材31a、31b、31c……(又は、各誘導性壁部材31a、31b、31c……及び各誘導性窓周縁部材32a、32b、32c……を突出方向に移動可動に支持し、且つ、それらの突出量xa、xb、xc……及び/又はma、mb、mc……を個別に調節する複数の突出量調節機構41a、41b、41c……及び/又は42a、42b、42c……(図9参照)を含める。 In this case, preferably, inductive window peripheral members 32a, 32b, 32c,... Provided on the power distribution means 30 at the peripheral edges of the windows 25a, 25b, 25c,. Including the protruding amounts x a , x b , x c ...... of the inductive wall members 31a, 31b, 31c... And the protruding amounts m a , m b of the inductive window peripheral members 32a, 32b, 32c. , M c (see FIG. 2 (B)), the electromagnetic wave in the main waveguide 21 is distributed to the branch waveguides 22a, 22b, 22c,. More preferably, the inductive wall members 31a, 31b, 31c... (Or the inductive wall members 31a, 31b, 31c... And the inductive window peripheral members 32a, 32b, 32c. .. ) Are movably supported in the projecting direction, and the projecting amounts x a , x b , x c ... And / or m a , m b , m c. Adjustment mechanisms 41a, 41b, 41c... And / or 42a, 42b, 42c (see FIG. 9) are included.

また例えば図6に示すように、電力分配手段30を、給電導波管20上の各電磁波伝送路10a、10b、10c……との交差位置にそれぞれ穿った給電孔38a、38b、38c……と、各電磁波伝送路10a、10b、10c……の給電孔対向位置に穿った受電孔39a、39b、39c……との組み合わせとし、各給電孔38a、38b、38c……と受電孔39a、39b、39c……との重なり位置及び形状に応じた割合で給電導波管20の電磁波を各電磁波伝送路10a、10b、10c……に分配する。この場合は、給電導波管20に図1のような分岐導波管22a、22b、22c……を設ける必要がなくなる。   Further, for example, as shown in FIG. 6, the power distribution means 30 is provided with feed holes 38a, 38b, 38c,..., Which are respectively drilled at the intersecting positions with the electromagnetic wave transmission paths 10a, 10b, 10c,. Are combined with the power receiving holes 39a, 39b, 39c,..., Which are formed at the positions opposite to the power feeding holes of the electromagnetic wave transmission paths 10a, 10b, 10c..., And the power feeding holes 38a, 38b, 38c. The electromagnetic waves in the feeding waveguide 20 are distributed to the electromagnetic wave transmission lines 10a, 10b, 10c,... At a ratio corresponding to the overlapping position and shape with 39b, 39c,. In this case, there is no need to provide branch waveguides 22a, 22b, 22c... As shown in FIG.

この場合において好ましくは、電力分配手段30に給電孔38a、38b、38c……又は受電孔39a、39b、39c……に嵌め込んだ所要誘電率の誘電体47a、47b、47c……を含め、各給電孔38a、38b、38c……及び受電孔39a、39b、39c……の重なり位置及び形状と各誘電体47a、47b、47c……の誘電率とに応じた割合で給電導波管20の電磁波を各電磁波伝送路10a、10b、10c……に分配する。更に好ましくは、誘電体47a、47b、47c……を誘電率が可変のものとし、電力分配手段30に各誘電体47a、47b、47c……の誘電率を個別に調節する複数の誘電率調節手段を含める。   In this case, preferably, the power distribution means 30 includes the dielectrics 47a, 47b, 47c,... With required dielectric constants fitted into the power feeding holes 38a, 38b, 38c,... Or the power receiving holes 39a, 39b, 39c,. The feeding waveguide 20 at a ratio corresponding to the overlapping position and shape of the feeding holes 38a, 38b, 38c,... And the receiving holes 39a, 39b, 39c, and the dielectric constant of the dielectrics 47a, 47b, 47c,. Are distributed to the electromagnetic wave transmission lines 10a, 10b, 10c,. More preferably, the dielectrics 47a, 47b, 47c,... Have a variable dielectric constant, and the dielectric constant adjustment for individually adjusting the dielectric constants of the dielectrics 47a, 47b, 47c,. Include means.

本発明による建物内無線電力伝送システムは、建物1の床スラブ2の内部に並列に設けた複数の電磁波伝送路10a、10b、10c……の各々に、それらと交差する向きに重ねて設けた給電導波管20の電磁波を、電力分配手段30により電磁波伝送路10a、10b、10c……毎に定めた割合で分配するので、次の顕著な効果を奏する。   The in-building wireless power transmission system according to the present invention is provided on each of a plurality of electromagnetic wave transmission paths 10a, 10b, 10c,... Provided in parallel inside the floor slab 2 of the building 1 so as to overlap each other. Since the electromagnetic waves in the feeding waveguide 20 are distributed by the power distribution means 30 at a ratio determined for each of the electromagnetic wave transmission lines 10a, 10b, 10c,...

(イ)建物内の各部分の電力使用状況に応じて、電力供給が必要な電磁波伝送路10に給電導波管20から必要な電磁波を効率的に分配し、電力供給が不要な電磁波伝送路10への電磁波の分配を削減できるので、システムのエネルギー利用効率の向上を促進できる。
(ロ)また、余分な電磁波伝送の削減により電磁波の漏れや熱損失を小さく抑えることが期待でき、漏洩電磁波による建物1内の人体に対する好ましくない影響を避けると共に、熱損失に伴う電磁波伝送路10の発熱対策等も軽減できる。
(ハ)電力分配手段30に各電磁波伝送路10への電磁波分配割合を調節する調節機構を含めることにより、建物1の竣工後に手動又は自動で容易に電磁波の分配割合を変更することが可能であり、高いエネルギー利用効率を維持しつつ給電場所の自由度が高い無線電力伝送を実現できる。
(ニ)また、建物1内の電力使用ルートの変化や設備の配置替え・間取り変更等に伴う電力使用状況の変化にも、エネルギー利用効率を損なうことなく容易に対応することが可能である。
(ホ)建物1内の全体の電力使用状況に応じて各電磁波伝送路10への電磁波の分配割合を調節する総合的な集中制御を行うことにより、システム全体のエネルギー利用効率の最適化を図ることも期待できる。
(B) The electromagnetic wave transmission line that efficiently distributes the necessary electromagnetic wave from the feeding waveguide 20 to the electromagnetic wave transmission line 10 that requires power supply according to the power usage status of each part in the building, and does not require power supply Since the distribution of electromagnetic waves to 10 can be reduced, it is possible to promote the improvement of the energy utilization efficiency of the system.
(B) Further, it is expected that leakage of electromagnetic waves and heat loss can be reduced by reducing unnecessary electromagnetic wave transmission, avoiding undesirable effects on the human body in the building 1 due to the leaked electromagnetic waves, and electromagnetic wave transmission path 10 due to heat loss. Measures against heat generation can be reduced.
(C) By including an adjusting mechanism for adjusting the electromagnetic wave distribution ratio to each electromagnetic wave transmission line 10 in the power distribution means 30, it is possible to easily change the electromagnetic wave distribution ratio manually or automatically after the building 1 is completed. In addition, it is possible to realize wireless power transmission with a high degree of freedom in a power feeding place while maintaining high energy utilization efficiency.
(D) In addition, it is possible to easily cope with changes in the power usage status associated with changes in the power usage route in the building 1 and changes in the arrangement and layout of facilities without impairing the energy utilization efficiency.
(E) By optimizing the distribution ratio of electromagnetic waves to each electromagnetic wave transmission line 10 according to the overall power usage in the building 1, the energy utilization efficiency of the entire system is optimized. I can also expect that.

図1は、建物1の床スラブ2の内部に形成したデッキプレート導波管(図12参照)を複数の電磁波伝送路10とした本発明の実施例を示す。図示例の無線電力伝送システムは、床スラブ2内に設けた複数の並列な電磁波伝送路10a、10b、10c……(デッキプレート導波管)と、デッキプレート導波管の底面(H面)側に各電磁波伝送路10a、10b、10c……と交差する向きに重ねて設けた給電導波管20と、後述する電力分配手段30a、30b、30c……とにより構成されている。以下、図示例を参照して本発明を説明するが、本発明はデッキプレート導波管を用いたシステムに限定されるものではなく、建物1の壁等の内部に並列に設けた複数の電磁波伝送路10を用いて本発明の無線電力伝送システムを構成することも可能である。また図示例では、既往のデッキプレートの寸法範囲で伝送性状が良好であり、マグネトロン等の発生装置が安価に入手できる等の理由から、2.45GHzを含む1〜10GHzのマイクロ波帯の電磁波を用いているが、本発明システムは様々な周波数の電磁波を用いた無線電力伝送に適用することができ、適用可能な電磁波の周波数にとくに制限はない。   FIG. 1 shows an embodiment of the present invention in which a deck plate waveguide (see FIG. 12) formed inside a floor slab 2 of a building 1 is used as a plurality of electromagnetic wave transmission paths 10. The illustrated wireless power transmission system includes a plurality of parallel electromagnetic wave transmission paths 10a, 10b, 10c (deck plate waveguide) provided in the floor slab 2 and a bottom surface (H surface) of the deck plate waveguide. It is composed of a power supply waveguide 20 provided on the side so as to overlap each electromagnetic wave transmission path 10a, 10b, 10c... And power distribution means 30a, 30b, 30c. Hereinafter, the present invention will be described with reference to the illustrated examples. However, the present invention is not limited to a system using a deck plate waveguide, and a plurality of electromagnetic waves provided in parallel inside a wall of the building 1 or the like. It is also possible to configure the wireless power transmission system of the present invention using the transmission line 10. In addition, in the illustrated example, electromagnetic waves in the 1-10 GHz microwave band including 2.45 GHz are used because the transmission characteristics are good within the existing deck plate size range, and generators such as magnetrons are available at low cost. However, the system of the present invention can be applied to wireless power transmission using electromagnetic waves of various frequencies, and there is no particular limitation on the frequency of applicable electromagnetic waves.

図示例のデッキプレート導波管は、上述したように床スラブ2のデッキプレート11の底面側に金属製の遮蔽板12を接合して形成したものである。デッキプレート11と遮蔽板12とは例えば所定間隔のスポット溶接やボルト接合等を用いて接合可能であるが、デッキプレート11と遮蔽板12との間に僅かな隙間が存在すると電磁波の伝送効率が低下する。表1は、厚さ1.2mmの鉄板に亜鉛メッキを施したデッキプレート11と鉄板製遮蔽板12とを、150mm間隔のスポット溶接で接合したデッキプレート導波管の試験体、150mm間隔でボルト接合した試験体、及び全長はんだ付けで接合した試験体に、それぞれ2.45GHzの電磁波を伝送させたときの反射損失及び挿入損失を測定した実験結果である。ここで図10(D)に示すように、反射損失とは電磁波導波路10の一端(Port1)の入射電力P1と反射電力P3とのデシベル比(=−10log10(P3/P1))であり、挿入損失とは電磁波導波路10の一端(Port1)の入射電力P1と他端(Port2)の出射電力P2とのデシベル比(=10log10(P2/P1))である。 The deck plate waveguide of the illustrated example is formed by joining a metal shielding plate 12 to the bottom surface side of the deck plate 11 of the floor slab 2 as described above. The deck plate 11 and the shielding plate 12 can be joined using, for example, spot welding or bolt joining at a predetermined interval. However, if there is a slight gap between the deck plate 11 and the shielding plate 12, the transmission efficiency of electromagnetic waves is improved. descend. Table 1 shows a deck plate waveguide specimen in which a deck plate 11 galvanized on a 1.2 mm thick steel plate and a steel shielding plate 12 are joined by spot welding at intervals of 150 mm, and bolted at intervals of 150 mm. 4 is a result of an experiment in which a reflection loss and an insertion loss were measured when an electromagnetic wave of 2.45 GHz was transmitted to each of the test body and the test body joined by full length soldering. Here, as shown in FIG. 10D, the reflection loss is a decibel ratio (= −10 log 10 (P3 / P1)) between the incident power P1 and the reflected power P3 at one end (Port1) of the electromagnetic wave waveguide 10. The insertion loss is a decibel ratio (= 10 log 10 (P2 / P1)) between the incident power P1 at one end (Port1) of the electromagnetic wave waveguide 10 and the output power P2 at the other end (Port2).

表1の実験結果は、スポット溶接及びボルト接合のデッキプレート導波管において、亜鉛製の導波管(WRJ-2)の2.45GHzにおける減衰定数の理論値(-0.02dB/m)よりも大きな電力損失が生じることを示す。反射減衰量を差し引くと導体損又は漏れによる電力損失であると考えられるため、各試験体の大電力(500W)伝送時における温度及び漏れ電力を測定する実験を行った。その結果、全長はんだ接合の場合はほとんど発熱が検出されなかったのに対し、スポット溶接及びボルト接合の場合は接合部以外の接触導通部において大きな接触抵抗が生じ、そこに電流が流れることで発熱が生じていることが分かった。また、ダイポールアンテナを用いて接合部外側の10cmの地点で垂直方向偏波を測定した結果、受信された漏れ電力は数十μW〜数mW程度であり、その最大値から見積もった入力電力に対する全漏れ電力の割合は0.1%程度であった。この実験結果から、スポット溶接及びボルト接合の場合の大きな挿入損失の支配的要因は、接合部以外の接触抵抗による熱損失であることが分かった。   The experimental results in Table 1 are larger than the theoretical value (-0.02 dB / m) of the attenuation constant at 2.45 GHz for a zinc-made waveguide (WRJ-2) in spot welded and bolted deck plate waveguides. Indicates that power loss occurs. Since subtracting the return loss is considered to be a power loss due to conductor loss or leakage, experiments were conducted to measure the temperature and leakage power of each test specimen during transmission of high power (500 W). As a result, almost no heat generation was detected in the case of full-length solder joints, but in the case of spot welding and bolt joints, a large contact resistance was generated in the contact conduction part other than the joint part, and heat was generated due to current flowing there. It was found that occurred. Moreover, as a result of measuring the vertical polarization at a point 10 cm outside the junction using a dipole antenna, the received leakage power is about several tens of μW to several mW, and the total input power estimated from the maximum value is The ratio of leakage power was about 0.1%. From this experimental result, it was found that the dominant factor of large insertion loss in the case of spot welding and bolt joining is heat loss due to contact resistance other than the joint.

デッキプレート導波管の良好な伝送効率を得るためには、デッキプレート11と遮蔽板12との全長に亘る電気的接触を保つことが有効である。また、デッキプレート導波管の発熱はコンクリート劣化という観点からも望ましくない。ただし、デッキプレート11と遮蔽板12とを全長はんだ付けで接合する作業は非常に手間がかかる。そこで全長に亘る電気的接触が得られる簡易な方法を検討した結果、図10(A)に示すように、デッキプレート11と遮蔽板12との間に金属網14を介在させて電気的に接合することにより、発熱を抑えて伝送効率を向上できることを見出した。本発明者の実験によれば、同図(B)に示すようにデッキプレート11と遮蔽板12との間に金属網14を挟んだ上で両者をスポット溶接又はボルト接合することにより、デッキプレート導波管の伝送効率を全長はんだ付けと同程度まで高めることができる。また、金属網14に代えて同図(C)のような金属繊維層14を介在させた場合も同様に高い伝送効率が得られる。すなわち、デッキプレート導波管を用いて本発明の無線電力伝送システムとする場合は、金属網14又は金属繊維層14を介してデッキプレート11と遮蔽板12とを接合することが望ましい。   In order to obtain good transmission efficiency of the deck plate waveguide, it is effective to maintain electrical contact over the entire length of the deck plate 11 and the shielding plate 12. Further, the heat generation of the deck plate waveguide is not desirable from the viewpoint of concrete deterioration. However, the work of joining the deck plate 11 and the shielding plate 12 by full length soldering is very laborious. Therefore, as a result of examining a simple method for obtaining electrical contact over the entire length, as shown in FIG. 10A, the metal plate 14 is interposed between the deck plate 11 and the shielding plate 12 to electrically connect them. As a result, it has been found that transmission efficiency can be improved while suppressing heat generation. According to the experiment by the present inventor, as shown in FIG. 5B, the deck plate 11 and the shielding plate 12 are sandwiched between the metal mesh 14 and the two are spot welded or bolted to form the deck plate. The transmission efficiency of the waveguide can be increased to the same level as full length soldering. Further, when a metal fiber layer 14 as shown in FIG. 5C is interposed instead of the metal net 14, high transmission efficiency can be obtained. That is, when the wireless power transmission system of the present invention is made using the deck plate waveguide, it is desirable to join the deck plate 11 and the shielding plate 12 via the metal net 14 or the metal fiber layer 14.

図示例の給電導波管20は、主導波管21と複数の分岐導波管22a、22b、22c……とを有する。主導波管21を各電磁波伝送路10a、10b、10c……と交差する向きに配置し、各分岐導波管22a、22b、22c……により主導波管21の管壁(E面)に穿たれた複数の窓25a、25b、25c……を対応する各電磁波伝送路10a、10b、10c……に電磁的に結合する。給電導波管20の電磁波は、主導波管21から分岐導波管22を経由して各電磁波伝送路10に分配される。分岐導波管22と電磁波伝送路10とは伝送効率の高い適当な方法、例えば図1(B)のように100W程度の電磁波を小さな反射で伝搬できる同軸線路34、又は同図(C)のように反射が小さく高出力の電磁波の伝搬が可能なエルボ導波管35や曲がり導波管、フレキシブル導波管等を用いて結合することができる。なお図示例の給電導波管20は主導波管21の片側のみに分岐導波管22を設けているが、分岐箇所が同一でなければ、図9(B)に示すように主導波管21の両側に分岐導波管22を設けた給電導波管20を用いることも可能である。   The illustrated feed waveguide 20 includes a main waveguide 21 and a plurality of branch waveguides 22a, 22b, 22c,. The main waveguide 21 is arranged in a direction intersecting with each electromagnetic wave transmission line 10a, 10b, 10c... And is drilled in the tube wall (E surface) of the main waveguide 21 by each branch waveguide 22a, 22b, 22c. The plurality of slanted windows 25a, 25b, 25c,... Are electromagnetically coupled to the corresponding electromagnetic wave transmission paths 10a, 10b, 10c,. The electromagnetic wave in the feeding waveguide 20 is distributed from the main waveguide 21 to each electromagnetic wave transmission line 10 via the branch waveguide 22. The branching waveguide 22 and the electromagnetic wave transmission line 10 are suitable methods with high transmission efficiency, for example, a coaxial line 34 that can propagate an electromagnetic wave of about 100 W with a small reflection as shown in FIG. As described above, the elbow waveguide 35, the bent waveguide, the flexible waveguide, and the like that are capable of propagating a high-output electromagnetic wave with small reflection can be coupled. In the illustrated example, the feeding waveguide 20 is provided with the branching waveguide 22 only on one side of the main waveguide 21. However, if the branching points are not the same, the main waveguide 21 as shown in FIG. It is also possible to use a feed waveguide 20 in which branch waveguides 22 are provided on both sides.

例えば給電導波管20をデッキプレート導波管と同一レベル(一層)で配置する方法は、一般に給電導波管20の各分岐導波管22の端面が方形であるのに対しデッキプレート導波管の各電磁波伝送路10の端面が異形(例えば台形)であるため、分岐導波管22と電磁波伝送路10との結合部に伝送損失が生じやすく、それを避けるために特殊形状の結合部材が必要となる。これに対し図示例のように給電導波管20をデッキプレート導波管と重ねて二層で配置することにより、同図(B)又は同図(C)のような伝送損失の少ない方法で分岐導波管22を電磁波伝送路10の底面に結合することが可能となる。これらの結合方法は、デッキプレート導波管の加工の手間が少ないというメリットもある。なお、同図(C)のエルボ導波管35を用いる場合は、分岐導波管22の終端を電磁波伝送路10内の反射板35aと対向させるため、分岐導波管22の幅を電磁波伝送路10の底面の開口幅と合わせる必要がある。   For example, in the method of arranging the feed waveguide 20 at the same level (one layer) as the deck plate waveguide, the end face of each branching waveguide 22 of the feed waveguide 20 is generally rectangular, whereas the deck plate waveguide is arranged. Since the end face of each electromagnetic wave transmission path 10 of the tube is irregular (for example, trapezoidal), transmission loss tends to occur at the coupling portion between the branching waveguide 22 and the electromagnetic wave transmission path 10, and a specially shaped coupling member is used to avoid it. Is required. On the other hand, as shown in the figure, the feeding waveguide 20 is overlapped with the deck plate waveguide and arranged in two layers, so that the transmission loss is reduced as shown in FIG. The branch waveguide 22 can be coupled to the bottom surface of the electromagnetic wave transmission path 10. These coupling methods also have an advantage that the work of processing the deck plate waveguide is less. In the case where the elbow waveguide 35 of FIG. 5C is used, the width of the branch waveguide 22 is set to the electromagnetic wave transmission in order to make the end of the branch waveguide 22 face the reflecting plate 35a in the electromagnetic wave transmission path 10. It is necessary to match the opening width of the bottom surface of the road 10.

図示例の電力分配手段30a、30b、30c……は、それぞれ主導波管21の分岐部の窓25と対向する内壁に管内側(窓側)へ突出させて設けた誘導性壁部材31a、31b、31c……と、分岐部の窓25の周縁に窓中央側へ突出させて設けた誘導性窓周縁部材32a、32b、32c……とを有する。図示例の誘導性窓周縁部材32は、分岐部の窓25の電磁波進入方向の両側(E面)にそれぞれ設けた一対の窓周縁部材32により構成されている。図2に示すように、各分岐部の誘導性壁部材31の突出量xと誘導性窓周縁部材32の突出量mとを適切に設計することにより、各分岐部において主導波管21から分岐導波管22へ分配される電磁波の割合を定めることができる。   In the illustrated example, the power distribution means 30a, 30b, 30c,... Are respectively inductive wall members 31a, 31b provided on the inner wall facing the window 25 at the branching portion of the main waveguide 21 so as to protrude toward the inside of the tube (window side). 31c... And inductive window peripheral members 32a, 32b, 32c,... Provided at the peripheral edge of the window 25 at the branching portion so as to protrude toward the center of the window. The inductive window peripheral member 32 in the illustrated example is constituted by a pair of window peripheral members 32 provided on both sides (E surface) of the branch window 25 in the electromagnetic wave entrance direction. As shown in FIG. 2, by appropriately designing the projection amount x of the inductive wall member 31 and the projection amount m of the inductive window peripheral member 32 at each branch portion, the branch from the main waveguide 21 at each branch portion. The proportion of electromagnetic waves distributed to the waveguide 22 can be determined.

図示例の電力分配手段30による電磁波の分配割合を確認するため、図4に示すような3分岐の給電導波管20(幅119mm)を試作して実験を行った。図示例の給電導波管20は主導波管21と分岐導波管22とを有し、分岐導波管22の中心軸線と交差する主導波管21の対向管壁に一対のアングル部材46aと挟み板46bとにより管壁を貫通するスリット(例えば幅5mm程度)を形成し、そのスリットに挿入した鉄板を主導波管21の管内側へ突出させて誘導性壁部材31とした(同図(B)及び(E)参照)。誘導性壁部材31と分岐導波管22の中心軸線とのオフセット(図2(B)のoffset)はスリットの位置により定まる。   In order to confirm the distribution ratio of electromagnetic waves by the power distribution means 30 of the illustrated example, a three-branch feed waveguide 20 (width 119 mm) as shown in FIG. The power supply waveguide 20 in the illustrated example has a main waveguide 21 and a branch waveguide 22, and a pair of angle members 46a and a pair of angle members 46a on the opposite tube wall of the main waveguide 21 intersecting the central axis of the branch waveguide 22. A slit (for example, about 5 mm in width) penetrating the tube wall is formed by the sandwiching plate 46b, and the iron plate inserted into the slit is projected to the inside of the main waveguide 21 to form an inductive wall member 31 (FIG. B) and (E)). The offset between the inductive wall member 31 and the central axis of the branching waveguide 22 (offset in FIG. 2B) is determined by the position of the slit.

図4において誘導性壁部材31は、その側面に配置したリニアスライド45でスライド可能に支持することにより、管内側への突出量xを調節可能とした。また、主導波管21の窓25の周囲に設けたフランジ28と分岐導波管22の端部に設けたフランジ27との間に、同図(F)に示すような貫通孔付き鉄板を挟み込んで誘導性窓周縁部材32とした。誘導性窓周縁部材32の突出量mは、異なる貫通孔付き鉄板に差し替えることにより調節可能とした。分岐導波管22の終端側にはN型変換コネクタ36を介して断面台形の電磁波伝送路10を結合した。図示例の電磁波伝送路10は、同図(D)に示すように、山部が1つのデッキプレート導波管を模擬したものである。   In FIG. 4, the inductive wall member 31 is slidably supported by a linear slide 45 disposed on the side surface thereof, so that the amount of protrusion x inside the tube can be adjusted. Further, an iron plate with a through-hole as shown in FIG. 5F is sandwiched between a flange 28 provided around the window 25 of the main waveguide 21 and a flange 27 provided at the end of the branch waveguide 22. Thus, the inductive window peripheral member 32 was obtained. The projecting amount m of the inductive window peripheral member 32 can be adjusted by replacing the iron plate with a different through hole. An electromagnetic wave transmission line 10 having a trapezoidal cross section is coupled to the end of the branching waveguide 22 via an N-type conversion connector 36. The electromagnetic wave transmission line 10 in the illustrated example simulates a deck plate waveguide having one peak portion as shown in FIG.

図4の給電導波管20の主導波管21の一端(Port1、図2参照)に2.45GHzの電磁波を入射し、誘導性壁部材31の突出力xを0〜55mmの範囲において5mm単位で変化させながら、主導波管21の他端(Port2)との結合度C2(Port1の入射電力P1とPort2の出射電力P2とのデシベル比C2=−10log(P2/P1))、及び電磁波伝送路10(分岐導波管22)の終端(Port3)との結合度C3(Port1の入射電力P1とPort3の出射電力P3とのデジベル比C3=−10log(P3/P1))をそれぞれ測定した。また、主導波管21の入射端(Port1)への反射度(Port1の入射電力P1と反射電力とのデジベル比)も併せて測定した。   An electromagnetic wave of 2.45 GHz is incident on one end (Port1, see FIG. 2) of the main waveguide 21 of the feed waveguide 20 of FIG. 4, and the projecting output x of the inductive wall member 31 is in units of 5 mm in the range of 0 to 55 mm. While changing, the degree of coupling C2 with the other end (Port2) of the main waveguide 21 (the decibel ratio C2 between the incident power P1 of Port1 and the output power P2 of Port2 = −10 log (P2 / P1)), and the electromagnetic wave transmission path The degree of coupling C3 (the decibel ratio C3 between the incident power P1 of Port1 and the output power P3 of Port3 = 10 log (P3 / P1)) with the terminal (Port3) of 10 (branch waveguide 22) was measured. Further, the reflectivity (the decibel ratio between the incident power P1 of Port 1 and the reflected power) to the incident end (Port 1) of the main waveguide 21 was also measured.

図3(A)は、誘導性壁部材31の突出力xに応じた結合度C2、C3及び反射度の実験結果をプロットしたグラフである。また同図に示すように、図4の電力分配手段30の理論的な解析結果(実線)と実験結果とを比較したところ、結合度C2、C3は実験結果と解析結果とがほぼ一致していた。また反射度も、若干合わない部分が存在するものの十分小さな値であるため、実験結果と解析結果とがほぼ一致すると考えて実用上の問題はない。実験と解析との整合性を確認したのち、その解析モデルを用いて他のパラメータでの解析から同図(B)及び(C)に示すような解析結果を得た。同図(B)の解析結果は、誘導性窓周縁部材32の突出量m=30mm、誘導性壁部材31と分岐導波管22の中心軸線とのオフセット=10mmとした場合に、誘導性壁部材31の突出量x(5〜55mm)に応じて主導波管21と分岐導波管22との結合度C3が-10dB〜-6dBとなることを示す。また同図(C)の解析結果は、突出量m=10mm、オフセット=35mmとした場合に、誘導性壁部材31の突出量x(5〜55mm)に応じて主導波管21と分岐導波管22との結合度C3が-6dB〜-3dBとなることを示す。   FIG. 3A is a graph plotting experimental results of the coupling degrees C2 and C3 and the reflectivity according to the projecting output x of the inductive wall member 31. FIG. As shown in the figure, when the theoretical analysis result (solid line) of the power distribution means 30 in FIG. 4 is compared with the experimental result, the degree of coupling C2 and C3 is almost the same as the experimental result. It was. Also, the reflectivity is a sufficiently small value although there is a portion that does not match a little, so there is no practical problem considering that the experimental result and the analysis result are almost the same. After confirming the consistency between the experiment and the analysis, an analysis result as shown in FIGS. 5B and 5C was obtained from the analysis with other parameters using the analysis model. The analysis result of FIG. 5B shows that the inductive wall is obtained when the projecting amount m of the inductive window peripheral member 32 is 30 mm and the offset between the inductive wall member 31 and the central axis of the branching waveguide 22 is 10 mm. It shows that the degree of coupling C3 between the main waveguide 21 and the branch waveguide 22 is -10 dB to -6 dB according to the protrusion amount x (5 to 55 mm) of the member 31. The analysis result of FIG. 6C shows that the main waveguide 21 and the branched waveguide are in accordance with the protrusion amount x (5 to 55 mm) of the inductive wall member 31 when the protrusion amount m = 10 mm and the offset = 35 mm. It shows that the degree of coupling C3 with the tube 22 is -6 dB to -3 dB.

図3(B)及び(C)の解析結果から、電力分配手段30の誘導性壁部材31の突出量x(及びオフセット)と誘導性窓周縁部材32の突出量mとにより、給電導波管20の主導波管21から分岐導波管22への電磁波の分配割合を定め得ることが分かる。とくに同図(C)は、突出量m=10mm、オフセット=35mm、突出量x=55mmとした場合に主導波管21と分岐導波管22との結合度C3が-1.25dBとなり、入射端への反射を抑制しながら主導波管21の電磁波を3/4程度の高い割合で分岐導波管22へ分配できることを示している。   From the analysis results of FIGS. 3 (B) and 3 (C), the feed waveguide is determined by the projection amount x (and offset) of the inductive wall member 31 of the power distribution means 30 and the projection amount m of the inductive window peripheral member 32. It can be seen that the proportion of electromagnetic waves distributed from the 20 main waveguides 21 to the branching waveguides 22 can be determined. In particular, FIG. 6C shows that when the projection amount m = 10 mm, the offset = 35 mm, and the projection amount x = 55 mm, the coupling degree C3 between the main waveguide 21 and the branching waveguide 22 is −1.25 dB, and the incident end. This shows that the electromagnetic wave in the main waveguide 21 can be distributed to the branching waveguide 22 at a high rate of about 3/4 while suppressing the reflection to.

すなわち本発明の無線電力伝送システムによれば、分岐部毎に誘導性壁部材31の突出量xと誘導性窓周縁部材32の突出量mとが適切に設定された電力分配手段30を用いることにより、主導波管21の電磁波を分岐部毎の突出量x、mに応じた割合で各分岐導波管22a、22b、22c……に分配し、給電導波管20の電力を電磁波伝送路10毎に定めた割合で各電磁波伝送路10に分配することができる。例えば図11のように各電磁波伝送路10の電力使用状況が相違する場合に、各電磁波伝送路10の電力使用量(又は電力使用予定量)に応じて電力分配手段30の突出量x及び突出量mを設定することにより、各電磁波伝送路10を介して建物1の各部に使用に応じて無線電力を分配できる。   That is, according to the wireless power transmission system of the present invention, the power distribution means 30 in which the protruding amount x of the inductive wall member 31 and the protruding amount m of the inductive window peripheral member 32 are appropriately set for each branch portion is used. To distribute the electromagnetic wave of the main waveguide 21 to the branch waveguides 22a, 22b, 22c,... At a ratio corresponding to the protruding amounts x and m of the branch parts, and to distribute the power of the feed waveguide 20 to the electromagnetic wave transmission path. It can be distributed to each electromagnetic wave transmission line 10 at a rate determined every 10. For example, when the power usage status of each electromagnetic wave transmission line 10 is different as shown in FIG. 11, the protrusion amount x and the protrusion of the power distribution means 30 according to the power usage amount (or the planned power usage amount) of each electromagnetic wave transmission line 10. By setting the amount m, wireless power can be distributed to each part of the building 1 through each electromagnetic wave transmission line 10 according to use.

具体的には、例えば図1の無線電力伝送システムにおいて、給電導波管20の入射電力密度と電磁波伝送路10aの電力使用状況とに応じて電力分配手段30aの突出量xa及び突出量maを設定し、電力分配手段30bへの入力電力密度(電力分配手段30aで分配されなかった電力密度)と電磁波伝送路10bの電力使用状況とに応じて電力分配手段30bの突出量xb及び突出量mbを設定し、更に電力分配手段30cへの入力電力密度(電力分配手段30bで分配されなかった電力密度)と電磁波伝送路10cの電力使用状況とに応じて電力分配手段30cの突出量xc及び突出量mcを設定する。必要に応じて分岐部毎に誘導性壁部材31のオフセットを適切に設定することにより、一層効率的な無線電力分配を実現することも期待できる。 Specifically, for example, in the wireless power transmission system of FIG. 1, the protrusion amount x a and the protrusion amount m of the power distribution means 30 a according to the incident power density of the feeding waveguide 20 and the power usage state of the electromagnetic wave transmission path 10 a. a is set, and the protruding amount xb of the power distribution means 30b according to the input power density to the power distribution means 30b (power density not distributed by the power distribution means 30a) and the power usage status of the electromagnetic wave transmission line 10b The protrusion amount mb is set, and the protrusion of the power distribution means 30c is further determined according to the input power density to the power distribution means 30c (power density not distributed by the power distribution means 30b) and the power usage status of the electromagnetic wave transmission line 10c. Set the amount x c and the protrusion amount m c . It can also be expected that more efficient wireless power distribution can be realized by appropriately setting the offset of the inductive wall member 31 for each branch portion as necessary.

なお図3に示すように、主導波管21から各分岐導波管22への電磁波の分配量(分岐部における結合度)は、誘導性壁部材31の突出量xだけでもある程度調整することができ、3/4程度の高い結合度を得ることもできる。従って図示例の無線電力伝送システムにおいて、主導波管21の分岐部の窓25a、25b、25c……の大きさを適当に設定することにより、電力分配手段30を誘導性壁部材31のみで構成することも可能である。また、無線電力伝送では使用状況によって各電磁波伝送路10a、10b、10c……に余剰電力が生じ得るので、各電磁波伝送路10a、10b、10c……の終端に余剰電力を回収する電力回収装置(例えばレクテナ付き電力回収装置)を設けることが望ましい。   As shown in FIG. 3, the distribution amount of electromagnetic waves from the main waveguide 21 to each branching waveguide 22 (coupling degree at the branching portion) can be adjusted to some extent only by the protruding amount x of the inductive wall member 31. It is also possible to obtain a degree of binding as high as 3/4. Therefore, in the wireless power transmission system of the illustrated example, the power distribution means 30 is configured by only the inductive wall member 31 by appropriately setting the sizes of the branch windows 25a, 25b, 25c... Of the main waveguide 21. It is also possible to do. Further, in wireless power transmission, surplus power can be generated in each electromagnetic wave transmission path 10a, 10b, 10c... Depending on the usage situation, so a power recovery device that collects surplus power at the end of each electromagnetic wave transmission path 10a, 10b, 10c. It is desirable to provide a power recovery device with a rectenna (for example).

好ましくは図4に示すように、電力分配手段30の各分岐部の誘導性壁部材31を突出方向に移動可動に支持すると共に、誘導性壁部材31の突出量xを個別に調節する突出量調節機構41を設ける。突出量調節機構41の一例を図5に示す。同図(A)の突出量調節機構41は、回転軸43bを介してモータ43cに接続されたカム43aを有し、誘導性壁部材31に当接するカム43aの回転角度により誘導性壁部材31の突出量xを調節する。また同図(B)の突出量調節機構41は、誘導性壁部材31に固定のナット部材44bとそのネジ孔に嵌合するボールネジ44aとボールネジ44aを回転させるモータ44cとを有し、ボールネジ44aの回転角度又は回転回数により誘導性壁部材31の突出量を調節する。ただし、突出量調節機構41は図示例に限定されるものではなく、従来の適当な機構、例えばベルトと回転モータとの組み合わせ、空気圧シリンダ、クランクと回転モータ、リニアモータ等と図4のリニアスライド45とを組み合わせて突出量調節機構41とすることができる。   Preferably, as shown in FIG. 4, the inductive wall member 31 of each branch portion of the power distribution means 30 is supported so as to be movable in the projecting direction, and the projecting amount for adjusting the projecting amount x of the inductive wall member 31 individually. An adjustment mechanism 41 is provided. An example of the protrusion amount adjusting mechanism 41 is shown in FIG. A protrusion amount adjusting mechanism 41 in FIG. 6A has a cam 43a connected to a motor 43c via a rotating shaft 43b, and the inductive wall member 31 is adjusted by the rotation angle of the cam 43a that contacts the inductive wall member 31. Adjust the amount of protrusion x. The protrusion adjustment mechanism 41 shown in FIG. 5B includes a nut member 44b fixed to the inductive wall member 31, a ball screw 44a fitted in the screw hole, and a motor 44c for rotating the ball screw 44a. The amount of protrusion of the inductive wall member 31 is adjusted by the rotation angle or the number of rotations. However, the protruding amount adjusting mechanism 41 is not limited to the illustrated example, and a conventional appropriate mechanism such as a combination of a belt and a rotary motor, a pneumatic cylinder, a crank and a rotary motor, a linear motor, etc., and the linear slide shown in FIG. 45 can be combined to form the protrusion amount adjusting mechanism 41.

また、図4の誘導性壁部材31と同様に、図1の窓25の両側に設けた一対の誘導性窓周縁部材32に対しても、それを突出方向に移動可能(スライド可能)に支持すると共に、その突出量mを個別に調節する突出量調節機構42を設けることができる。突出量調節機構41、42によって誘導性壁部材31の突出量x及び誘導性窓周縁部材32の突出量mを手動又は電動で適宜調節可能とすることにより、建物内の電力使用状況の変化に対応させて電磁波の分配量を適宜選択することが可能となり、各電磁波伝送路10a、10b、10c……の余剰電力を極力減らし、エネルギー効率の低下を抑制できる。また、建物1内の電力使用ルートの変化や設備配置替え、用途変更、レイアウト変更等に伴う電力使用状況の変化にも、エネルギー利用効率を損なうことなく容易に対応可能となる。   Further, like the inductive wall member 31 of FIG. 4, the pair of inductive window peripheral members 32 provided on both sides of the window 25 of FIG. 1 are supported so as to be movable (slidable) in the protruding direction. In addition, a protrusion amount adjusting mechanism 42 that individually adjusts the protrusion amount m can be provided. By adjusting the protrusion amount x of the inductive wall member 31 and the protrusion amount m of the inductive window peripheral member 32 by the protrusion amount adjusting mechanisms 41 and 42 as appropriate, it is possible to change the power usage situation in the building. Correspondingly, it becomes possible to appropriately select the distribution amount of the electromagnetic wave, and it is possible to reduce the surplus power of each electromagnetic wave transmission line 10a, 10b, 10c. In addition, it is possible to easily cope with a change in the power usage route in the building 1, a change in the equipment usage, a change in usage, a change in the layout of the power usage, and the like without changing the energy usage efficiency.

図9は、デッキプレート導波管の各電磁波伝送路10a、10b、10c……の電力使用量を個別に検出する電力計51a、51b、51c、51d……を設け、制御装置50により各電力計51a、51b、51c、51d……の出力信号に応じて電力分配手段30の各誘導性壁部材31の突出量調節機構41a、41b、41c……及び各誘導性窓周縁部材32の突出量調節機構42a、42b、42c……を個別に制御する無線電力伝送システムを示す。建物1内の局部的な電力使用状況への対応は、その部分に関係した電力分配手段30の分岐部の結合度の手動切り替え等によって対応可能である。しかし、建物1の全体又は電磁波発生装置52(図12参照)の供給領域全体のエネルギー利用効率の最適化を図るためには、その全体の電力使用状況に基づいて電磁波発生装置52の出力と電力分配手段30の多数の分岐部結合度とを集中制御することが必要となる。図9の無線電力伝送システムによれば、建物1の全体の電力使用状況に応じて、電磁波発生装置52の出力と電磁波伝送路10の多数の分岐部結合度とを総合的に調節することが可能であり、システム全体のエネルギー利用効率の最適化を図ることが期待できる。   FIG. 9 shows wattmeters 51a, 51b, 51c, 51d... For individually detecting the power consumption of the electromagnetic wave transmission paths 10a, 10b, 10c... Of the deck plate waveguide. ... Projection amount adjustment mechanisms 41 a, 41 b, 41 c... Of each inductive wall member 31 of the power distribution means 30 and projection amounts of each inductive window peripheral member 32 according to the output signals of the total 51 a, 51 b, 51 c, 51 d. A wireless power transmission system that individually controls the adjusting mechanisms 42a, 42b, 42c,. The local power usage situation in the building 1 can be dealt with by manually switching the coupling degree of the branch portion of the power distribution means 30 related to that portion. However, in order to optimize the energy utilization efficiency of the entire building 1 or the entire supply area of the electromagnetic wave generator 52 (see FIG. 12), the output and power of the electromagnetic wave generator 52 are determined based on the overall power usage. It is necessary to centrally control a large number of branch portion coupling degrees of the distribution means 30. According to the wireless power transmission system of FIG. 9, it is possible to comprehensively adjust the output of the electromagnetic wave generation device 52 and the degree of coupling of many branch portions of the electromagnetic wave transmission path 10 according to the overall power usage state of the building 1. It is possible to expect to optimize the energy utilization efficiency of the entire system.

こうして本発明の目的である「建物内の各部分にその部分の電力使用量に応じた電磁波を分配できる建物内無線電力システム」の提供を達成できる。   Thus, it is possible to achieve the “in-building wireless power system capable of distributing electromagnetic waves according to the amount of power used to each part of the building”, which is an object of the present invention.

図6は、デッキプレート導波管を用いた本発明の他の実施例を示す。この無線電力伝送システムも、床スラブ2内にデッキプレート導波管として設けた複数の並列な電磁波伝送路10と、デッキプレート導波管の底面(H面)側に交差させて設けた給電導波管20と、電力分配手段30a、30b、30c……とにより構成されている。給電導波管20は1本の主導波管21のみで構成されており、分岐導波管22は設けられていない。電力分配手段30a、30b、30c……は、各電磁波伝送路10a、10b、10c……と交差する給電導波管20の頂面上の交差位置に穿った給電孔38a、38b、38c……と、各電磁波伝送路10a、10b、10c……の給電孔対向位置に穿った受電孔39a、39b、39c……との組み合わせにより構成される。各給電孔38a、38b、38c……と対向する各受電孔39a、39b、39c……との重なり位置及び重なり形状を適切に設計することにより、給電導波管20から各電磁波伝送路10へ分配される電磁波の割合を定めることができる。   FIG. 6 shows another embodiment of the present invention using a deck plate waveguide. This wireless power transmission system is also provided with a plurality of parallel electromagnetic wave transmission paths 10 provided as deck plate waveguides in the floor slab 2 and a feed guide provided so as to cross the bottom (H surface) side of the deck plate waveguide. The wave tube 20 and power distribution means 30a, 30b, 30c... The feeding waveguide 20 is composed of only one main waveguide 21, and the branching waveguide 22 is not provided. The power distribution means 30a, 30b, 30c... Are feed holes 38a, 38b, 38c... Drilled at intersections on the top surface of the feed waveguide 20 that intersect the electromagnetic wave transmission lines 10a, 10b, 10c. And the power receiving holes 39a, 39b, 39c,..., Which are formed at the positions opposite to the power feeding holes of the electromagnetic wave transmission paths 10a, 10b, 10c,. By appropriately designing the overlapping position and shape of each power receiving hole 39a, 39b, 39c... Facing each power feeding hole 38a, 38b, 38c..., The power feeding waveguide 20 to each electromagnetic wave transmission path 10 The proportion of electromagnetic waves distributed can be determined.

例えば、対向する各給電孔38a、38b、38c……と各受電孔39a、39b、39c……とを同一形状とし、それらを相互に位置合わせして重ねることにより、給電導波管20と各電磁波伝送路10a、10b、10c……との交差位置に所定形状の電力分配窓を形成する。ただし、対応する給電孔38と受電孔39とは必ずしも同一形状でなくてもよい。例えば図7に受電孔39c'として示すように、各電磁波伝送路10a、10b、10c……上の給電導波管20と交差する部位に比較的大きな受電孔39a'、39b'、39c'……を穿ち、給電導波管20の頂面上の各受電孔と対向する所定位置に比較的小さな形状の給電孔38a、38b、38c……を穿ち、各給電孔38a、38b、38c……によって電力分配窓の位置及び形状を規定することができる。また逆に、給電導波管20上に比較的大きな給電孔38a'、38b'、38c'……(図示せず)を穿ち、各電磁波伝送路10a、10b、10c……の各給電孔と対向する所定位置に穿った比較的小さな形状の受電孔39a、39b、39c……により電力分配窓の位置及び形状を規定することも可能である。   For example, each feeding hole 38a, 38b, 38c,... Facing each other and each receiving hole 39a, 39b, 39c,. A power distribution window having a predetermined shape is formed at the intersection with the electromagnetic wave transmission lines 10a, 10b, 10c. However, the corresponding power supply hole 38 and power reception hole 39 do not necessarily have the same shape. For example, as shown in FIG. 7 as power receiving holes 39c ′, relatively large power receiving holes 39a ′, 39b ′, 39c ′... At portions intersecting with the power feeding waveguides 20 on the electromagnetic wave transmission paths 10a, 10b, 10c. ..., and relatively small shaped feed holes 38a, 38b, 38c... Are formed at predetermined positions on the top surface of the feed waveguide 20 facing the respective power receiving holes, and the feed holes 38a, 38b, 38c. Can define the position and shape of the power distribution window. Conversely, relatively large feed holes 38a ′, 38b ′, 38c ′ (not shown) are formed on the feed waveguide 20, and the feed holes of the electromagnetic wave transmission paths 10a, 10b, 10c,. It is also possible to define the position and shape of the power distribution window by the relatively small receiving holes 39a, 39b, 39c...

図7は、図6の無線電力伝送システムにおける電磁波の分配原理を示す。給電導波管20の入射端(Port1)から入射された電磁波は、一部分が給電孔38及び受電孔39を介して電磁波伝送路10に分配され、分配されなかった残りの電磁波は出射端(Port2)へ伝搬する。電磁波伝送路10に分配された電磁波は、一方の端(Port3)及び他方の端(Port4)へそれぞれ伝送される。同図(A)は、給電導波管20と電磁波伝送路10との交差部の中央位置に所定大きさVx×Vyで重ねた給電孔38及び受電孔39を示し、同図(B)は、給電導波管20と電磁波伝送路10との交差部のPort4側位置に所定大きさVx×Vyで重ねた給電孔38及び受電孔39を示す。   FIG. 7 shows the principle of electromagnetic wave distribution in the wireless power transmission system of FIG. A part of the electromagnetic wave incident from the incident end (Port 1) of the feeding waveguide 20 is distributed to the electromagnetic wave transmission path 10 through the feeding hole 38 and the power receiving hole 39, and the remaining electromagnetic wave that has not been distributed is the outgoing end (Port 2). ) To propagate. The electromagnetic waves distributed to the electromagnetic wave transmission path 10 are transmitted to one end (Port 3) and the other end (Port 4), respectively. FIG. 4A shows a power supply hole 38 and a power reception hole 39 which are overlapped with a predetermined size Vx × Vy at the center position of the intersection of the power supply waveguide 20 and the electromagnetic wave transmission line 10, and FIG. A power supply hole 38 and a power reception hole 39 that are overlapped at a predetermined size Vx × Vy at the position of the Port 4 side at the intersection of the power supply waveguide 20 and the electromagnetic wave transmission path 10 are shown.

図8(A)は、図7(A)のPort1に所定周端数の電磁波を入射した場合に、Port1と電磁波伝送路10のPort3との結合度C3(Port1の入射電力P1とPort3の出射電力P3とのデシベル比C3=−10log(P3/P1))、及びPort1と電磁波伝送路10のPort4との結合度C4(Port1の入射電力P1とPort4の出射電力P4とのデシベル比C4=−10log(P4/P1))を測定したグラフを示す。同グラフから、給電孔38及び受電孔39を交差部の中央位置で重ねた場合は、電磁波伝送路10のPort3とPort4とにほぼ同じ割合で電磁波が分配できることが分かる。また図8(B)は、図7(B)のPort1へ所定周端数の電磁波を入射した場合の結合度C3及び結合度C4を測定したグラフを示す。同グラフから、給電孔38及び受電孔39の位置をPort4側位置で重ねることにより、電磁波伝送路10のPort3とPort4とに異なる割合で電磁波を分配できることが分かる。また図8(C)は、図7(B)の給電孔38及び受電孔39の大きさVxの相違に応じた結合度C3及び結合度C4の変化を示す解析結果のグラフを示す。同グラフより、給電導波管20から電磁波伝送路10のPort3及びPort4への電磁波の分配割合は、給電孔38及び受電孔39の重なりの大きさに応じて定まることが分かる。   FIG. 8A shows the degree of coupling C3 between Port 1 and Port 3 of the electromagnetic wave transmission line 10 when the electromagnetic wave of a predetermined circumference is incident on Port 1 of FIG. 7A (the incident power P1 of Port 1 and the output power of Port 3). Decibel ratio C3 with P3 = −10 log (P3 / P1)) and degree of coupling C4 between Port1 and Port4 of the electromagnetic wave transmission line 10 (decibel ratio C4 between incident power P1 of Port1 and output power P4 of Port4 = −10 log) The graph which measured (P4 / P1)) is shown. From the graph, it can be seen that when the power feeding hole 38 and the power receiving hole 39 are overlapped at the center of the intersection, the electromagnetic waves can be distributed to Port 3 and Port 4 of the electromagnetic wave transmission path 10 at substantially the same rate. FIG. 8B shows a graph in which the degree of coupling C3 and the degree of coupling C4 are measured when an electromagnetic wave having a predetermined peripheral fraction is incident on Port 1 in FIG. 7B. From the graph, it can be seen that electromagnetic waves can be distributed to Port 3 and Port 4 of the electromagnetic wave transmission line 10 at different ratios by overlapping the positions of the power feeding hole 38 and the power receiving hole 39 at the Port 4 side position. FIG. 8C shows a graph of analysis results showing changes in the degree of coupling C3 and the degree of coupling C4 according to the difference in the size Vx of the power feeding hole 38 and the power receiving hole 39 in FIG. 7B. From this graph, it can be seen that the distribution ratio of the electromagnetic wave from the feeding waveguide 20 to the Port 3 and Port 4 of the electromagnetic wave transmission line 10 is determined according to the overlap size of the feeding hole 38 and the receiving hole 39.

すなわち図6の無線電力伝送システムにおいても、給電孔38a、38b、38c……及び受電孔39a、39b、39c……の各々の重なり位置と重なり形状とを適切に設定することにより、給電導波管20の電磁波を交差位置毎の給電孔38及び受電孔39の重なり位置及び形状に応じた割合で各電磁波伝送路10a、10b、10c……に分配することができる。従って、図1の無線電力伝送システムと同様に、図6の無線電力伝送システムにおいても、各電磁波伝送路10の電力使用量(又は電力使用予定量)に応じて各電磁波伝送路10に無線電力を適切に分配することが可能となる。また図6のシステムは構造が簡単であり、設置作業の容易化を図ることができる利点もある。   That is, also in the wireless power transmission system of FIG. 6, by appropriately setting the overlapping positions and overlapping shapes of the feeding holes 38a, 38b, 38c... And the receiving holes 39a, 39b, 39c. The electromagnetic waves in the tube 20 can be distributed to the electromagnetic wave transmission paths 10a, 10b, 10c,... At a ratio corresponding to the overlapping position and shape of the power supply hole 38 and the power receiving hole 39 at each crossing position. Therefore, similarly to the wireless power transmission system of FIG. 1, in the wireless power transmission system of FIG. 6, the wireless power is supplied to each electromagnetic wave transmission line 10 according to the power usage amount (or the scheduled power usage amount) of each electromagnetic wave transmission line 10. Can be distributed appropriately. Further, the system of FIG. 6 has a simple structure and has an advantage that the installation work can be facilitated.

従来から、例えば非特許文献3が開示するように、2つの導波管のH面を張り合わせて小さな孔で結合したベーテ孔方向性結合器が知られている。しかしベーテ孔方向性結合器は、所定向きに固定された2つの導波管の一方から他方への電磁波の分配割合を調節するものではなく、上述したように電磁波伝送路10のPort3とPort4とに異なる割合で電磁波を分配するものでもない。図6の無線電力伝送システムは、所定向きに固定された給電導波管20から各電磁波伝送路10にそれぞれ異なる所定割合(電力使用量に応じた割合)で電磁波を分配することができる点で優れており、とくにデッキプレート導波管を利用した建物内の無線電力伝送に適している。なお図6の電力伝送システムにおいても、使用状況によって各電磁波伝送路10a、10b、10c……に余剰電力が生じるので、各電磁波伝送路10a、10b、10c……の両端(Port3及びPort4)に余剰電力回収装置を設けることが望ましい。   2. Description of the Related Art Conventionally, as disclosed in Non-Patent Document 3, for example, a Bethe hole directional coupler is known in which the H surfaces of two waveguides are bonded together and coupled with a small hole. However, the Bethe hole directional coupler does not adjust the distribution ratio of the electromagnetic wave from one of the two waveguides fixed in a predetermined direction to the other. As described above, the port 3 and the port 4 of the electromagnetic wave transmission line 10 It does not distribute electromagnetic waves at different rates. The wireless power transmission system of FIG. 6 can distribute electromagnetic waves from the feeding waveguide 20 fixed in a predetermined direction to each electromagnetic wave transmission path 10 at different predetermined ratios (ratio according to the amount of power used). Excellent, especially suitable for wireless power transmission in buildings using deck plate waveguides. In the power transmission system of FIG. 6 too, surplus power is generated in each electromagnetic wave transmission line 10a, 10b, 10c... Depending on the usage situation, so that both ends (Port 3 and Port 4) of each electromagnetic wave transmission line 10a, 10b, 10c. It is desirable to provide a surplus power recovery device.

図6の無線電力伝送システムにおいて、給電導波管20の給電孔38a、38b、38c……と電磁波伝送路10a、10b、10c……の受電孔39a、39b、39c……との重なり位置及び形状により無線電力の適切な分配が難しい場合は、給電孔38又は受電孔39に所要誘電率の誘電体47を嵌め込むことにより、各給電孔38受電孔39の重なり位置及び形状と各誘電体47の誘電率とに応じた割合で給電導波管20の電磁波を各電磁波伝送路10a、10b、10c……に分配することも可能である。また、給電孔38又は受電孔39に誘電率が可変の誘電体47を嵌め込み、各誘電体47の誘電率を個別に調節する複数の誘電率調節手段(図示せず)を設けることにより、上述した突出量調節機構41、42の場合と同様に、建物内の電力使用状況の変化に対応して電磁波の分配量を容易に調整できるシステムとし、図9のように制御装置50と組み合わせることにより建物全体の電力使用状況に基づいて電力分配手段30の多数の分岐部結合度を集中制御することも可能となる。   In the wireless power transmission system of FIG. 6, the overlapping positions of the feeding holes 38a, 38b, 38c... Of the feeding waveguide 20 and the receiving holes 39a, 39b, 39c. When it is difficult to properly distribute wireless power due to the shape, the dielectric 47 having a required dielectric constant is fitted into the power supply hole 38 or the power reception hole 39 to thereby overlap the position and shape of each power supply hole 38 and the power reception hole 39 and each dielectric. It is also possible to distribute the electromagnetic wave of the feeding waveguide 20 to the electromagnetic wave transmission lines 10a, 10b, 10c,... At a ratio corresponding to the dielectric constant of 47. In addition, by inserting a dielectric 47 having a variable dielectric constant into the power supply hole 38 or the power receiving hole 39 and providing a plurality of dielectric constant adjusting means (not shown) for individually adjusting the dielectric constant of each dielectric 47, As in the case of the protruding amount adjustment mechanisms 41 and 42, the system can easily adjust the distribution amount of electromagnetic waves corresponding to changes in the power usage situation in the building, and combined with the control device 50 as shown in FIG. It is also possible to centrally control a number of branching unit coupling degrees of the power distribution means 30 based on the power usage status of the entire building.

例えば特許文献4は温度を変化させることにより所定範囲で誘電率が変化する誘電体を開示しており、非特許文献4が開示するように誘電率を制御できる人工誘電体も開発されている。このような温度変化に応じて誘電率が可変の誘電体47、又は誘電率の制御が可能な人工誘電体47を用いることにより、突出量調節機構41、42のように機械的な操作によるのではなく、誘電率調節手段による可動部のない温度制御等によりデッキプレート導波管の各電磁波伝送路10への電力分配量を能動的に制御することも可能である。例えば温度変化に応じて誘電率が可変の誘電体47を用いた場合は、誘電率調節手段を各給電孔38又は受電孔39の周縁に設けた電気ヒータ等とし、又はその電気ヒータをレクテナ付きとして必要な電力を本発明システムにより供給することも期待できる。   For example, Patent Document 4 discloses a dielectric whose dielectric constant changes within a predetermined range by changing the temperature, and an artificial dielectric that can control the dielectric constant has been developed as disclosed in Non-Patent Document 4. By using a dielectric 47 whose dielectric constant is variable in accordance with such a temperature change, or an artificial dielectric 47 capable of controlling the dielectric constant, it is possible to perform mechanical operation like the protrusion amount adjusting mechanisms 41 and 42. Instead, it is also possible to actively control the power distribution amount to each electromagnetic wave transmission line 10 of the deck plate waveguide by temperature control without moving parts by the dielectric constant adjusting means. For example, when a dielectric 47 having a variable dielectric constant according to temperature changes is used, the dielectric constant adjusting means is an electric heater provided at the periphery of each power supply hole 38 or power receiving hole 39, or the electric heater is provided with a rectenna. It can also be expected that the necessary power is supplied by the system of the present invention.

誘導性壁部材及び誘導性窓周縁部材を用いた本発明の無線電力伝送システムの一実施例の説明図である。It is explanatory drawing of one Example of the wireless power transmission system of this invention using the inductive wall member and the inductive window peripheral member. 図1の実施例の性能を確認する実験装置の図式的説明図である。It is a schematic explanatory drawing of the experimental apparatus which confirms the performance of the Example of FIG. 図1の実施例の性能確認実験の結果を示すグラフである。It is a graph which shows the result of the performance confirmation experiment of the Example of FIG. 図1の実施例の性能を確認する実験装置の説明図である。It is explanatory drawing of the experimental apparatus which confirms the performance of the Example of FIG. 図1の実施例における誘導性壁部材及び誘導性窓周縁部材の突出量を調節する機構の一例の説明図である。It is explanatory drawing of an example of the mechanism which adjusts the protrusion amount of the inductive wall member and the inductive window peripheral member in the Example of FIG. 給電導波管の給電孔及び各伝送路の受電孔の重なり位置及び形状を利用した本発明の無線電力伝送システムの実施例の説明図である。It is explanatory drawing of the Example of the wireless power transmission system of this invention using the overlapping position and shape of the feed hole of a feed waveguide and the receiving hole of each transmission path. 図6の実施例の性能を確認する実験の図式的説明図である。It is a schematic explanatory drawing of the experiment which confirms the performance of the Example of FIG. 図6の実施例の性能確認実験の結果を示すグラフである。It is a graph which shows the result of the performance confirmation experiment of the Example of FIG. 複数の誘導性壁部材及び誘導性窓周縁部材の突出量を個別に制御する制御装置を設けた本発明の無線電力伝送システムの実施例の説明図である。It is explanatory drawing of the Example of the wireless power transmission system of this invention provided with the control apparatus which controls separately the protrusion amount of a several inductive wall member and an inductive window peripheral member. 本発明の無線電力伝送システムで用いる電磁波伝送路の説明図である。It is explanatory drawing of the electromagnetic wave transmission line used with the wireless power transmission system of this invention. 無線電力伝送システムを設けた建物の床スラブの説明図である。It is explanatory drawing of the floor slab of the building which provided the wireless power transmission system. 無線電力伝送システムを設けた建物の説明図である。It is explanatory drawing of the building which provided the wireless power transmission system.

符号の説明Explanation of symbols

1…建物 2…床
3…天井 4…廊下
5…コンクリート 6…鉄骨梁
7…内装材 8…天井材
10…電磁波伝送路(デッキプレート導波管)
11…デッキプレート 12…遮蔽板
14…金属網 15…ボルト
17…フランジ 20…給電導波管
21…主導波管 22…分岐導波管
25…窓 26、27、28…フランジ
29…中継導波管 30…電力分配手段
31…誘導性壁部材 32…誘導性窓周縁部材
34…同軸線路 34a…エレメント
35…エルボ導波管 36…N型変換コネクタ
38…給電孔 39…受電孔
40…結合度調節機構
41…誘導性壁部材の突出量調節機構
42…誘導性窓周縁部材の突出量調節機構
43a…カム 43b…回転軸
43c…モータ 44a…ボールネジ
44b…ナット部材 44c…モータ
45…リニアスライド 47…誘電体
50…制御装置 51…電力計
52…電磁波発生装置 53…電力源
55…コンセントボックス 56…コンセント
57…電気機器 60…同軸プローブ
61…電線
DESCRIPTION OF SYMBOLS 1 ... Building 2 ... Floor 3 ... Ceiling 4 ... Corridor 5 ... Concrete 6 ... Steel beam 7 ... Interior material 8 ... Ceiling material
10 ... Electromagnetic wave transmission line (deck plate waveguide)
11… Deck plate 12… Shielding plate
14 ... Metal mesh 15 ... Bolt
17 ... Flange 20 ... Feeding waveguide
21 ... Main waveguide 22 ... Branch waveguide
25… Window 26, 27, 28… Flange
29 ... Relay waveguide 30 ... Power distribution means
31 ... Inductive wall member 32 ... Inductive window peripheral member
34 ... Coaxial line 34a ... Element
35 ... Elbow waveguide 36 ... N type conversion connector
38 ... Power supply hole 39 ... Power reception hole
40 ... Coupling degree adjustment mechanism
41 ... Projection adjustment mechanism of inductive wall member
42 ... Projection adjustment mechanism for inductive window edge member
43a ... Cam 43b ... Rotating shaft
43c… Motor 44a… Ball screw
44b ... Nut member 44c ... Motor
45… Linear slide 47… Dielectric
50 ... Control device 51 ... Watt meter
52… Electromagnetic wave generator 53… Power source
55 ... Outlet box 56 ... Outlet
57… Electrical equipment 60… Coaxial probe
61 ... Electric wire

Claims (11)

建物の床、天井又は壁の内部に並列に設けた複数の電磁波伝送路、前記各伝送路と交差する向きに重ねて設けた給電導波管、並びに前記給電導波管の電磁波を伝送路毎に定めた割合で各伝送路に分配する電力分配手段を備えてなる建物内無線電力伝送システム。 A plurality of electromagnetic wave transmission paths provided in parallel on the floor, ceiling or wall of the building, a feed waveguide provided in a direction intersecting with each transmission path, and an electromagnetic wave of the feed waveguide for each transmission path An in-building wireless power transmission system comprising power distribution means that distributes to each transmission path at a rate determined in (1). 請求項1のシステムにおいて、前記給電導波管に前記各伝送路と交差する向きに電磁波を送る主導波管とその主導波管の管壁に穿った複数の窓を各伝送路に電磁的に結合する複数の分岐導波管とを含め、前記電力分配手段を前記主導波管の各窓の対向内壁にそれぞれ管内側へ突出させて設けた誘導性壁部材とし、前記各誘導性壁部材の突出量に応じた割合で主導波管の電磁波を各分岐導波管に分配してなる建物内無線電力伝送システム。 2. The system according to claim 1, wherein a main waveguide that sends an electromagnetic wave to the feeding waveguide in a direction intersecting with each transmission path and a plurality of windows that are bored in a tube wall of the main waveguide are electromagnetically provided in each transmission path. A plurality of branching waveguides coupled to each other, and the power distribution means is an inductive wall member provided on the opposing inner wall of each window of the main waveguide so as to protrude inside the tube, and each of the inductive wall members An in-building wireless power transmission system that distributes the electromagnetic wave of the main waveguide to each branching waveguide at a proportion corresponding to the amount of protrusion. 請求項2のシステムにおいて、前記電力分配手段に前記主導波管の各窓の周縁にそれぞれ窓中央側へ突出させて設けた誘導性窓周縁部材を含め、前記各誘導性壁部材の突出量と各誘導性窓周縁部材の突出量とに応じた割合で主導波管の電磁波を各分岐導波管に分配してなる建物内無線電力伝送システム。 3. The system according to claim 2, wherein the power distribution means includes an inductive window peripheral member provided on the peripheral edge of each window of the main waveguide so as to protrude toward the center of the window. An in-building wireless power transmission system in which the electromagnetic wave of the main waveguide is distributed to each branching waveguide in a proportion corresponding to the protruding amount of each inductive window peripheral member. 請求項2又は3の何れかのシステムにおいて、前記電力分配手段に、前記分岐導波管の各々と対応する伝送路の各々とを電磁的に結合する同軸線路、エルボ導波管、曲がり導波管又はフレキシブル導波管を含めてなる建物内無線電力伝送システム。 4. The system according to claim 2, wherein a coaxial line, an elbow waveguide, and a curved waveguide for electromagnetically coupling each of the branching waveguides and each of the corresponding transmission lines to the power distribution means. An in-building wireless power transmission system including a tube or a flexible waveguide. 請求項2又は請求項2に従属する請求項4のシステムにおいて、前記電力分配手段に、前記各誘導性壁部材を突出方向に移動可動に支持し且つそれらの突出量を個別に調節する複数の突出量調節機構を含めてなる建物内無線電力伝送システム。 The system according to claim 2 or claim 2 dependent on claim 2 , wherein the power distribution means supports a plurality of inductive wall members so as to be movable in a projecting direction, and individually adjusts the projecting amounts thereof. In-building wireless power transmission system including protrusion adjustment mechanism. 請求項3又は請求項3に従属する請求項4のシステムにおいて、前記電力分配手段に、前記各誘導性壁部材及び各誘導性窓周縁部材を突出方向に移動可動に支持し且つそれらの突出量を個別に調節する複数の突出量調節機構を含めてなる建物内無線電力伝送システム。 5. The system according to claim 3, which is dependent on claim 3 or claim 3 , wherein the power distribution means supports the inductive wall members and the inductive window peripheral members so as to be movable in a projecting direction and their projecting amounts. A wireless power transmission system in a building including a plurality of protrusion amount adjusting mechanisms for individually adjusting the projection amount. 請求項1のシステムにおいて、前記電力分配手段を前記給電導波管上の各伝送路との交差位置にそれぞれ穿った給電孔と前記各伝送路上の給電孔対向位置に穿った受電孔との組み合わせとし、前記各給電孔と受電孔との重なり位置及び形状に応じた割合で給電導波管の電磁波を各伝送路に分配してなる建物内無線電力伝送システム。 2. The system according to claim 1, wherein said power distribution means is a combination of a feed hole drilled at each crossing position with each transmission path on said feed waveguide and a power receiving hole drilled at a position opposite said feed hole on each transmission path. And an in-building wireless power transmission system in which the electromagnetic waves of the feeding waveguide are distributed to the respective transmission paths at a proportion corresponding to the overlapping position and shape of each of the feeding holes and the receiving holes. 請求項のシステムにおいて、前記電力分配手段に前記給電孔又は受電孔に嵌め込んだ所要誘電率の誘電体を含め、前記各給電孔及び受電孔の重なり位置及び形状と各誘電体の誘電率とに応じた割合で給電導波管の電磁波を各伝送路に分配してなる建物内無線電力伝送システム。 8. The system according to claim 7 , wherein the power distribution means includes a dielectric having a required dielectric constant fitted in the power feeding hole or the power receiving hole, and an overlapping position and shape of each power feeding hole and the power receiving hole, and a dielectric constant of each dielectric. A wireless power transmission system in a building that distributes electromagnetic waves in a power feeding waveguide to each transmission path at a rate corresponding to the above. 請求項のシステムにおいて、前記誘電体を誘電率が可変のものとし、前記電力分配手段に前記各誘電体の誘電率を個別に調節する複数の誘電率調節手段を含めてなる建物内無線電力伝送システム。 9. The system according to claim 8 , wherein the dielectric has a variable dielectric constant, and the power distribution means includes a plurality of dielectric constant adjusting means for individually adjusting the dielectric constant of each dielectric. Transmission system. 請求項5、6又は9のシステムにおいて、前記各伝送路の電力使用量を個別に検出する複数の電力計、及び前記各電力計の出力信号に応じて前記突出量調節機構又は誘電率調節手段を個別に制御する制御装置を設けてなる建物内無線電力伝送システム。 10. The system according to claim 5, 6 or 9 , wherein a plurality of wattmeters individually detecting the power usage amount of each transmission line, and the protrusion amount adjusting mechanism or the dielectric constant adjusting means according to an output signal of each wattmeter. A wireless power transmission system in a building provided with a control device for individually controlling the vehicle. 請求項1から10の何れかのシステムにおいて、前記複数の電磁波伝送路を、建物の床スラブに埋設されたデッキプレートとそのデッキプレートの底面側に金属網又は金属繊維層を介して接合した遮蔽板とにより形成してなる建物内無線電力伝送システム。 The system according to any one of claims 1 to 10 , wherein the plurality of electromagnetic wave transmission paths are joined to a deck plate embedded in a floor slab of a building and a bottom surface side of the deck plate via a metal net or a metal fiber layer. In-building wireless power transmission system formed by boards.
JP2006058966A 2006-03-06 2006-03-06 In-building wireless power transmission system Active JP4278061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006058966A JP4278061B2 (en) 2006-03-06 2006-03-06 In-building wireless power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006058966A JP4278061B2 (en) 2006-03-06 2006-03-06 In-building wireless power transmission system

Publications (2)

Publication Number Publication Date
JP2007244015A JP2007244015A (en) 2007-09-20
JP4278061B2 true JP4278061B2 (en) 2009-06-10

Family

ID=38588989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006058966A Active JP4278061B2 (en) 2006-03-06 2006-03-06 In-building wireless power transmission system

Country Status (1)

Country Link
JP (1) JP4278061B2 (en)

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094745A (en) * 2007-10-07 2009-04-30 Kajima Corp Variable distribution method and device of radio power
US8729734B2 (en) * 2007-11-16 2014-05-20 Qualcomm Incorporated Wireless power bridge
EP2267833A4 (en) 2008-03-25 2012-12-05 Mitsubishi Electric Corp Waveguide power distributor and method for manufacturing the same
KR101434237B1 (en) * 2008-03-28 2014-08-27 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. Flexible optical interconnect
KR101015055B1 (en) * 2008-08-01 2011-02-16 한국전기연구원 A wireless power transmission apparatus using surface wave and method thereof
JP2010177895A (en) * 2009-01-28 2010-08-12 Kyocera Corp Radio signal transmission system in waveguide, and radio signal transmission device in waveguide
KR101457191B1 (en) * 2012-08-24 2014-10-31 서울대학교산학협력단 Battery Pack, Battery Apparatus and Cell Balancing Method Therefor
US9910144B2 (en) 2013-03-07 2018-03-06 Cpg Technologies, Llc Excitation and use of guided surface wave modes on lossy media
US9912031B2 (en) 2013-03-07 2018-03-06 Cpg Technologies, Llc Excitation and use of guided surface wave modes on lossy media
JP2016025685A (en) * 2014-07-17 2016-02-08 株式会社松浦電弘社 Power supply system, power supply device, power reception device, and power supply method
US9941566B2 (en) 2014-09-10 2018-04-10 Cpg Technologies, Llc Excitation and use of guided surface wave modes on lossy media
US9887556B2 (en) 2014-09-11 2018-02-06 Cpg Technologies, Llc Chemically enhanced isolated capacitance
US10498393B2 (en) 2014-09-11 2019-12-03 Cpg Technologies, Llc Guided surface wave powered sensing devices
US10001553B2 (en) 2014-09-11 2018-06-19 Cpg Technologies, Llc Geolocation with guided surface waves
US10175203B2 (en) 2014-09-11 2019-01-08 Cpg Technologies, Llc Subsurface sensing using guided surface wave modes on lossy media
US10084223B2 (en) 2014-09-11 2018-09-25 Cpg Technologies, Llc Modulated guided surface waves
US10101444B2 (en) 2014-09-11 2018-10-16 Cpg Technologies, Llc Remote surface sensing using guided surface wave modes on lossy media
US9887587B2 (en) 2014-09-11 2018-02-06 Cpg Technologies, Llc Variable frequency receivers for guided surface wave transmissions
US9887557B2 (en) 2014-09-11 2018-02-06 Cpg Technologies, Llc Hierarchical power distribution
US9960470B2 (en) 2014-09-11 2018-05-01 Cpg Technologies, Llc Site preparation for guided surface wave transmission in a lossy media
US9859707B2 (en) 2014-09-11 2018-01-02 Cpg Technologies, Llc Simultaneous multifrequency receive circuits
US10079573B2 (en) 2014-09-11 2018-09-18 Cpg Technologies, Llc Embedding data on a power signal
US10074993B2 (en) 2014-09-11 2018-09-11 Cpg Technologies, Llc Simultaneous transmission and reception of guided surface waves
US10033198B2 (en) 2014-09-11 2018-07-24 Cpg Technologies, Llc Frequency division multiplexing for wireless power providers
US10027116B2 (en) 2014-09-11 2018-07-17 Cpg Technologies, Llc Adaptation of polyphase waveguide probes
US9893402B2 (en) 2014-09-11 2018-02-13 Cpg Technologies, Llc Superposition of guided surface waves on lossy media
US9882397B2 (en) 2014-09-11 2018-01-30 Cpg Technologies, Llc Guided surface wave transmission of multiple frequencies in a lossy media
US10193595B2 (en) 2015-06-02 2019-01-29 Cpg Technologies, Llc Excitation and use of guided surface waves
US9923385B2 (en) 2015-06-02 2018-03-20 Cpg Technologies, Llc Excitation and use of guided surface waves
US9887585B2 (en) 2015-09-08 2018-02-06 Cpg Technologies, Llc Changing guided surface wave transmissions to follow load conditions
US10122218B2 (en) 2015-09-08 2018-11-06 Cpg Technologies, Llc Long distance transmission of offshore power
US9857402B2 (en) 2015-09-08 2018-01-02 CPG Technologies, L.L.C. Measuring and reporting power received from guided surface waves
US9921256B2 (en) 2015-09-08 2018-03-20 Cpg Technologies, Llc Field strength monitoring for optimal performance
US9997040B2 (en) 2015-09-08 2018-06-12 Cpg Technologies, Llc Global emergency and disaster transmission
US10063095B2 (en) 2015-09-09 2018-08-28 CPG Technologies, Inc. Deterring theft in wireless power systems
US9885742B2 (en) 2015-09-09 2018-02-06 Cpg Technologies, Llc Detecting unauthorized consumption of electrical energy
US9496921B1 (en) 2015-09-09 2016-11-15 Cpg Technologies Hybrid guided surface wave communication
US10062944B2 (en) 2015-09-09 2018-08-28 CPG Technologies, Inc. Guided surface waveguide probes
US9927477B1 (en) 2015-09-09 2018-03-27 Cpg Technologies, Llc Object identification system and method
CN108352725A (en) 2015-09-09 2018-07-31 Cpg技术有限责任公司 Guide surface waveguide photodetector
US10205326B2 (en) 2015-09-09 2019-02-12 Cpg Technologies, Llc Adaptation of energy consumption node for guided surface wave reception
US9916485B1 (en) 2015-09-09 2018-03-13 Cpg Technologies, Llc Method of managing objects using an electromagnetic guided surface waves over a terrestrial medium
US10031208B2 (en) 2015-09-09 2018-07-24 Cpg Technologies, Llc Object identification system and method
WO2017044269A1 (en) 2015-09-09 2017-03-16 Cpg Technologies, Llc. Power internal medical devices with guided surface waves
US9882436B2 (en) 2015-09-09 2018-01-30 Cpg Technologies, Llc Return coupled wireless power transmission
JP2018534897A (en) 2015-09-09 2018-11-22 シーピージー テクノロジーズ、 エルエルシーCpg Technologies, Llc Load limiting in inductive surface wave power supply systems.
US10027131B2 (en) 2015-09-09 2018-07-17 CPG Technologies, Inc. Classification of transmission
US10033197B2 (en) 2015-09-09 2018-07-24 Cpg Technologies, Llc Object identification system and method
US9973037B1 (en) 2015-09-09 2018-05-15 Cpg Technologies, Llc Object identification system and method
US9887558B2 (en) 2015-09-09 2018-02-06 Cpg Technologies, Llc Wired and wireless power distribution coexistence
US10324163B2 (en) 2015-09-10 2019-06-18 Cpg Technologies, Llc Geolocation using guided surface waves
US10408915B2 (en) 2015-09-10 2019-09-10 Cpg Technologies, Llc Geolocation using guided surface waves
US10312747B2 (en) 2015-09-10 2019-06-04 Cpg Technologies, Llc Authentication to enable/disable guided surface wave receive equipment
US10559893B1 (en) 2015-09-10 2020-02-11 Cpg Technologies, Llc Pulse protection circuits to deter theft
BR112018004919A2 (en) 2015-09-10 2019-05-14 Cpg Technologies, Llc apparatus and method
US10498006B2 (en) 2015-09-10 2019-12-03 Cpg Technologies, Llc Guided surface wave transmissions that illuminate defined regions
EP3341748A2 (en) 2015-09-10 2018-07-04 CPG Technologies, LLC Geolocation using guided surface waves
US10193229B2 (en) 2015-09-10 2019-01-29 Cpg Technologies, Llc Magnetic coils having cores with high magnetic permeability
EA201890689A1 (en) 2015-09-10 2018-10-31 Сипиджи Текнолоджиз, Элэлси. MOBILE PROBES OF DIRECTED SURFACE WAVEGUIDE AND RECEIVERS
US10408916B2 (en) 2015-09-10 2019-09-10 Cpg Technologies, Llc Geolocation using guided surface waves
US10103452B2 (en) 2015-09-10 2018-10-16 Cpg Technologies, Llc Hybrid phased array transmission
US10396566B2 (en) 2015-09-10 2019-08-27 Cpg Technologies, Llc Geolocation using guided surface waves
EA201890711A1 (en) 2015-09-11 2018-09-28 Сипиджи Текнолоджиз, Элэлси. GLOBAL MULTIPLICATION OF ELECTRICAL POWER
KR20180051604A (en) 2015-09-11 2018-05-16 씨피지 테크놀로지스, 엘엘씨. Enhanced guided surface waveguide probes
US10559867B2 (en) 2017-03-07 2020-02-11 Cpg Technologies, Llc Minimizing atmospheric discharge within a guided surface waveguide probe
US10559866B2 (en) 2017-03-07 2020-02-11 Cpg Technologies, Inc Measuring operational parameters at the guided surface waveguide probe
US10560147B1 (en) 2017-03-07 2020-02-11 Cpg Technologies, Llc Guided surface waveguide probe control system
US20200190192A1 (en) 2017-03-07 2020-06-18 Sutro Biopharma, Inc. Pd-1/tim-3 bi-specific antibodies, compositions thereof, and methods of making and using the same
US10630111B2 (en) 2017-03-07 2020-04-21 Cpg Technologies, Llc Adjustment of guided surface waveguide probe operation
US10581492B1 (en) 2017-03-07 2020-03-03 Cpg Technologies, Llc Heat management around a phase delay coil in a probe
JP2021153369A (en) * 2020-03-24 2021-09-30 株式会社Lixil Wireless power feeding system and precast panel
JP7411485B2 (en) * 2020-04-02 2024-01-11 アズビル株式会社 Sensor system and electromagnetic wave irradiation device

Also Published As

Publication number Publication date
JP2007244015A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
JP4278061B2 (en) In-building wireless power transmission system
KR101130774B1 (en) Leaky cable
EP3347942A1 (en) Hybrid phased array transmission
EP3192120B1 (en) Modulated guided surface waves
US9923385B2 (en) Excitation and use of guided surface waves
WO2017044280A1 (en) Guided surface waveguide probes
WO2017044289A1 (en) Flexible network topology and bidirectional power flow
CA3016173A1 (en) Guided surface waveguide probe structures
US20180262051A1 (en) Guided surface waveguide probe superstructure
US20180138720A1 (en) Wired and wireless power distribution coexistence
US20180259592A1 (en) Support structure for a guided surface waveguide probe
US20180261902A1 (en) Measuring operational parameters at the guided surface waveguide probe
US20180259590A1 (en) Anchoring a guided surface waveguide probe
KR20220072523A (en) Air-conditioner
US10447342B1 (en) Arrangements for coupling the primary coil to the secondary coil
US20180262054A1 (en) Charge terminal design for guided surface waveguide probe
Kumar et al. Design investigation of leaky coaxial cable as coupler for active phased array calibration
US20180261904A1 (en) Guided surface waveguide probe with insulating material in support platform near coil(s)
US20180259399A1 (en) System and method for measurement of temperature on a guided surface waveguide probe
KR100933855B1 (en) Feeder Antenna of Air Conditioning Duct
US10559867B2 (en) Minimizing atmospheric discharge within a guided surface waveguide probe
Pu et al. Integrative modeling of wireless RF links for train-to-wayside communication in railway tunnel
OA18731A (en) Return coupled wireless power transmission
JP2009094745A (en) Variable distribution method and device of radio power
OA18783A (en) Hybrid phased array transmission.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090304

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4278061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150319

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350