JP4274060B2 - diesel engine - Google Patents

diesel engine Download PDF

Info

Publication number
JP4274060B2
JP4274060B2 JP2004186652A JP2004186652A JP4274060B2 JP 4274060 B2 JP4274060 B2 JP 4274060B2 JP 2004186652 A JP2004186652 A JP 2004186652A JP 2004186652 A JP2004186652 A JP 2004186652A JP 4274060 B2 JP4274060 B2 JP 4274060B2
Authority
JP
Japan
Prior art keywords
cylinder
fuel
cylinders
operation mode
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004186652A
Other languages
Japanese (ja)
Other versions
JP2006009656A (en
Inventor
光夫 人見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2004186652A priority Critical patent/JP4274060B2/en
Publication of JP2006009656A publication Critical patent/JP2006009656A/en
Application granted granted Critical
Publication of JP4274060B2 publication Critical patent/JP4274060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • F02M26/43Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders in which exhaust from only one cylinder or only a group of cylinders is directed to the intake of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/37Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with temporary storage of recirculated exhaust gas

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

本発明は、ディーゼルエンジンに関し、より詳しくは、多気筒ディーゼルエンジンにおいて燃費改善およびエミッション向上のために各気筒の燃焼状態を制御するディーゼルエンジンに関するものである。   The present invention relates to a diesel engine, and more particularly to a diesel engine that controls the combustion state of each cylinder in order to improve fuel efficiency and emissions in a multi-cylinder diesel engine.

従来から、ディーゼルエンジンにおいて、燃費を改善しつつエミッション性を向上させるために、燃料の主噴射の前に予備噴射を行って当該予備噴射燃料を燃焼室内に均一に拡散させ、主噴射燃料を核としてこの均一に拡散された予備噴射燃料を一気に燃焼させる技術、いわゆる予混合燃焼に関する技術は一般的に知られている。例えば、特許文献1に示されるように、吸気行程初期に燃料を噴射する予備噴射を実行し、圧縮行程終期および膨張行程初期における所定時期に2回にわたって予備噴射燃料による希薄混合気中に主噴射を実行して燃焼を一気に行わせるディーゼルエンジンが知られている。   Conventionally, in a diesel engine, in order to improve fuel efficiency while improving emissions, preliminary injection is performed before main injection of fuel to uniformly diffuse the preliminary injection fuel into the combustion chamber, and the main injection fuel is In general, a technique for burning this uniformly diffused pre-injected fuel at once, a technique related to so-called premixed combustion is generally known. For example, as shown in Patent Document 1, preliminary injection for injecting fuel at the beginning of the intake stroke is executed, and main injection into the lean mixture by the pre-injected fuel is performed twice at a predetermined timing at the end of the compression stroke and at the beginning of the expansion stroke. There is known a diesel engine that performs combustion at once.

また、この特許文献1に記載のディーゼルエンジンでは、吸気温度を上昇させるべく外部EGR通路(排気ガス還流通路)を設け、エンジンの運転状態に応じて外部EGR量を変化させることにより安定燃焼させてエミッション性を向上させたり、シリンダライナの壁面への燃料の付着を防止すべく燃料噴射ノズルを調整して、HCの排出を抑制する等、燃費を改善しつつエミッション性を向上するための種々の工夫が提案されている。
特開2002−322922号公報
Further, in the diesel engine described in Patent Document 1, an external EGR passage (exhaust gas recirculation passage) is provided to increase the intake air temperature, and stable combustion is performed by changing the external EGR amount in accordance with the operating state of the engine. Various ways to improve emissions while improving fuel efficiency, such as improving emissions and adjusting fuel injection nozzles to prevent fuel from adhering to the wall surface of the cylinder liner to reduce HC emissions. Ingenuity has been proposed.
JP 2002-322922 A

ここで、出力を確保しつつエミッション性を向上させるため、特に窒素酸化物(NOx)の生成を抑制するためには、噴射燃料を同時多点着火により一気に燃焼させることが好ましい。従って、圧縮行程の後半に燃料を噴射させて噴射燃料を順次燃焼させるいわゆる拡散燃焼よりも特許文献1に開示されるような上記予混合燃焼、より好ましくは特許文献1に示される予混合燃焼よりも一歩進んで当該予備噴射時期に相当する時期などに全燃料を噴射させて燃料を均一に分散させて燃焼させる燃焼形態を採用するのが好ましい。   Here, in order to improve the emission property while ensuring the output, in particular, in order to suppress the generation of nitrogen oxide (NOx), it is preferable to burn the injected fuel at once by simultaneous multi-point ignition. Therefore, the premixed combustion as disclosed in Patent Document 1, more preferably the premixed combustion disclosed in Patent Document 1, rather than the so-called diffusion combustion in which fuel is injected in the latter half of the compression stroke to sequentially burn the injected fuel. However, it is preferable to adopt a combustion mode in which all the fuel is injected at a time corresponding to the preliminary injection time, and the fuel is uniformly dispersed and burned.

ところが、ディーゼルエンジンにおいては軽油等の気化温度の高い燃料が一般的に使用されることから、特許文献1に示されるようなディーゼルエンジンでは、エンジンの運転状態によっては、特にエンジンの低負荷側運転領域においては筒内温度が低いため、燃料の予備噴射時期に全ての燃料を噴射すると全燃料が適正に気化せず、シリンダ壁面に付着して燃費が悪化したり、すすが生じたり等の不具合を生じる。この不具合は、上記特許文献1に示されるような外部EGRや燃料噴射ノズルの改良によっても十分に改善することができない。   However, since a fuel having a high vaporization temperature such as light oil is generally used in a diesel engine, a diesel engine such as that disclosed in Patent Document 1 is particularly operated at a low load side depending on the operating state of the engine. Since the in-cylinder temperature is low in the region, if all the fuel is injected during the fuel pre-injection period, all the fuel will not vaporize properly, and it will adhere to the cylinder wall surface, resulting in poor fuel consumption and soot. Produce. This problem cannot be sufficiently improved even by improving the external EGR and the fuel injection nozzle as disclosed in Patent Document 1.

本発明は、このような技術に基づき、特にエンジンの低負荷側運転領域における燃費を良好なまま維持しつつ、NOxを低減することによりエミッション性を向上させることができるディーゼルエンジンを提供するものである。   The present invention is based on such a technique, and provides a diesel engine capable of improving emission performance by reducing NOx while maintaining good fuel efficiency particularly in the low load side operation region of the engine. is there.

ここで、本願出願人は、鋭意研究の結果、先に出願した火花点火式エンジンの制御装置に関する技術(特開2003−227377号)、すなわちエンジンの部分負荷域で、排気行程と吸気行程が重なる一対の気筒間において排気行程にある先行気筒から排出される既燃ガスがそのまま吸気行程にある後続気筒に気筒間ガス通路を介して導入される2気筒接続状態とするとともに、先行気筒では空燃比を理論空燃比よりも大きいリーン空燃比にして、強制点火により燃焼を行わせ、後続気筒では先行気筒から導入されたリーン空燃比の既燃ガスに燃料を供給して圧縮自己着火により燃焼を行わせるようにした火花点火式エンジンの制御装置に関する技術を応用することを知見するに至り、そして、気化温度の高いディーゼルエンジンの燃料の気化を促すべくさらに改良を加え、燃料を均質に分布させて一気に燃焼させることにより燃費を悪化させることなく、エミッション性を向上させるようにしたものである。   Here, as a result of earnest research, the applicant of the present application has already applied for the technology related to the spark ignition engine control device (Japanese Patent Laid-Open No. 2003-227377), that is, the exhaust stroke and the intake stroke overlap in the partial load region of the engine. The burned gas discharged from the preceding cylinder in the exhaust stroke between the pair of cylinders is in a two-cylinder connection state in which the burned gas is directly introduced into the succeeding cylinder in the intake stroke through the inter-cylinder gas passage. Is set to a lean air-fuel ratio larger than the stoichiometric air-fuel ratio, combustion is performed by forced ignition, and fuel is supplied to the burned gas of the lean air-fuel ratio introduced from the preceding cylinder in the subsequent cylinder, and combustion is performed by compression self-ignition To find out how to apply the technology related to the control system of the spark ignition type engine, and the fuel of the diesel engine with high vaporization temperature. Further improvements added to prompt reduction, without deteriorating the fuel economy by once burned homogeneously to distribute the fuel, is obtained so as to improve the emission property.

すなわち、本願請求項1に係る発明は、各気筒の燃焼サイクルが所定の位相差をもって行われるようになっている多気筒のディーゼルエンジンにおいて、エンジンの部分負荷領域で、排気行程と吸気行程が重なる一対の気筒間において排気行程にある先行気筒から排出される既燃ガスがそのまま吸気行程にある後続気筒に導入され、この後続気筒から排出されるガスが排気通路に導かれるような2気筒接続状態としつつ、先行気筒で燃焼を行わせ、この先行気筒における既燃ガスに新たに燃料を供給して後続気筒の燃焼を行わせる特殊運転モードの制御を実行する運転モード制御手段と、この特殊運転モードにおける後続気筒分の燃料噴射を制御する燃料噴射制御手段とを備え、この燃料噴射制御手段は、上記特殊運転モードとされる運転領域のうち少なくとも低負荷側の運転領域では、先行気筒で後続気筒分の燃料を噴射するように制御するとともにその噴射開始時期を上記先行気筒の膨張行程後半における所定時期に設定することを特徴とするものである。   That is, according to the first aspect of the present invention, in a multi-cylinder diesel engine in which the combustion cycle of each cylinder is performed with a predetermined phase difference, the exhaust stroke and the intake stroke overlap in a partial load region of the engine. A two-cylinder connection state in which the burned gas discharged from the preceding cylinder in the exhaust stroke between the pair of cylinders is directly introduced into the subsequent cylinder in the intake stroke, and the gas discharged from the subsequent cylinder is guided to the exhaust passage The operation mode control means for performing the control of the special operation mode in which the combustion is performed in the preceding cylinder, the fuel is newly supplied to the burned gas in the preceding cylinder and the subsequent cylinder is combusted, and the special operation Fuel injection control means for controlling the fuel injection for the subsequent cylinders in the mode, and this fuel injection control means is an operating range for the special operation mode. At least in the low load side operation region, the preceding cylinder is controlled to inject fuel for the subsequent cylinder, and the injection start timing is set to a predetermined timing in the latter half of the expansion stroke of the preceding cylinder. Is.

この発明によれば、先行気筒での燃焼終了後における膨張行程後半でこの既燃ガスに対して後続気筒分の燃料の噴射が開始されるので、気化温度の高い燃料でも燃焼終了直後の高温の既燃ガスにより供給燃料の気化が促進される。また、膨張行程後半時に噴射された燃料が例えシリンダの壁面に付着したとしても、膨張行程から排気行程へ移行されるまでに充分に気化時間があり、またこの行程の移行に伴って壁面の燃料がピストンによって掻き落とされ、出力に寄与しない無駄な燃料消費を抑制して燃費の悪化を回避することができるとともにすすの発生を可及的に抑制することができる。そして、この混合気が先行気筒から後続気筒に気筒間ガス通路を介して導入され、後続気筒での吸気行程を経る間に燃料が充分に気化して空気とミキシングされ、また後続気筒の燃焼室内に均一に拡散されるので、同時多点圧縮自己着火によって燃焼室全体にわたり一気に燃焼させることができ、これにより酸素と窒素との反応を可及的に回避して窒素酸化物(NOx)の発生を抑制することができる。また、後続気筒では先行気筒からの既燃ガスが導入されることにより多量のEGR(排気再循環)が行われているのと同等の状態となることからNOxの発生を十分に抑制して排気ガスの浄化に寄与することになる。   According to the present invention, fuel injection for the subsequent cylinder is started with respect to the burned gas in the latter half of the expansion stroke after completion of combustion in the preceding cylinder. The burnt gas promotes the vaporization of the supplied fuel. Further, even if the fuel injected in the latter half of the expansion stroke adheres to the wall surface of the cylinder, there is sufficient vaporization time before the transition from the expansion stroke to the exhaust stroke. Is scraped off by the piston, and wasteful fuel consumption that does not contribute to output can be suppressed to avoid deterioration of fuel consumption, and soot generation can be suppressed as much as possible. This air-fuel mixture is introduced from the preceding cylinder to the succeeding cylinder via the inter-cylinder gas passage, and the fuel is sufficiently vaporized and mixed with air during the intake stroke in the succeeding cylinder, and the combustion chamber of the succeeding cylinder Can be burned at once by the simultaneous multi-point compression auto-ignition, thereby avoiding the reaction between oxygen and nitrogen as much as possible to generate nitrogen oxides (NOx) Can be suppressed. Further, in the succeeding cylinder, the burned gas from the preceding cylinder is introduced, so that a large amount of EGR (exhaust gas recirculation) is performed. This will contribute to gas purification.

上記先行気筒から排出される既燃ガスは先行気筒の排気通路を利用してこの排気通路と後続気筒の吸気通路とを接続し、当該先行気筒の排気通路に経路切換手段を設け、この経路切換手段を切り換えることにより、上記既燃ガスが排気通路を通じて排気される経路とこの排気通路を通じて後続気筒の吸気通路に接続される経路とを切換可能に構成されるものであってもよいが、この先行気筒の既燃ガスが気筒間ガス通路を介して上記後続気筒に導入されるものが好ましい(請求項2)。   The burned gas discharged from the preceding cylinder uses the exhaust passage of the preceding cylinder to connect the exhaust passage to the intake passage of the succeeding cylinder, and provides route switching means in the exhaust passage of the preceding cylinder. By switching the means, the burned gas may be configured to be switched between a path through which the burned gas is exhausted through the exhaust passage and a path connected to the intake passage of the subsequent cylinder through the exhaust passage. It is preferable that the burnt gas of the preceding cylinder is introduced into the succeeding cylinder via the inter-cylinder gas passage.

このように構成すれば、気筒のポート同士を直接結ぶ気筒間ガス通路という専用の通路を設けることにより気筒間ガス通路を短く設定することができ、従って既燃ガスの温度低下を可及的に抑制しつつこの既燃ガスを後続気筒に導入させることができ、供給燃料を適正に気化させることができる。   With this configuration, the inter-cylinder gas passage can be shortened by providing a dedicated passage called an inter-cylinder gas passage that directly connects the ports of the cylinder, so that the temperature of the burned gas can be lowered as much as possible. The burned gas can be introduced into the succeeding cylinder while being suppressed, and the supplied fuel can be appropriately vaporized.

上記特殊運転モードとされる運転領域のうち高負荷側の運転領域における燃料噴射時期は膨張行程の後半であっても良いが、特に限定するものではなく、例えば上記燃料噴射制御手段は、エンジンの負荷が増大して上記特殊運転モードとされる運転領域のうち低負荷側の運転領域から高負荷側の運転領域に移行するに従って、先行気筒での後続気筒分の燃料の噴射開始時期を排気行程前半までの所定時期に遅らせるものとしてもよい(請求項3)。   The fuel injection timing in the operation region on the high load side in the operation region set to the special operation mode may be the latter half of the expansion stroke, but is not particularly limited. For example, the fuel injection control means As the load increases and the operation region shifts from the low-load operation region to the high-load operation region in the operation region in which the special operation mode is set, the fuel injection start timing for the subsequent cylinder in the preceding cylinder is set to the exhaust stroke. It is good also as what delays to the predetermined time to the first half (Claim 3).

すなわち、エンジンの負荷が増大して特殊運転モードとされる運転領域のうち低負荷側の運転領域から高負荷側の運転領域に移行すると、燃料の噴射量が増加して気筒内温度が上昇する。先行気筒の筒内温度が上昇すると先行気筒で噴射された後続気筒分の燃料が先行気筒で一部熱エネルギーに変換され、後続気筒の仕事に寄与せず燃費が悪化する虞がある。従って、上記のように構成すれば、気化温度の高い燃料の気化を促進させつつ、該燃料の一部が気化後に先行気筒において熱エネルギーに変換される(燃焼される)のを効果的に抑制することができ、これにより燃費を良好に維持しつつエミッション性を向上させることができる。   That is, when the engine load increases to shift from the low load side operation region to the high load side operation region in the operation region in which the special operation mode is set, the fuel injection amount increases and the in-cylinder temperature rises. . When the in-cylinder temperature of the preceding cylinder rises, the fuel for the succeeding cylinder injected in the preceding cylinder is partially converted into thermal energy in the preceding cylinder, which may not contribute to the work of the succeeding cylinder and may deteriorate the fuel consumption. Therefore, with the above configuration, while promoting the vaporization of the fuel having a high vaporization temperature, it is possible to effectively suppress a part of the fuel from being converted into thermal energy (burned) in the preceding cylinder after the vaporization. As a result, emission performance can be improved while maintaining good fuel efficiency.

この特殊運転モードとされる運転領域よりも高負荷側の運転領域において運転モード制御手段により制御される燃焼形態や燃料噴射形態等を特に限定するものではないが、上記運転モード制御手段は、上記特殊運転モードとされる運転領域よりも高負荷側の運転領域で、各気筒にそれぞれ新気を導入させて各気筒を独立状態で燃焼させる通常運転モードの制御を実行するように構成され、上記燃料噴射制御手段は、この通常運転モードにおいて各気筒に対して燃料を噴射するように制御するとともにその燃料噴射時期を各気筒の圧縮行程に設定するのが好ましい(請求項4)。   Although the combustion mode and the fuel injection mode controlled by the operation mode control means in the operation region on the higher load side than the operation region set as the special operation mode are not particularly limited, the operation mode control means It is configured to execute control in a normal operation mode in which fresh air is introduced into each cylinder and combustion is performed independently in each cylinder in an operation region on a higher load side than the operation region that is set as a special operation mode, The fuel injection control means preferably controls to inject fuel into each cylinder in this normal operation mode and sets the fuel injection timing to the compression stroke of each cylinder.

このように構成すれば、低負荷運転領域では燃費およびエミッションの改善が図られる一方、高負荷側運転領域では出力性能が確保される。   If comprised in this way, while improving a fuel consumption and an emission in the low load driving | running | working area | region, output performance is ensured in the high load side driving | running | working area | region.

また、この発明において、上記運転モード制御手段は、上記特殊運転モードとされる運転領域のうちの高負荷側の運転領域で、後続気筒内に新気を導入する新気導入用吸気弁を開弁することにより、上記先行気筒から導出された既燃ガスに加えて新気を後続気筒内に導入させるように制御するのが好ましい(請求項5)。   In the present invention, the operation mode control means opens a fresh air introduction intake valve that introduces fresh air into the succeeding cylinder in the operation region on the high load side of the operation region set to the special operation mode. It is preferable to control so that fresh air is introduced into the succeeding cylinder in addition to the burned gas derived from the preceding cylinder.

すなわち、特殊運転モードでは先行気筒における高温の既燃ガスを後続気筒に導入するので、特殊運転モードとされる運転領域のうち高負荷側の運転領域では後続気筒で過早着火の発生が懸念される。従って、上記のように構成すれば、後続気筒内に新気を導入する新気導入用吸気弁をさらに設けて、この吸気弁を開弁することにより既燃ガスに加えて新気を後続気筒内に導入させて、既燃ガス温度の上昇を抑制することにより過早着火を効果的に防止することができる。   That is, in the special operation mode, high-temperature burned gas in the preceding cylinder is introduced into the succeeding cylinder. Therefore, there is a concern that pre-ignition may occur in the succeeding cylinder in the operation region on the high load side among the operation regions in the special operation mode. The Accordingly, with the above configuration, a fresh air intake intake valve that introduces fresh air into the subsequent cylinder is further provided, and the intake valve is opened to supply fresh air to the subsequent cylinder in addition to the burned gas. It is possible to effectively prevent pre-ignition by introducing the gas into the gas and suppressing an increase in the burnt gas temperature.

さらに、上記燃料噴射制御手段は、上記特殊運転モードとされる運転領域のうち高負荷側の運転領域において後続気筒分の燃料を一括して噴射するものであってもよいが、例えば、後続気筒分の燃料の噴射を先行気筒での前期噴射と後続気筒での後期噴射とに分割して行うように設定するとともに、この分割噴射時における燃料の後期噴射時期を当該後続気筒の圧縮行程後半に設定するのが好ましい(請求項6)。   Further, the fuel injection control means may inject fuel for the succeeding cylinders in the operation region on the high load side in the operation region in the special operation mode. Is set to be divided into the first-stage injection in the preceding cylinder and the second-stage injection in the subsequent cylinder, and the later injection timing of the fuel at the time of this divided injection is set in the latter half of the compression stroke of the subsequent cylinder. It is preferable to set (Claim 6).

上記したように、特殊運転モードとされる運転領域のうち高負荷側の運転領域では後続気筒で過早着火の発生が懸念されるが、上記のように構成すれば、燃料噴射制御手段により後続気筒分の燃料を分割して噴射するように設定され、この分割噴射時における後期噴射時期を後続気筒における圧縮行程の後半に噴射するように制御するので、エンジンの出力を確保しつつ、後期噴射分の燃料の気化潜熱を利用して後続気筒での温度および圧力を低下させ、かつ、後期噴射分の燃料の活性化を抑制して、過早着火の発生を効果的に防止することができる。   As described above, in the operation region on the high load side among the operation regions that are set to the special operation mode, there is a concern about the occurrence of pre-ignition in the subsequent cylinders. However, if configured as described above, the fuel injection control means performs the subsequent operation. The fuel for each cylinder is set to be divided and injected, and the latter injection timing at the time of this divided injection is controlled to be injected in the second half of the compression stroke in the succeeding cylinder, so the latter injection is ensured while ensuring the engine output. It is possible to effectively prevent the occurrence of premature ignition by lowering the temperature and pressure in the succeeding cylinder by utilizing the latent heat of vaporization of the fuel for the minute, and suppressing the activation of the fuel for the late injection. .

また、この発明において、上記先行気筒に吸気を過給する過給機をさらに備えるのが好ましい(請求項7)。   In the present invention, it is preferable to further include a supercharger for supercharging intake air to the preceding cylinder.

このように構成すれば、先行気筒にも充分に空気を吸気させることができ、先行気筒での窒素酸化物の発生を効果的に抑制することができる。ここで、特殊運転モードとされる運転領域のうち低負荷側の運転領域では、特に過給機を設けている場合には、過剰空気によって既燃ガスの温度が高負荷側の温度よりも低くなるため供給燃料の気化が問題となるが、本発明では上記したように後続気筒分の燃料を先行気筒の膨張行程の後半、言い換えると先行気筒の燃焼終了直後に噴射しているので、気化効率がよく、供給燃料が充分にミキシングして後続気筒で一気に燃焼させることができ、窒化酸化物の発生を抑制してエミッション性を向上させることができる。   If comprised in this way, air can fully be inhaled also to a preceding cylinder and generation | occurrence | production of the nitrogen oxide in a preceding cylinder can be suppressed effectively. Here, in the operation region on the low load side among the operation regions to be in the special operation mode, particularly when a supercharger is provided, the temperature of the burned gas is lower than the temperature on the high load side due to excess air. Therefore, in the present invention, the fuel for the subsequent cylinder is injected in the latter half of the expansion stroke of the preceding cylinder, in other words, immediately after the combustion of the preceding cylinder is completed, as described above. However, the supplied fuel is sufficiently mixed and can be burned at once in the succeeding cylinder, and the emission property can be improved by suppressing the generation of nitride oxide.

本発明のディーゼルエンジンによれば、特殊運転モードとされる運転領域のうち少なくとも低負荷側の運転領域において、気化温度がガソリンよりも比較的高い燃料についても効果的に気化させることができ、この気化した燃料を空気と充分にミキシングさせつつ後続気筒の燃焼室内に均質拡散させ、後続気筒で一気に燃焼させることができるという利点がある。従って、窒素と酸素の反応を可及的に抑制して窒素酸化物の生成を可及的に抑制することができ、エミッション性を向上させることができる。しかも、例え後続気筒分の燃料の噴射によって先行気筒のシリンダの壁面に燃料が付着したとしても、膨張行程から排気行程への移行期間に充分に気化させることができ、また壁面に付着した燃料をピストンによって掻き上げて効率的に燃料を気化させることができ、これにより燃費を良好なまま維持しつつ、すすの発生を効果的に抑制することができる。   According to the diesel engine of the present invention, it is possible to effectively vaporize a fuel whose vaporization temperature is relatively higher than that of gasoline in at least the low load side operation region of the operation region in the special operation mode. There is an advantage that the vaporized fuel is homogeneously diffused into the combustion chamber of the subsequent cylinder while being sufficiently mixed with air, and can be burned at once in the subsequent cylinder. Therefore, the reaction between nitrogen and oxygen can be suppressed as much as possible to suppress the generation of nitrogen oxides as much as possible, and emission properties can be improved. Moreover, even if fuel adheres to the cylinder wall of the preceding cylinder due to fuel injection for the subsequent cylinder, it can be sufficiently vaporized during the transition period from the expansion stroke to the exhaust stroke, and the fuel adhering to the wall surface can be removed. The fuel can be efficiently vaporized by being scraped up by the piston, so that the generation of soot can be effectively suppressed while maintaining good fuel efficiency.

以下、図面に基づいて本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
図1は本発明の第1実施形態によるディーゼルエンジンの概略構成を示し、図2はディーゼルエンジン本体の一つの気筒とそれに対して設けられた吸・排気弁等の構造を概略的に示している。これらの図において、エンジン本体1は複数の気筒を有し、図示の実施形態では4つの気筒2A〜2Dを有している。各気筒2A〜2Dにはピストン3が嵌挿され、ピストン3の上方に燃焼室4が形成されている。
(First embodiment)
FIG. 1 shows a schematic configuration of a diesel engine according to a first embodiment of the present invention, and FIG. 2 schematically shows a structure of one cylinder of a diesel engine main body and intake / exhaust valves provided for the cylinder. . In these drawings, the engine body 1 has a plurality of cylinders, and in the illustrated embodiment, has four cylinders 2A to 2D. A piston 3 is fitted into each of the cylinders 2 </ b> A to 2 </ b> D, and a combustion chamber 4 is formed above the piston 3.

燃焼室4の側方部には、燃焼室4内に燃料を直接噴射する燃料噴射手段としての燃料噴射弁9が設けられている。この燃料噴射弁9は、図略のニードル弁及びソレノイドを内蔵し、後述のパルス信号が入力されることにより、そのパルス入力時期にパルス幅に対応する時間だけ駆動されて開弁し、その開弁時間に応じた量の燃料を噴射するように構成されている。この燃料噴射弁9には、図外の燃料ポンプにより燃料供給通路等を介して燃料が供給され、かつ、圧縮行程での燃焼室内の圧力よりも高い燃料圧力を与え得るように燃料供給系統が構成されている。   A fuel injection valve 9 as fuel injection means for directly injecting fuel into the combustion chamber 4 is provided at a side portion of the combustion chamber 4. This fuel injection valve 9 incorporates a needle valve and a solenoid (not shown). When a pulse signal described later is input, the fuel injection valve 9 is driven for a time corresponding to the pulse width at the pulse input timing to open the valve. An amount of fuel corresponding to the valve time is injected. The fuel injection valve 9 is supplied with fuel by a fuel pump (not shown) via a fuel supply passage and the like, and a fuel supply system is provided so that a fuel pressure higher than the pressure in the combustion chamber in the compression stroke can be applied. It is configured.

また、各気筒2A〜2Dの燃焼室4に対して吸気ポート11、11a,11b及び排気ポート12、12a,12bが開口し、これらのポートに吸気通路15、排気通路20等が接続されるとともに、各ポートが吸気弁31、31a,31b及び排気弁32、32a,32bにより開閉されるようになっている。   Further, intake ports 11, 11a, 11b and exhaust ports 12, 12a, 12b are opened to the combustion chambers 4 of the respective cylinders 2A to 2D, and an intake passage 15 and an exhaust passage 20 are connected to these ports. Each port is opened and closed by intake valves 31, 31a, 31b and exhaust valves 32, 32a, 32b.

そして、各気筒2A〜2Dが所定の位相差をもって吸気、圧縮、膨張、排気の各行程からなる燃焼サイクルを行うようになっており、4気筒エンジンの場合、気筒列方向一端側から1番気筒2A、2番気筒2B、3番気筒2C、4番気筒2Dと呼ぶと、図5に示すように上記サイクルが1番気筒2A、3番気筒2C、4番気筒2D、2番気筒2Bの順にクランク角で180°ずつの位相差をもって燃焼サイクルが行われるようになっている。なお、図5において、EXは排気行程、INは吸気行程、Fは燃料噴射を表し、図中の星マークは圧縮着火が行われることを表している。また、同図の燃料噴射Fについては、先行気筒分の燃料はF1、後続気筒用の燃料はF2で示している。   The cylinders 2A to 2D perform a combustion cycle including intake, compression, expansion, and exhaust strokes with a predetermined phase difference. In the case of a four-cylinder engine, the first cylinder from one end in the cylinder row direction 2A, 2nd cylinder 2B, 3rd cylinder 2C, 4th cylinder 2D, as shown in FIG. 5, the cycle is in the order of 1st cylinder 2A, 3rd cylinder 2C, 4th cylinder 2D, 2nd cylinder 2B. The combustion cycle is performed with a phase difference of 180 ° in crank angle. In FIG. 5, EX represents an exhaust stroke, IN represents an intake stroke, F represents fuel injection, and a star mark in the drawing represents that compression ignition is performed. Further, for the fuel injection F in the figure, the fuel for the preceding cylinder is indicated by F1, and the fuel for the succeeding cylinder is indicated by F2.

排気行程と吸気行程が重なる一対の気筒間には、排気行程と吸気行程が重なるときの排気行程側の気筒(当明細書ではこれを先行気筒と呼ぶ)から吸気行程側の気筒(当明細書ではこれを後続気筒と呼ぶ)へ既燃ガスをそのまま導くことができるように、気筒間ガス通路22が設けられている。当実施形態では、図5に示すように1番気筒2Aの排気行程(EX)と2番気筒2Bの吸気行程(IN)とが重なり、また4番気筒2Dの排気行程(EX)と3番気筒2Cの吸気行程(IN)が重なるので、1番気筒2Aと2番気筒2B、及び4番気筒2Dと3番気筒2Cがそれぞれ一対をなし、1番気筒2A及び4番気筒2Dが先行気筒、2番気筒2B及び3番気筒2Cが後続気筒となる。   Between a pair of cylinders in which the exhaust stroke and the intake stroke overlap, a cylinder on the intake stroke side (referred to herein as a preceding cylinder) from the cylinder on the exhaust stroke side when the exhaust stroke and the intake stroke overlap (this specification) The inter-cylinder gas passage 22 is provided so that the burned gas can be directly introduced to the subsequent cylinder). In this embodiment, as shown in FIG. 5, the exhaust stroke (EX) of the first cylinder 2A and the intake stroke (IN) of the second cylinder 2B overlap, and the exhaust stroke (EX) of the fourth cylinder 2D and the third stroke Since the intake stroke (IN) of the cylinder 2C overlaps, the first cylinder 2A and the second cylinder 2B, and the fourth cylinder 2D and the third cylinder 2C form a pair, respectively, and the first cylinder 2A and the fourth cylinder 2D are the preceding cylinder. The second cylinder 2B and the third cylinder 2C are the subsequent cylinders.

各気筒の吸・排気ポートとこれに接続される吸気通路、排気通路及び気筒間ガス通路は、具体的には次のように構成されている。   The intake / exhaust port of each cylinder and the intake passage, exhaust passage, and inter-cylinder gas passage connected to the cylinder are specifically configured as follows.

先行気筒である1番気筒2A及び4番気筒2Dには、それぞれ、新気を導入するための吸気ポート11と、既燃ガス(排気ガス)を排気通路に送り出すための第1排気ポート12aと、既燃ガスを後続気筒に導出するための第2排気ポート12bとが配設されている。また、後続気筒である2番気筒2B及び3番気筒2Cには、それぞれ、新気を導入するための第1吸気ポート11aと、先行気筒からの既燃ガスを導入するための第2吸気ポート11bと、既燃ガスを排気通路に送り出すための排気ポート12とが配設されている。   The first cylinder 2A and the fourth cylinder 2D, which are the preceding cylinders, respectively include an intake port 11 for introducing fresh air, and a first exhaust port 12a for sending burned gas (exhaust gas) to the exhaust passage. A second exhaust port 12b for leading the burned gas to the subsequent cylinder is provided. The second cylinder 2B and the third cylinder 2C, which are the subsequent cylinders, respectively, have a first intake port 11a for introducing fresh air and a second intake port for introducing burned gas from the preceding cylinder. 11b and an exhaust port 12 for sending burned gas to the exhaust passage.

図1に示す例では、1番,4番気筒2A,2Dにおける吸気ポート11および2番,3番気筒2B,2Cにおける第1吸気ポート11aが、1気筒当り2個ずつ、燃焼室4の一方側半部に並列的に設けられる一方、1番,4番気筒2A,2Dにおける第1排気ポート12a及び第2排気ポート12bならびに2番,3番気筒2B,2Cにおける第2吸気ポート11b及び排気ポート12が、燃焼室4の他方側半部に並列的に設けられている。   In the example shown in FIG. 1, one intake port 11 in each of the first and fourth cylinders 2A and 2D and two first intake ports 11a in each of the second and third cylinders 2B and 2C are provided in one side of the combustion chamber 4. The first exhaust port 12a and the second exhaust port 12b in the first and fourth cylinders 2A and 2D and the second intake port 11b and the exhaust in the second and third cylinders 2B and 2C are provided in parallel in the side half. A port 12 is provided in parallel with the other half of the combustion chamber 4.

1番,4番気筒2A,2Dにおける吸気ポート11および2番,3番気筒2B,2Cにおける第1吸気ポート11aには、吸気通路15における気筒別の分岐吸気通路16の下流端が接続されている。   The intake port 11 in the first and fourth cylinders 2A and 2D and the first intake port 11a in the second and third cylinders 2B and 2C are connected to the downstream ends of the branch intake passages 16 for each cylinder in the intake passage 15. Yes.

1番,4番気筒2A,2Dにおける第1排気ポート12aおよび2番,3番気筒2B,2Cにおける排気ポート12には、排気通路20における気筒別の分岐排気通路21の上流端が接続されている。また、1番気筒2Aと2番気筒2Bとの間及び3番気筒2Cと4番気筒2Dとの間には、それぞれ気筒間ガス通路22が設けられ、先行気筒である1番,4番気筒2A,2Dの第2排気ポート12bに気筒間ガス通路22の上流端が接続されるとともに、後続気筒である2番,3番気筒2B,2Cの第2吸気ポート11bに気筒間ガス通路22の下流端が接続されている。   An upstream end of a branch exhaust passage 21 for each cylinder in the exhaust passage 20 is connected to the first exhaust port 12a in the first and fourth cylinders 2A and 2D and the exhaust port 12 in the second and third cylinders 2B and 2C. Yes. Further, an inter-cylinder gas passage 22 is provided between the first cylinder 2A and the second cylinder 2B and between the third cylinder 2C and the fourth cylinder 2D, respectively, and the first and fourth cylinders which are the preceding cylinders. The upstream end of the inter-cylinder gas passage 22 is connected to the second exhaust ports 12b of 2A and 2D, and the inter-cylinder gas passage 22 is connected to the second intake ports 11b of the second and third cylinders 2B and 2C as the subsequent cylinders. The downstream end is connected.

上記気筒間ガス通路22には、後続気筒2B,2Cに導入される既燃ガス温度を検出するための既燃ガス温度センサ25が設けられ、このセンサ25の検出結果が後述するECU40に送信されるようになっている。   The inter-cylinder gas passage 22 is provided with a burned gas temperature sensor 25 for detecting the burned gas temperature introduced into the succeeding cylinders 2B and 2C, and the detection result of the sensor 25 is transmitted to an ECU 40 described later. It has become so.

排気通路20における分岐排気通路21は下流で集合し、さらにその下流の排気通路20には酸化触媒24が設けられている。この酸化触媒24は、一般的に知られているように、各気筒2A〜2Dから排気された排気ガス中に炭化水素や一酸化炭素を触媒活性化温度のもと酸化するための触媒である。   The branch exhaust passages 21 in the exhaust passage 20 gather downstream, and an oxidation catalyst 24 is provided in the exhaust passage 20 further downstream. As generally known, the oxidation catalyst 24 is a catalyst for oxidizing hydrocarbons and carbon monoxide in the exhaust gas exhausted from the cylinders 2A to 2D at the catalyst activation temperature. .

この分岐排気通路21の集合部と酸化触媒24との間には、過給機27のタービン28が配設されている。この過給機27は、先行気筒2A,2Dに対して吸気を補助するものであり、本実施形態ではターボ過給機が設けられている。また、過給機27は、本実施形態では、後述する特殊運転モードでも通常運転モードでも、先行気筒2A,2Dの吸気を補助するように駆動されるが、場合によっては運転状態に応じて過給を制限するものであっても良い。   A turbine 28 of the supercharger 27 is disposed between the collecting portion of the branch exhaust passage 21 and the oxidation catalyst 24. The supercharger 27 assists intake of the preceding cylinders 2A and 2D, and in this embodiment, a turbocharger is provided. In the present embodiment, the supercharger 27 is driven so as to assist the intake of the preceding cylinders 2A and 2D in a special operation mode and a normal operation mode, which will be described later. The salary may be limited.

具体的には、この過給機27は、分岐排気通路21を介して各排気ポート12,12a,12bに連通する排気通路20に設けられたタービン28と各吸気ポート11,11a,11bに連通する吸気通路15に設けられ上記タービン28に連動するコンプレッサ29とを有し、排気通路20を流通する排気ガスのエネルギーでタービン28が回転し、このタービン28の回転に連動してコンプレッサ29も回転し、このコンプレッサ29の回転により吸気を過給するものとなされている。なお、過給機としては、上記ターボ過給機27に限定されるものではなく、機械式過給機等であっても良いが、ターボ過給機27を設けることにより、排圧が高くなるため、先行気筒2A,2Dに既燃ガスを残存させやすくなり、この残存既燃ガスによって先行気筒2A,2Dでの既燃ガス温度が一層高温となり、ガソリンよりも気化温度の高い燃料(例えば軽油)の気化が促進される点で有利である。なお、過給機27によって過給される吸気温度を下げるためのインタークラー26がコンプレッサ29の下流側の吸気通路15に設けられている。   Specifically, the supercharger 27 communicates with the turbine 28 provided in the exhaust passage 20 that communicates with the exhaust ports 12, 12 a, 12 b via the branch exhaust passage 21 and the intake ports 11, 11 a, 11 b. And a compressor 29 that is linked to the turbine 28 and is connected to the turbine 28. The turbine 28 is rotated by the energy of the exhaust gas flowing through the exhaust passage 20. The compressor 29 is also rotated in conjunction with the rotation of the turbine 28. In addition, the intake air is supercharged by the rotation of the compressor 29. The turbocharger is not limited to the turbocharger 27 but may be a mechanical supercharger or the like. However, the provision of the turbocharger 27 increases the exhaust pressure. Therefore, it is easy for the burned gas to remain in the preceding cylinders 2A and 2D, the burned gas temperature in the preceding cylinders 2A and 2D becomes higher due to the remaining burned gas, and the fuel (for example, light oil) having a higher vaporization temperature than gasoline. ) Is advantageous in that vaporization is promoted. An intercooler 26 for lowering the intake air temperature supercharged by the supercharger 27 is provided in the intake passage 15 on the downstream side of the compressor 29.

各気筒の吸・排気ポートを開閉する吸・排気弁とこれらに対する動弁機構は、次のようになっている。すなわち、1番,4番気筒2A,2Dにおける吸気ポート11、第1排気ポート12a及び第2排気ポート12bにはそれぞれ吸気弁31、第1排気弁32a及び第2排気弁32bが設けられ、また、2番,3番気筒2B,2Cにおける第1吸気ポート11a、第2吸気ポート11b及び排気ポート12にはそれぞれ第1吸気弁31a、第2吸気弁31b及び排気弁32が設けられている。そして、各気筒の吸気行程や排気行程が上述のような所定の位相差をもって行われるように、これら吸・排気弁がそれぞれカムシャフト33,34等からなる動弁機構により所定のタイミングで開閉するように駆動される。   The intake / exhaust valves for opening and closing the intake / exhaust ports of each cylinder and the valve operating mechanism for these valves are as follows. That is, the intake port 11, the first exhaust port 12a and the second exhaust port 12b in the first and fourth cylinders 2A and 2D are provided with the intake valve 31, the first exhaust valve 32a and the second exhaust valve 32b, respectively. A first intake valve 31a, a second intake valve 31b, and an exhaust valve 32 are provided in the first intake port 11a, the second intake port 11b, and the exhaust port 12 in the second and third cylinders 2B, 2C, respectively. These intake / exhaust valves are opened and closed at predetermined timings by the valve mechanisms comprising the camshafts 33, 34, etc. so that the intake stroke and exhaust stroke of each cylinder are performed with the predetermined phase difference as described above. To be driven.

さらに、これらの吸・排気弁のうちで第1排気弁32a、第2排気弁32bに対しては、各弁を作動状態と停止状態とに切り換える弁停止機構35aが設けられている。この弁停止機構35aは、従来から知られているため、詳しい図示は省略するが、例えば、カムシャフト33,34のカムと弁軸との間に介装されたタペットに作動油の給排が可能な油圧室が設けられ、この油圧室に作動油が供給されている状態ではカムの作動が弁に伝えられて弁が開閉作動され、油圧室から作動油が排出されたときにはカムの作動が弁に伝えられなくなることで弁が停止されるようになっている。   Further, among these intake / exhaust valves, the first exhaust valve 32a and the second exhaust valve 32b are provided with a valve stop mechanism 35a for switching each valve between an operating state and a stopped state. Since the valve stop mechanism 35a is conventionally known, detailed illustration thereof is omitted. For example, the hydraulic oil is supplied to and discharged from the tappet interposed between the cams of the camshafts 33 and 34 and the valve shaft. In the state where hydraulic oil is provided and hydraulic oil is supplied to the hydraulic chamber, the operation of the cam is transmitted to the valve and the valve is opened and closed.When the hydraulic oil is discharged from the hydraulic chamber, the cam operation is not performed. The valve is stopped when it cannot be transmitted to the valve.

一方、、吸・排気弁のうちで第1吸気弁31a及び第2吸気弁31bに対しては、作動状態と停止状態とに切り換えるだけでなく、作動状態においても複数段階(当実施形態では2段階)にわたってバルブタイミングを切り換えるバルブタイミング切換機構35b,35cが設けられている。すなわち、バルブタイミング切換機構35b,35cは、各後続気筒2B,2Cの吸・排気行程に開弁する通常の開弁動作に加えて、後述する特殊運転モードとされる運転領域Aのうち高負荷側の運転領域A2では、後続気筒2B,2Cの吸気行程初期において第1吸気弁31aが開弁されるように構成されるとともに、第2吸気弁31bの開弁時期を遅らせ、かつ開弁期間が短くなるように構成されている(図6の点線または図12の弁動作参照)。従って、これらの各吸気弁31a,31bについての上記カムは、弁停止用のカムと、高負荷側の運転領域A2用のカムと、通常の弁作動用のカムの3種類設けられている。なお、これらのカム切換機構は従来からよく知られているので、ここでは図示を省略している。   On the other hand, among the intake / exhaust valves, the first intake valve 31a and the second intake valve 31b are not only switched between the operation state and the stop state, but also in a plurality of stages (2 in the present embodiment). Valve timing switching mechanisms 35b and 35c for switching the valve timing over the stage) are provided. That is, the valve timing switching mechanisms 35b and 35c have a high load in the operation region A in the special operation mode to be described later in addition to the normal valve opening operation that opens in the intake and exhaust strokes of the subsequent cylinders 2B and 2C. In the operation region A2 on the side, the first intake valve 31a is configured to open at the beginning of the intake stroke of the succeeding cylinders 2B and 2C, the valve opening timing of the second intake valve 31b is delayed, and the valve opening period (See the dotted line in FIG. 6 or the valve operation in FIG. 12). Accordingly, the cams for the intake valves 31a and 31b are provided in three types: a cam for stopping the valve, a cam for the operating region A2 on the high load side, and a cam for operating the normal valve. Note that these cam switching mechanisms are well known in the art, and are not shown here.

上記第1排気弁32aの弁停止機構35aと第1吸気弁31aの弁停止機構35bとに対する作動油給排用の通路36には第1コントロール弁37が、また第2排気弁32bの弁停止機構35aと第2吸気弁31bのバルブタイミング切換機構35cとに対する作動油給排用の通路38には第2コントロール弁39がそれぞれ設けられている(図3参照)。特に、第1吸気弁31aおよび第2吸気弁31bのバルブタイミング切換機構35b、35cには作動油給排用の通路36,38にも接続されている。   The first control valve 37 and the second exhaust valve 32b are stopped in the hydraulic oil supply / discharge passage 36 for the valve stop mechanism 35a of the first exhaust valve 32a and the valve stop mechanism 35b of the first intake valve 31a. A second control valve 39 is provided in each of the hydraulic oil supply / discharge passages 38 to the mechanism 35a and the valve timing switching mechanism 35c of the second intake valve 31b (see FIG. 3). In particular, the valve timing switching mechanisms 35b and 35c of the first intake valve 31a and the second intake valve 31b are also connected to passages 36 and 38 for supplying and discharging hydraulic oil.

図3はエンジンの駆動、制御系統の構成を示している。この図において、マイクロコンピュータ等からなるエンジン制御用のECU(コントロールユニット)40には、既燃ガス温度センサ25からの信号が入力されるとともに、エンジンの冷却水温度を検出する水温センサ51からの信号が入力され、さらに運転状態を判別するためにエンジン回転数を検出する回転数センサ52及びアクセル開度(アクセルペダル踏込み量)を検出するアクセル開度センサ53等からの信号も入力されている。また、このECU40から、各燃料噴射弁9と、上記第1,第2のコントロール弁37,39とに対して制御信号が出力されている。   FIG. 3 shows the configuration of the engine drive and control system. In this figure, a signal from the burned gas temperature sensor 25 is inputted to an engine control ECU (control unit) 40 composed of a microcomputer or the like, and from a water temperature sensor 51 for detecting the cooling water temperature of the engine. A signal is input, and further, a signal from an engine speed sensor 52 for detecting the engine speed and an accelerator position sensor 53 for detecting an accelerator position (accelerator pedal depression amount) for determining the operating state is also input. . In addition, control signals are output from the ECU 40 to the fuel injection valves 9 and the first and second control valves 37 and 39.

上記ECU40は、その機能構成として運転状態判別手段41、モード設定手段42、弁開閉制御手段43および燃料噴射制御手段44等を備えている。   The ECU 40 includes an operating state determination unit 41, a mode setting unit 42, a valve opening / closing control unit 43, a fuel injection control unit 44, and the like as functional components.

運転状態判別手段41は、図4に示すようにエンジンの運転領域が低速低負荷側の領域Aと高速側ないし高負荷側の領域Bとに分けられた制御用マップを有し、上記回転数センサ52及びアクセル開度センサ53等からの信号より調べられるエンジンの運転状態(エンジン回転数及びエンジン負荷)が上記領域A,Bのいずれにあるかを判別する。また、運転状態判別手段41は、運転状態が特殊運転モード領域Aにある場合に、この領域Aのうちの低負荷側運転領域A1と高負荷側運転領域A2のいずれにあるかを判別するようになっている。   The operating state discriminating means 41 has a control map in which the engine operating region is divided into a region A on the low speed and low load side and a region B on the high speed side or the high load side as shown in FIG. It is determined whether the engine operating state (engine speed and engine load), which is examined from signals from the sensor 52, the accelerator opening sensor 53, or the like, is in the above-described region A or B. Further, when the operation state is in the special operation mode region A, the operation state determination means 41 determines whether the region A is in the low load side operation region A1 or the high load side operation region A2. It has become.

モード設定手段42は、運転状態判別手段41の判別に基づき、低負荷低回転側の運転領域Aでは、排気行程にある先行気筒2A,2Dから排出される既燃ガスをそのまま吸気行程にある後続気筒2B,2Cに導入して燃焼させる特殊運転モードを選択し、高負荷側ないし高回転側の運転領域Bでは、各気筒をそれぞれ独立させ燃焼させる通常運転モードを選択するようになっている。   Based on the determination by the operation state determination unit 41, the mode setting unit 42 is configured to follow the combustion gas discharged from the preceding cylinders 2A, 2D in the exhaust stroke as it is in the intake stroke in the operation region A on the low load low rotation side. A special operation mode in which the cylinders 2B and 2C are introduced and burned is selected, and a normal operation mode in which each cylinder is independently burned is selected in the high load side or high rotation side operation region B.

弁開閉制御手段43は、モード設定手段42によるモードの設定に応じ、特殊運転モードでは気筒間ガス通路22を介して先行気筒(1番、4番気筒)2A,2Dの既燃ガスを後続気筒(2番、3番気筒)2B,2Cに導入させる2気筒接続状態とし、通常運転モードでは各気筒にそれぞれ新気を導入させる各気筒独立状態とするように吸・排気流通状態を変更すべく弁停止機構35aやバルブタイミング切換機構35b,35cを制御するもので、具体的には、運転状態が領域A,Bのいずれかにあるかに応じ、上記コントロール弁37,39を制御することにより、原則として各弁停止機構35a等を次のように制御する。   In response to the mode setting by the mode setting means 42, the valve opening / closing control means 43 passes the burned gas of the preceding cylinders (first and fourth cylinders) 2A and 2D through the inter-cylinder gas passage 22 in the special operation mode. (2nd and 3rd cylinders) In order to change the intake / exhaust flow state so that the two cylinders connected to 2B and 2C are connected, and in the normal operation mode, each cylinder is brought into an independent state in which fresh air is introduced into each cylinder. It controls the valve stop mechanism 35a and the valve timing switching mechanisms 35b and 35c. Specifically, by controlling the control valves 37 and 39 depending on whether the operating state is in the region A or B. In principle, each valve stop mechanism 35a and the like are controlled as follows.

領域A:(特殊運転モード)
第1排気弁32a及び第1吸気弁31aを停止状態
第2排気弁32b及び第2吸気弁31bを作動状態
領域B:(通常運転モード)
第1排気弁32a及び第1吸気弁31aを作動状態
第2排気弁32b及び第2吸気弁31bを停止状態
また、この弁開閉制御手段43は、特殊運転モードが選択されている場合であって、上記運転状態判別手段41の判別に基づきエンジンの運転状態が高負荷側の運転領域A2にある場合に、後続気筒2B,2C内に新気を導入する新気導入用吸気弁(第1吸気弁31a)を一時的に開弁するようにバルブタイミング切換機構35bを制御する。具体的には、弁開閉制御手段43は、運転領域A2にある場合に、停止状態にある第1吸気弁31aを後続気筒2B,2Cの吸気上死点付近から吸気行程の途中に至る所定期間開弁させるべくバルブタイミング切換機構35bを制御して当該切換機構35bのカムを切り換えるとともに、作動状態にある第2吸気弁31bの開弁時期を遅らせるべくバルブタイミング切換機構35cを制御して当該切換機構35cのカムを切り換えるように構成されている。
Area A: (Special operation mode)
Stop the first exhaust valve 32a and the first intake valve 31a
Operating the second exhaust valve 32b and the second intake valve 31b Region B: (Normal operation mode)
The first exhaust valve 32a and the first intake valve 31a are activated.
The second exhaust valve 32b and the second intake valve 31b are stopped. The valve opening / closing control means 43 is operated when the special operation mode is selected, and the engine operation is performed based on the determination of the operation state determination means 41. When the state is in the operation region A2 on the high load side, the valve timing is set so as to temporarily open the intake valve for introducing fresh air (first intake valve 31a) for introducing fresh air into the succeeding cylinders 2B and 2C. The switching mechanism 35b is controlled. Specifically, when the valve opening / closing control means 43 is in the operation region A2, the first intake valve 31a in the stopped state is moved from the vicinity of the intake top dead center of the succeeding cylinders 2B and 2C to the middle of the intake stroke. In order to open the valve, the valve timing switching mechanism 35b is controlled to switch the cam of the switching mechanism 35b, and the valve timing switching mechanism 35c is controlled to delay the opening timing of the second intake valve 31b in the operating state. The cam of the mechanism 35c is switched.

燃料噴射制御手段44は、各気筒2A〜2Dに設けられた燃料噴射弁9からの燃料噴射量及び噴射タイミングをエンジンの運転状態に応じて制御するものであり、運転状態判別手段41からの判別結果に基づいて燃料の制御が変更される。   The fuel injection control means 44 controls the fuel injection amount and the injection timing from the fuel injection valve 9 provided in each of the cylinders 2A to 2D in accordance with the operating state of the engine. The fuel control is changed based on the result.

すなわち、特殊運転モードが設定された場合には、先行気筒2A,2Dに対しては、アクセル開度センサ53からの入力に基づいて燃料噴射量を制御するとともに、圧縮行程で燃料を噴射して拡散燃焼を行わせるように噴射時期を設定している。一方、後続気筒2B,2Cに対しては、アクセル開度センサ53からの入力に基づいて燃料噴射量を制御するとともに、この燃料を当該先行気筒2A,2Dで供給するように、すなわち、後続気筒分の燃料を先行気筒2A,2Dの燃料噴射弁9によって直接燃焼室4内に噴射するように燃料噴射時期を設定するとともに燃料噴射弁9を選択し、当該後続気筒2B,2Cでは均質圧縮着火を行わせる。   That is, when the special operation mode is set, the fuel injection amount is controlled based on the input from the accelerator opening sensor 53 for the preceding cylinders 2A and 2D, and the fuel is injected in the compression stroke. The injection timing is set so that diffusion combustion is performed. On the other hand, for the succeeding cylinders 2B and 2C, the fuel injection amount is controlled based on the input from the accelerator opening sensor 53, and this fuel is supplied by the preceding cylinders 2A and 2D. The fuel injection timing is set so that the amount of fuel is directly injected into the combustion chamber 4 by the fuel injection valve 9 of the preceding cylinders 2A and 2D, and the fuel injection valve 9 is selected. In the subsequent cylinders 2B and 2C, homogeneous compression ignition To do.

ここで、後続気筒分の具体的燃料噴射時期は、運転状態判別手段41による判別に基づいて、特殊運転モードとされる運転領域Aのうち低負荷側の運転領域A1にあるか、高負荷側の運転領域A2にあるかで異なる。すなわち、燃料噴射制御手段44は、低負荷側の運転領域A1にある場合には、図6に示すように、先行気筒2A,2Dの膨張行程後半から後続気筒分の燃料の噴射が開始され(開始時点TFS)、該膨張行程後半で全噴射量が噴射されるように(終了時点TFE)設定する一方、高負荷側の運転領域A2にある場合には、図示していないが、低負荷側の運転領域A1にある場合に比べて燃料の噴射時期を遅らせて、後続気筒分の燃料を先行気筒2A,2Dの排気行程前半で噴射するように設定する。そして、先行気筒2A,2Dで噴射された後続気筒分の燃料は既燃ガスとともに気筒間ガス通路22を通って後続気筒2B,2Cに導入される。   Here, the specific fuel injection timing for the subsequent cylinders is based on the determination by the operation state determination means 41, in the operation region A1 on the low load side of the operation region A to be in the special operation mode, or on the high load side. It differs depending on whether it is in the operation region A2. That is, when the fuel injection control means 44 is in the operation region A1 on the low load side, as shown in FIG. 6, fuel injection for the subsequent cylinders is started from the latter half of the expansion stroke of the preceding cylinders 2A and 2D. (Start time point TFS), set so that the entire injection amount is injected in the latter half of the expansion stroke (end time point TFE), while not in the high load side operation region A2, although not shown, The fuel injection timing is delayed as compared with the case in the operation region A1, and the fuel for the subsequent cylinders is set to be injected in the first half of the exhaust stroke of the preceding cylinders 2A and 2D. Then, the fuel for the subsequent cylinders injected by the preceding cylinders 2A and 2D is introduced into the subsequent cylinders 2B and 2C through the inter-cylinder gas passage 22 together with the burned gas.

また、通常運転モードが選択された場合には、燃料噴射制御手段44は、アクセル開度センサ53からの入力に基づいて燃料噴射量を制御し、各気筒2A〜2Dに設けられた燃料噴射弁9により圧縮行程後半で各気筒2A〜2Dの燃料を噴射するように設定することにより、各気筒2A〜2Dで拡散燃焼を行わせるようにしている。   Further, when the normal operation mode is selected, the fuel injection control means 44 controls the fuel injection amount based on the input from the accelerator opening sensor 53, and the fuel injection valves provided in the respective cylinders 2A to 2D. 9 is set to inject fuel in each cylinder 2A to 2D in the latter half of the compression stroke, so that diffusion combustion is performed in each cylinder 2A to 2D.

次に、以上のような実施形態の装置の作用を、図5〜図8を参照しつつ説明する。   Next, the operation of the apparatus according to the embodiment as described above will be described with reference to FIGS.

低負荷低回転側の運転領域Aでは、特殊運転モードとされ前述のように第1排気弁32a及び第1吸気弁31aが停止状態、第2排気弁32b及び第2吸気弁31bが作動状態とされることにより、実質的な新気及びガスの流通経路は図7に示すように、先行気筒2A,2Dから排出される既燃ガスがそのまま気筒間ガス通路22を介して後続気筒2B,2Cに導入されるとともに、この後続気筒2B,2Cから排出される既燃ガスのみが排気通路20に導かれるような2気筒接続状態とされる。   In the operation region A on the low load and low rotation side, the special operation mode is set, and as described above, the first exhaust valve 32a and the first intake valve 31a are stopped, and the second exhaust valve 32b and the second intake valve 31b are operated. As a result, as shown in FIG. 7, the substantial fresh air and gas flow paths are such that the burned gas discharged from the preceding cylinders 2A, 2D is directly passed through the inter-cylinder gas passage 22 and the subsequent cylinders 2B, 2C. In addition, a two-cylinder connection state in which only burned gas discharged from the subsequent cylinders 2B and 2C is guided to the exhaust passage 20 is established.

この状態において、過給機27によって吸気を過給されながら先行気筒2A,2Dにそれぞれ吸気行程で吸気通路15から新気が導入され(図7中の矢印a)、アクセル開度センサ53からの検出に基づき燃料噴射量が制御されつつ圧縮行程の後半で燃料が噴射され(図5および図6中のF1)、これにより先行気筒2A,2Dにおいて拡散燃焼が行われる(図5参照)。   In this state, while the intake air is supercharged by the supercharger 27, fresh air is introduced into the preceding cylinders 2 </ b> A and 2 </ b> D from the intake passage 15 in the intake stroke (arrow a in FIG. 7). While the fuel injection amount is controlled based on the detection, fuel is injected in the latter half of the compression stroke (F1 in FIGS. 5 and 6), whereby diffusion combustion is performed in the preceding cylinders 2A and 2D (see FIG. 5).

この拡散燃焼が終了すると、すなわちエンジンの運転状態が運転領域A1にある場合には先行気筒2A,2Dの膨張行程後半に、一方運転領域A2にある場合には先行気筒2A,2Dの排気行程前半に、後続気筒用の燃料が先行気筒2A,2Dの燃焼室4内に直接噴射される(図5および図6中のF2)。   When this diffusion combustion is completed, that is, when the engine operating state is in the operating region A1, in the latter half of the expansion stroke of the preceding cylinders 2A and 2D, and in the one operating region A2, the first half of the exhaust stroke of the preceding cylinders 2A and 2D. Then, the fuel for the subsequent cylinder is directly injected into the combustion chamber 4 of the preceding cylinder 2A, 2D (F2 in FIGS. 5 and 6).

そして、この先行気筒2A,2Dの排気行程と後続気筒2B,2Cの吸気行程が重なる期間に、この燃料を含んだ既燃ガスが先行気筒2A,2Dから排出されつつ気筒間ガス通路22を通って後続気筒2B,2Cに導入される(図5、図6中の白抜き矢印及び図7中の矢印b)。そして、後続気筒2B,2Cにおいて、圧縮行程の上死点付近で燃焼室4内の圧力、温度の上昇により圧縮自己着火が行われる。   During the period in which the exhaust strokes of the preceding cylinders 2A and 2D overlap with the intake strokes of the subsequent cylinders 2B and 2C, the burned gas containing this fuel passes through the inter-cylinder gas passage 22 while being discharged from the preceding cylinders 2A and 2D. Are introduced into the succeeding cylinders 2B and 2C (the white arrows in FIGS. 5 and 6 and the arrow b in FIG. 7). Then, in the succeeding cylinders 2B and 2C, compression self-ignition is performed by the increase in pressure and temperature in the combustion chamber 4 near the top dead center of the compression stroke.

この場合、先行気筒2A,2Dで燃焼された直後の高温の既燃ガスに軽油等の気化温度が比較的高い燃料が噴射され、しかもこの噴射後、後続気筒2B,2Cで燃焼が行われるまでの間に充分な気化時間があることから、先行気筒2A,2Dで噴射された後続気筒分の燃料は適正に気化し、後続気筒2B,2Cでの燃焼は燃焼室4の略全体に燃料が拡散された均質混合気中で行われることになり同時多点着火により燃焼室4全体に一気に拡がる。   In this case, fuel having a relatively high vaporization temperature such as light oil is injected into the high-temperature burned gas immediately after being combusted in the preceding cylinders 2A and 2D, and after this injection, combustion is performed in the succeeding cylinders 2B and 2C. Since there is sufficient vaporization time, the fuel for the subsequent cylinders injected by the preceding cylinders 2A and 2D is appropriately vaporized, and the combustion in the subsequent cylinders 2B and 2C is almost entirely in the combustion chamber 4. It is carried out in a diffused homogeneous gas mixture and spreads all over the combustion chamber 4 by simultaneous multi-point ignition.

そして、後続気筒2B,2Cでの燃焼後の既燃ガスは、排気通路20に排出されることとなる(図7中の矢印c)。   Then, the burnt gas after combustion in the succeeding cylinders 2B and 2C is discharged to the exhaust passage 20 (arrow c in FIG. 7).

このように、先行気筒2A,2Dでは通常のディーゼルエンジンと同様の燃焼が行われるものの、この先行気筒2A,2Dでの燃焼終了後にこの既燃ガスに対して後続気筒分の燃料の噴射が開始されるので、軽油等気化温度の高い燃料でも燃焼終了直後の高温の既燃ガスにより供給燃料の気化が促進される。特に、低負荷側の運転領域A1では、筒内温度が低いことも多く、通常のディーゼルエンジンによれば均質燃焼させるべく予め燃料を噴射しても高圧で噴射された燃料はその多くがシリンダ壁面に付着して燃焼エネルギーに寄与しないばかりか、燃えかすがすすとなって排出されるのに対し、当実施形態のディーゼルエンジンによれば、燃焼終了直後の膨張行程の後半で極めて高温の既燃ガス中に燃料が噴射されることからその気化が促進されるとともに、例え壁面に付着したとしても先行気筒2A,2Dのピストン3が膨張行程から排気行程に移行されるに伴い、付着した燃料が掻き上げられ、かつ充分な気化時間もあり、これによりその燃料の気化も促進される。従って、出力に寄与しない無駄な燃料消費を抑制して燃費の悪化を回避することができるとともにすすの発生を可及的に抑制することができる。   Thus, although the preceding cylinders 2A and 2D perform combustion similar to that of a normal diesel engine, after the combustion in the preceding cylinders 2A and 2D ends, fuel injection for the succeeding cylinders starts with respect to the burned gas. Therefore, even the fuel having a high vaporization temperature such as light oil promotes the vaporization of the supplied fuel by the high-temperature burned gas immediately after the end of combustion. In particular, in the operating region A1 on the low load side, the in-cylinder temperature is often low, and according to a normal diesel engine, even if fuel is injected in advance for homogeneous combustion, most of the fuel injected at high pressure is the cylinder wall surface. The diesel engine of this embodiment is not only contributing to the combustion energy by being attached to the gas but also being discharged as a soot, whereas according to the diesel engine of the present embodiment, the burnt gas is extremely hot in the second half of the expansion stroke immediately after the end of combustion. Vaporization is promoted because the fuel is injected into the inside, and even if it adheres to the wall surface, the attached fuel is scraped as the piston 3 of the preceding cylinders 2A, 2D is shifted from the expansion stroke to the exhaust stroke. And there is sufficient vaporization time, which promotes the vaporization of the fuel. Therefore, it is possible to suppress wasteful fuel consumption that does not contribute to output, avoid deterioration of fuel consumption, and suppress soot generation as much as possible.

そして、この混合気が先行気筒2A,2Dから後続気筒2B,2Cに気筒間ガス通路22を介して導入され、後続気筒2B,2Cでの吸気行程を経る間に燃料が充分に気化して既燃ガス等とミキシングされ、その燃焼室4内に均一に拡散されるので、多点圧縮自己着火によって燃焼室4全体にわたり一気に燃焼させることができ、これにより酸素と窒素との反応を可及的に回避して窒素酸化物(NOx)の発生を抑制することができる。また、後続気筒では先行気筒からの既燃ガスが導入されることにより多量のEGR(排気再循環)が行われているのと同等の状態となり、これによってもNOxの発生を十分に抑制して排気ガスの浄化に寄与することになる。   Then, this air-fuel mixture is introduced from the preceding cylinders 2A, 2D to the succeeding cylinders 2B, 2C via the inter-cylinder gas passage 22, and the fuel is sufficiently vaporized during the intake stroke in the succeeding cylinders 2B, 2C. Since it is mixed with the combustion gas and diffused uniformly in the combustion chamber 4, it can be burned all over the combustion chamber 4 by multipoint compression self-ignition, thereby allowing the reaction between oxygen and nitrogen as much as possible. Therefore, generation of nitrogen oxides (NOx) can be suppressed. Further, in the succeeding cylinder, the burned gas from the preceding cylinder is introduced, so that a large amount of EGR (exhaust gas recirculation) is performed, and this also sufficiently suppresses the generation of NOx. This will contribute to the purification of exhaust gas.

しかも、気筒間ガス通路22が隣接する気筒間に各ポートを直接連結するように配置されるので、気筒間ガス通路22も短く形成することができ、これにより先行気筒2A,2Dから排出される既燃ガスの温度低下を可及的に抑制して、気化した供給燃料の再液化を効果的に防止することができ、NOxおよびすすの発生を効果的に抑制することができる。   In addition, since the inter-cylinder gas passage 22 is disposed so as to directly connect the ports between the adjacent cylinders, the inter-cylinder gas passage 22 can also be formed short, thereby exhausting from the preceding cylinders 2A and 2D. The temperature decrease of the burnt gas can be suppressed as much as possible to effectively prevent re-liquefaction of the vaporized supply fuel, and the generation of NOx and soot can be effectively suppressed.

また、燃料噴射制御手段44は、気筒内温度の低いことが多い低負荷側運転領域A1では、先行気筒2A,2Dの燃焼終了後の膨張行程後半に燃料の噴射を開始してその気化を促進させるとともに、エンジンの負荷が増大して高負荷側の運転領域A2に移行した場合には、極めて高温の既燃ガス中に燃料を噴射してこの燃料の一部が先行気筒2A,2Dで熱エネルギーに変換され、燃費が悪化することを回避すべく、その噴射タイミングを先行気筒2A,2Dの排気行程前半に変更する。   Further, the fuel injection control means 44 starts fuel injection in the latter half of the expansion stroke after the combustion of the preceding cylinders 2A and 2D in the low load side operation region A1 where the in-cylinder temperature is often low, and promotes the vaporization thereof. In addition, when the engine load increases and shifts to the operation region A2 on the high load side, fuel is injected into an extremely high temperature burned gas, and a part of the fuel is heated in the preceding cylinders 2A and 2D. The injection timing is changed to the first half of the exhaust strokes of the preceding cylinders 2A and 2D in order to avoid deterioration in fuel consumption due to conversion to energy.

特に、当実施形態では、先行気筒2A,2Dに吸気を過給する過給機27が設けられているので、既燃ガス温度の低下が懸念されるが、上記したように、先行気筒2A,2Dの燃焼終了直後に燃料が噴射されるので、後続気筒分の燃料が気化せず燃費が悪化するという事態を効果的に防止することができる。また、過給機27により先行気筒2A,2Dに充分に空気を吸気させてリーン度合を高めることにより、先行気筒2A,2Dの窒素酸化物(NOx)の発生を抑制することができ、エミッション性を向上させることもできる。   In particular, in the present embodiment, since the supercharger 27 for supercharging intake air is provided in the preceding cylinders 2A and 2D, there is a concern about a decrease in the burnt gas temperature. Since the fuel is injected immediately after the end of the 2D combustion, it is possible to effectively prevent a situation in which the fuel for the subsequent cylinders is not vaporized and the fuel consumption is deteriorated. Further, the supercharger 27 sufficiently sucks air into the preceding cylinders 2A and 2D to increase the lean degree, thereby suppressing the generation of nitrogen oxides (NOx) in the preceding cylinders 2A and 2D. Can also be improved.

一方、高負荷側ないし高回転側の運転領域Bでは、通常運転モードとされ前述のように第1排気弁32a及び第1吸気弁31aが作動状態、第2排気弁32b及び第2吸気弁31bが停止状態とされることにより、実質的な新気及びガスの流通経路は図8に示すようになり、実質的に各気筒2A〜2Dの吸気ポート11,11a及び排気ポート12a,12が独立し、吸気通路15から各気筒2A〜2Dの吸気ポート11,11aに新気が導入されるとともに各気筒2A〜2Dの排気ポート12,12aから排気通路20に既燃ガスが排出される。   On the other hand, in the operation region B on the high load side or high rotation side, the normal operation mode is set, and the first exhaust valve 32a and the first intake valve 31a are in the operating state as described above, and the second exhaust valve 32b and the second intake valve 31b. Is brought into a stopped state, the substantial new air and gas flow paths are as shown in FIG. 8, and the intake ports 11 and 11a and the exhaust ports 12a and 12 of each cylinder 2A to 2D are substantially independent. Then, fresh air is introduced from the intake passage 15 to the intake ports 11 and 11a of the cylinders 2A to 2D, and burned gas is discharged to the exhaust passage 20 from the exhaust ports 12 and 12a of the cylinders 2A to 2D.

(第2実施形態)
図9は本発明の第2実施形態によるディーゼルエンジンの概略構成を示している。この第2実施形態は、先行気筒2A,2Dの既燃ガスを後続気筒2B,2Cに導入するための通路の具体的構成において異なり、これに伴ってECU40の機能も若干異なっている。以下、この異なっている点を重点的に説明し、その他の点は図面に同一符号を付してその説明を省略する。
(Second Embodiment)
FIG. 9 shows a schematic configuration of a diesel engine according to the second embodiment of the present invention. This second embodiment differs in the specific configuration of the passage for introducing the burned gas of the preceding cylinders 2A and 2D into the succeeding cylinders 2B and 2C, and the function of the ECU 40 is slightly different accordingly. Hereinafter, these different points will be described with emphasis, and other points will be denoted by the same reference numerals in the drawings, and description thereof will be omitted.

すなわち、上記第1実施形態では、先行気筒2A,2Dと後続気筒2B,2Cとを各々専用の気筒間ガス通路22で接続し、先行気筒2A,2Dの既燃ガスをこの気筒間ガス通路22を通して後続気筒2B,2Cに導入するものとなされていたが、当第2実施形態では、上記先行気筒2A,2Dの各分岐排気通路210が合流した合流排気通路210aで後続気筒2B,2Cの分岐吸気通路161に接続通路220を介して接続されるとともに、この第1および第4気筒2A,2Dから排出された既燃ガスの経路を特殊運転モード時に接続通路220側に切り換え、かつ、通常モード時に排気通路20に切り換える経路切換手段(当実施形態では切替弁)19a,19b,19cとが設けられている。   In other words, in the first embodiment, the preceding cylinders 2A, 2D and the succeeding cylinders 2B, 2C are connected by the dedicated inter-cylinder gas passages 22, respectively, and the burned gas of the preceding cylinders 2A, 2D is connected to the inter-cylinder gas passages 22. However, in the second embodiment, the branch cylinders 2B and 2C branch in the merged exhaust passage 210a where the branch exhaust passages 210 of the preceding cylinders 2A and 2D merge. It is connected to the intake passage 161 via the connection passage 220, and the path of the burned gas discharged from the first and fourth cylinders 2A, 2D is switched to the connection passage 220 side in the special operation mode, and the normal mode Route switching means (switching valves in the present embodiment) 19a, 19b, 19c for switching to the exhaust passage 20 are sometimes provided.

具体的には、吸気通路15は、各気筒2A〜2Dの吸気ポート11に至るまでの所定部分で3方向に分岐し、中央の連通路160aを挟んだ両側の通路が先行気筒用分岐吸気通路160として構成され、この先行気筒用分岐吸気通路160の下流端に先行気筒2A,2Dの吸気ポート11が接続されている。一方、上記中央の連通路160aは、その下流側でさらに3方向に分岐し、中央の通路が接続通路220として構成されているとともに、この接続通路220を挟んだ両側が後続気筒用分岐吸気通路161として構成され、この後続気筒用分岐吸気通路161の下流端に後続気筒2B,2Cの吸気ポート11が接続されている。   Specifically, the intake passage 15 branches in three directions at a predetermined portion up to the intake port 11 of each cylinder 2A to 2D, and the passages on both sides sandwiching the central communication passage 160a are branched intake passages for the preceding cylinders. The intake port 11 of the preceding cylinders 2A and 2D is connected to the downstream end of the preceding cylinder branch intake passage 160. On the other hand, the central communication passage 160a further branches in three directions on the downstream side, and the central passage is configured as a connection passage 220, and both sides sandwiching the connection passage 220 are branch intake passages for subsequent cylinders. The intake port 11 of the subsequent cylinders 2B and 2C is connected to the downstream end of the subsequent cylinder branch intake passage 161.

一方、上流端が先行気筒2A,2Dの排気ポート12に接続された後続気筒用分岐排気通路210はその下流側で合流して先行気筒用合流排気通路210aが構成され、この合流部分には上記接続通路220が接続されている。そして、この合流排気通路210aの下流側には、上流端が後続気筒2B,2Cの排気ポート12に接続された後続気筒用分岐排気通路211が両側から合流して排気通路20に連通するものとなされている。   On the other hand, the branch cylinder branch exhaust passage 210 whose upstream end is connected to the exhaust port 12 of the preceding cylinders 2A and 2D joins downstream to form a preceding cylinder joining exhaust passage 210a. A connection passage 220 is connected. Further, on the downstream side of the merged exhaust passage 210a, a branch cylinder branch exhaust passage 211 whose upstream end is connected to the exhaust port 12 of the subsequent cylinders 2B and 2C joins from both sides and communicates with the exhaust passage 20. Has been made.

そして、吸気通路15から分岐した中央連通路160aと、接続通路220と、先行気筒用合流排気通路210aには、それぞれ各通路を開閉することによりガス経路を切り換える第1ないし第3切替弁19a,19b,19cが設けられている。この切替弁19a,19b,19cのアクチュエータ(図示せず)はECU40に接続され、ECU40の弁開閉制御手段43によって開閉制御が実行されるようになっている(図3参照)。なお、図3は上記第1実施形態に係るECU40等について図示されているが、第2実施形態においてもECU40についての構成図は変わらないため、これを援用して説明する。   The central communication passage 160a branched from the intake passage 15, the connection passage 220, and the converging exhaust passage 210a for the preceding cylinder are respectively connected to the first to third switching valves 19a for switching the gas passage by opening and closing each passage. 19b and 19c are provided. Actuators (not shown) of the switching valves 19a, 19b, 19c are connected to the ECU 40, and opening / closing control is executed by the valve opening / closing control means 43 of the ECU 40 (see FIG. 3). FIG. 3 illustrates the ECU 40 and the like according to the first embodiment, but the configuration diagram of the ECU 40 does not change in the second embodiment, and therefore this will be described with the aid of this.

すなわち、ECU40は、上記第1実施形態と同様に、運転状態判別手段41、モード設定手段42、弁開閉制御手段43、燃料噴射制御手段44とを備える。弁開閉制御手段43をのぞく構成は、上記第1実施形態と同様であるので、ここではその説明を省略する。   That is, the ECU 40 includes an operating state determination unit 41, a mode setting unit 42, a valve opening / closing control unit 43, and a fuel injection control unit 44, as in the first embodiment. Since the configuration excluding the valve opening / closing control means 43 is the same as that of the first embodiment, the description thereof is omitted here.

弁開閉制御手段43は、モード設定手段42によるモードの設定に応じ、特殊運転モードでは気筒間ガス通路22を介して先行気筒(1番、4番気筒)2A,2Dの既燃ガスを後続気筒(2番、3番気筒)2B,2Cに導入させる2気筒接続状態とし、通常運転モードでは各気筒にそれぞれ新気を導入させる各気筒独立状態とするように吸・排気流通状態を変更すべく切替弁19a,19b,19cのアクチュエータを制御するもので、具体的には、運転状態が領域A,Bのいずれかにあるかに応じて上記各アクチュエータ等を次のように制御する。   In response to the mode setting by the mode setting means 42, the valve opening / closing control means 43 passes the burned gas of the preceding cylinders (first and fourth cylinders) 2A and 2D through the inter-cylinder gas passage 22 in the special operation mode. (2nd and 3rd cylinders) In order to change the intake / exhaust flow state so that the two cylinders connected to 2B and 2C are connected, and in the normal operation mode, each cylinder is brought into an independent state in which fresh air is introduced into each cylinder. The actuators of the switching valves 19a, 19b, and 19c are controlled. Specifically, the actuators are controlled as follows depending on whether the operating state is in the region A or B.

領域A:(特殊運転モード)
第1切替弁19a、第3切替弁19cを閉塞状態
第2切換弁19bを開放状態
領域B:(通常運転モード)
第1切換弁19a及び第3切換弁19cを開放状態
第2切換弁19bを閉塞状態
なお、この弁開閉制御手段43について、特殊運転モードが選択されている場合であって、上記運転状態判別手段41の判別に基づきエンジンの運転状態が高負荷側の運転領域A2にある場合に、第2切替弁19bを開放する前に第1切替弁19aを開放し、後続気筒2B,2Cに新気を導入するようにしてもよい。このように新気を後続気筒2B,2Cに導入することにより、後続気筒2B,2C内の温度上昇を抑制することができ、当該後続気筒2B,2Cでの不測の早期着火を防止することができ、また、後続気筒2B,2Cでの燃焼のための燃料を増量することができて出力性能を向上させることができる。
Area A: (Special operation mode)
The first switching valve 19a and the third switching valve 19c are closed.
The second switching valve 19b is opened. Region B: (normal operation mode)
Opening of the first switching valve 19a and the third switching valve 19c
The second switching valve 19b is in a closed state. Note that the special operation mode is selected for the valve opening / closing control means 43, and the engine operating state is determined based on the determination of the operation state determining means 41 on the high load side. When in the operation region A2, the first switching valve 19a may be opened before the second switching valve 19b is opened, and fresh air may be introduced into the succeeding cylinders 2B and 2C. By introducing fresh air into the succeeding cylinders 2B and 2C in this way, the temperature rise in the succeeding cylinders 2B and 2C can be suppressed, and unexpected early ignition in the succeeding cylinders 2B and 2C can be prevented. In addition, the amount of fuel for combustion in the succeeding cylinders 2B and 2C can be increased, and the output performance can be improved.

次に、以上のような実施形態の装置の作用を、図10、図11を参照しつつ説明する。   Next, the operation of the apparatus of the embodiment as described above will be described with reference to FIGS.

低負荷低回転側の運転領域Aでは、特殊運転モードとされ前述のように第1切替弁19aおよび第3切替弁19cが開放状態、第2切替弁19bが閉塞状態とされることにより、実質的な新気およびガスの流通経路は図10に示すように、先行気筒2A,2Dから排出される既燃ガスがそのまま接続通路220を介して後続気筒2B,2Cに導入されるとともに、この後続気筒2B,2Cから排出される既燃ガスのみが排気通路20に導かれるような2気筒接続状態とされる。   In the operation region A on the low load and low rotation side, the special operation mode is set, and as described above, the first switching valve 19a and the third switching valve 19c are opened, and the second switching valve 19b is closed. As shown in FIG. 10, the fresh air and gas flow paths are such that the burned gas discharged from the preceding cylinders 2A and 2D is directly introduced into the succeeding cylinders 2B and 2C through the connection passage 220, A two-cylinder connection state is established in which only the burned gas discharged from the cylinders 2B and 2C is guided to the exhaust passage 20.

この状態において、過給機27によって吸気を過給されながら先行気筒2A,2Dにそれぞれ吸気行程で吸気通路15から先行気筒用分岐吸気通路160に各々分岐して新気が導入され(図10中矢印d,e)、アクセル開度センサ53からの検出に基づき燃料噴射量が制御されつつ圧縮行程の後半で燃料が噴射され(図5および図6中のF1)、これにより先行気筒2A,2Dにおいて拡散燃焼が行われる(図5参照)。   In this state, while the intake air is supercharged by the supercharger 27, fresh air is introduced into the preceding cylinders 2A and 2D by branching from the intake passage 15 to the preceding cylinder branch intake passage 160 in the intake stroke, respectively (in FIG. 10). Arrows d, e), fuel is injected in the latter half of the compression stroke while the fuel injection amount is controlled based on the detection from the accelerator opening sensor 53 (F1 in FIGS. 5 and 6), thereby leading cylinders 2A, 2D In FIG. 5, diffusion combustion is performed (see FIG. 5).

この拡散燃焼が終了すると、すなわちエンジンの運転状態が運転領域A1にある場合には先行気筒2A,2Dの膨張行程後半に、一方運転領域A2にある場合には先行気筒2A,2Dの排気行程前半に、後続気筒用の燃料が先行気筒2A,2Dの燃焼室4内に直接噴射される(図5および図6中のF2)。   When this diffusion combustion is completed, that is, when the engine operating state is in the operating region A1, in the latter half of the expansion stroke of the preceding cylinders 2A and 2D, and in the one operating region A2, the first half of the exhaust stroke of the preceding cylinders 2A and 2D. Then, the fuel for the subsequent cylinder is directly injected into the combustion chamber 4 of the preceding cylinder 2A, 2D (F2 in FIGS. 5 and 6).

そして、この先行気筒2A,2Dの排気行程と後続気筒2B,2Cの吸気行程が重なる期間に、この燃料を含んだ既燃ガスが先行気筒2A,2Dから排出されつつ先行気筒用分岐排気通路210、接続通路220、後続気筒用分岐吸気通路161を通って後続気筒2B,2Cに導入される(図5、図6中の白抜き矢印及び図10中の矢印f、g、h)。そして、後続気筒2B,2Cにおいて、圧縮行程の上死点付近で燃焼室内の圧力、温度の上昇により圧縮自己着火が行われる。   Then, during the period in which the exhaust strokes of the preceding cylinders 2A and 2D overlap with the intake strokes of the subsequent cylinders 2B and 2C, the burned gas containing this fuel is discharged from the preceding cylinders 2A and 2D, and the branched exhaust passage 210 for the preceding cylinders. Then, the air is introduced into the succeeding cylinders 2B and 2C through the connecting passage 220 and the succeeding cylinder branch intake passage 161 (the white arrows in FIGS. 5 and 6 and the arrows f, g and h in FIG. 10). In the succeeding cylinders 2B and 2C, compression self-ignition is performed near the top dead center of the compression stroke due to an increase in pressure and temperature in the combustion chamber.

この場合、先行気筒2A,2Dで燃焼された直後の高温の既燃ガスに軽油等の気化温度が比較的高い燃料が噴射され、しかもこの噴射後、後続気筒2B,2Cで燃焼が行われるまでの間に充分な気化時間があることから、先行気筒2A,2Dで噴射された後続気筒分の燃料は適正に気化し、後続気筒2B,2Cでの燃焼は燃焼室4の略全体に燃料が拡散された均質混合気中で行われることになり燃焼室4全体に一気に拡がる。   In this case, fuel having a relatively high vaporization temperature such as light oil is injected into the high-temperature burned gas immediately after being combusted in the preceding cylinders 2A and 2D, and after this injection, combustion is performed in the succeeding cylinders 2B and 2C. Since there is sufficient vaporization time, the fuel for the subsequent cylinders injected by the preceding cylinders 2A and 2D is appropriately vaporized, and the combustion in the subsequent cylinders 2B and 2C is almost entirely in the combustion chamber 4. It is performed in the diffused homogeneous mixture and spreads all over the combustion chamber 4 at once.

そして、後続気筒2B,2Cでの燃焼後の既燃ガスは、排気通路20に排出されることとなる(図10中の矢印j、k)。   Then, the burnt gas after combustion in the succeeding cylinders 2B and 2C is discharged to the exhaust passage 20 (arrows j and k in FIG. 10).

一方、高負荷側ないし高回転側の運転領域Bでは、通常運転モードとされ前述のように第1切換弁19a及び第3切換弁19cが開放状態、第2切換弁19bが閉塞状態とされることにより、実質的な新気及びガスの流通経路は図11に示すようになり、実質的に各気筒2A〜2Dの吸気ポート11及び排気ポート12が独立し、吸気通路15から各気筒2A〜2Dの吸気ポート11に新気が導入されるとともに各気筒2A〜2Dの排気ポート12から排気通路20に既燃ガスが排出される。   On the other hand, in the operation region B on the high load side or the high rotation side, the normal operation mode is set, and the first switching valve 19a and the third switching valve 19c are opened and the second switching valve 19b is closed as described above. As a result, the flow path of substantial fresh air and gas is as shown in FIG. 11, and the intake port 11 and the exhaust port 12 of each cylinder 2 </ b> A to 2 </ b> D are substantially independent, and each cylinder 2 </ b> A to 2 </ b> A to Fresh air is introduced into the 2D intake port 11 and burned gas is discharged from the exhaust ports 12 of the cylinders 2A to 2D to the exhaust passage 20.

なお、本発明の装置の具体的構成は、上記第1および第2実施形態に限定されず、種々変更可能であり、その例を以下に説明する。   The specific configuration of the apparatus of the present invention is not limited to the first and second embodiments described above, and can be variously modified. Examples thereof will be described below.

(1)上記実施形態では、膨張行程分の燃料を先行気筒2A,2Dで一挙に供給するものとなされているが、特殊運転モードとされる運転領域Aのうち一部運転領域、特に高負荷側の運転領域A2で膨張行程分の燃料を分割して噴射するように燃料噴射制御手段を設定してもよい。例えば、図12に示すように、分割噴射時における燃料の前期噴射時期を先行気筒2A,2Dの膨張行程後半で噴射するように設定する(図12中のF20)とともに、後期噴射を後続気筒2B,2Cで噴射するように燃料噴射弁9を設定し、かつこの後期噴射時期を後続気筒の圧縮行程後半に設定する(図12中のF21)ものとしてもよい。   (1) In the above embodiment, the fuel for the expansion stroke is supplied all at once by the preceding cylinders 2A and 2D. However, a part of the operation region A in the special operation mode, particularly a high load, is used. The fuel injection control means may be set so that the fuel for the expansion stroke is divided and injected in the operation region A2 on the side. For example, as shown in FIG. 12, the early injection timing of fuel at the time of split injection is set to be injected in the latter half of the expansion stroke of the preceding cylinders 2A and 2D (F20 in FIG. 12), and the latter injection is set to the succeeding cylinder 2B. , 2C, the fuel injection valve 9 may be set, and this late injection timing may be set in the latter half of the compression stroke of the subsequent cylinder (F21 in FIG. 12).

このように構成すれば、エンジンの出力を確保しつつ、後期噴射分の燃料の気化潜熱を利用して後続気筒2B,2Cでの温度および圧力を低下させ、かつ、後期噴射分の燃料の活性化を抑制して、過早着火の発生を効果的に防止することができる。   If comprised in this way, while ensuring the engine output, the temperature and pressure in the succeeding cylinders 2B and 2C are reduced by utilizing the latent heat of vaporization of the fuel for the late injection, and the fuel activity for the late injection is achieved. It is possible to effectively prevent the occurrence of premature ignition.

また、先行気筒2A,2Dで一括して後続気筒分の燃料を噴射する場合でも、上記第1実施形態のように膨張行程の後半にその噴射を完了するものでなくてもよく、例えば図13に示すように、先行気筒2A,2Dの膨張行程後半に後続気筒分の燃料の噴射を開始して(図13中の開始時点TFS)、その噴射完了(図13中の完了時点TFE)が排気行程の前半にかかるものであってもよい。   Further, even when the fuel for the subsequent cylinders is injected collectively in the preceding cylinders 2A and 2D, the injection does not have to be completed in the latter half of the expansion stroke as in the first embodiment. For example, FIG. As shown, the fuel injection for the succeeding cylinder is started in the latter half of the expansion stroke of the preceding cylinders 2A and 2D (start time TFS in FIG. 13), and the injection completion (completion time TFE in FIG. 13) is exhausted. It may take the first half of the process.

なお、図13では、第1実施形態における場合と異なり、後続気筒2B,2Cには既燃ガスだけを導入するように構成され、新気は導入されないものとなっている。   In FIG. 13, unlike the case of the first embodiment, only the burned gas is introduced into the succeeding cylinders 2B and 2C, and no fresh air is introduced.

(2)上記第1実施形態では特殊運転モードの制御が実行されている場合に、後続気筒分の燃料噴射時期をエンジンの負荷に応じて噴射時期を2段階(複数段)に変更するものとなされているが、これに限定するものではなく、この燃料噴射時期をエンジンの負荷に応じて連続的に遅らせていくものであってもよい。   (2) In the first embodiment, when the control in the special operation mode is executed, the fuel injection timing for the subsequent cylinders is changed to two stages (multiple stages) according to the engine load. However, the present invention is not limited to this, and the fuel injection timing may be continuously delayed according to the engine load.

(3)上記第1実施形態では、弁動作機構としてカムを用いた機械式弁開閉機構が用いられているが、このカム等を用いる機械式弁開閉機構に代えて、例えば電磁弁を用いた電気式弁開閉機構を用いるものであってもよい。   (3) In the first embodiment, a mechanical valve opening / closing mechanism using a cam is used as the valve operating mechanism. Instead of the mechanical valve opening / closing mechanism using the cam or the like, for example, an electromagnetic valve is used. An electric valve opening / closing mechanism may be used.

本発明に係るディーゼルエンジン全体の概略平面図である。1 is a schematic plan view of an entire diesel engine according to the present invention. エンジン本体等の概略断面図である。It is a schematic sectional drawing, such as an engine main body. 制御系統のブロック図である。It is a block diagram of a control system. 運転領域を示す説明図である。It is explanatory drawing which shows an operation area | region. 各気筒の排気行程、吸気行程、燃料噴射時期および点火時期等を示す図である。It is a figure which shows the exhaust stroke of each cylinder, an intake stroke, fuel injection timing, ignition timing, etc. FIG. 一対の先行・後続気筒の各行程、燃料噴射時期および点火時期等を示す図である。It is a figure which shows each stroke, fuel injection timing, ignition timing, etc. of a pair of preceding / following cylinders. 低負荷、低回転時の実質的な新気およびガスの流通経路を示す説明図である。It is explanatory drawing which shows the distribution path | route of substantial fresh air and gas at the time of low load and low rotation. 高負荷、高低回転側の運転領域にある時の実質的な新気およびガスの流通経路を示す説明図である。It is explanatory drawing which shows the distribution path | route of a substantially new air and gas when it exists in the operating area | region of a high load and high and low rotation side. 本発明に係るディーゼルエンジンの第2実施形態を示す概略平面図である。It is a schematic plan view which shows 2nd Embodiment of the diesel engine which concerns on this invention. 低負荷、低回転時の実質的な新気およびガスの流通経路を示す説明図である。It is explanatory drawing which shows the distribution path | route of substantial fresh air and gas at the time of low load and low rotation. 高負荷、高低回転側の運転領域にある時の実質的な新気およびガスの流通経路を示す説明図である。It is explanatory drawing which shows the distribution path | route of a substantially new air and gas when it exists in the operating area | region of a high load and high and low rotation side. 第2実施形態における低負荷、低回転時の実質的な新気およびガスの流通経路を示す説明図である。It is explanatory drawing which shows the distribution path | route of the substantial fresh air and gas at the time of the low load and low rotation in 2nd Embodiment. 第2実施形態における高負荷高回転時の実質的な新気およびガスの流通経路を示す説明図である。It is explanatory drawing which shows the distribution path | route of substantial fresh air and gas at the time of the high load high rotation in 2nd Embodiment.

符号の説明Explanation of symbols

1 エンジン本体
2A〜2D 気筒
9 燃料噴射弁
11 吸気ポート
11a 第1吸気ポート
11b 第2吸気ポート
12 排気ポート
12a 第1排気ポート
12b 第2排気ポート
15 吸気通路
20 排気通路
22 気筒間ガス通路
31 吸気弁
31a 第1吸気弁
31b 第2吸気弁
32 排気弁
32a 第1排気弁
32b 第2排気弁
35 弁停止機構
40 ECU
41 運転状態判別手段
43 弁開閉構制御手段
44 燃料噴射制御手段
DESCRIPTION OF SYMBOLS 1 Engine main body 2A-2D Cylinder 9 Fuel injection valve 11 Intake port 11a 1st intake port 11b 2nd intake port 12 Exhaust port 12a 1st exhaust port 12b 2nd exhaust port 15 Intake passage 20 Exhaust passage 22 Inter-cylinder gas passage 31 Intake Valve 31a First intake valve 31b Second intake valve 32 Exhaust valve 32a First exhaust valve 32b Second exhaust valve 35 Valve stop mechanism 40 ECU
41 Operating state discriminating means 43 Valve opening / closing mechanism control means 44 Fuel injection control means

Claims (7)

各気筒の燃焼サイクルが所定の位相差をもって行われるようになっている多気筒のディーゼルエンジンにおいて、
エンジンの部分負荷領域で、排気行程と吸気行程が重なる一対の気筒間において排気行程にある先行気筒から排出される既燃ガスがそのまま吸気行程にある後続気筒に導入され、この後続気筒から排出されるガスが排気通路に導かれるような2気筒接続状態としつつ、先行気筒で燃焼を行わせ、この先行気筒における既燃ガスに新たに燃料を供給して後続気筒の燃焼を行わせる特殊運転モードの制御を実行する運転モード制御手段と、この特殊運転モードにおける後続気筒分の燃料噴射を制御する燃料噴射制御手段とを備え、
この燃料噴射制御手段は、上記特殊運転モードとされる運転領域のうち少なくとも低負荷側の運転領域では、先行気筒で後続気筒分の燃料を噴射するように制御するとともにその噴射開始時期を上記先行気筒の膨張行程後半における所定時期に設定することを特徴とするディーゼルエンジン。
In a multi-cylinder diesel engine in which the combustion cycle of each cylinder is performed with a predetermined phase difference,
In the partial load region of the engine, the burned gas discharged from the preceding cylinder in the exhaust stroke between a pair of cylinders where the exhaust stroke and the intake stroke overlap is directly introduced into the succeeding cylinder in the intake stroke and discharged from this succeeding cylinder. Special operation mode in which combustion is performed in the preceding cylinder and fuel is newly supplied to the burned gas in the preceding cylinder and combustion in the subsequent cylinder is performed while the two cylinders are connected such that the gas to be guided to the exhaust passage An operation mode control means for executing the control of, and a fuel injection control means for controlling fuel injection for the subsequent cylinders in this special operation mode,
The fuel injection control means controls to inject fuel for the succeeding cylinder in the preceding cylinder at least in the operating area on the low load side among the operating areas in the special operation mode, and sets the injection start timing to the preceding start time. A diesel engine characterized by being set to a predetermined time in the latter half of the expansion stroke of the cylinder.
上記先行気筒から排出される既燃ガスが気筒間ガス通路を介して上記後続気筒に導入されることを特徴とする請求項1に記載のディーゼルエンジン。   The diesel engine according to claim 1, wherein burned gas discharged from the preceding cylinder is introduced into the succeeding cylinder through an inter-cylinder gas passage. 上記燃料噴射制御手段は、エンジンの負荷が増大して上記特殊運転モードとされる運転領域のうち低負荷側の運転領域から高負荷側の運転領域に移行するに従って、先行気筒での後続気筒分の燃料の噴射開始時期を排気行程前半までの所定時期に遅らせることを特徴とする請求項1または請求項2記載のディーゼルエンジン。   The fuel injection control means is provided for the following cylinders in the preceding cylinder as the engine load increases and shifts from the low load side operation region to the high load side operation region in the operation region where the special operation mode is set. 3. The diesel engine according to claim 1, wherein the fuel injection start timing is delayed to a predetermined time until the first half of the exhaust stroke. 上記運転モード制御手段は、上記特殊運転モードとされる運転領域よりも高負荷側の運転領域で、各気筒にそれぞれ新気を導入させて各気筒を独立状態で燃焼させる通常運転モードの制御を実行するように構成され、上記燃料噴射制御手段は、この通常運転モードにおいて各気筒に対して燃料を噴射するように制御するとともにその燃料噴射時期を各気筒の圧縮行程に設定することを特徴とする請求項1ないし請求項3のいずれか1項に記載のディーゼルエンジン。   The operation mode control means performs control in a normal operation mode in which fresh air is introduced into each cylinder and each cylinder is burned in an independent state in an operation region on a higher load side than the operation region set as the special operation mode. The fuel injection control means controls to inject fuel to each cylinder in the normal operation mode, and sets the fuel injection timing to the compression stroke of each cylinder. The diesel engine according to any one of claims 1 to 3. 上記運転モード制御手段は、上記特殊運転モードとされる運転領域のうちの高負荷側の運転領域で、後続気筒内に新気を導入する新気導入用吸気弁を開弁することにより、上記先行気筒から導出された既燃ガスに加えて新気を後続気筒内に導入させるように制御することを特徴とする請求項1ないし請求項4のいずれか1項に記載のディーゼルエンジン。   The operation mode control means opens the fresh air introduction intake valve that introduces fresh air into the subsequent cylinder in the high load side operation region of the operation region to be the special operation mode. The diesel engine according to any one of claims 1 to 4, wherein control is performed so that fresh air is introduced into the subsequent cylinder in addition to the burned gas derived from the preceding cylinder. 上記燃料噴射制御手段は、上記特殊運転モードとされる運転領域のうちの高負荷側の運転領域で、後続気筒分の燃料の噴射を先行気筒での前期噴射と後続気筒での後期噴射とに分割して行うように設定するとともに、この分割噴射時における燃料の後期噴射時期を当該後続気筒の圧縮行程後半に設定することを特徴とする請求項1ないし請求項5のいずれか1項に記載のディーゼルエンジン。   The fuel injection control means, in the operation region on the high load side of the operation region that is set to the special operation mode, the fuel injection for the subsequent cylinder is divided into the first injection in the preceding cylinder and the second injection in the subsequent cylinder. 6. The fuel injection system according to claim 1, wherein the fuel injection is set so as to be divided and the late injection timing of the fuel at the time of the divided injection is set in the latter half of the compression stroke of the subsequent cylinder. Diesel engine. 上記先行気筒に吸気を過給する過給機をさらに備えることを特徴とする請求項1ないし請求項6のいずれか1項に記載のディーゼルエンジン。   The diesel engine according to any one of claims 1 to 6, further comprising a supercharger for supercharging intake air to the preceding cylinder.
JP2004186652A 2004-06-24 2004-06-24 diesel engine Expired - Fee Related JP4274060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004186652A JP4274060B2 (en) 2004-06-24 2004-06-24 diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004186652A JP4274060B2 (en) 2004-06-24 2004-06-24 diesel engine

Publications (2)

Publication Number Publication Date
JP2006009656A JP2006009656A (en) 2006-01-12
JP4274060B2 true JP4274060B2 (en) 2009-06-03

Family

ID=35777175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004186652A Expired - Fee Related JP4274060B2 (en) 2004-06-24 2004-06-24 diesel engine

Country Status (1)

Country Link
JP (1) JP4274060B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107882645B (en) * 2012-06-28 2021-04-13 康明斯有限公司 Techniques for controlling dedicated EGR engines
US10550777B2 (en) 2012-07-13 2020-02-04 Transportation Ip Holdings, Llc Method and system for matching air flow in an exhaust gas recirculation system
US9534567B2 (en) * 2013-06-11 2017-01-03 Ford Global Technologies, Llc Dedicated EGR cylinder post combustion injection
US10302026B2 (en) * 2014-05-06 2019-05-28 Ford Global Technologies, Llc Systems and methods for improving operation of a highly dilute engine
WO2018113930A1 (en) * 2016-12-20 2018-06-28 Volvo Truck Corporation A method for controlling an internal combustion engine

Also Published As

Publication number Publication date
JP2006009656A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
JP5392293B2 (en) On-vehicle diesel engine and control method of diesel engine
JP3894089B2 (en) Control device for spark ignition engine
KR20040074591A (en) Control device for spark-ignition engine
US8769927B2 (en) EGR control in engine equipped with cylinders having dual exhaust valves
US6941905B2 (en) Control unit for spark ignition-type engine
JP4259255B2 (en) Control device for spark ignition engine
JP3711942B2 (en) Control device for turbocharged engine
JP2009047014A (en) Control device for diesel engine
JP4274060B2 (en) diesel engine
JP4924280B2 (en) Diesel engine control device.
JP2005054676A (en) Spark ignition type engine
JP3711939B2 (en) Control device for spark ignition engine
JP3711941B2 (en) Control device for spark ignition engine
JP3885702B2 (en) Control device for spark ignition engine
JP4123122B2 (en) Control device for spark ignition engine
JP3972744B2 (en) Control device for spark ignition type 4-cycle engine
JP4123102B2 (en) Control device for spark ignition engine
JP4107180B2 (en) Control device for spark ignition engine
JP3951855B2 (en) Control device for spark ignition engine
JP3922153B2 (en) Control device for spark ignition engine
JP3894083B2 (en) Control device for spark ignition engine
JP2004124761A (en) Control device for spark ignition type engine
JP3900072B2 (en) Control device for spark ignition engine
JP4269158B2 (en) Multi-cylinder internal combustion engine
JP2004360624A (en) Control device of spark ignition engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees