JP4275819B2 - Non-nucleophilic acid salt of demethyl laclopride and process for producing [C-11] raclopride using the same - Google Patents

Non-nucleophilic acid salt of demethyl laclopride and process for producing [C-11] raclopride using the same Download PDF

Info

Publication number
JP4275819B2
JP4275819B2 JP26407599A JP26407599A JP4275819B2 JP 4275819 B2 JP4275819 B2 JP 4275819B2 JP 26407599 A JP26407599 A JP 26407599A JP 26407599 A JP26407599 A JP 26407599A JP 4275819 B2 JP4275819 B2 JP 4275819B2
Authority
JP
Japan
Prior art keywords
demethyl
laclopride
methyl
raclopride
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26407599A
Other languages
Japanese (ja)
Other versions
JP2001089445A (en
Inventor
義徳 三宅
良雄 石田
浩 島津
直人 橋本
Original Assignee
飯田 秀博
国立循環器病センター総長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 飯田 秀博, 国立循環器病センター総長 filed Critical 飯田 秀博
Priority to JP26407599A priority Critical patent/JP4275819B2/en
Publication of JP2001089445A publication Critical patent/JP2001089445A/en
Application granted granted Critical
Publication of JP4275819B2 publication Critical patent/JP4275819B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pyrrole Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はポジトロン放射断層法(PET:PositronEmissionTomography)において有用な診断薬の新規製造法、および、そのための中間体(前駆体)の新規な塩に関する。
【0002】
さらに詳しくは、本発明は、PETによる中枢神経系などのドーパミンD2受容体の画像診断に有用なポジトロン放射性炭素−11標識薬剤の一つである[C−11]ラクロプライドを安定して得ることを可能にする該標識薬剤合成のための新規な方法およびそのための新規な中間体を提供するものである。
【0003】
【従来の技術】
PETは、生体(患者、動植物)をそのままの状態で、非侵襲的に種々の生体機能を測定できる先端核医学技術であり、近年、腫瘍の検出や治療効果の判定、中枢神経系や心臓、腎臓などの循環系の傷害の診断や治療法の適用性判定、治療効果判定などに普及しつつあるほか、新しい治療法や新薬の研究手段としてもその有用性が認められてきている。ところで、PETで診断、測定を行なうには、それぞれの診断、測定に適したポジトロン放射性同位元素で標識された標識薬剤が必要となる。しかるにこれらのポジトロン放射性同位元素で現在PETにおいて汎用されている核種は、いずれも超短半減期である(例えば炭素−11では半減期が約20分、窒素−13では約10分、酸素−15では約2分であり、最も半減期の長いフッ素−18でも約110分である)。したがって、それらのポジトロン放射性標識薬剤は、通常PET診断の行われる施設に近接した場所で製造されねばならず、その上、放射性であるため、及び所定の時間内に製造されることを保証するため、遠隔自動化合成装置により製造される。そのため、これらの合成においては、目的物を確実に得ることが必須の条件となり、予定した量の標識化合物が安定して得られることが極めて重要となる。
【0004】
ラクロプライド、((S)-(−)- N-[ (1-エチル-2-ピロリジニル)メチル]-(3,5-ジクロロ-2-ヒドロキシ-6-メトキシ)ベンズアミド)は、抗精神病薬として有用で、中枢神経系において内因性の神経伝達物質の一であるドーパミンの受容体であるドーパミンD2受容体に高くかつ選択的な親和性を有し、生体内でこの受容体に結合することにより、精神安定に働く薬剤である。その炭素―11標識体である[C−11]ラクロプライドは、PETにより生体内のドーパミンD2受容体の分布および分布量を判定することにより精神疾患の診断、治療効果の判定、また、抗精神病薬や各種治療処理の効果判定、予後の予測等に最も有用な放射性リガンドとして大きな需要があり、幾多の検討が為されてきた。それにもかかわらず、[C−11]ラクロプライドは従来安定して得ることが困難な薬剤とされ、その製造法の確立が望まれていた。
【0005】
【発明が解決しようとする課題】
従来[C−11]ラクロプライドは、その前駆体であるデメチルラクロプライドの臭化水素酸塩をジメチルスルホキシド(DMSO)溶媒中過剰量の苛性アルカリ水溶液の存在下、[C−11]よう化メチルにより約80℃で加熱反応させるのが最良の製法とされてきたが、反応の再現性に乏しいことが欠点であった。
【0006】
[C−11]ラクロプライドのより確実な製造法を目指して種々の検討が行なわれたが、その一つとして、ノーグレン,K.ホールディン,C.及びルントクヴィスト,C.((Nagren,K.,Halldin,C.,Lundkvist,C.,)らは、第11回放射性医薬品化学国際シンポジウム(バンクーバー,B.C.カナダ,1995年8月13日〜17日(発表の抄録はジャーナル・オブ・ラベルド・コンパウンズ・アンド・ラジオファーマシューティカルズ,37巻,103〜105ページ,1995年(JournalofLabelledCompoundsandRadiopharmaceuticals,37,103−105,1995)にある。)において、デメチルラクロプライド(彼らはノルラクロプライドと呼んでいる)を[C−11]メチルトリフルオロメタンスルホネート([C−11]メチルトリフレート)により[C−11]標識メチル化して[C−11]ラクロプライドを得る方法について報告している。それによれば、デメチルラクロプライドの臭化水素酸塩を用い、これに塩基として1.5当量の水酸化ナトリウム水溶液を加えて反応させた場合、主生成物は揮発性物質であり、メチルトリフレートがハロゲン塩類と反応し得るとの報告(ジュヴェット,D.M.及びチャクラボルティー,P.K.,ジャーナル・オブ・ラベルド・コンパウンズ・アンド・ラジオファーマシューティカルズ,35巻,97ページ,1994年(Jewett,D.M.andChakraborty,P.K.,JournalofLabelledCompoundsandRadiopharmaceuticals,35,97,1994)があることから、恐らく[C−11]メチルブロミドが生成したものと推定している。彼らは同時に、デメチルラクロプライドの遊離塩基を[C−11]メチルトリフレートと反応させた場合には、そこそこの収率(約25%、ただし、まだ反応条件を検討し尽くした結果ではないとことわっているが)で目的の[C−11]ラクロプライドを得たと発表しているが、その後、正式の報告は出版されていない。
【0007】
本発明者らはノーグレン,K.らの発表した方法を追試し、彼らの結果を確認した。すなわち、原料としてデメチルラクロプライド臭化水素酸塩を用いた場合、当モル量から過剰量にいたる水性アルカリ溶液の存在下に、当モルのメチルトリフレートを加えてもラクロプライドはほとんど生成しなかった。しかし、当モルより過剰のメチルトリフレートを加えた場合には目的物が得られてきた。そこで、原料としてデメチルラクロプライド臭化水素酸塩から塩交換により調製したデメチルラクロプライド塩酸塩を用いたところ、水性アルカリ存在下に当モルのメチルトリフレートを反応させた場合、反応はデメチルラクロプライド臭化水素酸塩の場合よりもやや目的物を得る方向に進行したが、十分に反応を進行させるためにはやはり2モル以上のメチルトリフレートを必要とした。しかるに、炭素−11標識化合物の製造に当って利用できる[C−11]メチルトリフレートの絶対量はナノモル程度の微量であるため、原料デメチルラクロプライド臭化水素酸塩あるいは同塩酸塩の使用量に対し過剰量の[C−11]メチルトリフレートを反応させることは実際上不可能であり、また、たとえ可能であったとしても、原料と当モルの[C−11]メチルトリフレートが目的とする反応以外で消費されてしまうことは合理的でない。
【0008】
本発明者らはこの問題点を解決すべく種々検討した結果、デメチルラクロプライドの非求核性酸塩を用いることにより極微量の[C−11]メチルトリフレートをデメチルラクロプライドとの反応に導くことができることを見出し、この知見を基にさらに詳細に検討した結果、本発明を完成した。
【0009】
【課題を解決するための手段】
すなわち本発明は、デメチルラクロプライドの非求核性酸塩、及びこれを水性アルカリの存在下に[C−11]メチルトリフレートなどの[C−11]メチルパーフルオロアルカンスルホネートにより[C−11]メチル化することによるPET用重要ポジトロン放射性標識薬剤である[C−11]ラクロプライドを安定的に製造する方法に関する。
【0010】
本発明の方法においては、原料(前駆体)として式(1)
【0011】
【化1】

Figure 0004275819
【0012】
で表わされるデメチルラクロプライドの式(2)
【0013】
【化2】
Figure 0004275819
【0014】
(式中、nは1−3の整数を、Xは(非求核性)有機酸又は無機酸からプロトンを取り除いた残基を表わす)
で表わされる非求核性酸の塩、式(3)
【0015】
【化3】
Figure 0004275819
(式中、n,mは1−3の整数を、Xは(非求核性)有機酸又は無機酸から一部あるいは全てのプロトンを取り除いた残基を表わす)
が使用される。式(2)で表わされる非求核性酸とは、その共役塩基(多塩基酸の場合にはプロトンの解離段階により複数の共役塩基分子が有り得る)が求核性を示さないような酸を言うが、該共役塩基はいかなる条件下でも全く求核性を有さないということではなく、下記に述べるように、[C−11]メチル標識反応に用いられる含水溶媒中あるいはこれにさらにアルカリが添加された条件下にメチルパーフルオロアルカンスルホネートに対し、パーフルオロアルカンスルホネートイオンと同等あるいはより低い求核性を示すものであればよい。
【0016】
このような非求核性酸としては、例えばパーフルオロアルカンスルホン酸類(例:トリフルオロメタンスルホン酸、ノナフルオロブタンスルホン酸など)、アルカンスルホン酸類(例:メタンスルホン酸、エタンスルホン酸など)、無機強酸類(例:硫酸、フッ化水素酸、りん酸など)、芳香族スルホン酸類(例:p−トルエンスルホン酸、p−クロロベンゼンスルホン酸、p−フルオロベンゼンスルホン酸、ナフタレンスルホン酸など)、トリフルオロ酢酸、トリクロロ酢酸等が挙げられるが、トリフルオロメタンスルホン酸が好ましい。
【0017】
式(3)で表わされるデメチルラクロプライドの非求核性酸の塩としては、例えばデメチルラクロプライドトリフルオロメタンスルホネート、デメチルラクロプライドノナフルオロブタンスルホネート、デメチルラクロプライドメタンスルホネート、デメチルラクロプライドエタンスルホネート、デメチルラクロプライドサルフェート、デメチルラクロプライドフッ化水素酸塩、デメチルラクロプライドホスフェート、デメチルラクロプライドp−トルエンスルホネート、デメチルラクロプライドp−クロロベンゼンスルホネート、デメチルラクロプライドp−フルオロベンゼンスルホネート、デメチルラクロプライドトリフルオロアセテート、デメチルラクロプライドトリクロロアセテート、デメチルラクロプライドナフタレンスルホネートなどが挙げられるが、デメチルラクロプライドトリフルオロメタンスルホネートが特に好ましい。
【0018】
これらのデメチルラクロプライドの非求核性酸塩は、デメチルラクロプライドの公知の塩例えばデメチルラクロプライド臭化水素酸塩から、これをアルカリ(例:水酸化ナトリウムなどの苛性アルカリ、アンモニアなど)で処理して遊離塩基とし、これを結晶として、もしくは有機溶媒で抽出することにより単離し、ついで、所定量の式(2)で示される非求核性酸を加えることによる塩交換の手法により製造することも出来るが、また、ラクロプライドあるいはその合成中間体である((S)-(-)- N-[ (1-エチル-2-ピロリジニル)メチル]-(3,5-ジクロロ-2,6-ジメトキシ)ベンズアミド)式(4)及びそれらの塩を脱メチル反応に付してデメチルラクロプライドを得る際に、式(2)で表わされる非求核性酸を反応させ、直ちにそれらの塩として単離してもよく、または、デメチルラクロプライドの遊離塩基が結晶性であり、水やある種の有機溶媒(例:エチルアルコールなど)に難溶性であるので、これを一旦単離した後、式(2)の非求核性酸により処理することにより製造してもよい。
【0019】
【化4】
Figure 0004275819
【0020】
デメチルラクロプライドの非求核性酸塩と[C−11]メチルパーフルオロアルカンスルホネートとの反応は、デメチルラクロプライドの非求核性酸の塩を溶かした液体媒質中、塩基の存在下に[C−11]メチルパーフルオロアルカンスルホネートを含有する気体を通じることにより行なうことができる。用いうる[C−11]メチルパーフルオロアルカンスルホネートとしては、例えば[C−11]メチルトリフレート、[C−11]メチルノナフルオロブタンスルホネート([C−11]メチルノナフレート)などが挙げられる。これらの[C−11]メチルパーフルオロアルカンスルホネート類は、自体公知の方法で[C−11]よう化メチルと銀パーフルオロアルカンスルホネートとの反応により容易に得ることができる。例えば対応する銀パーフルオロアルカンスルホネートをグラファイトなどの担体に担持させた触媒を約180℃に保ち、そこへ[C−11]よう化メチルを含有する気体(例、高純度窒素ガスなど)を通じ、該触媒と接触反応させることにより行うことができ、これにより、直ちに[C−11]メチルパーフルオロアルカンスルホネートを含有する気体が得られる。
【0021】
上記デメチルラクロプライドの非求核性酸の塩と[C−11]メチルパーフルオロアルカンスルホネートとの反応において用いられる液体媒質としては、反応に支障がないかぎり制限はないが、例えば水、有機溶媒およびそれらの混合物が挙げられる。用い得る有機溶媒としては、例えばケトン類(例:アセトン、メチルエチルケトンなど)、エーテル類(例:ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサンなど)、エステル類(例:酢酸メチル、酢酸エチルなど)、ニトリル類(例:アセトニトリル、プロピオニトリルなど)、アミド類(例:ジメチルホルムアミドなど)、スルホキシド類(例:ジメチルスルホキシドなど)、スルホン類(例:スルホランなど)などの非プロトン性溶媒が好ましいが、また、アルコール類(例:メタノール、エタノール、イソプロパノール、プロパノール、ブタノール、イソブタノール、第三級ブタノール、メトキシエタノールなど)を用いてもよい。これらの用い得る有機溶媒のうち、ケトン類、なかでもアセトンが最も簡便に用いられる。
【0022】
遊離塩基のデメチルラクロプライドではなく、その塩が有利に使用される理由は、一般的にフェノール性水酸基を持つ化合物の遊離塩基は酸化的変性を受け易いことが挙げられうるが、遊離塩基であるデメチルラクロプライド自体は、水にも一般の有機溶媒にも極めて溶け難いという特異な性質を示すので、酸化的変性を受け難いかもしれない。しかし、その水にも一般の有機溶媒にも極めて溶け難いという性質は、標識合成反応のような微量反応においても取り扱いに困難であり、その点本発明のデメチルラクロプライドの新しい塩、例えばデメチルラクロプライドトリフルオロメタンスルホネートは、良結晶性ながら有機溶媒、特にケトン類(例、アセトン)、アルコール類(例、エタノール)等に易溶性であり、取り扱い易い利点を有する。また、例えばデメチルラクロプライドトリフルオロメタンスルホネートは、良結晶性であるため高純度品が得易く、またその安定性も高いことが期待でき、微量の不純物の存在も無視できない標識化合物の合成原料にとって有用な性質を有している。
【0023】
本発明の反応において基質であるデメチルラクロプライドの非求核性酸の塩の使用量は、1回当り約0.1mgから約20mg、好ましくは約0.4mgから約1mgであり、それに応じて、反応媒質の使用量はそれぞれ約0.1mlから約20ml、好ましくは約0.2mlから約2ml、より好ましくは約0.2mlから0.5ml程度である。
【0024】
本発明の反応は塩基の存在下に行われる。反応に用いられる塩基としては、反応に支障がないかぎり制限はないが、例えば水酸化アルカリ(例:水酸化リチウム、水酸化ナトリウム、水酸化カリウムなど)、炭酸アルカリ(例:重炭酸ナトリウム、炭酸ナトリウム、重炭酸カリウム、炭酸カリウムなど)が挙げられる。これらは固体のまま粉末として添加してもよいが、通常水溶液の形で用いられる。塩基の使用量は基質に対し、約0.1モル当量から約500モル当量を用いることができるが、好ましくは約0.5当量から約50当量、より好ましくは約1当量から約10当量用いるのがよい。
【0025】
反応は、室温(約22℃)でも十分進行するので通常冷却ないし加熱は必要ではないが、約0℃付近まで冷却して反応させても、また、約100℃まで、より好ましくは約60℃までの温度に加熱して反応させてもよい。
【0026】
[C−11]ラクロプライドの製造には、自体公知の方法(文献:ジュヴェット、D.M.,アプライドラジエーションアンドアイソトープス,43巻,1383ページ,1992年(Jewett,D.M.,AppliedRadiationandIsotopes,43,1383,1992))により、市販あるいは自家製のポジトロン放射性標識化合物(薬剤)の遠隔自動合成装置を用いて行なうことができ、例えば、市販の[C−11]よう化メチル合成・反応装置に[C−11]よう化メチルからオンラインで[C−11]メチルパーフルオロアルカンスルホネートを製造するための、銀パーフルオロアルカンスルホネートを担持させたグラファイト(0.1%オールテック エイティー100,グラフパック−ジーシー80(0.1%ALLTECH AT100,GRAPHPAC−GC80) 、以下同じ) カラムを付加した装置により行なうことができる。該グラファイトカラムは、これを所定の温度に保つための加温機構を有していることが望ましい。その他、要すれば該合成装置に目的物分離用の高速液体クロマト装置、同装置用紫外分光光度計、放射線検出器(ポジトロンモニター)、クロマト溶出液の分取装置、分取液の濃縮装置及び最終生成物の取り出し装置、注射用製剤の製造装置等を適宜付加し、これらを適宜遮蔽機能を備えたセル内に設置し、遠隔操作により動作させるのがよい。
【0027】
以下に実施例及び参考例により本発明をさらに説明するが、本発明の内容はこれらの実施例または参考例に限定されるものではない。
【0028】
【発明の実施の形態】
【実施例1】
デメチルラクロプライド臭化水素酸塩からデメチルラクロプライドトリフルオロメタンスルホネート(以下デメチルラクロプライドトリフレートと記す)の製造(方法1)
8.2mgのデメチルラクロプライド臭化水素酸塩を10mlの蒸留水に溶かし、0.05規定の水酸化ナトリウム水溶液0.4mlを加え、ジクロルメタンで抽出し、ジクロルメタン層を分液し、これを0.05規定のトリフルオロメタンスルホン酸水溶液0.4mlを含む蒸留水10ml中に滴下した。これに再び0.05規定水酸化ナトリウム水溶液0.4 mlを加えてかき混ぜ、ジクロルメタン層を分液し、再び0.05規定トリフルオロメタンスルホン酸水溶液0.4mlを加えた蒸留水(約5 ml)に滴下後、得られた混合液を減圧下に濃縮し、6.9mgのデメチルラクロプライドトリフレートを結晶性残留物として得た。
【0029】
【実施例2】
デメチルラクロプライド臭化水素酸塩からデメチルラクロプライドトリフレートの製造(方法2)
42.5mgのデメチルラクロプライド臭化水素酸塩を3mlの蒸留水に溶かした液を、0.1規定の水酸化ナトリウム水溶液を加えて中和し、一夜冷蔵庫内に静置後析出している沈殿を濾取し、少量の蒸留水で洗浄後、乾燥して33.8mgのデメチルラクロプライド遊離塩基を得た。この遊離塩基12.8mgに0.1規定のトリフルオロメタンスルホン酸水溶液を加えると、遊離塩基が一旦溶解後短棒状結晶が析出するので、暫時冷蔵庫内に静置後、結晶を濾取し、ジエチルエーテルで洗浄後、乾燥して11.2mgのデメチルラクロプライドトリフレートを得た。濾液を減圧下に濃縮し、残留液を前記と同様に冷却保存することにより第2結晶、第3結晶を得た。デメチルラクロプライドトリフレート:融点:161−162℃;紫外吸収スペクトル(λmax (nm)):358,268,232,203(95%エタノール中)ないし同230,209(アセトン中)。赤外線吸収スペクトル(cm-1):3340,3065,1650,1585,1550,1290,1280,1240,1230,1180,1160,1030,645。
【0030】
【実施例3】
ラクロプライド及び合成前駆体である(S)−(−)− N−[(1−エチル−2−ピロリジニル)メチル]−3,5−ジクロロ−2,6−ジメトキシベンズアミドを脱メチル反応に付すことによるデメチルラクロプライドトリフレートの製造(その1)
1.9gの3,5−ジクロロ−2,6−ジメトキシ安息香酸を200mlの塩化メチレンに溶かした液に、1.4gの1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(WSC)、1.4gの1−ヒドロキシベンゾトリアゾール1水和物(HOBT)および0.95gの2−(S)−(−)−アミノエチル−1−エチルピロリジンを加え、室温で1夜かきまぜた後、水を加え、塩化メチレン層を分液して取り、溶媒を減圧下に溜去して1.4gの(S)−(−)−N−[(1−エチル−2−ピロリジニル)メチル]−3,5−ジクロロ−2,6−ジメトキシベンズアミドを得た。
【0031】
ついで、このもの全量を21mlの塩化メチレンと0.83mlの4規定塩酸−ジオキサン溶液との混合液に溶かし、これに、10℃に冷却しながら0.32gの三臭化硼素を加え、徐々に室温に戻しつつ1時間かき混ぜた。得られた反応液に2規定のアンモニア水を加えてアルカリ性とし、有機溶媒層を分液して取り、ついで溶媒を溜去して0.99gのラクロプライドの遊離塩基を粘稠物として得た。0.87gのラクロプライド遊離塩基を1.8mlの30%臭化水素−酢酸溶液に溶かし、60℃に3時間加熱後揮発性分を減圧下に溜去し、0.94gの粗デメチルラクロプライド臭化水素酸塩を結晶性粉末として得た。得られた粗デメチルラクロプライド臭化水素酸塩をクロロホルムに溶かし、2規定のアンモニアを加えて振り混ぜ、中和すると水層にもクロロホルム層にも難溶性の沈殿が析出するのでこれをろ過して取り、デメチルラクロプライドの遊離塩基を得た。このもの全量をエタノールに懸濁し、等モルのトリフルオロメタンスルホン酸水溶液を加えて溶かし、ついでエタノールを減圧下に溜去して粗デメチルラクロプライドトリフレートを結晶性物質として得た。これをエタノール−ジイソプロピルエーテルから再結晶して750mgのデメチルラクロプライドトリフレートを得た。
【0032】
【実施例4】
ラクロプライド及び合成前駆体である(S)−(−)− N−[(1−エチル−2−ピロリジニル)メチル]−3,5−ジクロロ−2,6−ジメトキシベンズアミドを脱メチル反応に付すことによるデメチルラクロプライドトリフレートの製造(その2)
3.8gの3,5−ジクロロ−2,6−ジメトキシ安息香酸を200mlの塩化メチレンに溶かした液に1.8gの2−(S)−(−)−アミノエチル−1−エチルピロリジン([α]D:−86.4°(c=2.8,ジメチルホルムアミド)(文献値:−89°)を加え、次いで、2.8gの1−ヒドロキシベンゾトリアゾール1水和物を加えて攪拌し溶解させた後、これに、2.8gの1−(3−ジメチルアミノプロピル)−3−エチルカルボジイミド塩酸塩(WSC)を200mlの塩化メチレンに溶かした液を室温で滴下し、室温にて一夜攪拌した。反応液を希食塩水、希重曹水、および再び希食塩水で洗浄後無水硫酸マグネシウムを加えて乾燥後、濾過し、濾液を減圧下に濃縮乾涸し、残留物(淡黄橙色結晶性固形物)をシリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム/メタノール=25/1→10/1)に付して4.7gのほぼ白色の結晶性固体を得、これをジイソプロピルエーテルから再結晶して3.9gの(S)−(−)−N−[(1−エチル−2−ピロリジニル)メチル]−3,5−ジクロロ−2,6−ジメトキシベンズアミド[融点:145〜146℃(文献値:144〜145℃),[α]D:−65.2°(c=2,アセトン)(文献値:−71°)]を得た。
【0033】
このものの2.0gを取り、塩化メチレン60mlに溶かし、これに4規定塩化水素−ジオキサン溶液1.44mlを添加し、次いで氷冷攪拌下に、0.56mlの三臭化硼素を20mlの塩化メチレンに溶かした液を滴下した。冷却浴をはずし、1時間攪拌した後再び冷却し、激しく攪拌しながら2規定のアンモニア水32mlを滴下した。得られた処理液を3回水洗し、無水硫酸マグネシウムを加えて乾燥後濾過し、濾液を減圧濃縮して淡黄色油状物を得、これをシリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム/メタノール=40/1→20/1)に付して1.8gの(S)−(−)−N−[(1−エチル−2−ピロリジニル)メチル]−3,5−ジクロロ−2−ヒドロキシ−6−メトキシベンズアミド(ラクロプライド)[融点:53〜54℃(文献値:49〜50℃),[α]D:−62.5°(c=2,アセトン)(文献値:−64°)]をほぼ白色の結晶として得た。このものの1.7gを取り、3.7mlの30%臭化水素−酢酸溶液に溶かし、60℃に3時間加熱攪拌後減圧下に濃縮乾涸すると結晶性固形物を得た。これをエタノールに溶かし、約20ml容まで減圧濃縮後約80mlのジイソプロピルエーテルを加えて放置し、析出した結晶を濾取し、1.44gの(S)−(+)−N−[(1−エチル−2−ピロリジニル)メチル]−3,5−ジクロロ−2,6−ジヒドロキシベンズアミド・臭化水素酸塩(デメチルラクロプライド臭化水素酸塩)[融点:208〜208.5℃(分解)(文献値:211〜212℃),[α]D:+10.1°(c=1,エタノール)(文献値:+11.0°)]をほぼ白色の結晶として得た。母液を濃縮し、残留物を同様にエタノール/ジイソプロピルエーテルから結晶化して0.22gの2次晶[融点:207.5〜208.5℃(分解),[α]D:+9.8°]を得た。1次晶の1.24gを取り、70mlの蒸留水に溶かし(pH:約3)、これに1規定のアンモニア水4mlを加え(pH:約8.5)、析出した沈殿を濾取し、水および少量のエタノールで洗浄後乾燥して905mgの(S)−(−)−N−[(1−エチル−2−ピロリジニル)メチル]−3,5−ジクロロ−2,6−ジヒドロキシベンズアミド(デメチルラクロプライド遊離塩基)[融点:230〜231℃(分解);[α]D:−29.8°(c=1,ジメチルスルホキシド);元素分析:C141826Cl2として計算値:C,50.46%,H,5.44%,N,8.41%;実測値:C,50.41%,H,5.65%,N,8.22%.]を白色の結晶として得た。
【0034】
このものの705mg(2.1mmol)を取り、70mlのエタノールに懸濁し、これに0.1規定のトリフルオロメタンスルホン酸水溶液21mlを加え、微量の未溶解物を濾去後、濾液を減圧下に濃縮乾涸し、得られる結晶性残留物をエタノール−ジイソプロピルエーテルから再結晶して806mgの(S)−(−)−N−[(1−エチル−2−ピロリジニル)メチル]−3,5−ジクロロ−2,6−ジヒドロキシベンズアミド・トリフルオロメタンスルホネート(デメチルラクロプライド・トリフレート)[融点:164〜165℃(分解),[α]D:−4.1°(c=1,エタノール)]をほぼ白色の結晶として得た。元素分析:C151926SCl23として計算値:C,37.28%,H,3.96%,N,5.80%;実測値:C,37.25%,H,4.01%,N,5.61%.NMR(200MHz,DMSO−d6中)δppm:1.24(3H,t,J=7Hz),1.7〜2.1(3H,m),2.1〜2.3(1H,m),3.05〜3.2(2H,m),3.35〜3.5(1H,m),3.5〜3.85(4H,m),7.69(1H,s),9.51(1H,br.s,重水添加により消失)。
【0035】
【実施例5】
ラクロプライド酒石酸塩からデメチルラクロプライドトリフレートの製造
ラクロプライド酒石酸塩[アストラ社製、融点:142.5〜143.5℃(実測値)(文献値142〜143℃),[α]D:−12.5℃(c=2,ジメチルスルホキシド)(実測値)]200mgを0.5mlの30%臭化水素−酢酸と混合し、3時間60℃に加熱攪拌し、反応液を氷水10mlに注ぎ、2規定のアンモニア水を加えてpH約8.5として析出した沈殿を濾取し、蒸留水およびエタノールで洗浄後乾燥して89mgのデメチルラクロプライドの遊離塩基を白色粉末として得た。このものを実施例4におけると同様にして0.1規定のトリフルオロメタンスルホン酸水溶液にて処理し、103mgのデメチルラクロプライドトリフレートをほぼ白色の結晶として得た。
【0036】
【実施例6】
デメチルラクロプライドトリフレートから[C−11]ラクロプライドの注射用製剤の製造
0.97mg(2マイクロモル)のデメチルラクロプライドトリフレートを0.4mlのアセトン(和光純薬製試薬特級)に溶かし、これに15μlの0.5規定水酸化ナトリウムを加えた(A液)。医療用サイクロトロン(住友重機械工業製HM−18型)を用いて高純度窒素ガスをプロトン照射(20μA,30分間)して得た[C−11]炭酸ガスから住友重機械工業製[C−11]よう化メチル合成装置により[C−11]よう化メチルを含有する窒素ガスを得、これを銀トリフレートを担持させたグラファイトカラムに180℃で通じることにより得た[C−11]メチルトリフレート含有窒素ガスをA液に室温で2分間通じ、ついで反応容器を密閉して8分間室温で放置した。ついで、反応液を高速液体クロマトグラフィー(カラム:YMCPackODS−AQ323,(250+30)x10mm;溶媒:アセトニトリル:0.01Mりん酸水溶液=30:70(v/v);流速:4ml/分;検出:紫外線吸収計、波長254nm及びポジトロン検出器)に付し、保持時間約20分で溶出される放射能を有するフラクションを分け取り、減圧下にアセトニトリルを溜去後、残留液をミリポアフィルターを通して濾過しつつ滅菌したバイアルに採取することにより2070MBqの[C−11]ラクロプライドを含有する注射用製剤を得た。合成時間:EOB(照射終了時)から約60分。放射化学純度:91%。化学純度:100%。比放射能:約1091mCi/μmol。
【0037】
【実施例7】
デメチルラクロプライドトリフレートから[C−11]ラクロプライドの注射用製剤の製造
実施例6と同様にして0.97mg(2マイクロモル)のデメチルラクロプライドトリフレートを0.4mlのアセトン(和光純薬製試薬特級)に溶かし、これに10μlの0.5規定水酸化ナトリウムを加えた(B液)。医療用サイクロトロン(住友重機械工業製HM−18型)を用いて高純度窒素ガスをプロトン照射(20μA,30分間)して得た[C−11]炭酸ガスから住友重機械工業製[C−11]よう化メチル合成装置により[C−11]よう化メチルを含有する窒素ガスを得、これを銀トリフレートを担持させたグラファイトカラムに180℃で通じることにより得た[C−11]メチルトリフレート含有窒素ガスをB液に室温で2分間通じ、ついで反応容器を密閉して8分間室温で放置した。ついで、反応液を高速液体クロマトグラフィー(カラム:YMCPackODS−AQ323,(250+30)x10mm;溶媒:アセトニトリル:0.01Mりん酸水溶液=30:70(v/v);流速:4ml/分;検出:紫外線吸収計、波長254nm及びポジトロン検出器)に付し、保持時間約20分で溶出される放射能を有するフラクションを分け取ることにより、2480MBqの[C−11]ラクロプライドを含有する注射用製剤を得た。合成時間:EOBから約60分。放射化学純度:81%。化学純度:100%。比放射能:約1788mCi/μmol。
【0038】
【参考例1】
実施例6と同様にして、ただし、デメチルラクロプライドトリフレートの代わりに0.63mg(2マイクロモル)のデメチルラクロプライド遊離塩基を用い、これを0.4mlのアセトン(和光純薬製試薬特級)に溶かし、これに6μlの0.5規定水酸化ナトリウムを加えた(C液)。医療用サイクロトロン(住友重機械工業製HM−18型)を用いて高純度窒素ガスをプロトン照射(20μA,30分間)して得た[C−11]炭酸ガスから住友重機械工業製[C−11]よう化メチル合成装置により[C−11]よう化メチルを含有する窒素ガスを得、これを銀トリフレートを担持させたグラファイトカラムに180℃で通じることにより得た[C−11]メチルトリフレート含有窒素ガスをC液に室温で2分間通じ、ついで反応容器を密閉して8分間室温で放置した。ついで、反応液を高速液体クロマトグラフィー(カラム:YMCPackODS−AQ323,(250+30)x10mm;溶媒:アセトニトリル:0.01Mりん酸水溶液=30:70(v/v);流速:4ml/分;検出:紫外線吸収計、波長254nm及びポジトロン検出器)に付し、保持時間約20分で溶出される放射能を有するフラクションを分け取り、減圧下にアセトニトリルを溜去後残留液をミリポアフィルターを通して濾過しつつ、滅菌したバイアルに採取することにより1850MBqの[C−11]ラクロプライドを含有する注射用製剤を得た。合成時間:EOBから約60分。放射化学純度:85%。化学純度:88%。比放射能:約1171mCi/μmol。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel method for producing a diagnostic agent useful in positron emission tomography (PET) and a novel salt of an intermediate (precursor) therefor.
[0002]
More specifically, the present invention can stably obtain [C-11] raclopride, which is one of positron radiocarbon-11 labeled drugs useful for diagnostic imaging of dopamine D2 receptors such as central nervous system by PET. The present invention provides a novel method for synthesizing the labeled drug and a novel intermediate therefor.
[0003]
[Prior art]
PET is a advanced nuclear medicine technology that can measure various biological functions in a non-invasive manner with the living body (patient, animal and plant) as it is. In recent years, PET has been detected and therapeutic effects have been determined, the central nervous system and the heart, In addition to the widespread use in diagnosing circulatory system damage such as the kidney, determining the applicability of therapeutic methods, and determining therapeutic effects, its usefulness has also been recognized as a research method for new therapeutic methods and new drugs. By the way, in order to perform diagnosis and measurement with PET, a labeled drug labeled with a positron radioisotope suitable for each diagnosis and measurement is required. However, all of the nuclides currently used in PET for these positron radioisotopes have an ultra-short half-life (for example, carbon-11 has a half-life of about 20 minutes, nitrogen-13 has about 10 minutes, oxygen-15 Is about 2 minutes, and even fluorine-18 having the longest half-life is about 110 minutes). Therefore, these positron radiolabeled drugs must be manufactured in close proximity to the facility where PET diagnosis is usually performed, and moreover, to be radioactive and to ensure that they are manufactured within a given time Manufactured by remote automated synthesizer. Therefore, in these syntheses, it is an essential condition to reliably obtain the target product, and it is extremely important that a predetermined amount of the labeled compound is stably obtained.
[0004]
Laclopride, ((S)-(−)-N-[(1-ethyl-2-pyrrolidinyl) methyl]-(3,5-dichloro-2-hydroxy-6-methoxy) benzamide) is an antipsychotic By having high and selective affinity for dopamine D2 receptor, which is a receptor for dopamine, one of the endogenous neurotransmitters in the central nervous system, and binding to this receptor in vivo It is a drug that works for mental stability. [C-11] raclopride, which is a carbon-11 labeled substance, is used for the diagnosis of a psychiatric disorder, the determination of a therapeutic effect, and the antipsychotic disease by determining the distribution and distribution amount of dopamine D2 receptors in vivo by PET. There is a great demand for radioligands that are most useful for determining the effects of drugs and various treatments, and predicting prognosis, and many studies have been conducted. Nevertheless, [C-11] raclopride has been conventionally regarded as a drug that is difficult to obtain stably, and establishment of its production method has been desired.
[0005]
[Problems to be solved by the invention]
Conventionally, [C-11] raclopride is obtained by converting the precursor hydrobromide of demethyl laclopride into [C-11] iodide in the presence of an excess amount of caustic aqueous solution in dimethyl sulfoxide (DMSO) solvent. Although the best production method has been to heat the reaction with methyl at about 80 ° C., it has been a drawback that the reproducibility of the reaction is poor.
[0006]
[C-11] Various studies have been conducted aiming at a more reliable production method of laclopride, and one of them is Nogren, K. Holdin, C.I. And Lundkvist, C.I. ((Nagren, K., Halldin, C., Lundkvist, C.,) et al., 11th International Symposium on Radiopharmaceutical Chemistry (Vancouver, BC Canada, August 13-17, 1995) The abstract is in Demethyl Laclopride (they are in Journal of Labeled Compounds and Radiopharmaceuticals, 37, 103-105, 1995) in Journal of Labeled Compounds and Radio Pharmaceuticals, 37, 103-105, 1995. Is called norlaclopride) by [C-11] labeling methylation with [C-11] methyl trifluoromethanesulfonate ([C-11] methyl triflate). According to this report, when demethyl laclopride hydrobromide was used and reacted with 1.5 equivalent of an aqueous sodium hydroxide solution as a base, the main product was produced. Is a volatile substance and reports that methyl triflate can react with halogen salts (Juvet, DM and Chakraborty, PK, Journal of Labeled Compounds and Radiopharmaceuticals) Calls, 35, 97, 1994 (Jewett, DM and Chakraborty, P. K., Journalof Labeled Compounds and Radiopharmaceuticals, 35, 97, 1994) probably produces [C-11] methyl bromide. At the same time, when the free base of demethyl laclopride was reacted with [C-11] methyl triflate, a reasonable yield (about 25%, although the reaction conditions were still It is said that the target [C-11] raclopride has been obtained), but no formal report has been published since then.
[0007]
The inventors have described Nogren, K. et al. The method that they announced was retested and their results were confirmed. That is, when demethyl laclopride hydrobromide is used as a raw material, even when equimolar methyl triflate is added in the presence of an equimolar to excess aqueous alkaline solution, almost no laclopride is produced. There wasn't. However, when an excess of methyl triflate in excess of this mole was added, the desired product has been obtained. Therefore, when demethyl laclopride hydrochloride prepared by salt exchange from demethyl laclopride hydrobromide was used as a raw material, when equimolar methyl triflate was reacted in the presence of aqueous alkali, the reaction was Although it proceeded in the direction of obtaining the target product somewhat more than in the case of methyl laclopride hydrobromide, 2 moles or more of methyl triflate was still required to sufficiently proceed the reaction. However, since the absolute amount of [C-11] methyl triflate which can be used in the production of the carbon-11 labeled compound is a very small amount of nanomolar, use of raw material demethyl laclopride hydrobromide or its hydrochloride It is practically impossible to react an excessive amount of [C-11] methyl triflate with respect to the amount, and even if possible, the raw material and equimolar [C-11] methyl triflate It is unreasonable to be consumed outside the intended reaction.
[0008]
As a result of various studies to solve this problem, the present inventors have found that a very small amount of [C-11] methyl triflate can be converted to demethyl laclopride by using a non-nucleophilic acid salt of demethyl laclopride. As a result of finding out that it can lead to a reaction and studying in more detail based on this finding, the present invention was completed.
[0009]
[Means for Solving the Problems]
That is, the present invention relates to a non-nucleophilic acid salt of demethyl laclopride, and [C- 11] methyl perfluoroalkanesulfonate such as [C-11] methyl triflate in the presence of aqueous alkali. 11] It relates to a method for stably producing [C-11] raclopride, which is an important positron radiolabeled drug for PET by methylation.
[0010]
In the method of the present invention, the raw material (precursor) is represented by the formula (1)
[0011]
[Chemical 1]
Figure 0004275819
[0012]
Formula (2) of demethyl laclopride represented by
[0013]
[Chemical formula 2]
Figure 0004275819
[0014]
(In the formula, n represents an integer of 1-3, and X represents a residue obtained by removing a proton from an (non-nucleophilic) organic acid or inorganic acid)
A salt of a non-nucleophilic acid represented by formula (3)
[0015]
[Chemical 3]
Figure 0004275819
(In the formula, n and m are integers of 1 to 3, and X represents a residue obtained by removing some or all protons from a (non-nucleophilic) organic or inorganic acid)
Is used. The non-nucleophilic acid represented by the formula (2) is an acid whose conjugate base (in the case of polybasic acid, there may be a plurality of conjugate base molecules due to proton dissociation stage) does not exhibit nucleophilicity. However, this does not mean that the conjugate base has no nucleophilicity under any conditions, and as described below, an alkali is present in the water-containing solvent used in the [C-11] methyl labeling reaction or in addition to this. What is necessary is just to show a nucleophilicity equivalent to or lower than that of perfluoroalkanesulfonate ion with respect to methyl perfluoroalkanesulfonate under the added conditions.
[0016]
Examples of such non-nucleophilic acids include perfluoroalkanesulfonic acids (eg, trifluoromethanesulfonic acid, nonafluorobutanesulfonic acid, etc.), alkanesulfonic acids (eg, methanesulfonic acid, ethanesulfonic acid, etc.), inorganic Strong acids (eg, sulfuric acid, hydrofluoric acid, phosphoric acid, etc.), aromatic sulfonic acids (eg, p-toluenesulfonic acid, p-chlorobenzenesulfonic acid, p-fluorobenzenesulfonic acid, naphthalenesulfonic acid, etc.), tri Fluoroacetic acid, trichloroacetic acid and the like can be mentioned, and trifluoromethanesulfonic acid is preferred.
[0017]
Examples of the non-nucleophilic acid salt of demethyl laclopride represented by the formula (3) include demethyl laclopride trifluoromethane sulfonate, demethyl laclopride nonafluorobutane sulfonate, demethyl laclopride methane sulfonate, demethyl lacropate. Pride ethane sulfonate, demethyl laclopride sulfate, demethyl laclopride hydrofluorate, demethyl laclopride phosphate, demethyl laclopride p-toluene sulfonate, demethyl laclopride p-chlorobenzene sulfonate, demethyl laclopride p- Fluorobenzenesulfonate, demethyl laclopride trifluoroacetate, demethyl laclopride trichloroacetate, demethyl laclopride naphthalenesulfonate And the like, but demethyl raclopride trifluoromethanesulfonate are particularly preferred.
[0018]
These non-nucleophilic acid salts of demethyl laclopride are obtained from known salts of demethyl laclopride, such as demethyl laclopride hydrobromide, which are alkalinized (eg, caustic such as sodium hydroxide, ammonia To obtain a free base, which is isolated as crystals or extracted by extraction with an organic solvent, and then subjected to salt exchange by adding a predetermined amount of a non-nucleophilic acid represented by the formula (2). It can also be produced by the method, but also laclopride or its synthetic intermediate ((S)-(-)-N-[(1-ethyl-2-pyrrolidinyl) methyl]-(3,5-dichloro -2,6-dimethoxy) benzamide) Formula (4) and salts thereof are subjected to a demethylation reaction to obtain demethyl laclopride, a non-nucleophilic acid represented by formula (2) is reacted, Immediately isolated as their salt Well, or since the free base of demethyl laclopride is crystalline and is poorly soluble in water and certain organic solvents (eg, ethyl alcohol, etc.) It may be produced by treatment with a non-nucleophilic acid.
[0019]
[Formula 4]
Figure 0004275819
[0020]
The reaction of the non-nucleophilic acid salt of demethyl laclopride with [C-11] methyl perfluoroalkane sulfonate is carried out in the presence of a base in a liquid medium in which the salt of the non-nucleophilic acid of demethyl laclopride is dissolved. Can be carried out by passing a gas containing [C-11] methylperfluoroalkanesulfonate. Examples of [C-11] methyl perfluoroalkane sulfonate that can be used include [C-11] methyl triflate, [C-11] methyl nonafluorobutane sulfonate ([C-11] methyl nonaflate), and the like. These [C-11] methyl perfluoroalkane sulfonates can be easily obtained by a reaction of [C-11] methyl iodide and silver perfluoroalkane sulfonate by a method known per se. For example, a catalyst in which a corresponding silver perfluoroalkanesulfonate is supported on a support such as graphite is maintained at about 180 ° C., and a gas containing [C-11] methyl iodide (eg, high-purity nitrogen gas) is passed therethrough. This can be carried out by contact reaction with the catalyst, whereby a gas containing [C-11] methylperfluoroalkanesulfonate is obtained immediately.
[0021]
The liquid medium used in the reaction of the non-nucleophilic acid salt of demethyl laclopride and [C-11] methylperfluoroalkanesulfonate is not limited as long as the reaction is not hindered. For example, water, organic And solvents and mixtures thereof. Examples of organic solvents that can be used include ketones (eg, acetone, methyl ethyl ketone, etc.), ethers (eg, diethyl ether, diisopropyl ether, tetrahydrofuran, dioxane, etc.), esters (eg, methyl acetate, ethyl acetate, etc.), and nitriles. Aprotic solvents such as catechol (eg acetonitrile, propionitrile etc.), amides (eg dimethylformamide etc.), sulfoxides (eg dimethyl sulfoxide etc.), sulfones (eg sulfolane etc.) are preferred, Alcohols (eg, methanol, ethanol, isopropanol, propanol, butanol, isobutanol, tertiary butanol, methoxyethanol, etc.) may also be used. Of these usable organic solvents, ketones, among which acetone is most easily used.
[0022]
The reason that the salt is advantageously used instead of the free base demethyl laclopride is that the free base of a compound having a phenolic hydroxyl group is generally susceptible to oxidative modification. Some demethyl laclopride itself exhibits the unique property of being extremely insoluble in water and common organic solvents and may be less susceptible to oxidative modification. However, the property of being extremely insoluble in water and general organic solvents is difficult to handle even in a trace reaction such as a labeling synthesis reaction. In that respect, the new salt of demethyl laclopride of the present invention, for example, Methyl laclopride trifluoromethanesulfonate has good crystallinity but is readily soluble in organic solvents, particularly ketones (eg, acetone), alcohols (eg, ethanol) and the like, and has an advantage of easy handling. In addition, for example, demethyl laclopride trifluoromethanesulfonate is a good starting material for high-purity products because of its good crystallinity, and is expected to have high stability. Has useful properties.
[0023]
The amount of the non-nucleophilic acid salt of demethyl laclopride, which is a substrate in the reaction of the present invention, is about 0.1 mg to about 20 mg, preferably about 0.4 mg to about 1 mg per time, and accordingly The reaction medium is used in an amount of about 0.1 ml to about 20 ml, preferably about 0.2 ml to about 2 ml, and more preferably about 0.2 ml to 0.5 ml.
[0024]
The reaction of the present invention is carried out in the presence of a base. The base used in the reaction is not limited as long as the reaction is not hindered. For example, alkali hydroxide (eg, lithium hydroxide, sodium hydroxide, potassium hydroxide), alkali carbonate (eg, sodium bicarbonate, carbonate) Sodium, potassium bicarbonate, potassium carbonate, etc.). These may be added as a powder as a solid, but are usually used in the form of an aqueous solution. The base can be used in an amount of about 0.1 to about 500 molar equivalents, preferably about 0.5 to about 50 equivalents, more preferably about 1 to about 10 equivalents, relative to the substrate. It is good.
[0025]
Since the reaction proceeds sufficiently even at room temperature (about 22 ° C.), it is usually not necessary to cool or heat. However, even if the reaction is performed by cooling to about 0 ° C. You may make it react by heating to the temperature up to.
[0026]
[C-11] Raclopride can be produced by a method known per se (Document: Jewett, DM, Applied Radiation and Isotopes, 43, 1383, 1992 (Jewett, DM, Applied Radiation and Isotopes, 43, 1383, 1992)) can be carried out using a commercially available or homemade positron radiolabeled compound (drug) remote automatic synthesizer. For example, a commercially available [C-11] methyl iodide synthesis / reaction apparatus can be used. [C-11] Graphite (0.1% All-Tech Eighty 100, Graphpack-GC 80) loaded with silver perfluoroalkanesulfonate for the production of [C-11] methylperfluoroalkanesulfonate online from methyl iodide. (0.1% LLTECH AT100, GRAPHPAC-GC80), can be performed by the following equivalent) device obtained by adding a column. The graphite column preferably has a heating mechanism for keeping it at a predetermined temperature. In addition, if necessary, the synthesizer is equipped with a high-performance liquid chromatographic apparatus for separating an object, an ultraviolet spectrophotometer for the apparatus, a radiation detector (positron monitor), a chromatographic eluate fractionator, a preparative liquid concentrator, and It is preferable to add an apparatus for taking out the final product, an apparatus for producing an injectable preparation, etc. as appropriate, place them in a cell having an appropriate shielding function, and operate by remote control.
[0027]
EXAMPLES The present invention will be further described below with reference to examples and reference examples, but the contents of the present invention are not limited to these examples or reference examples.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
[Example 1]
Production of Demethyl Laclopride Trifluoromethanesulfonate (hereinafter referred to as Demethyl Laclopride Triflate) from Demethyl Laclopride Hydrobromide (Method 1)
Dissolve 8.2 mg of demethyl laclopride hydrobromide in 10 ml of distilled water, add 0.4 ml of 0.05N aqueous sodium hydroxide solution, extract with dichloromethane, separate the dichloromethane layer, The solution was added dropwise to 10 ml of distilled water containing 0.4 ml of 0.05 N trifluoromethanesulfonic acid aqueous solution. Add 0.4 ml of 0.05N aqueous sodium hydroxide solution and stir again, separate the dichloromethane layer, and add again to distilled water (approx. 5 ml) with 0.4 ml of 0.05N aqueous trifluoromethanesulfonic acid solution. Thereafter, the resulting mixture was concentrated under reduced pressure to obtain 6.9 mg of demethyl lacloprid triflate as a crystalline residue.
[0029]
[Example 2]
Production of demethyl laclopride triflate from demethyl laclopride hydrobromide (Method 2)
A solution obtained by dissolving 42.5 mg of demethyl laclopride hydrobromide in 3 ml of distilled water was neutralized by adding a 0.1N aqueous sodium hydroxide solution, and left standing in the refrigerator overnight to precipitate. The resulting precipitate was collected by filtration, washed with a small amount of distilled water, and dried to obtain 33.8 mg of demethyl laclopride free base. When 0.1 N trifluoromethanesulfonic acid aqueous solution is added to 12.8 mg of this free base, a short rod-like crystal is precipitated after the free base is once dissolved. Therefore, after standing in a refrigerator for a while, the crystal is collected by filtration. After washing with ether and drying, 11.2 mg of demethyl lacloprid triflate was obtained. The filtrate was concentrated under reduced pressure, and the residual liquid was stored in the same manner as above to obtain second and third crystals. Demethyl laclopride triflate: melting point: 161-162 ° C .; ultraviolet absorption spectrum (λmax (nm)): 358, 268, 232, 203 (in 95% ethanol) to 230,209 (in acetone). Infrared absorption spectrum (cm -1 ): 3340, 3065, 1650, 1585, 1550, 1290, 1280, 1240, 1230, 1180, 1160, 1030, 645.
[0030]
[Example 3]
Subjecting raclopride and synthetic precursor (S)-(-)-N-[(1-ethyl-2-pyrrolidinyl) methyl] -3,5-dichloro-2,6-dimethoxybenzamide to a demethylation reaction Of demethyl laclopride triflate by HPLC (Part 1)
In a solution of 1.9 g of 3,5-dichloro-2,6-dimethoxybenzoic acid dissolved in 200 ml of methylene chloride, 1.4 g of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (WSC) ), 1.4 g of 1-hydroxybenzotriazole monohydrate (HOBT) and 0.95 g of 2- (S)-(−)-aminoethyl-1-ethylpyrrolidine were added and stirred at room temperature overnight. , Water was added, and the methylene chloride layer was separated and removed, and the solvent was distilled off under reduced pressure to obtain 1.4 g of (S)-(−)-N-[(1-ethyl-2-pyrrolidinyl) methyl]. -3,5-dichloro-2,6-dimethoxybenzamide was obtained.
[0031]
Next, the total amount of this was dissolved in a mixture of 21 ml of methylene chloride and 0.83 ml of 4N hydrochloric acid-dioxane solution. To this, 0.32 g of boron tribromide was added while cooling to 10 ° C., and gradually. The mixture was stirred for 1 hour while returning to room temperature. 2N aqueous ammonia was added to the resulting reaction solution to make it alkaline, and the organic solvent layer was separated and removed, and then the solvent was distilled off to obtain 0.99 g of laclopride free base as a viscous product. . 0.87 g of laclopride free base was dissolved in 1.8 ml of 30% hydrogen bromide-acetic acid solution, heated to 60 ° C. for 3 hours, and the volatile matter was distilled off under reduced pressure. Pride hydrobromide was obtained as a crystalline powder. Dissolve the obtained crude demethyl laclopride hydrobromide in chloroform, add 2N ammonia, shake and mix. When neutralized, precipitate insoluble in both the aqueous and chloroform layers. To give the free base of demethyl laclopride. The whole amount was suspended in ethanol, equimolar trifluoromethanesulfonic acid aqueous solution was added and dissolved, and then ethanol was distilled off under reduced pressure to obtain crude demethyl laclopride triflate as a crystalline substance. This was recrystallized from ethanol-diisopropyl ether to obtain 750 mg of demethyl laclopride triflate.
[0032]
[Example 4]
Subjecting raclopride and synthetic precursor (S)-(-)-N-[(1-ethyl-2-pyrrolidinyl) methyl] -3,5-dichloro-2,6-dimethoxybenzamide to a demethylation reaction Of demethyl laclopride triflate by HPLC (Part 2)
In a solution of 3.8 g of 3,5-dichloro-2,6-dimethoxybenzoic acid dissolved in 200 ml of methylene chloride, 1.8 g of 2- (S)-(−)-aminoethyl-1-ethylpyrrolidine ([[ α] D : -86.4 ° (c = 2.8, dimethylformamide) (literature value: -89 °) was added, and then 2.8 g of 1-hydroxybenzotriazole monohydrate was added and stirred to dissolve. Thereafter, 2.8 g of 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (WSC) dissolved in 200 ml of methylene chloride was added dropwise thereto at room temperature, and the mixture was stirred overnight at room temperature. The reaction mixture was washed with dilute brine, dilute aqueous sodium bicarbonate, and again with dilute brine, dried over anhydrous magnesium sulfate, filtered, and the filtrate was concentrated to dryness under reduced pressure to give a residue (pale yellow orange crystalline solid ) Is subjected to silica gel column chromatography (developing solvent: chloroform / methanol = 25/1 → 10/1) to obtain 4.7 g of an almost white crystalline solid, which is recrystallized from diisopropyl ether. 9 g of (S)-(−)-N-[(1-ethyl-2-pyrrolidinyl) methyl] -3,5-dichloro-2,6-dimethoxybenzamide [melting point: 145 to 146 ° C. (literature value: 144 to 145 ° C), [α] D : -65.2 ° (c = 2, acetone) (document value: -71 °)].
[0033]
2.0 g of this was taken up and dissolved in 60 ml of methylene chloride. To this was added 1.44 ml of 4N hydrogen chloride-dioxane solution, and then 0.56 ml of boron tribromide was added to 20 ml of methylene chloride under ice-cooling and stirring. The solution dissolved in was dropped. The cooling bath was removed, the mixture was stirred for 1 hour, cooled again, and 32 ml of 2N aqueous ammonia was added dropwise with vigorous stirring. The obtained treatment liquid was washed with water three times, dried over anhydrous magnesium sulfate and filtered, and the filtrate was concentrated under reduced pressure to obtain a pale yellow oily substance, which was subjected to silica gel column chromatography (developing solvent: chloroform / methanol = 40). / 1 → 20/1) and 1.8 g of (S)-(−)-N-[(1-ethyl-2-pyrrolidinyl) methyl] -3,5-dichloro-2-hydroxy-6- Methoxybenzamide (Raclopride) [melting point: 53-54 ° C. (literature value: 49-50 ° C.), [α] D : −62.5 ° (c = 2, acetone) (document value: −64 °)] was obtained as almost white crystals. 1.7 g of this product was taken, dissolved in 3.7 ml of 30% hydrogen bromide-acetic acid solution, heated and stirred at 60 ° C. for 3 hours, and concentrated to dryness under reduced pressure to obtain a crystalline solid. This was dissolved in ethanol, concentrated under reduced pressure to about 20 ml, about 80 ml of diisopropyl ether was added and left to stand. The precipitated crystals were collected by filtration, and 1.44 g of (S)-(+)-N-[(1- Ethyl-2-pyrrolidinyl) methyl] -3,5-dichloro-2,6-dihydroxybenzamide hydrobromide (demethyl laclopride hydrobromide) [melting point: 208-208.5 ° C. (decomposition) (Reference value: 211-212 ° C.), [α] D : + 10.1 ° (c = 1, ethanol) (literature value: + 11.0 °)] was obtained as almost white crystals. The mother liquor is concentrated and the residue is similarly crystallized from ethanol / diisopropyl ether to give 0.22 g of secondary crystals [melting point: 207.5-208.5 ° C. (decomposition), [α]. D : + 9.8 °]. Take 1.24 g of primary crystals, dissolve in 70 ml of distilled water (pH: about 3), add 4 ml of 1N aqueous ammonia (pH: about 8.5), and collect the deposited precipitate by filtration. After washing with water and a small amount of ethanol and drying, 905 mg of (S)-(−)-N-[(1-ethyl-2-pyrrolidinyl) methyl] -3,5-dichloro-2,6-dihydroxybenzamide (de Methyl laclopride free base) [melting point: 230-231 ° C. (decomposition); [α] D : -29.8 ° (c = 1, dimethyl sulfoxide); Elemental analysis: C 14 H 18 N 2 O 6 Cl 2 Calculated values: C, 50.46%, H, 5.44%, N, 8.41%; measured values: C, 50.41%, H, 5.65%, N, 8.22%. ] Was obtained as white crystals.
[0034]
705 mg (2.1 mmol) of this was taken, suspended in 70 ml of ethanol, 21 ml of 0.1 N trifluoromethanesulfonic acid aqueous solution was added thereto, and a small amount of undissolved material was filtered off, and the filtrate was concentrated under reduced pressure. After drying, the resulting crystalline residue was recrystallized from ethanol-diisopropyl ether to give 806 mg of (S)-(−)-N-[(1-ethyl-2-pyrrolidinyl) methyl] -3,5-dichloro- 2,6-dihydroxybenzamide trifluoromethanesulfonate (demethyl laclopride triflate) [melting point: 164-165 ° C. (decomposition), [α] D : -4.1 ° (c = 1, ethanol)] was obtained as almost white crystals. Elemental analysis: C 15 H 19 N 2 O 6 SCl 2 F Three Calculated values: C, 37.28%, H, 3.96%, N, 5.80%; measured values: C, 37.25%, H, 4.01%, N, 5.61%. NMR (200 MHz, DMSO-d 6 Middle) δ ppm : 1.24 (3H, t, J = 7 Hz), 1.7 to 2.1 (3H, m), 2.1 to 2.3 (1H, m), 3.05 to 3.2 (2H, m), 3.35 to 3.5 (1 H, m), 3.5 to 3.85 (4 H, m), 7.69 (1 H, s), 9.51 (1 H, br. s, heavy water addition Disappeared).
[0035]
[Example 5]
Production of demethyl laclopride triflate from laclopride tartrate
Laclopride tartrate [manufactured by Astra, melting point: 142.5-143.5 ° C. (actual value) (reference value 142-143 ° C.), [α] D : -12.5 ° C. (c = 2, dimethyl sulfoxide) (actual measured value)] 200 mg was mixed with 0.5 ml of 30% hydrogen bromide-acetic acid, and heated and stirred at 60 ° C. for 3 hours. 2N ammonia water was added to the solution, and the precipitate precipitated to pH about 8.5 was collected by filtration, washed with distilled water and ethanol, and then dried to obtain 89 mg of the free base of demethyl laclopride as a white powder. . This was treated with a 0.1 N aqueous trifluoromethanesulfonic acid solution in the same manner as in Example 4 to obtain 103 mg of demethyl laclopride triflate as almost white crystals.
[0036]
[Example 6]
Production of injectable preparation of [C-11] raclopride from demethyl laclopride triflate
0.97 mg (2 μmol) of demethyl laclopride triflate was dissolved in 0.4 ml of acetone (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.), and 15 μl of 0.5 N sodium hydroxide was added thereto (solution A). . [C-11] Carbon dioxide produced from Sumitomo Heavy Industries [C-] obtained by proton irradiation (20 μA, 30 minutes) of high purity nitrogen gas using a medical cyclotron (HM-18 manufactured by Sumitomo Heavy Industries) [11] A nitrogen gas containing [C-11] methyl iodide is obtained by a methyl iodide synthesizer, and [C-11] methyl obtained by passing the nitrogen gas through a graphite column supporting silver triflate at 180 ° C. Triflate-containing nitrogen gas was passed through the solution A at room temperature for 2 minutes, and then the reaction vessel was sealed and left at room temperature for 8 minutes. Next, the reaction solution was subjected to high performance liquid chromatography (column: YMCPackODS-AQ323, (250 + 30) × 10 mm; solvent: acetonitrile: 0.01M aqueous phosphoric acid solution = 30: 70 (v / v); flow rate: 4 ml / min; detection: ultraviolet light (Absorptiometer, wavelength 254 nm and positron detector), fractionating the radioactive fraction eluted with a retention time of about 20 minutes, distilling acetonitrile off under reduced pressure, and filtering the residual liquid through a Millipore filter An injectable preparation containing 2070 MBq [C-11] raclopride was obtained by collecting in a sterilized vial. Synthesis time: Approximately 60 minutes from EOB (at the end of irradiation). Radiochemical purity: 91%. Chemical purity: 100%. Specific activity: about 1091 mCi / μmol.
[0037]
[Example 7]
Production of injectable preparation of [C-11] raclopride from demethyl laclopride triflate
In the same manner as in Example 6, 0.97 mg (2 μmol) of demethyl laclopride triflate was dissolved in 0.4 ml of acetone (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.), and 10 μl of 0.5 N sodium hydroxide was dissolved in the solution. Was added (liquid B). [C-11] Carbon dioxide produced from Sumitomo Heavy Industries [C-] obtained by proton irradiation (20 μA, 30 minutes) of high-purity nitrogen gas using a medical cyclotron (HM-18 manufactured by Sumitomo Heavy Industries) [11] A nitrogen gas containing [C-11] methyl iodide is obtained by a methyl iodide synthesizer, and [C-11] methyl obtained by passing the nitrogen gas through a graphite column supporting silver triflate at 180 ° C. Triflate-containing nitrogen gas was passed through the solution B at room temperature for 2 minutes, and then the reaction vessel was sealed and left at room temperature for 8 minutes. Subsequently, the reaction solution was subjected to high performance liquid chromatography (column: YMCPackODS-AQ323, (250 + 30) × 10 mm; solvent: acetonitrile: 0.01 M aqueous phosphoric acid solution = 30: 70 (v / v); flow rate: 4 ml / min; detection: ultraviolet light An injectable preparation containing 2480 MBq of [C-11] raclopride by separating the radioactive fraction eluted with an absorption meter (wavelength 254 nm and positron detector) and having a retention time of about 20 minutes. Obtained. Synthesis time: about 60 minutes from EOB. Radiochemical purity: 81%. Chemical purity: 100%. Specific activity: about 1788 mCi / μmol.
[0038]
[Reference Example 1]
As in Example 6, except that 0.63 mg (2 micromole) of demethyl laclopride free base was used instead of demethyl laclopride triflate, and 0.4 ml of acetone (a reagent manufactured by Wako Pure Chemical Industries, Ltd.) was used. 6 μl of 0.5 N sodium hydroxide was added to this (solution C). [C-11] Carbon dioxide produced from Sumitomo Heavy Industries [C-] obtained by proton irradiation (20 μA, 30 minutes) of high purity nitrogen gas using a medical cyclotron (HM-18 manufactured by Sumitomo Heavy Industries) [11] A nitrogen gas containing [C-11] methyl iodide is obtained by a methyl iodide synthesizer, and [C-11] methyl obtained by passing the nitrogen gas through a graphite column supporting silver triflate at 180 ° C. Triflate-containing nitrogen gas was passed through C solution at room temperature for 2 minutes, and then the reaction vessel was sealed and left at room temperature for 8 minutes. Next, the reaction solution was subjected to high performance liquid chromatography (column: YMCPackODS-AQ323, (250 + 30) × 10 mm; solvent: acetonitrile: 0.01M aqueous phosphoric acid solution = 30: 70 (v / v); flow rate: 4 ml / min; detection: ultraviolet light A fraction having radioactivity that is eluted at a retention time of about 20 minutes, and fractionating the acetonitrile under reduced pressure, filtering the residual liquid through a Millipore filter, An injectable preparation containing 1850 MBq [C-11] raclopride was obtained by collecting into a sterile vial. Synthesis time: about 60 minutes from EOB. Radiochemical purity: 85%. Chemical purity: 88%. Specific activity: about 1171 mCi / μmol.

Claims (4)

デメチルラクロプライドトリフルオロメタンスルホン酸塩。  Demethyl laclopride trifluoromethanesulfonate. デメチルラクロプライドを[C−11]メチル化して[C−11]ラクロプライドを製造する方法において、デメチルラクロプライドトリフルオロメタンスルホン酸塩を「C−11」メチルトリフレートと反応させることを特徴とする[C−11]ラクロプライドの製造法。In a method for producing [C-11] raclopride by [C-11] methylation of demethyl laclopride , demethyl laclopride trifluoromethanesulfonate is reacted with “C-11” methyl triflate. [C-11] A method for producing raclopride. デメチルラクロプライド臭化水素酸塩の臭化水素酸を中和してデメチルラクロプライド遊離塩基を得、これをほぼ当モルのトリフルオロメタンスルホン酸により処理することを特徴とするデメチルラクロプライドトリフルオロメタンスルホン酸塩の製造法。Demethyl laclopride hydrobromide neutralized to obtain demethyl laclopride free base, which is treated with approximately equimolar trifluoromethanesulfonic acid. A method for producing trifluoromethanesulfonate. クロプライド酒石酸塩を臭化水素酸により脱メチル化し、反応液を中和してデメチルラクロプライドの遊離塩基を得、これをトリフルオロメタンスルホン酸で処理することを特徴とするデメチルラクロプライドトリフルオロメタンスルホン酸塩の製造法。 La black pride tartrate was demethylated by hydrobromic acid, to give the free base of the demethyl raclopride to neutralize the reaction solution, demethyl raclopride which comprises treating this with trifluoromethanesulfonic acid A method for producing trifluoromethanesulfonate.
JP26407599A 1999-09-17 1999-09-17 Non-nucleophilic acid salt of demethyl laclopride and process for producing [C-11] raclopride using the same Expired - Fee Related JP4275819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26407599A JP4275819B2 (en) 1999-09-17 1999-09-17 Non-nucleophilic acid salt of demethyl laclopride and process for producing [C-11] raclopride using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26407599A JP4275819B2 (en) 1999-09-17 1999-09-17 Non-nucleophilic acid salt of demethyl laclopride and process for producing [C-11] raclopride using the same

Publications (2)

Publication Number Publication Date
JP2001089445A JP2001089445A (en) 2001-04-03
JP4275819B2 true JP4275819B2 (en) 2009-06-10

Family

ID=17398180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26407599A Expired - Fee Related JP4275819B2 (en) 1999-09-17 1999-09-17 Non-nucleophilic acid salt of demethyl laclopride and process for producing [C-11] raclopride using the same

Country Status (1)

Country Link
JP (1) JP4275819B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0322756D0 (en) * 2003-09-29 2003-10-29 Univ Aberdeen Methods of chemical synthesis

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8101536L (en) * 1981-03-11 1982-09-12 Astra Laekemedel Ab Benzamide derivative
JPH07318694A (en) * 1994-05-24 1995-12-08 Seitai Kinou Kenkyusho:Kk Method and apparatus for automatically synthesizing injection formulation of 11c labeled methyl compound
JP2000016981A (en) * 1998-06-30 2000-01-18 Hamamatsu Photonics Kk Production of raclopride labeled with c-11 having high specific radioactivity

Also Published As

Publication number Publication date
JP2001089445A (en) 2001-04-03

Similar Documents

Publication Publication Date Title
JP4550141B2 (en) Method for producing radioactive fluorine-labeled organic compound
ES2663496T3 (en) Precursor compound of radioactive halogen-labeled organic compound
AU2008339435B2 (en) Process for production of radioactive-fluorine-labeled organic compound
CA3001857A1 (en) Compounds, compositions and methods of use against stress granules
EP2365974A1 (en) Fluorinated benzothiazole derivatives, preparation method thereof and imaging agent for diagnosing altzheimer's disease using the same
US8093405B2 (en) Formation of 18F and 19F fluoroarenes bearing reactive functionalities
EP3687980B1 (en) Radiolabeled darapladib, analogs thereof and their use as imaging compounds
JP4275819B2 (en) Non-nucleophilic acid salt of demethyl laclopride and process for producing [C-11] raclopride using the same
JP5870031B2 (en) Automated radiosynthesis
Miao et al. Radiosynthesis of a carbon-11-labeled AMPAR allosteric modulator as a new PET radioligand candidate for imaging of Alzheimer’s disease
EP2408451A2 (en) Radiolabelled pyridinyl derivatives for in-vivo imaging
AU2013319747B2 (en) F-18 radiolabeled compounds for diagnosing and monitoring kidney function
EP2719387B1 (en) Preparation method of flumazenil labeled with fluorine-18 using diaryl iodonium salt precursor
JP5744057B2 (en) Aryloxyanilide imaging agent
CN111362863A (en) Method for crystallizing tricyclic indole derivative
Carroll et al. Formation of 18F and 19F fluoroarenes bearing reactive functionalities
Assaad et al. Synthesis and biodistribution of both (±)-5-[18F]-fluoroethoxy and (±)-5-[18F]-fluoropropoxy piperazine analogs of benzovesamicol as vesicular acetylcholine transporter ligands (VAChT)
LARSEN et al. Patent 3001857 Summary
Topley The development of a simple process for producing medicinal diagnostic 18F agents for molecular imaging using positron-emission-tomography

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050307

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050307

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050307

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060502

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees