JP4274679B2 - Ultrasonic sensor for vehicle clearance sonar - Google Patents

Ultrasonic sensor for vehicle clearance sonar Download PDF

Info

Publication number
JP4274679B2
JP4274679B2 JP2000245210A JP2000245210A JP4274679B2 JP 4274679 B2 JP4274679 B2 JP 4274679B2 JP 2000245210 A JP2000245210 A JP 2000245210A JP 2000245210 A JP2000245210 A JP 2000245210A JP 4274679 B2 JP4274679 B2 JP 4274679B2
Authority
JP
Japan
Prior art keywords
sensor
vibration surface
sensor housing
ultrasonic sensor
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000245210A
Other languages
Japanese (ja)
Other versions
JP2002058091A (en
Inventor
博之 可児
威夫 都築
史生 浅倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2000245210A priority Critical patent/JP4274679B2/en
Publication of JP2002058091A publication Critical patent/JP2002058091A/en
Application granted granted Critical
Publication of JP4274679B2 publication Critical patent/JP4274679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/521Constructional features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles

Description

【0001】
【発明の属する技術分野】
本発明は、障害物衝突防止において、車両の駐車時及び旋回時等での障害物に接触する可能性があることを検出し、運転者に警告する装置に使用するクリアランスソナーに用いる超音波センサに関する。
【0002】
【従来の技術】
車両と障害物の距離をもとに警報を発令し、運転者に注意を促すものに超音波クリアランスソナーがある。このセンサには防滴型の超音波センサが使われている。ところで超音波センサを車両に用いることに関して、路面と路面上の駐車用縁石は障害物として警告しないことが望ましいため、水平方向における超音波の送受波範囲が広く、しかも垂直方向における超音波の送受波範囲が狭くなるような指向特性、即ち水平方向の指向性に対し、垂直方向の指向性を絞るようにしている。このような指向特性を得るために、従来よりセンサ筐体にホーンを取り付けて、このホーンによりそのような指向特性を達成していた。
【0003】
しかしながら、このようなホーンを取り付けている超音波センサにあっては、センサ筐体とホーンとの間に雨水や土砂, 塵埃などが留まって詰まることがあり、超音波センサの誤動作が発生する原因となっていた。また、車両等に取り付けた場合、ホーンが車両外表面、例えばバンパー、から突出するため外観が損なわれるという問題があった。更には、指向特性に影響を及ぼさないようにセンサ筐体にホーンを取り付ける取り付け精度を確保するという煩しさがあった。
【0004】
そのため、近年外観の向上等のためホーンが無い構造のクリアランスソナーが開発されており、そのようなものとして特開平9−284896号公報に示されたような超音波送受波器がある。この超音波送受波器は、センサ筐体の中空部の形状を横断面視形状が矩形状もしくは長円形状とし、該筐体の側面厚さをその底面厚さよりも厚くすることで、上記したような指向特性が得られるようにしている。即ち、垂直方向の指向性を狭く、水平方向の指向性を広くするため、中空部の長軸方向に沿って長く、短軸方向に沿って短い長円形状を有する振動モードが得られる中空形状にしている。しかしながら、この超音波送受波器のように単に矩形もしくは長円形振動面をもたせただけでは、車両用クリアランスソナーに適用する上で目標とする狭指向性に達せず、路面と路面上の物体(例えば駐車用縁石)を検出してしまうという問題があった。
【0005】
【発明が解決しようとする課題】
本発明は、上記の問題に鑑みなされたもので、その目的は、超音波センサの指向性をより絞ることができ、車両用クリアランスソナーに用いても路面と路面上の駐車用縁石を検出せず正しく障害物判定ができるようにする超音波センサを提供することである。
【0006】
【課題を解決するための手段】
本発明者は、振動面の形状と超音波センサの筐体の外形に着目し、振動面の形状を筐体外形形状に近づけることが指向性を狭くすることを見出したものである。
本発明は、前記課題を解決するための手段として、特許請求の範囲の各請求項に記載された超音波センサを提供する。
【0007】
請求項1に記載の超音波センサは、一面が開口され、中空部及び底面を有するセンサ筐体と、中空部内に収納され、底面上に配置される圧電振動子とを備える超音波センサであって、センサ筐体の開口側は、その左右が円弧状に切り落とされて、横断面形状が小判状の外形となっており、また中空部は、センサ筐体の開口側の小判状の外形線に沿う形で形成され、その横断面形状が同様に小判状となっており、これにより、センサ筐体の底面の一部で与えられる超音波センサの振動面が、センサ筐体の開口側の外形線に沿った形で形成されており、かつセンサ筐体の開口側の外形線が曲率を有していて、振動面の外形線がこれと同一の曲率を有しており、クリアランスソナー搭載車両の路面垂直方向に寄与する側の振動面の外形線がセンサ筐体の振動面側の外形線の曲率と同一の曲率を有するようになっており、またクリアランスソナー搭載車両の路面垂直方向に寄与する側の振動面の最も薄い部分の外形線が、センサ筐体の振動面側の外形線に沿った形で形成されていて、振動面の最も薄い部分の外形線とセンサ筐体の振動面側の外形線とが同一の曲率を有することにある。これにより、超音波の指向性を狭くすることが可能となった。また、垂直方向の指向性を狭くすることができる超音波センサを車両用クリアランスソナーに採用することで、障害物として扱わない方が望ましい駐車用縁石を検出しないようにすることができる。更に、振動面の外形線が、センサ筐体の外形線の曲率と同一の曲を有することで、振動面中心からの距離及びセンサ筐体の肉厚が均一となり振動面端が振動し易い構造となっている。更にまた、振動面の外形線の内方に沿って振動面の最も薄い部分が形成されており、振動面が、一層振動し易い構造となっている。
【0008】
請求項2,4においては、振動面の外形とセンサ筐体の振動面側の外形とで形成する肉厚を均等とすることで、センサ筐体の外形が円弧で形成されていない場合にあっても、外形に沿って厚みが均等となり、円弧で形成された場合と同様に振動面端が振動し易い構造となっている。
また、請求項3は、センサ筐体が、開口側でその左右で円弧状に一部が切り落されて外段部が形成され、中空部は、その軸方向の中間部に小判状の側面に沿って内段部が形成されていることを規定している。これにより、内段部上にセンサ内側に放射される音波を吸収する吸収材を載置することができる。また、センサ筐体は、外段部及び内段部が形成される部位を除いて、同じ肉厚で形成している。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態の超音波センサを図面を用いて説明する。
図1は、本発明の超音波センサであり、その構造を平面図及び側面図を用いて示している。符号1は円形平板形状の圧電振動子(PZT)であり、センサ筐体2の内底面20上の中心位置に接着剤等により固着されている。センサ筐体2は、横断面形状がほぼ円形であり、その内部は中空部21が形成され、一面が開口されている。センサ筐体2の外形は、開口部側がその左右で円弧状に一部が切り落されて外段部22が形成されている。中空部21は、センサ筐体2の外形に沿う形で内部が小判状に削られて形成されており、その軸方向のほぼ中間部には、内段部23が形成されている。従って外段部22及び内段部23は、小判形状の側面に沿って設けられている。これにより、センサ筐体2は、左右の内外段部22,23を形成している部分を除いて、ほぼ同じ肉厚で形成されている。このセンサ筐体2は、高弾性なアルミニウム等の軽合金又は合成樹脂等により形成される。
【0010】
センサ筐体2の中空部21内の圧電振動子1に接して空気層3が設けられ、この空気層3に接してセンサ内側に放射される音波を吸収するスポンジ、フェルト等よりなる吸収材4が内段部23上に載置され、更にこの吸収材4に接してシリコンゴム等の封止樹脂5を充填して、センサ筐体2を封止している。
また、超音波センサに電力を伝えるためのリード線6a,6bの各々が、圧電振動子1とセンサ筐体2の内側面にそれぞれ接続されている。
【0011】
振動面9は、圧電振動子1を固着したセンサ筐体2の底面20の一部で与えられる。図1の実施例においては、その平面図に示すように、振動面9の上下の部分の外形線8はセンサ筐体2の外形線7と同じ曲線で形成されている。図1の側面図に示すように振動面9の長軸方向が垂直方向寄与振動面10を、短軸方向が水平方向寄与振動面11を構成している。更に振動面9の円弧状の外形線8に沿って、底面20に振動面9の最も肉厚の薄い部分24が形成されている。
【0012】
このように構成された超音波センサの動作は、リード線6a,6bを介してある周波数(例えば40KHz )をもつ電気信号を送ると、圧電振動子1が振動し、それに伴いセンサ筐体2の底面20の一部である振動面9が振動し、超音波が空気中に放射される。この超音波は極短い時間(例えば40KHz の超音波を250μsec 間)送出する。その後送受信切替手段(図示せず)を用いて送信から受信に切り替える。空気中に放射された超音波は、対象物(障害物)に反射して戻ってきて振動面9を共振させたうえで電圧として取り出すことで受信が行われる。この送信した超音波が対象物にあたってから跳ね返って超音波センサで受信するまでの時間を測定することで、対象物との距離が判る。
【0013】
図2は、本発明の実施例の超音波センサと比較するための超音波センサの構造を示す図である。この比較例の超音波センサは、振動面9の長軸方向での振動面9の外形線8’がセンサ筐体2の当該部分の外形線7の曲率とは異なって形成されている以外は、図1の実施例の超音波センサの構造と同じである。
【0014】
図3は、上記2つの超音波センサを実験して比較した結果を表わすグラフである。横軸は角度を、縦軸は音圧を表わしている。3−1は、図2の比較例の構造をもつ超音波センサの水平指向性を示しており、3−2は、図1の本発明の実施例の構造をもつ超音波センサの水平指向性を示している。更に3−3は、比較例の超音波センサの垂直指向性を示しており、3−4は、実施例の超音波センサの垂直指向性を示している。このグラフから分るように、実施例の超音波センサは、比較例に比べて垂直方向が指向性が鋭くなっており、水平方向の指向性に関しては、実施例と比較例とでほとんど差がない。
【0015】
このように超音波センサの振動面9(超音波放射面側の筐体の肉薄の部分)の外形線8が、当該部分に対応するセンサ筐体2の外形線7と同一の曲率をもつ構造にすると、図2のようにセンサ筐体外形線7に対し振動面の外形線8’が曲率の異なる構造をもつ超音波センサに比較して、垂直指向性が鋭くなることが分る。従って、このような筐体構造をもつ超音波センサを車両用クリアランスソナーに採用することにより、垂直指向性が絞れ、障害物として扱わない方が望ましい対象物や路面を検出しなくなる。
【0016】
なお、図1の実施例では、超音波センサ筐体外形が円弧で形成されている場合について説明しているが、センサ筐体外形が円弧で形成されていない場合は、センサ筐体の外形に沿って振動面の外形を形成、即ちセンサ筐体の肉厚を均等にする構造でもよい。
【図面の簡単な説明】
【図1】本発明の実施例の超音波センサの平面図とそれぞれの側面図である。
【図2】比較例の超音波センサの平面図とそれぞれの側面図である。
【図3】実施例と比較例との超音波センサの比較実験結果を示すグラフである。
【符号の説明】
1…圧電振動子
2…センサ筐体
3…空気層
4…吸収材
5…封止樹脂
9…振動面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic sensor for use in a clearance sonar used in a device for detecting a possibility of contact with an obstacle when a vehicle is parked or turning in order to prevent an obstacle from colliding and warning a driver. About.
[0002]
[Prior art]
There is an ultrasonic clearance sonar that issues a warning based on the distance between the vehicle and the obstacle and alerts the driver. As this sensor, a drip-proof ultrasonic sensor is used. By the way, regarding the use of ultrasonic sensors in vehicles, it is desirable not to warn the road surface and the parking curb on the road surface as an obstacle, so the ultrasonic wave transmission / reception range in the horizontal direction is wide and the ultrasonic wave transmission / reception in the vertical direction is also wide. The directivity in the vertical direction is narrowed down with respect to the directivity characteristic that narrows the wave range, that is, the directivity in the horizontal direction. In order to obtain such directivity, a horn is conventionally attached to the sensor housing, and such directivity is achieved by this horn.
[0003]
However, in an ultrasonic sensor equipped with such a horn, rainwater, earth and sand, dust, etc. may remain between the sensor housing and the horn and become clogged, causing the ultrasonic sensor to malfunction. It was. Further, when attached to a vehicle or the like, the horn protrudes from the outer surface of the vehicle, for example, a bumper, so that the appearance is impaired. Furthermore, there is a problem of ensuring the mounting accuracy for attaching the horn to the sensor housing so as not to affect the directivity.
[0004]
Therefore, in recent years, a clearance sonar having a structure without a horn has been developed in order to improve the appearance, and as such, there is an ultrasonic transducer as disclosed in JP-A-9-284896. In this ultrasonic transducer, the shape of the hollow portion of the sensor housing is rectangular or oval in cross-sectional view, and the thickness of the side surface of the housing is larger than the thickness of the bottom surface as described above. Such directivity characteristics are obtained. That is, in order to narrow the directivity in the vertical direction and widen the directivity in the horizontal direction, a hollow shape that can obtain a vibration mode having an elliptical shape that is long along the long axis direction of the hollow portion and short along the short axis direction. I have to. However, simply having a rectangular or oval vibrating surface as in this ultrasonic transducer does not reach the target narrow directivity when applied to a vehicle clearance sonar, and the road surface and objects on the road surface ( For example, there is a problem of detecting a curb for parking).
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems, and its purpose is to further reduce the directivity of the ultrasonic sensor, and to detect the road surface and the parking curb on the road surface even when used in a vehicle clearance sonar. It is an object of the present invention to provide an ultrasonic sensor that can correctly determine an obstacle.
[0006]
[Means for Solving the Problems]
The inventor has paid attention to the shape of the vibration surface and the outer shape of the housing of the ultrasonic sensor, and has found that bringing the shape of the vibration surface closer to the outer shape of the housing narrows the directivity.
The present invention provides an ultrasonic sensor described in each claim as a means for solving the above-mentioned problems.
[0007]
The ultrasonic sensor according to claim 1 is an ultrasonic sensor including a sensor housing having one surface opened and having a hollow portion and a bottom surface, and a piezoelectric vibrator housed in the hollow portion and disposed on the bottom surface. The opening side of the sensor housing is cut off in a circular arc shape on the left and right sides to form an oval outer shape in cross section, and the hollow portion is an oval outer shape line on the opening side of the sensor housing. The cross-sectional shape of the ultrasonic sensor is similarly oval, so that the vibration surface of the ultrasonic sensor provided by a part of the bottom surface of the sensor casing is the opening side of the sensor casing. It is formed along the outer shape line, and the outer shape line on the opening side of the sensor housing has a curvature, and the outer shape line of the vibration surface has the same curvature, and is equipped with a clearance sonar. The outline of the vibration surface on the side that contributes to the vertical direction of the vehicle's road surface is the sensor housing. The contour of the thinnest part of the vibration surface on the side that contributes to the vertical direction of the road surface of the vehicle equipped with the clearance sonar is the same as the curvature of the contour line on the vibration surface side of the sensor housing. It is formed in a shape along the contour line on the vibration surface side, and the contour line of the thinnest portion of the vibration surface and the contour line on the vibration surface side of the sensor housing have the same curvature. As a result, the directivity of ultrasonic waves can be narrowed. In addition, by using an ultrasonic sensor capable of narrowing the directivity in the vertical direction for the vehicle clearance sonar, it is possible to prevent detection of a parking curb that is preferably not handled as an obstacle. Further, the outline of the vibration surface, the sensor housing of that it has a curvature the same curvature outline, easily vibrates distance and the thickness of the sensor housing becomes uniform vibration plane end from the vibration surface center It has a structure. Furthermore, the thinnest part of the vibration surface is formed along the inside of the outline of the vibration surface, so that the vibration surface is more easily vibrated.
[0008]
In the second and fourth aspects, the thickness formed by the outer shape of the vibration surface and the outer shape on the vibration surface side of the sensor housing is made uniform, so that the outer shape of the sensor housing is not formed by an arc. However, the thickness is uniform along the outer shape, and the vibration surface end is easy to vibrate as in the case of the circular arc.
According to a third aspect of the present invention, the sensor casing is cut off in a circular arc shape on the left and right sides on the opening side to form an outer step portion, and the hollow portion has an oval side surface at an intermediate portion in the axial direction. It is defined that the inner step portion is formed along the line. Thereby, the absorber which absorbs the sound wave radiated | emitted inside a sensor can be mounted on an inner step part. Moreover, the sensor housing is formed with the same thickness except for the part where the outer step portion and the inner step portion are formed.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an ultrasonic sensor according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows an ultrasonic sensor according to the present invention, and its structure is shown using a plan view and a side view. Reference numeral 1 denotes a circular flat plate piezoelectric vibrator (PZT), which is fixed to the center position on the inner bottom surface 20 of the sensor housing 2 with an adhesive or the like. The sensor housing 2 has a substantially circular cross-sectional shape, and a hollow portion 21 is formed inside thereof, and one surface is opened. The outer shape of the sensor housing 2 is cut off in a circular arc shape on the left and right sides of the opening portion to form an outer step portion 22. The hollow portion 21 is formed by cutting the inside of the sensor casing 2 in a shape that conforms to the outer shape of the sensor housing 2, and an inner step portion 23 is formed in a substantially intermediate portion in the axial direction. Therefore, the outer step portion 22 and the inner step portion 23 are provided along the side surfaces of the oval shape. Thereby, the sensor housing | casing 2 is formed in the substantially same thickness except the part which forms the left and right inner and outer step part 22,23. The sensor housing 2 is formed of a light alloy such as highly elastic aluminum or a synthetic resin.
[0010]
An air layer 3 is provided in contact with the piezoelectric vibrator 1 in the hollow portion 21 of the sensor housing 2, and an absorbent 4 made of sponge, felt or the like that absorbs sound waves radiated inside the sensor in contact with the air layer 3. Is placed on the inner step portion 23 and is further in contact with the absorbent material 4 and filled with a sealing resin 5 such as silicon rubber to seal the sensor housing 2.
In addition, each of the lead wires 6 a and 6 b for transmitting electric power to the ultrasonic sensor is connected to the piezoelectric vibrator 1 and the inner surface of the sensor housing 2.
[0011]
The vibration surface 9 is provided by a part of the bottom surface 20 of the sensor housing 2 to which the piezoelectric vibrator 1 is fixed. In the embodiment of FIG. 1, the outline 8 of the upper and lower portions of the vibration surface 9 is formed by the same curve as the outline 7 of the sensor housing 2 as shown in the plan view. As shown in the side view of FIG. 1, the major axis direction of the vibration surface 9 constitutes the vertical contribution vibration surface 10, and the minor axis direction constitutes the horizontal contribution vibration surface 11. Further, the thinnest portion 24 of the vibration surface 9 is formed on the bottom surface 20 along the arcuate outline 8 of the vibration surface 9.
[0012]
The operation of the ultrasonic sensor configured in this way is as follows. When an electrical signal having a certain frequency (for example, 40 KHz) is sent via the lead wires 6a and 6b, the piezoelectric vibrator 1 vibrates, and accordingly, the sensor housing 2 The vibration surface 9 which is a part of the bottom surface 20 vibrates, and ultrasonic waves are radiated into the air. This ultrasonic wave is transmitted for an extremely short time (for example, 40 KHz ultrasonic wave for 250 μsec). Thereafter, the transmission / reception switching means (not shown) is used to switch from transmission to reception. The ultrasonic wave radiated into the air is reflected by the object (obstacle) and returned to resonate the vibration surface 9, and then received as a voltage to be received. The distance from the object can be determined by measuring the time until the transmitted ultrasonic wave bounces off the object and is received by the ultrasonic sensor.
[0013]
FIG. 2 is a diagram showing the structure of an ultrasonic sensor for comparison with the ultrasonic sensor of the embodiment of the present invention. The ultrasonic sensor of this comparative example is formed except that the outline 8 ′ of the vibration surface 9 in the major axis direction of the vibration surface 9 is different from the curvature of the outline 7 of the portion of the sensor housing 2. The structure of the ultrasonic sensor of the embodiment of FIG. 1 is the same.
[0014]
FIG. 3 is a graph showing the result of an experiment and comparison of the two ultrasonic sensors. The horizontal axis represents the angle, and the vertical axis represents the sound pressure. 3-1 shows the horizontal directivity of the ultrasonic sensor having the structure of the comparative example of FIG. 2, and 3-2 shows the horizontal directivity of the ultrasonic sensor having the structure of the embodiment of the present invention of FIG. 1. Is shown. Furthermore, 3-3 shows the vertical directivity of the ultrasonic sensor of the comparative example, and 3-4 shows the vertical directivity of the ultrasonic sensor of the example. As can be seen from this graph, the ultrasonic sensor of the example has a sharper directivity in the vertical direction than the comparative example, and the directivity in the horizontal direction is almost the same between the example and the comparative example. Absent.
[0015]
As described above, the outer contour 8 of the vibration surface 9 of the ultrasonic sensor (the thin portion of the casing on the ultrasonic radiation surface side) has the same curvature as the outer contour 7 of the sensor casing 2 corresponding to the portion. Then, as shown in FIG. 2, it can be seen that the vertical directivity is sharper than the ultrasonic sensor having a structure in which the contour 8 'of the vibration surface differs from the curvature of the sensor housing contour 7 as shown in FIG. Therefore, by adopting an ultrasonic sensor having such a housing structure as a vehicle clearance sonar, the vertical directivity can be reduced, and objects and road surfaces that are preferably not handled as obstacles cannot be detected.
[0016]
In the embodiment of FIG. 1, the case where the outer shape of the ultrasonic sensor housing is formed in an arc is described. However, when the outer shape of the sensor housing is not formed in an arc, the outer shape of the sensor housing is used. A structure in which the outer shape of the vibration surface is formed along the wall, that is, the thickness of the sensor casing is uniform may be employed.
[Brief description of the drawings]
FIG. 1 is a plan view and a side view of an ultrasonic sensor according to an embodiment of the present invention.
FIG. 2 is a plan view and a side view of an ultrasonic sensor according to a comparative example.
FIG. 3 is a graph showing the results of a comparative experiment of ultrasonic sensors of an example and a comparative example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Piezoelectric vibrator 2 ... Sensor housing | casing 3 ... Air layer 4 ... Absorbing material 5 ... Sealing resin 9 ... Vibration surface

Claims (4)

一面が開口され、中空部及び底面を有する、横断面形状が略円形のセンサ筐体と、該センサ筐体の中空部内に収納され、該底面上に配置される圧電振動子とを備える超音波センサにおいて、
前記センサ筐体の開口側は、その左右が円弧状に切り落とされて、横断面形状が、小判状の外形となっており、また
前記中空部は、前記センサ筐体の開口側の小判状の外形線に沿う形で形成され、その横断面形状が同様に小判状となっており、これにより
前記センサ筐体の前記底面の一部で与えられる超音波センサの振動面が、前記センサ筐体の開口側の前記小判状の外形線に沿った形で形成されており、かつ前記センサ筐体の開口側の前記外形線が曲率を有していて、前記振動面の外形線が同一の曲率を有しており、クリアランスソナー搭載車両の路面垂直方向に寄与する側の前記振動面の前記外形線が、前記センサ筐体の振動面側の外形線の曲率と同一の曲率を有するようになっており、またクリアランスソナー搭載車両の路面垂直方向に寄与する側の前記振動面の最も薄い部分の外形線が、前記センサ筐体の振動面側の外形線に沿った形で形成されていて、前記振動面の最も薄い部分の外形線と前記センサ筐体の振動面側の外形線とが同一の曲率を有することを特徴とする超音波センサ。
An ultrasonic wave comprising a sensor housing having an opening on one side, a hollow portion and a bottom surface, and a substantially circular cross-sectional shape , and a piezoelectric vibrator housed in the hollow portion of the sensor housing and disposed on the bottom surface In the sensor
The opening side of the sensor casing is cut off in a circular arc shape on the left and right sides, and the cross-sectional shape is an oval outer shape.
The hollow portion is formed in a shape along an oval outline on the opening side of the sensor casing, and the cross-sectional shape thereof is similarly oval,
The vibration surface of the ultrasonic sensor provided by a part of the bottom surface of the sensor housing is formed along the oblong outline on the opening side of the sensor housing, and the sensor housing The contour line on the opening side of the vehicle has a curvature, the contour line of the vibration surface has the same curvature, and the contour of the vibration surface on the side that contributes to the direction perpendicular to the road surface of the vehicle equipped with a clearance sonar The line has the same curvature as that of the contour line on the vibration surface side of the sensor casing, and the thinnest portion of the vibration surface on the side contributing to the road surface vertical direction of the vehicle equipped with the clearance sonar The contour line is formed along the contour line on the vibration surface side of the sensor housing, and the contour line of the thinnest portion of the vibration surface and the contour line on the vibration surface side of the sensor housing are the same. An ultrasonic sensor having a curvature of
クリアランスソナー搭載車両の路面垂直方向に寄与する側の前記振動面の最も薄い部分の振動面の外形と、前記センサ筐体の振動面側の外形とが形成する肉厚が均一であることを特徴とする請求項に記載の超音波センサ。The outer shape of the vibration surface of the thinnest vibration surface on the side that contributes to the vertical direction of the road surface of the vehicle equipped with the clearance sonar and the outer shape of the vibration surface side of the sensor housing are uniform in thickness. The ultrasonic sensor according to claim 1 . 前記センサ筐体の外形は、開口側でその左右で円弧状に一部が切り落されて外段部が形成されており、かつ前記中空部は、その軸方向の略中間部に、小判状の側面に沿って内段部が形成されていることを特徴とする請求項1に記載の超音波センサ。The outer shape of the sensor housing is cut off in a circular arc shape on the left and right sides on the opening side to form an outer step portion, and the hollow portion has an oval shape at a substantially middle portion in the axial direction. The ultrasonic sensor according to claim 1, wherein an inner step portion is formed along a side surface of the ultrasonic sensor. 前記センサ筐体は、左右の前記外段部及び前記内段部が形成されている部分を除いて、同じ肉厚で形成されていることを特徴とする請求項3に記載の超音波センサ。The ultrasonic sensor according to claim 3, wherein the sensor casing is formed with the same thickness except for a portion where the left and right outer step portions and the inner step portion are formed.
JP2000245210A 2000-08-11 2000-08-11 Ultrasonic sensor for vehicle clearance sonar Expired - Fee Related JP4274679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000245210A JP4274679B2 (en) 2000-08-11 2000-08-11 Ultrasonic sensor for vehicle clearance sonar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000245210A JP4274679B2 (en) 2000-08-11 2000-08-11 Ultrasonic sensor for vehicle clearance sonar

Publications (2)

Publication Number Publication Date
JP2002058091A JP2002058091A (en) 2002-02-22
JP4274679B2 true JP4274679B2 (en) 2009-06-10

Family

ID=18735778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000245210A Expired - Fee Related JP4274679B2 (en) 2000-08-11 2000-08-11 Ultrasonic sensor for vehicle clearance sonar

Country Status (1)

Country Link
JP (1) JP4274679B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021005204T5 (en) 2020-10-02 2023-08-10 Aisin Corporation Ultrasonic generator, transducer and object detector

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4468262B2 (en) 2005-08-01 2010-05-26 株式会社日本自動車部品総合研究所 Obstacle detection device
JP2007147319A (en) * 2005-11-24 2007-06-14 Nippon Soken Inc Obstacle detection device
DE102008040905A1 (en) 2008-07-31 2010-02-04 Robert Bosch Gmbh ultrasonic sensor
JP5195587B2 (en) 2009-03-31 2013-05-08 株式会社デンソー Ultrasonic sensor
CN102768355B (en) * 2011-05-05 2014-06-25 同致电子企业股份有限公司 Ultrasonic sensor
KR101491462B1 (en) * 2014-01-29 2015-02-25 아이에스테크놀로지 주식회사 Ultrasonic transducer for long-distance
KR101707885B1 (en) * 2016-07-25 2017-02-17 현대자동차주식회사 Apparatus of acoustic wave sensor
JP6611992B2 (en) * 2017-05-16 2019-11-27 三菱電機株式会社 Ultrasonic sensor device and obstacle detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021005204T5 (en) 2020-10-02 2023-08-10 Aisin Corporation Ultrasonic generator, transducer and object detector

Also Published As

Publication number Publication date
JP2002058091A (en) 2002-02-22

Similar Documents

Publication Publication Date Title
KR100975517B1 (en) Ultrasonic transducer
US6250162B1 (en) Ultrasonic sensor
US7902968B2 (en) Obstacle detection device
US5446332A (en) Ultrasonic transducer
US7973455B2 (en) Ultrasonic sensor having stable anisotropy in directional properties
JP4468262B2 (en) Obstacle detection device
US7461555B2 (en) Ultrasonic sensor
JP3469243B2 (en) Sound transmission and reception equipment
JP2007142967A (en) Ultrasonic sensor
JP3552605B2 (en) Ultrasonic transducer
JP4274679B2 (en) Ultrasonic sensor for vehicle clearance sonar
WO2016175327A1 (en) Ultrasonic sensor
KR100789764B1 (en) Ultrasonic transmitter-receiver
JP2001013239A (en) Ultrasonicvibrator
JP4019799B2 (en) Ultrasonic sensor
JP2002262383A (en) Ultrasonic wave vibrator
JP4023061B2 (en) Ultrasonic transducer
JP4304556B2 (en) Ultrasonic sensor
JP2011055292A (en) Ultrasonic transceiver
JP3659153B2 (en) Ultrasonic transducer
JP3367446B2 (en) Drip-proof ultrasonic transducer
JP2001337172A (en) Ultrasonic detector
JPH05346461A (en) Ultrasonic sensor
JP7413921B2 (en) Ultrasonic sensor mounting structure
JP5340432B2 (en) Ultrasonic sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090303

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees