JP4274505B2 - Sugar liquid purification method and apparatus - Google Patents

Sugar liquid purification method and apparatus Download PDF

Info

Publication number
JP4274505B2
JP4274505B2 JP33966499A JP33966499A JP4274505B2 JP 4274505 B2 JP4274505 B2 JP 4274505B2 JP 33966499 A JP33966499 A JP 33966499A JP 33966499 A JP33966499 A JP 33966499A JP 4274505 B2 JP4274505 B2 JP 4274505B2
Authority
JP
Japan
Prior art keywords
exchange resin
liquid
sugar solution
treated
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33966499A
Other languages
Japanese (ja)
Other versions
JP2001149100A (en
Inventor
友二 浅川
義宣 田嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP33966499A priority Critical patent/JP4274505B2/en
Publication of JP2001149100A publication Critical patent/JP2001149100A/en
Application granted granted Critical
Publication of JP4274505B2 publication Critical patent/JP4274505B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Saccharide Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、効率的な塩類の除去ができ、薬品の使用量を大幅に削減できる糖液の精製法及び装置に関するものである。
【0002】
【従来の技術】
糖液の精製は、製造方法に由来した電解質、非電解質の広範囲に亘る不純物を除去するために行われるものである。現在、糖液中の塩類を除去するには、(1) 結晶化による不純物除去方法、(2) 薬品を用いた塩類の除去方法、(3) イオン交換樹脂を用いたイオン交換方法がある。(1) の結晶化による不純物除去方法では、結晶化に際し、水を蒸発させるために多大なエネルギーを必要とする。また、(2) の薬剤を用いた塩類の除去方法では、薬剤の注入設備の設置によるコスト上昇、薬剤の管理あるいは薬剤の廃液処理などの問題がある。従って、(3) のイオン交換樹脂を用いたイオン交換方法が通常採用されている。このイオン交換方法には、糖液の精製を目的とした処理と、糖液の脱色を目的とした処理がある。
【0003】
従来から糖液を精製する場合、原糖工場では炭酸飽充などの精製工程と結晶化工程で原液中に含まれる塩類を除去していた。ビート糖工場、精製糖工場、でんぷん糖工場では炭酸飽充などの精製工程とイオン交換精製工程を組み合わせて原液中に含まれる塩類を除去していた。
【0004】
【発明が解決しようとする課題】
しかしながら、従来のビート工場やでんぷん糖工場におけるイオン交換精製工程ではイオン交換樹脂を再生する再生剤の使用量が多いという問題がある。近年、イオン交換樹脂装置の前段にクロマト装置を設置し、イオン交換樹脂の負荷を低減する方法が提案されているが、原料糖液をクロマト装置にかけると塩類の低減が図れる反面、糖液濃度が薄まり結晶時に蒸発させる水の量が多くなるという問題を生じる。また、電気透析装置で塩類を除去する方法も考えられるが、アニオン交換膜の有機物汚染により通電ができなくなるなどの問題があり、実用上使用できる技術ではない。
【0005】
一方、工業用水、市水などの原水を純水などにする簡便な脱塩方法として、通液型コンデンサを使用する方法が提案されている。通液型コンデンサは、静電力を利用して被処理液中のイオン成分の除去と回収(再生)を行うもので、その原理は以下の通りである。すなわち、通液型コンデンサは、その保有する一対の電極に直流電圧を印加して、通液中の被処理液のイオン成分、あるいは電荷のある粒子、有機物を一対の電極に吸着することにより除去し、イオン成分が除去された脱塩液を得て、その後一対の電極を短絡あるいは直流電源を逆接続して、一対の電極に吸着している前記イオン成分を離脱させ、一対の電極を再生しつつ除去イオン成分を通液中の被処理液と共に濃縮液として回収することを繰り返し行うものである。しかし、上記の如く、通液型コンデンサは工業用水、市水などの原水の脱塩に使用できることは知られているものの、糖液の精製に使用することについては知られていない。
【0006】
従って、本発明の目的は、糖液濃度を薄めることなく効率的な塩類の除去ができ、薬品の使用量を大幅に削減できる糖液の精製法及び装置を提供することにある。
【0007】
【課題を解決するための手段】
かかる実情において、本発明者らは鋭意検討を行った結果、原料糖液を通液型コンデンサで処理するか、又は原料糖液を通液型コンデンサに通液して、原料糖液中に含まれる塩類を粗取りし、次いで、通液型コンデンサの精製液を更にイオン交換樹脂装置で処理すれば、糖液濃度を薄めることなく効率的な塩類の除去ができ、薬品の使用量を大幅に削減できることを見出し、本発明を完成するに至った。
【0008】
すなわち、本発明(1)は、原料糖液を、一対の電極に直流電圧を印加して通液中の被処理液のイオン成分を除去し、前記一対の電極を短絡あるいは直流電源を逆接続して、除去されたイオン成分を通液中の被処理液又は回収用水に回収する通液型コンデンサで処理することを特徴とする糖液の精製法を提供するものである。かかる構成を採ることにより、糖液濃度を薄めることなく、薬剤を使用することなく再生が行え、この再生も短時間で行えるため半連続して精製液を得ることができる。
【0009】
また、本発明(2)は、前記通液型コンデンサの精製液を、強塩基性アニオン交換樹脂で処理することを特徴とする前記(1)記載の糖液の精製法を提供するものである。かかる構成を採ることにより、前段の通液型コンデンサは前記発明と同様の効果を奏する他、後段の強塩基性アニオン交換樹脂で糖液が脱色されるため、脱色された精製液を得ることができる。
【0010】
また、本発明(3)は、前記通液型コンデンサの精製液を、強酸性カチオン交換樹脂と弱塩基性アニオン交換樹脂を混合したイオン交換樹脂で処理するか、又は強酸性カチオン交換樹脂で処理し、次いで弱塩基性アニオン交換樹脂で処理することを特徴とする前記(1)記載の糖液の精製法を提供するものである。かかる構成を採ることにより、特に、でんぷん糖において、アルカリ分解又はアルカリ異性化を起こすことなく精製液を効率的に得ることができ、且つ40℃以上の温度で処理することができるため、糖液を微生物の繁殖による腐敗から防止できる。
【0011】
また、本発明(4)は、前記通液型コンデンサの精製液を、強塩基性アニオン交換樹脂と弱酸性カチオン交換樹脂を混合したイオン交換樹脂で処理するか、又は強塩基性アニオン交換樹脂で処理し、次いで弱酸性カチオン交換樹脂で処理することを特徴とする前記(1)記載の糖液の精製法を提供するものである。かかる構成を採ることにより、特に、ショ糖において、酸分解を起こすことなく精製液を効率的に得ることができ、、且つ40℃以上の温度で処理することができるため、糖液を微生物の繁殖による腐敗から防止できる。
【0012】
また、本発明(5)は、一対の電極に直流電圧を印加して通液中の被処理液のイオン成分を除去し、前記一対の電極を短絡あるいは直流電源を逆接続して、除去されたイオン成分を通液中の被処理液又は回収用水に回収する通液型コンデンサと、強塩基性アニオン交換樹脂が充填されたイオン交換樹脂装置とを備え、原料糖液をこの順で通液することを特徴とする糖液の精製装置を提供するものである。かかる構成を採ることにより、前記(2)の発明を確実に実施できる。
【0013】
また、本発明(6)は、一対の電極に直流電圧を印加して通液中の被処理液のイオン成分を除去し、前記一対の電極を短絡あるいは直流電源を逆接続して、除去されたイオン成分を通液中の被処理液又は回収用水に回収する通液型コンデンサと、強酸性カチオン交換樹脂と弱塩基性アニオン交換樹脂が充填されたイオン交換樹脂装置とを備え、原料糖液をこの順で通液することを特徴とする糖液の精製装置を提供するものである。かかる構成を採ることにより、前記(3)の発明を確実に実施できる。
【0014】
また、本発明(7)は、一対の電極に直流電圧を印加して通液中の被処理液のイオン成分を除去し、前記一対の電極を短絡あるいは直流電源を逆接続して、除去されたイオン成分を通液中の被処理液又は回収用水に回収する通液型コンデンサと、強塩基性アニオン交換樹脂と弱酸性カチオン交換樹脂が充填されたイオン交換樹脂装置とを備え、原料糖液をこの順で通液することを特徴とする糖液の精製装置を提供するものである。かかる構成を採ることにより、前記(4)の発明を確実に実施できる。
【0015】
【発明の実施の形態】
本発明の第1の糖液の精製法は、原料糖液を、少なくとも一対の電極に直流電圧を印加して通液中の被処理液のイオン成分を除去し、前記一対の電極を短絡あるいは直流電源を逆接続して、除去されたイオン成分を通液中の被処理液又は回収用水に回収する通液型コンデンサで処理するものである。
【0016】
糖液としては、ぶどう糖、ぶどう糖と果糖を含む異性化糖、てん菜糖(ビート糖)、水飴などのでんぷん糖、ソルビット、乳糖、ショ糖、各種オリゴ糖などが挙げられる。
【0017】
通液型コンデンサとしては、特に制限されないが、カラム中に金属、黒鉛等の集電極に高表面積活性炭を接してなる一対の電極を収容し、これら一対の電極間に非導電性のスペーサを介在させたものである。そして、この通液型コンデンサは、一対の電極に直流電源を接続し、直流電圧、例えば、1〜2Vを印加した状態で、カラム中にイオンを含有する被処理液を通すと、一対の電極がイオンを吸着して、イオン成分が除去され精製液を得ることができ、その後、一対の電極を短絡させると、電気的に中和し吸着していたイオンが一対の電極から離脱し、一対の電極を再生させると共に、濃厚なイオン成分を回収した濃縮液を得ることができるものである。尚、一対の電極間に印加する電圧は任意に設定することができる。
【0018】
このような通液型コンデンサを有する第1の糖液の精製装置の一例を図1を参照して説明する。図1は、本第1の糖液の精製装置のフロー図である。図1中、通液型コンデンサ1の上流側は供給配管7により途中の絶対孔径10μm の安全フィルタ4を介して被処理水を定量的に供給するための送液ポンプ3に接続している。通液型コンデンサ1の下流側は排出配管8により液質監視装置5に接続し、更に液質監視装置5の排出管9は切替え弁13を有する精製液排出管11と切替え弁12を有する濃縮液排出管10の二つに分岐している。なお、本第1の糖液の精製装置20では記号2及び14が省略されたものである。
【0019】
通液型コンデンサ1は、少なくとも一対の電極30、31を内蔵し、電極30はスイッチ32を介して直流電源34の陰極に接続されている。また、一対の電極30、31はスイッチ35を介して互いに接続されている。そして、これらの図1に表示の機器類の運転制御は、シーケンサー、マイコン等の公知の制御機器で行われ、その詳細な運転制御としては、例えば、後述の通液型コンデンサの通液方法が挙げられる。
【0020】
図1において、液質監視装置5は、液質を測定するもので、イオン除去の程度を正確に把握できる指標の測定機器であれば特に限定されず、導電率計、比抵抗計が挙げられ、本実施の形態では導電率計である。
【0021】
次に、第1の糖液の精製装置を使用した精製方法を説明する。図1中、送液ポンプ3を駆動すると、糖液である被処理液は、安全フィルタ4を通って供給配管7により通液型コンデンサ1に供給される。通液型コンデンサ1ではスイッチ32をオンして一対の電極30、31に直流電圧を印加し、切替え弁13を開、切替え弁12を閉の状態とし、液質監視装置5を監視状態にする。この段階で通液型コンデンサ1は精製工程(イオン成分除去工程)に入り、被処理液は通液型コンデンサ1の一対の電極30、31にイオン成分を吸着され、イオン成分が除去された液は、精製液排出配管11により流出される。なお、この工程の最初に流出する水や、糖濃度の低い糖液は糖液全体の薄まりを防ぐために排液としてもよい。
【0022】
この状態が継続すると、一対の電極30、31にイオン成分が徐々に吸着され飽和状態に近づき、イオン成分除去性能が低下し、徐々に精製液の導電率が上昇する。液質監視装置5により測定された導電率が精製液採液不可値になると、切替え弁13を閉、切替え弁12を開の状態として、直ちにスイッチ32をオフして通液型コンデンサ1への直流電圧の印加を止め、更にスイッチ35をオンして一対の電極30、31間を短絡、あるいは直流電源34を逆接続させ、吸着したイオン成分を一対の電極30、31から離脱させ、被処理液側に移動させて一対の電極30、31を再生する。すなわち、通液型コンデンサ1は濃縮工程(イオン成分回収工程)に入り、イオン成分が濃縮された濃縮液は濃縮液排出配管10により系外に排出される。なお、精製工程(イオン成分除去工程)が終わる直前に精製の不十分な装置内糖液を水などの回収用水で置換回収してから濃縮工程(イオン成分回収工程)に入る方が好ましい。
【0023】
上記精製工程(除去工程)及び濃縮工程(回収工程)を1サイクルとし、このサイクルを繰り返して行うことにより、被処理液からイオン成分が除去された精製液及び前記除去されたイオン成分を回収したイオン濃度の高い濃縮液を得ると共に、通液型コンデンサ1の一対の電極30、31の飽和・再生の繰り返しを図るものである。
【0024】
このような通液型コンデンサは、特開平5−258992号公報に開示されており、この公知例の一例では、カラムに被処理液を導入する入口と、イオン成分が除去された液を排出する出口とを設け、そのカラム内に上記一対の電極を収容している。これら一対の電極は、双方とも導電性支持層に高表面積導電性表面層が支持され、更に非導電性多孔のスペーサが含まれている。従って、一対の電極は、一方の電極の非導電性多孔のスペーサ、導電性支持層、高表面積導電性表面層、他方の電極の非導電性多孔のスペーサ、導電性支持層、高表面積導電性表面層の6層構造となっている。この一対の電極は、中空の多孔質中心管に高表面積導電性表面層を内側にして巻かれてカートリッジを形成する。一方の電極の導電性支持層及び他方の電極の導電性支持層からはリード線がカラム外に延出され、直流電源に接続され、カラムの入口には被処理液供給源が接続され、出口にはイオン成分が除去された脱塩液とイオン成分を回収した濃縮液とを分ける切替え弁が接続されている。
【0025】
更に、通液型コンデンサの他の構造例としては、非導電性多孔質通液性シートからなるスペーサを挟んで、高比表面積活性炭を主材とする活性炭層である一対の電極を配置し、該電極の外側に一対の集電極を配置し、更に該集電極の外側に押さえ板を配置した平板形状とし、集電極に直流電源を接続し、更に集電極間の短絡又は直流電源の逆接続を行うものであってもよい。また、電極と集電極とは一体化されたものでもよい。
【0026】
本発明の第2の糖液の精製法は、原料糖液を、前記と同様の通液型コンデンサで処理し、該通液型コンデンサの精製液を、更に強塩基性アニオン交換樹脂で処理するものである。すなわち、第2の糖液の精製装置は、第1の糖液の精製装置の後段に強塩基性アニオン交換樹脂装置を設置した点にあり、図1中、記号2が強塩基性アニオン交換樹脂装置であり、通液型コンデンサ1に精製液排出配管11で接続される。記号14は流出配管である。
【0027】
強塩基性アニオン交換樹脂装置は糖液の脱色を目的に設置される。強塩基性アニオン交換樹脂の具体例としては、例えば、アンバーライト(登録商標、以下同様)IRA-402BL 、IRA-900 、IRA-411S、XT-5007 、ダイヤイオン(登録商標、以下同様)PA312 などが例示される。この強塩基性アニオン交換樹脂は、特に多孔性のR−Cl- 形の強塩基性アニオン交換樹脂とすることが、供給液が通常70℃の高温であり、これに耐え得る耐熱性を有する点で好ましい。通液型コンデンサの精製液を強塩基性アニオン交換樹脂で処理する温度以外の条件としては、特に制限されず、通常使用される条件である。
【0028】
第2の糖液の精製法においては、前段の通液型コンデンサの精製工程から精製液を得、次いで、この精製液が後段の強塩基性アニオン交換樹脂装置に通液されるから、該強塩基性アニオン交換樹脂装置では、色素成分が除去されて脱色液を得ることができる。
【0029】
第3の糖液の精製法は、原料糖液を、前記と同様の通液型コンデンサで処理し、該通液型コンデンサの精製液を、更に強酸性カチオン交換樹脂と弱塩基性アニオン交換樹脂を混合したイオン交換樹脂で処理するか、又は強酸性カチオン交換樹脂で処理し、次いで弱塩基性アニオン交換樹脂で処理するものである。すなわち、第3の糖液の精製装置は、第2の糖液の精製装置の後段に設置された強塩基性アニオン交換樹脂装置の代わりに、強酸性カチオン交換樹脂と弱塩基性アニオン交換樹脂とが充填されたイオン交換樹脂装置を設置した点にある。
【0030】
第3の糖液の精製法における糖液としては、前記第1の糖液の精製法における例示ものと同様のものが挙げられ、このうち、でんぷん糖又は乳糖が、後述の如くアルカリ分解を起こすことなく精製できる点で好適である。
【0031】
ここで使用するイオン交換樹脂装置は、強酸性カチオン交換樹脂と弱塩基性アニオン交換樹脂とが混合された混床形、あるいは上流側に強酸性カチオン交換樹脂を、下流側に弱塩基性アニオン交換樹脂を充填した2層形が使用される。
【0032】
強酸性カチオン交換樹脂の具体例としては、例えば、アンバーライトIR-120B 、アンバーライト200C、ダイヤイオンSKIBなどが例示される。また、弱塩基性アニオン交換樹脂の具体例としては、例えば、アンバーライトIRA-68、IRA-93ZU、IRA-94S 、ダイヤイオンWA30などが例示される。通液型コンデンサの精製液を当該イオン交換樹脂で処理する条件としては、特に制限されず、通常使用される条件である。
【0033】
第3の糖液の精製法においては、前段の通液型コンデンサで塩類の粗取りを行い、次いで、後段の上記イオン交換樹脂が充填されたイオン交換樹脂装置で残存する塩類を除去する。前段における塩類の除去率及び後段における塩類の除去率は特に制限されないが、前段の通液型コンデンサで原料糖液に含まれる50〜90%、好ましくは70〜90%の塩類を除去し、次いで、後段のイオン交換樹脂装置で残存する塩類を除去することが、前段の通液型コンデンサの電気的に効率的な運転ができると共に、後段のイオン交換樹脂装置の負荷がそれほど大きくはならず、再生又は新品との交換までの期間が延びるという両者の利点を発揮できる。また、後段では、強塩基性アニオン交換樹脂を使用しない方法であるため、糖の異性化反応や分解反応の恐れがなく、また、弱塩基性アニオン交換樹脂を使用しているために処理量が強塩基性アニオン交換樹脂を使用する場合に比べて大幅に優れる、という効果を奏する。
【0034】
第4の糖液の精製法は、原料糖液を、前記と同様の通液型コンデンサで処理し、該通液型コンデンサの精製液を、更に強塩基性アニオン交換樹脂と弱酸性カチオン交換樹脂を混合したイオン交換樹脂で処理するか、又は強塩基性アニオン交換樹脂で処理し、次いで弱酸性カチオン交換樹脂で処理するものである。すなわち、第4の糖液の精製装置は、第2の糖液の精製装置の後段に設置された強塩基性アニオン交換樹脂装置の代わりに、強塩基性アニオン交換樹脂と弱酸性カチオン交換樹脂が充填されたイオン交換樹脂装置を設置した点にある。
【0035】
第4の糖液の精製法における、糖液としては、前記第1の糖液の精製法における例示のものと同様のものが挙げられ、このうち、ショ糖やオリゴ糖、特にラフィノース、ケストース、ニストース、ガラクトシルスクロースなどのショ糖単位を含むオリゴ糖が後述の如く酸分解を起こすことなく精製できる点で好適である。
【0036】
ここで使用するイオン交換樹脂装置は、強塩基性アニオン交換樹脂と弱酸性カチオン交換樹脂とが混合された混床形、あるいは上流側に強塩基性アニオン交換樹脂を、下流側に弱酸性カチオン交換樹脂を充填した2層形が使用される。
【0037】
強塩基性アニオン交換樹脂の具体例としては、例えば、アンバーライトIRA402BLやダイヤイオンPA308 などが挙げられる。また、弱酸性カチオン交換樹脂の具体例としては、例えば、アンバーライトIRC-76、IRC-50、レバチット( 登録商標 )CNP-80、ダイヤイオンWK11などが例示される。通液型コンデンサの精製液を更に当該イオン交換樹脂で処理する条件としては、特に制限されず、通常使用される条件である。
【0038】
第4の糖液の精製法においては、前段の通液型コンデンサで塩類の粗取りを行い、次いで、後段の上記イオン交換樹脂が充填されたイオン交換樹脂装置で残存する塩類を除去する。前段における塩類の除去率及び後段における塩類の除去率は、第3の糖液の精製法と同様に、前段の通液型コンデンサで原料糖液に含まれる50〜90%、好ましくは70〜90%の塩類を除去し、次いで、後段のイオン交換樹脂装置で残存する塩類を除去することが、前段の通液型コンデンサの電気的に効率的な運転ができると共に、後段のイオン交換樹脂装置の負荷がそれほど大きくはならず、再生又は新品との交換までの期間が延びるという両者の利点を発揮できる。また、後段では、強酸性アニオン交換樹脂を使用しない方法であるため、ショ糖分子の加水分解を防止するという効果を奏する。
【0039】
また、上記イオン交換処理に加えて、又は上記イオン交換処理に代えて、従来のビート工場で行われている低温通液法、すなわち、処理温度が40℃未満、好適には4〜10℃の温度下、強酸性カチオン交換樹脂と弱塩基性アニオン交換樹脂を混合したイオン交換樹脂で処理するか、又は強酸性カチオン交換樹脂で処理し、次いで弱塩基性アニオン交換樹脂で処理する方法を使用することもできる。これにより、強酸性カチオン交換樹脂を使用したとしても、低温での処理であるため、酸分解を起こすことなく精製できる。
【0040】
本発明において、通液型コンデンサは一対の電極に直流電圧を印加したり、一対の電極を短絡あるいは直流電源を逆接続するものであるが、一対の電極は少なくとも一対の電極の意味であり、複数の一対の電極を有し、これに直流電圧を印加したり、複数の一対の電極を短絡あるいは直流電源を逆接続するものであってもよい。また、通液型コンデンサの複数台を並列に設置して、精製液又は濃縮液を連続して得るようにしてもよい。
【0041】
また、本発明において、通液型コンデンサの前段に限外濾過膜装置又は活性炭装置を設置することもできる。これにより、原料糖液に含まれる色素成分、有機物成分などの汚れが予め除去されるから、通液型コンデンサの電極の有効面積を当初のまま保持でき、安定した塩類の除去が可能となる。
【0042】
【実施例】
次に、実施例を挙げて、本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
【0043】
実施例1
下記の原料糖液を被処理液とし、図1に示すようなフローを有する糖液精製装置を用いて、下記精製処理条件で精製処理した。なお、図1中、記号2は下記仕様のイオン交換樹脂装置である。
(精製処理条件)
・原料糖液;ビート糖液(Bx18.0wt/wt%、固形分中の灰分3.15% 、導電率2,800 μS/cm)
・通液型コンデンサの仕様及び運転条件
装置;関西熱化学社製
活性炭電極の総活性炭量;252g
印加電圧;直流1.2V
処理液流速;300ml/ 分
運転方法;導電率計により、排液の導電率を監視し、精製工程から精製率(脱塩率)が90%の精製液を得るように運転した。
・イオン交換樹脂装置;次の4塔カラムの直列接続装置で数値の順で処理した。
なお、実験的には、貯留された通液型コンデンサの精製液を連続して使用した。
(1) 強酸性カチオン交換樹脂塔(樹脂アンバーライトIR-124、容量2,000ml)
(2) 弱塩基性アニオン交換樹脂塔(樹脂アンバーライトIRA-478 、容量2,000ml)
(3) 強塩基性アニオン交換樹脂塔(樹脂アンバーライトIRA-402BL 、容量2,000 ml)
(4) 弱酸性カチオン交換樹脂塔(樹脂アンバーライトIRC-76、容量600ml)
温度条件;上記(1) 及び(2) は6℃の温度、上記(3) 及び(4) は60℃の温度
通液速度;10,000ml/ 時間
・評価方法;導電率5μS/cmの精製糖液を連続して得られる通液量を求めた。
【0044】
比較例1
通液型コンデンサの処理を省略した以外は、実施例1と同様にして行った。
【0045】
実施例1の通液型コンデンサの精製工程から得られた精製糖液の性状はBx18.0wt/wt%、固形分中の灰分0.2%であった。また、実施例1における通液量は360L、比較例1における通液量は30Lであり、実施例1は比較例1の12倍量の処理ができた。
【0046】
【発明の効果】
本発明によれば、糖液濃度を薄めることなく効率的な塩類の除去ができ、薬品の使用量を大幅に削減できる。
【図面の簡単な説明】
【図1】本発明の第1の糖液の精製装置の処理方法を示すフロー図である。
【符号の説明】
1 通液型コンデンサ
2 イオン交換樹脂装置
3 送液ポンプ
4 安全フィルタ
5 液質監視装置
7 供給配管
8、9 接続配管
10 濃縮液排出配管
11 精製液排出配管
12、13 切り替え弁
14 流出配管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for purifying a sugar solution that can efficiently remove salts and greatly reduce the amount of chemicals used.
[0002]
[Prior art]
The refinement of the sugar solution is carried out to remove impurities over a wide range of electrolytes and non-electrolytes derived from the production method. Currently, there are (1) a method for removing impurities by crystallization, (2) a method for removing salts using chemicals, and (3) an ion exchange method using an ion exchange resin to remove salts in a sugar solution. The impurity removal method by crystallization of (1) requires a great deal of energy to evaporate water during crystallization. In addition, the method (2) for removing salts using a chemical has problems such as cost increase due to the installation of a chemical injection facility, chemical management, or chemical waste liquid treatment. Therefore, the ion exchange method using the ion exchange resin (3) is usually employed. This ion exchange method includes a treatment for purifying a sugar solution and a treatment for decolorizing the sugar solution.
[0003]
Conventionally, when a sugar solution is purified, the raw sugar factory has removed salts contained in the stock solution through a purification process such as carbonation and a crystallization process. At the beet sugar factory, refined sugar factory, and starch sugar factory, the salt contained in the stock solution was removed by combining a purification process such as carbonation and an ion exchange purification process.
[0004]
[Problems to be solved by the invention]
However, there is a problem in that the amount of regenerant used to regenerate the ion exchange resin is large in the ion exchange purification process in the conventional beet factory or starch sugar factory. In recent years, a method has been proposed in which a chromatograph is installed in front of the ion exchange resin device to reduce the load on the ion exchange resin. However, if the raw sugar solution is applied to the chromatograph, salt can be reduced, but the concentration of the sugar solution This causes a problem that the amount of water to be evaporated at the time of crystallization is increased. Although a method of removing salts with an electrodialyzer is also conceivable, there is a problem that current cannot be supplied due to organic matter contamination of the anion exchange membrane, and this is not a practically usable technique.
[0005]
On the other hand, as a simple desalting method for converting raw water such as industrial water and city water into pure water, a method using a flow-through capacitor has been proposed. The liquid-passing capacitor uses an electrostatic force to remove and recover (regenerate) ionic components in the liquid to be treated, and its principle is as follows. In other words, a liquid-flowing capacitor is removed by applying a DC voltage to the pair of electrodes it holds and adsorbing ionic components, charged particles, or organic substances in the liquid to be treated to the pair of electrodes. To obtain a desalted solution from which the ionic components have been removed, and then short-circuit the pair of electrodes or reversely connect a DC power source to release the ionic components adsorbed on the pair of electrodes and regenerate the pair of electrodes. However, the removal ion component is repeatedly collected as a concentrated liquid together with the liquid to be treated in the liquid. However, as described above, although it is known that a liquid-flow condenser can be used for desalting raw water such as industrial water and city water, it is not known to be used for purification of sugar liquid.
[0006]
Accordingly, an object of the present invention is to provide a method and an apparatus for purifying a sugar solution that can efficiently remove salts without diluting the concentration of the sugar solution and can greatly reduce the amount of chemicals used.
[0007]
[Means for Solving the Problems]
In such a situation, the present inventors have intensively studied, and as a result, processed the raw sugar solution with a liquid condenser or passed the raw sugar liquid through the liquid condenser and included in the raw sugar liquid. If the salt is removed roughly, and then the purified liquid of the flow-through condenser is further processed with an ion exchange resin device, the salt can be removed efficiently without reducing the concentration of the sugar solution, greatly increasing the amount of chemical used. The present inventors have found that it can be reduced and have completed the present invention.
[0008]
That is, in the present invention (1), the raw sugar solution is applied to a pair of electrodes by applying a DC voltage to remove the ionic component of the liquid to be treated, and the pair of electrodes are short-circuited or a DC power source is reversely connected. Thus, the present invention provides a method for purifying a sugar solution, characterized in that the removed ionic component is treated with a flow-through condenser for collecting the removed ionic component into a liquid to be treated or water for collection. By adopting such a configuration, regeneration can be performed without diluting the sugar solution concentration and without using a drug, and since this regeneration can also be performed in a short time, a purified solution can be obtained semi-continuously.
[0009]
In addition, the present invention (2) provides the method for purifying a sugar solution according to the above (1), wherein the purified solution of the flow-through capacitor is treated with a strongly basic anion exchange resin. . By adopting such a configuration, the first-stage flow-through capacitor has the same effects as the above invention, and the sugar solution is decolorized by the second-stage strongly basic anion exchange resin, so that a decolored purified solution can be obtained. it can.
[0010]
Moreover, this invention (3) processes the refinement | purification liquid of the said flow-through capacitor | condenser with the ion exchange resin which mixed strong acid cation exchange resin and weakly basic anion exchange resin, or it processes with strong acid cation exchange resin. Then, a method for purifying a sugar solution according to the above (1) is provided, which is then treated with a weakly basic anion exchange resin. By adopting such a configuration, particularly in starch sugar, a purified solution can be efficiently obtained without causing alkali decomposition or alkali isomerization, and can be processed at a temperature of 40 ° C. or higher. Can be prevented from spoilage due to the propagation of microorganisms.
[0011]
Moreover, this invention (4) processes the refinement | purification liquid of the said flow-through capacitor | condenser with the ion exchange resin which mixed strong basic anion exchange resin and weakly acidic cation exchange resin, or is strong basic anion exchange resin. The method for purifying a sugar solution according to the above (1) is characterized in that it is treated and then treated with a weakly acidic cation exchange resin. By adopting such a configuration, particularly in sucrose, a purified solution can be efficiently obtained without causing acid decomposition and can be processed at a temperature of 40 ° C. or higher. Prevents spoilage caused by breeding.
[0012]
In the present invention (5), a DC voltage is applied to the pair of electrodes to remove the ionic component of the liquid to be treated, and the pair of electrodes are short-circuited or removed by reversely connecting a DC power source. Liquid component condenser that collects the ionic components in the liquid to be treated or water for collection, and an ion exchange resin device filled with a strongly basic anion exchange resin, and the raw sugar solution is passed in this order. An apparatus for purifying a sugar solution is provided. By adopting such a configuration, the invention (2) can be reliably implemented.
[0013]
Further, in the present invention (6), a DC voltage is applied to the pair of electrodes to remove the ionic component of the liquid to be treated, and the pair of electrodes are short-circuited or removed by reverse connection of a DC power source. A raw-material sugar solution comprising a liquid-flowing type condenser that collects the ionic components in a liquid to be treated or water for collection, and an ion-exchange resin device filled with a strongly acidic cation exchange resin and a weakly basic anion exchange resin. Are provided in this order to provide a sugar solution purifier. By adopting such a configuration, the invention of (3) can be reliably implemented.
[0014]
In the present invention (7), a DC voltage is applied to the pair of electrodes to remove the ionic component of the liquid to be treated, and the pair of electrodes are short-circuited or removed by reversely connecting a DC power source. A raw-material sugar solution comprising a liquid-flowing type condenser that collects the ionic components in a liquid to be treated or water for collection, and an ion-exchange resin device filled with a strongly basic anion exchange resin and a weakly acidic cation exchange resin. Are provided in this order to provide a sugar solution purifier. By adopting such a configuration, the invention (4) can be reliably implemented.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In the first method for purifying a sugar solution according to the present invention, a raw material sugar solution is subjected to a direct current voltage applied to at least a pair of electrodes to remove ionic components of the liquid to be treated, and the pair of electrodes are short-circuited or A DC power supply is reversely connected, and the removed ionic component is treated with a liquid-pass condenser that collects the removed ionic component in a liquid to be treated or water for recovery.
[0016]
Examples of the sugar solution include glucose, isomerized sugar including glucose and fructose, starch sugar such as sugar beet sugar, syrup, sorbitol, lactose, sucrose, various oligosaccharides, and the like.
[0017]
There are no particular restrictions on the liquid-passing capacitor, but a pair of electrodes in which a high surface area activated carbon is in contact with a collector electrode of metal, graphite or the like is housed in a column, and a non-conductive spacer is interposed between the pair of electrodes. It has been made. And this liquid flow type capacitor connects a direct-current power supply to a pair of electrodes, and when a liquid to be treated containing ions is passed through the column in a state where a direct-current voltage, for example, 1 to 2 V is applied, Can adsorb ions and remove the ionic component to obtain a purified solution. Thereafter, when the pair of electrodes are short-circuited, the electrically neutralized and adsorbed ions are separated from the pair of electrodes, In addition to regenerating the electrode, a concentrated solution in which a concentrated ionic component is recovered can be obtained. In addition, the voltage applied between a pair of electrodes can be set arbitrarily.
[0018]
An example of a first sugar liquid refining apparatus having such a liquid-flow condenser will be described with reference to FIG. FIG. 1 is a flow diagram of the first sugar solution purification apparatus. In FIG. 1, the upstream side of the liquid-flow condenser 1 is connected to a liquid feed pump 3 for quantitatively supplying water to be treated through a safety pipe 4 having an absolute pore diameter of 10 μm on the way through a supply pipe 7. The downstream side of the liquid-flow condenser 1 is connected to the liquid quality monitoring device 5 by a discharge pipe 8, and the discharge pipe 9 of the liquid quality monitoring device 5 is a concentration having a purified liquid discharge pipe 11 having a switching valve 13 and a switching valve 12. The liquid discharge pipe 10 is branched into two. It should be noted that the symbols 2 and 14 are omitted in the first sugar solution purifier 20.
[0019]
The liquid-flowing capacitor 1 includes at least a pair of electrodes 30 and 31, and the electrode 30 is connected to the cathode of the DC power supply 34 through a switch 32. The pair of electrodes 30 and 31 are connected to each other via a switch 35. The operation control of the devices shown in FIG. 1 is performed by a known control device such as a sequencer or a microcomputer. As the detailed operation control, for example, a liquid passing method of a liquid passing capacitor described later is used. Can be mentioned.
[0020]
In FIG. 1, the liquid quality monitoring device 5 measures the liquid quality and is not particularly limited as long as it is a measuring instrument with an index that can accurately grasp the degree of ion removal, and includes a conductivity meter and a specific resistance meter. In this embodiment, it is a conductivity meter.
[0021]
Next, a purification method using the first sugar liquid purification apparatus will be described. In FIG. 1, when the liquid feed pump 3 is driven, the liquid to be treated which is a sugar liquid is supplied to the liquid-flowing condenser 1 through the safety filter 4 and the supply pipe 7. In the liquid-flowing capacitor 1, the switch 32 is turned on to apply a DC voltage to the pair of electrodes 30, 31, the switching valve 13 is opened, the switching valve 12 is closed, and the liquid quality monitoring device 5 is set to the monitoring state. . At this stage, the flow-through capacitor 1 enters a refining process (ion component removal process), and the liquid to be treated is adsorbed by the pair of electrodes 30 and 31 of the flow-through capacitor 1 to remove the ionic component. Is discharged through the purified liquid discharge pipe 11. In addition, the water flowing out at the beginning of this step or the sugar solution having a low sugar concentration may be drained to prevent the whole sugar solution from thinning.
[0022]
If this state continues, the ionic component is gradually adsorbed on the pair of electrodes 30 and 31 and approaches a saturated state, the ionic component removal performance decreases, and the conductivity of the purified liquid gradually increases. When the conductivity measured by the liquid quality monitoring device 5 becomes an unacceptable value for purified liquid collection, the switching valve 13 is closed, the switching valve 12 is opened, the switch 32 is immediately turned off, and the flow-through capacitor 1 is connected. The application of the DC voltage is stopped, and the switch 35 is turned on to short-circuit the pair of electrodes 30, 31 or reversely connect the DC power source 34 to separate the adsorbed ion component from the pair of electrodes 30, 31 to be processed. The pair of electrodes 30 and 31 is regenerated by moving to the liquid side. That is, the liquid-flowing capacitor 1 enters a concentration process (ionic component recovery process), and the concentrated liquid in which the ionic components are concentrated is discharged out of the system through the concentrated liquid discharge pipe 10. In addition, it is preferable to replace and recover the in-apparatus sugar solution with insufficient purification just before the purification step (ion component removal step) is completed, and then enter the concentration step (ion component recovery step).
[0023]
The purification step (removal step) and the concentration step (recovery step) are defined as one cycle, and this cycle is repeated to recover the purified liquid from which the ionic components have been removed from the liquid to be treated and the removed ionic components. A concentrated solution having a high ion concentration is obtained, and the pair of electrodes 30 and 31 of the flow-through capacitor 1 are repeatedly saturated and regenerated.
[0024]
Such a liquid passing type capacitor is disclosed in Japanese Patent Laid-Open No. 5-258992. In this example of the known example, an inlet for introducing a liquid to be processed into a column and a liquid from which ion components have been removed are discharged. An outlet is provided, and the pair of electrodes is accommodated in the column. In both of these pairs of electrodes, a high surface area conductive surface layer is supported on a conductive support layer, and a nonconductive porous spacer is further included. Therefore, a pair of electrodes is a non-conductive porous spacer of one electrode, a conductive support layer, a high surface area conductive surface layer, a non-conductive porous spacer of the other electrode, a conductive support layer, a high surface area conductive. The surface layer has a six-layer structure. The pair of electrodes is wound around a hollow porous central tube with a high surface area conductive surface layer inside to form a cartridge. A lead wire extends from the conductive support layer of one electrode and the conductive support layer of the other electrode to the outside of the column and is connected to a DC power source. Is connected to a switching valve for separating the desalted liquid from which the ionic component has been removed and the concentrated liquid from which the ionic component has been recovered.
[0025]
Furthermore, as another example of the structure of the liquid-permeable capacitor, a pair of electrodes that are activated carbon layers mainly composed of high specific surface area activated carbon are arranged with a spacer made of a non-conductive porous liquid-permeable sheet interposed therebetween, A pair of collector electrodes are arranged outside the electrodes, and a flat plate shape is arranged with a holding plate arranged outside the collector electrodes. A DC power source is connected to the collector electrodes, and a short circuit between the collector electrodes or reverse connection of the DC power source is performed. It may be what performs. Further, the electrode and the collector electrode may be integrated.
[0026]
In the second method for purifying a sugar solution according to the present invention, the raw sugar solution is treated with a flow-through condenser similar to that described above, and the purified solution of the fluid-flow condenser is further treated with a strongly basic anion exchange resin. Is. That is, the second sugar solution purifying apparatus is that a strongly basic anion exchange resin apparatus is installed in the subsequent stage of the first sugar liquid purifying apparatus. In FIG. 1, symbol 2 indicates a strongly basic anion exchange resin. It is a device and is connected to the liquid-flowing capacitor 1 by a purified liquid discharge pipe 11. Symbol 14 is an outflow pipe.
[0027]
The strongly basic anion exchange resin apparatus is installed for the purpose of decolorizing the sugar solution. Specific examples of strongly basic anion exchange resins include Amberlite (registered trademark, the same applies hereinafter) IRA-402BL, IRA-900, IRA-411S, XT-5007, Diaion (registered trademark, same applies hereinafter) PA312, etc. Is exemplified. The strongly basic anion exchange resin, particularly a porous R-Cl - be in the form of a strongly basic anion exchange resin, the feed solution is high temperature usually 70 ° C., that it has a heat resistance to withstand this Is preferable. The conditions other than the temperature at which the purified liquid of the flow-through capacitor is treated with the strongly basic anion exchange resin are not particularly limited and are usually used.
[0028]
In the second method for purifying the sugar solution, a purified solution is obtained from the purification step of the first-stage flow-through condenser, and then this purified solution is passed through the second-stage strongly basic anion exchange resin apparatus. In the basic anion exchange resin apparatus, the coloring component can be removed to obtain a decolorizing liquid.
[0029]
In the third method for purifying the sugar solution, the raw material sugar solution is treated with a flow-through capacitor similar to the above, and the purified solution of the flow-through capacitor is further treated with a strongly acidic cation exchange resin and a weakly basic anion exchange resin. Or a strongly acidic cation exchange resin, and then a weakly basic anion exchange resin. That is, the third sugar solution purifying apparatus uses a strongly acidic cation exchange resin and a weakly basic anion exchange resin instead of the strongly basic anion exchange resin apparatus installed in the subsequent stage of the second sugar liquid purifying apparatus. The point is that an ion exchange resin apparatus filled with is installed.
[0030]
Examples of the sugar solution in the third sugar solution purification method include the same as those exemplified in the first sugar solution purification method, and among these, starch sugar or lactose causes alkaline decomposition as described later. It is preferable in that it can be purified without any problems.
[0031]
The ion exchange resin device used here is a mixed bed type in which a strongly acidic cation exchange resin and a weakly basic anion exchange resin are mixed, or a strongly acidic cation exchange resin on the upstream side and a weakly basic anion exchange on the downstream side. A two-layered form filled with resin is used.
[0032]
Specific examples of the strongly acidic cation exchange resin include Amberlite IR-120B, Amberlite 200C, Diaion SKIB, and the like. Specific examples of the weakly basic anion exchange resin include Amberlite IRA-68, IRA-93ZU, IRA-94S and Diaion WA30. The conditions for treating the purified liquid of the flow-through capacitor with the ion exchange resin are not particularly limited, and are usually used conditions.
[0033]
In the third method for purifying the sugar solution, the salt is roughly removed by the first-stage liquid-flow condenser, and then the remaining salts are removed by the ion-exchange resin device filled with the ion-exchange resin in the second stage. The salt removal rate in the former stage and the salt removal rate in the latter stage are not particularly limited, but 50 to 90%, preferably 70 to 90% of the salt contained in the raw material sugar liquid is removed by the former stage flow-through condenser, The removal of the remaining salts in the subsequent ion exchange resin device enables an electrically efficient operation of the previous stage flow-through capacitor, and the load on the subsequent ion exchange resin device does not increase so much. Both advantages of extending the period until regeneration or replacement with a new product can be exhibited. In the latter stage, the method does not use a strong basic anion exchange resin, so there is no risk of sugar isomerization or decomposition, and the use of a weak basic anion exchange resin increases the throughput. There is an effect that it is significantly superior to the case of using a strongly basic anion exchange resin.
[0034]
In the fourth method for purifying the sugar solution, the raw material sugar solution is treated with a flow-through capacitor similar to the above, and the purified solution of the flow-through capacitor is further treated with a strongly basic anion exchange resin and a weakly acidic cation exchange resin. Are treated with a mixed ion exchange resin or treated with a strongly basic anion exchange resin and then treated with a weakly acidic cation exchange resin. In other words, the fourth sugar solution purification apparatus uses a strongly basic anion exchange resin and a weakly acidic cation exchange resin instead of the strong base anion exchange resin apparatus installed at the subsequent stage of the second sugar solution purification apparatus. It is in the point which installed the ion exchange resin apparatus with which it filled.
[0035]
Examples of the sugar solution in the fourth sugar solution purification method include those exemplified in the first sugar solution purification method. Among these, sucrose and oligosaccharides, particularly raffinose, kestose, Oligosaccharides containing sucrose units such as nystose and galactosyl sucrose are preferable in that they can be purified without causing acid degradation as described later.
[0036]
The ion exchange resin device used here is a mixed bed type in which a strongly basic anion exchange resin and a weakly acidic cation exchange resin are mixed, or a strongly basic anion exchange resin on the upstream side and a weakly acidic cation exchange on the downstream side. A two-layered form filled with resin is used.
[0037]
Specific examples of strongly basic anion exchange resins include Amberlite IRA402BL and Diaion PA308. Specific examples of the weakly acidic cation exchange resin include Amberlite IRC-76, IRC-50, Levacit (registered trademark) CNP-80, Diaion WK11, and the like. The conditions for further treating the purified solution of the flow-through capacitor with the ion exchange resin are not particularly limited, and are the conditions usually used.
[0038]
In the fourth method for purifying the sugar solution, the salt is roughly removed by the first-stage flow-through condenser, and then the remaining salts are removed by the ion-exchange resin device filled with the ion-exchange resin in the second stage. The removal rate of the salts in the former stage and the removal rate of the salts in the latter stage are 50 to 90%, preferably 70 to 90, contained in the raw material sugar liquid in the first stage liquid-flow condenser, as in the third sugar liquid purification method. % Of the salt, and then the remaining salt in the ion exchange resin device in the latter stage can be electrically operated efficiently in the former stage and the ion exchange resin device in the latter stage. Both of the advantages that the load does not become so large and the period until regeneration or replacement with a new one is extended can be exhibited. Moreover, since it is the method which does not use a strongly acidic anion exchange resin in the latter stage, there exists an effect of preventing a hydrolysis of a sucrose molecule | numerator.
[0039]
Further, in addition to the ion exchange treatment or in place of the ion exchange treatment, a low-temperature liquid passing method performed in a conventional beet factory, that is, a treatment temperature of less than 40 ° C., preferably 4 to 10 ° C. Use a method of treating with a strongly acidic cation exchange resin and a weakly basic anion exchange resin at a temperature, or treating with a strongly acidic cation exchange resin and then treating with a weakly basic anion exchange resin. You can also. Thereby, even if a strongly acidic cation exchange resin is used, since it is a treatment at a low temperature, it can be purified without causing acid decomposition.
[0040]
In the present invention, the liquid-flow type capacitor applies a DC voltage to a pair of electrodes, or short-circuits the pair of electrodes or reversely connects a DC power source, but the pair of electrodes means at least a pair of electrodes, A plurality of pairs of electrodes may be provided, a DC voltage may be applied thereto, a plurality of pairs of electrodes may be short-circuited, or a DC power supply may be reversely connected. Moreover, you may make it obtain a refinement | purification liquid or a concentrated liquid continuously by installing several units | sets of a liquid-flow type capacitor | condenser in parallel.
[0041]
In the present invention, an ultrafiltration membrane device or an activated carbon device can also be installed in front of the liquid-flowing capacitor. As a result, stains such as a pigment component and an organic component contained in the raw sugar solution are removed in advance, so that the effective area of the electrode of the liquid-passing capacitor can be maintained as it is, and stable salts can be removed.
[0042]
【Example】
EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, this is merely an example and does not limit the present invention.
[0043]
Example 1
The following raw sugar solution was used as a liquid to be treated, and purified using the sugar solution purification apparatus having a flow as shown in FIG. In FIG. 1, symbol 2 is an ion exchange resin apparatus having the following specifications.
(Purification conditions)
-Raw sugar solution: Beet sugar solution (Bx18.0wt / wt%, ash content of solid 3.15%, conductivity 2,800 μS / cm)
・ Specification and operating condition equipment of liquid-flow type capacitor; total activated carbon amount of activated carbon electrode manufactured by Kansai Thermal Chemical Co., Ltd.
Applied voltage: DC 1.2V
Treatment liquid flow rate: 300 ml / min operation method: Conductivity was monitored with a conductivity meter, and operation was performed so as to obtain a purified liquid having a purification rate (desalting rate) of 90% from the purification step.
-Ion exchange resin apparatus; It processed in order of a numerical value with the serial connection apparatus of the following 4 tower columns.
In addition, experimentally, the stored purified solution of the flow-through capacitor was continuously used.
(1) Strong acid cation exchange resin tower (resin amberlite IR-124, capacity 2,000ml)
(2) Weakly basic anion exchange resin tower (resin amberlite IRA-478, capacity 2,000ml)
(3) Strongly basic anion exchange resin tower (resin Amberlite IRA-402BL, capacity 2,000 ml)
(4) Weakly acidic cation exchange resin tower (resin amberlite IRC-76, capacity 600ml)
Temperature conditions: (1) and (2) above are at 6 ° C, (3) and (4) above are at a temperature of 60 ° C; 10,000ml / hour, evaluation method; Purified sugar with conductivity of 5μS / cm The amount of liquid that could be continuously obtained was determined.
[0044]
Comparative Example 1
The same procedure as in Example 1 was performed except that the treatment of the liquid-flow type capacitor was omitted.
[0045]
The properties of the purified sugar solution obtained from the purification process of the flow-through capacitor in Example 1 were Bx18.0 wt / wt% and the ash content in the solid content was 0.2%. In addition, the liquid flow rate in Example 1 was 360 L, the liquid flow rate in Comparative Example 1 was 30 L, and Example 1 was able to process 12 times the amount of Comparative Example 1.
[0046]
【The invention's effect】
According to the present invention, salts can be removed efficiently without reducing the concentration of sugar solution, and the amount of chemicals used can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a processing method of a first sugar solution purifying apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Flow-through type capacitor 2 Ion exchange resin device 3 Liquid feed pump 4 Safety filter 5 Liquid quality monitoring device 7 Supply pipe 8, 9 Connection pipe 10 Concentrate discharge pipe 11 Purified liquid discharge pipe 12, 13 Switching valve 14 Outflow pipe

Claims (7)

原料糖液を、一対の電極に直流電圧を印加して通液中の被処理液のイオン成分を除去し、前記一対の電極を短絡あるいは直流電源を逆接続して、除去されたイオン成分を通液中の被処理液又は回収用水に回収する通液型コンデンサで処理することを特徴とする糖液の精製法。The raw sugar solution is applied to a pair of electrodes by applying a DC voltage to remove the ionic components of the liquid to be treated, and the paired electrodes are short-circuited or a DC power source is reversely connected to remove the removed ionic components. A method for purifying a sugar solution, characterized in that the treatment is carried out with a flow-through condenser that collects the liquid to be treated or the water for collection. 前記通液型コンデンサの精製液を、強塩基性アニオン交換樹脂で処理することを特徴とする請求項1記載の糖液の精製法。The method for purifying a sugar solution according to claim 1, wherein the purified solution of the liquid-flow condenser is treated with a strongly basic anion exchange resin. 前記通液型コンデンサの精製液を、強酸性カチオン交換樹脂と弱塩基性アニオン交換樹脂を混合したイオン交換樹脂で処理するか、又は強酸性カチオン交換樹脂で処理し、次いで弱塩基性アニオン交換樹脂で処理することを特徴とする請求項1記載の糖液の精製法。The purified solution of the flow-through capacitor is treated with an ion exchange resin obtained by mixing a strong acid cation exchange resin and a weak base anion exchange resin, or treated with a strong acid cation exchange resin, and then a weak base anion exchange resin. The method for purifying a sugar solution according to claim 1, wherein 前記通液型コンデンサの精製液を、強塩基性アニオン交換樹脂と弱酸性カチオン交換樹脂を混合したイオン交換樹脂で処理するか、又は強塩基性アニオン交換樹脂で処理し、次いで弱酸性カチオン交換樹脂で処理することを特徴とする請求項1記載の糖液の精製法。The purified solution of the flow-through capacitor is treated with an ion exchange resin obtained by mixing a strongly basic anion exchange resin and a weakly acidic cation exchange resin, or treated with a strongly basic anion exchange resin, and then a weakly acidic cation exchange resin. The method for purifying a sugar solution according to claim 1, wherein 一対の電極に直流電圧を印加して通液中の被処理液のイオン成分を除去し、前記一対の電極を短絡あるいは直流電源を逆接続して、除去されたイオン成分を通液中の被処理液又は回収用水に回収する通液型コンデンサと、強塩基性アニオン交換樹脂が充填されたイオン交換樹脂装置とを備え、原料糖液をこの順で通液することを特徴とする糖液の精製装置。A DC voltage is applied to the pair of electrodes to remove the ionic component of the liquid to be treated, and the paired electrodes are short-circuited or a DC power supply is reversely connected to pass the removed ionic component in the liquid. A sugar solution characterized by comprising a flow-through condenser for collecting in a treatment liquid or water for recovery and an ion exchange resin device filled with a strongly basic anion exchange resin, and the raw sugar solution is passed in this order. Purification equipment. 一対の電極に直流電圧を印加して通液中の被処理液のイオン成分を除去し、前記一対の電極を短絡あるいは直流電源を逆接続して、除去されたイオン成分を通液中の被処理液又は回収用水に回収する通液型コンデンサと、強酸性カチオン交換樹脂と弱塩基性アニオン交換樹脂が充填されたイオン交換樹脂装置塔とを備え、原料糖液をこの順で通液することを特徴とする糖液の精製装置。A DC voltage is applied to the pair of electrodes to remove the ionic component of the liquid to be treated, and the paired electrodes are short-circuited or a DC power supply is reversely connected to pass the removed ionic component in the liquid. It is equipped with a flow-through condenser that collects in the treatment liquid or recovery water, and an ion-exchange resin device tower filled with a strongly acidic cation exchange resin and a weakly basic anion exchange resin, and the raw sugar solution is passed in this order. An apparatus for purifying a sugar solution characterized by the above. 一対の電極に直流電圧を印加して通液中の被処理液のイオン成分を除去し、前記一対の電極を短絡あるいは直流電源を逆接続して、除去されたイオン成分を通液中の被処理液又は回収用水に回収する通液型コンデンサと、強塩基性アニオン交換樹脂と弱酸性カチオン交換樹脂が充填されたイオン交換樹脂装置とを備え、原料糖液をこの順で通液することを特徴とする糖液の精製装置。A DC voltage is applied to the pair of electrodes to remove the ionic component of the liquid to be treated, and the paired electrodes are short-circuited or a DC power supply is reversely connected to pass the removed ionic component in the liquid. It is equipped with a flow-through type condenser that collects in the treatment liquid or recovery water, and an ion-exchange resin device filled with a strongly basic anion exchange resin and a weakly acidic cation exchange resin, and the raw sugar solution is passed in this order. A device for purifying a sugar solution.
JP33966499A 1999-11-30 1999-11-30 Sugar liquid purification method and apparatus Expired - Fee Related JP4274505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33966499A JP4274505B2 (en) 1999-11-30 1999-11-30 Sugar liquid purification method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33966499A JP4274505B2 (en) 1999-11-30 1999-11-30 Sugar liquid purification method and apparatus

Publications (2)

Publication Number Publication Date
JP2001149100A JP2001149100A (en) 2001-06-05
JP4274505B2 true JP4274505B2 (en) 2009-06-10

Family

ID=18329647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33966499A Expired - Fee Related JP4274505B2 (en) 1999-11-30 1999-11-30 Sugar liquid purification method and apparatus

Country Status (1)

Country Link
JP (1) JP4274505B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102402632B1 (en) * 2019-10-31 2022-05-26 주식회사 삼양사 A method of preparing fructooligosaccharides comprising kestose

Also Published As

Publication number Publication date
JP2001149100A (en) 2001-06-05

Similar Documents

Publication Publication Date Title
JP3244689B2 (en) Electrodeionization and UV treatment method for purifying water
EP0422453B1 (en) Process for purifying water
JP3416455B2 (en) Electrodeionization method for purifying liquids
USRE35741E (en) Process for purifying water
MXPA01003822A (en) Method and apparatus for preventing scaling in electrodeionization units.
JPH0472567B2 (en)
JPH05192657A (en) Method for purifying resin using bipolar surface
US3268441A (en) Water recovery by electrodialysis
JPH0757308B2 (en) Electrodialysis tank
JP4135802B2 (en) Desalination equipment
JP3788318B2 (en) Electrodeionization apparatus and electrodeionization method
JP4274505B2 (en) Sugar liquid purification method and apparatus
KR101529477B1 (en) NF/RO water purification system using capacitive deionization
KR20010062380A (en) Mixed-bed type sugar solution refining system and regeneration method for such apparatus
JP3798122B2 (en) Desalination equipment
WO1997003024A1 (en) Method and system for removing ionic species from water
JP4090640B2 (en) Liquid passing method and apparatus for liquid passing capacitor
JP2000061271A (en) Pure water production and device therefor
WO2019111490A1 (en) Method for purifying sugar solution and sugar solution purification device
JP3729347B2 (en) Electric regenerative desalination equipment
JP3729348B2 (en) Electric regenerative desalination equipment
JP4135801B2 (en) Liquid passing method and apparatus for liquid passing capacitor
JP2001170658A (en) Treating device for fluorine-containing waste water and treatment method
CN212521511U (en) Water boiling device
JP2845489B2 (en) Regeneration method of mixed-bed sucrose liquid purification equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees