JP4272633B2 - Method for producing olefin oligomer - Google Patents

Method for producing olefin oligomer Download PDF

Info

Publication number
JP4272633B2
JP4272633B2 JP2005063090A JP2005063090A JP4272633B2 JP 4272633 B2 JP4272633 B2 JP 4272633B2 JP 2005063090 A JP2005063090 A JP 2005063090A JP 2005063090 A JP2005063090 A JP 2005063090A JP 4272633 B2 JP4272633 B2 JP 4272633B2
Authority
JP
Japan
Prior art keywords
catalyst
group
reaction
sulfonic acid
acid group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005063090A
Other languages
Japanese (ja)
Other versions
JP2006241423A (en
Inventor
英主 大久保
松浦  陽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2005063090A priority Critical patent/JP4272633B2/en
Publication of JP2006241423A publication Critical patent/JP2006241423A/en
Application granted granted Critical
Publication of JP4272633B2 publication Critical patent/JP4272633B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明はオレフィンオリゴマーを製造する方法に関する。詳しくは、オレフィンを特定の固体酸触媒の存在下に反応してオレフィンオリゴマーを製造する方法に関する。   The present invention relates to a method for producing an olefin oligomer. Specifically, the present invention relates to a method for producing an olefin oligomer by reacting an olefin in the presence of a specific solid acid catalyst.

ブテンオリゴマーの重合は従来より工業的には塩化アルミニウム、三弗化ホウ素等の均一酸触媒により行われている(例えば特許文献1、特許文献2)。   Conventionally, the polymerization of butene oligomers has been industrially carried out using a homogeneous acid catalyst such as aluminum chloride and boron trifluoride (for example, Patent Document 1 and Patent Document 2).

しかしながら均一酸触媒を用いた場合、生成物と触媒との分離工程、廃酸処理や装置の腐食等の工業的な問題を有している。また多量の廃棄物の処理が必要となり環境に対する負荷も大きい。そのため従来より、固体酸触媒の開発が行われてきた。従来の固体酸触媒としては、V、Cr、Mo、W元素を含有する金属酸化物触媒(特許文献3)、アルミナを担体として種々の修飾を行ったアルミナ系触媒(例えば特許文献4、特許文献5)、シリカ−アルミナ、シリカ−チタニア等のアルミナとの複合酸化物触媒(例えば特許文献6、特許文献7)、酸化ジルコニウムと酸化モリブデンの複合酸化物触媒(例えば特許文献8、特許文献9)、活性白土(特許文献10)、ヘテロポリ酸系触媒(例えば特許文献11、特許文献12)、ガリウム化合物担持触媒(特許文献13)等が挙げられる。   However, when a homogeneous acid catalyst is used, there are industrial problems such as a step of separating the product and the catalyst, waste acid treatment, and corrosion of the apparatus. In addition, a large amount of waste needs to be treated, and the burden on the environment is large. Therefore, development of a solid acid catalyst has been conventionally performed. Examples of conventional solid acid catalysts include metal oxide catalysts containing V, Cr, Mo, and W elements (Patent Document 3), and alumina-based catalysts that are variously modified using alumina as a support (for example, Patent Document 4 and Patent Documents). 5), composite oxide catalyst of alumina such as silica-alumina, silica-titania (for example, Patent Document 6, Patent Document 7), composite oxide catalyst of zirconium oxide and molybdenum oxide (for example, Patent Document 8, Patent Document 9) , Activated clay (Patent Document 10), heteropolyacid catalyst (for example, Patent Document 11 and Patent Document 12), gallium compound supported catalyst (Patent Document 13), and the like.

前記した特許文献はいずれも触媒活性や生成物の選択性に関するものがほとんどであるが、固体酸触媒を用いた場合における工業的に最も重要な課題は触媒寿命である。反応時間の経過と共に触媒活性が急速に低下するような触媒寿命の短い触媒を使用した場合、満足な生産性の維持が困難となり、触媒の入れ替えが必要となる。そのような場合、触媒の使用期間が短くなるため、結果的には触媒コストが増大して経済的な損失が大きくなる。また入れ替えのためには一定期間生産を停止しなければならないため、触媒寿命の短い触媒を用いることは工業的に不利である。従来の固体酸触媒に関する特許において、この重要な触媒寿命に関しての記述はほとんどない。   Most of the above-mentioned patent documents relate to catalyst activity and product selectivity, but the industrially most important problem in the case of using a solid acid catalyst is catalyst life. When a catalyst having a short catalyst life such that the catalyst activity rapidly decreases as the reaction time elapses, it becomes difficult to maintain satisfactory productivity, and the catalyst needs to be replaced. In such a case, the use period of the catalyst is shortened. As a result, the cost of the catalyst is increased and the economic loss is increased. Moreover, since production must be stopped for a certain period for replacement, it is industrially disadvantageous to use a catalyst having a short catalyst life. In patents relating to conventional solid acid catalysts there is little mention of this important catalyst life.

触媒活性を低下させる原因として、本反応のようなカルボニウムイオンが生成する反応ではこのカルボニウムイオンを開始剤として環化、脱水素反応が進行し、多環芳香族を経由して、いわゆるコークが生成し、このコークが触媒表面を覆うために触媒活性が低下する(例えば非特許文献1)。このコークの生成速度は反応温度に強く影響を受け、高温ほどコークが生成し易い(例えば非特許文献2)。前記の特許の中で触媒寿命に言及した例はほとんどなく、特許文献4において、表面を塩素化したアルミナ触媒を用いた場合における流通試験や、特許文献10において、ヘテロポリ酸をシリカに40重量%担持した触媒を3回繰り返し使用した結果、ほとんど反応成績が変化しないとの記述がある程度である。特許文献4の場合、反応時間は約1800時間と比較的長時間の寿命評価を行っているが、反応温度を0℃から室温付近で行っており、コーク析出の影響を受け難い低い温度の結果であり、参考にならない。また、特許文献10の場合、反応温度は120℃とコークが生成し易い比較的高い温度で反応しているが、反応時間が1時間であり、また3回しか再使用しておらず、触媒寿命を評価するには不足な結果である。   As a cause of lowering the catalytic activity, in the reaction in which carbonium ions are generated as in this reaction, cyclization and dehydrogenation proceeds using this carbonium ion as an initiator, and via so-called coke via polycyclic aromatics. Is generated, and this coke covers the catalyst surface, so that the catalytic activity is reduced (for example, Non-Patent Document 1). The coke generation rate is strongly influenced by the reaction temperature, and the coke is more likely to be generated at higher temperatures (for example, Non-Patent Document 2). In the above patents, there are almost no examples referring to the catalyst life. In Patent Document 4, a flow test in the case of using an alumina catalyst whose surface is chlorinated, and in Patent Document 10, heteropolyacid is added to silica by 40% by weight. As a result of repeated use of the supported catalyst three times, there is some description that the reaction results hardly change. In the case of Patent Document 4, the reaction time is about 1800 hours, which is a comparatively long life evaluation, but the reaction temperature is from 0 ° C. to around room temperature, and the result is a low temperature that is not easily affected by coke precipitation. It is not helpful. In the case of Patent Document 10, the reaction temperature is 120 ° C., which is a relatively high temperature at which coke is likely to be produced. However, the reaction time is 1 hour and the catalyst is reused only three times. This is an insufficient result to evaluate the life.

米国特許2677002号公報US Pat. No. 2,677,002 米国特許3121125号公報U.S. Pat. No. 3,212,125 特表2001−510500号公報JP-T-2001-510500 特開昭57−82325号公報JP-A-57-82325 特開昭56−139428号公報JP-A-56-139428 特開昭56−139430号公報JP-A-56-139430 特開昭57−149233号公報JP-A-57-149233 特開昭56−139429号公報JP-A-56-139429 特開2005−15384号公報JP 2005-15384 A 特開昭57−149232号公報JP-A-57-149232 特開昭57−102825号公報JP-A-57-102825 特開昭57−14538号公報JP 57-14538 A 特開昭52−155692号公報JP-A-52-1555692 J.Catal.,138,343,1992J. et al. Catal. , 138, 343, 1992 Stud.Surf.Sci.Catal.,68,1991Stud. Surf. Sci. Catal. 68, 1991

上記固体酸触媒を用いる方法は収率よく効率的にオレフィンオリゴマーを製造することができるが、反応に使用すると連続的に活性が低下してしまうという問題がある。   Although the method using the solid acid catalyst can efficiently produce an olefin oligomer with high yield, there is a problem that the activity continuously decreases when used in the reaction.

本発明者らは、上記課題を解決して、固体酸触媒を繰り返し再使用しても活性の低下および選択率の低下が殆ど見られない方法について鋭意探索し本発明を完成した。即ち本発明は、固体酸触媒の存在下にオレフィンからオレフィンオリゴマーを製造する方法において固体酸触媒として細孔径9〜500Åの細孔容積に対し細孔径20〜500Åのメソポーラス部の細孔容積の存在割合が0〜20%である有機スルホン酸基を有するポリシロキサンを用いることを特徴とするオレフィンオリゴマーの製造方法である。   The inventors of the present invention have solved the above-mentioned problems, and have intensively searched for a method in which a decrease in activity and a decrease in selectivity are hardly observed even when the solid acid catalyst is repeatedly reused, thereby completing the present invention. That is, the present invention provides a method for producing an olefin oligomer from an olefin in the presence of a solid acid catalyst, and the presence of a pore volume of a mesoporous portion having a pore diameter of 20 to 500 mm as a solid acid catalyst with respect to a pore volume of 9 to 500 mm. A method for producing an olefin oligomer, comprising using a polysiloxane having an organic sulfonic acid group in a proportion of 0 to 20%.

本発明の方法を実施することで長期間連続的にオレフィンオリゴマーを製造することができ、固体酸触媒を繰返し利用しても活性および選択性の低下が見られず工業的に極めて価値がある。   By carrying out the method of the present invention, an olefin oligomer can be produced continuously for a long period of time, and even if the solid acid catalyst is repeatedly used, no decrease in activity and selectivity is observed, which is extremely industrially valuable.

以下、本発明に用いる特定の固体酸触媒(有機スルホン酸基を有するポリシロキサン)について製造法を詳細に示すことで本発明をさらに説明する。   Hereinafter, the present invention will be further described by showing in detail the production method for a specific solid acid catalyst (polysiloxane having an organic sulfonic acid group) used in the present invention.

本発明で用いるスルホン酸基含有炭化水素基を有する有機高分子シロキサン触媒は特開2004−190021号明細書に記述されている。スルホン酸基を有する炭化水素基は、少なくとも1個のスルホン酸基を有する炭化水素基であれば、いかなる炭化水素基であっても本発明に使用することが可能である。スルホン酸基を有する炭化水素としては、好ましくはスルホン酸基含有炭化水素基を少なくとも1個有する、炭素数1以上20以下の炭化水素基があげられる。より好ましくは炭素数6以上20以下、更に好ましくは炭素数6以上15以下の、少なくとも1個のスルホン酸基を有する置換ないしは無置換の芳香族炭化水素基(芳香族基に直接スルホン酸基が置換された基でも、芳香族基に置換された炭化水素基にスルホン酸基が置換された基でもよい)、また好ましくは少なくとも1個のスルホン酸基を有する炭素数1以上15以下、更に好ましくは炭素数1以上10以下の置換ないしは無置換の脂肪族および脂環式炭化水素基よりなる群から選ばれた少なくとも1種の炭化水素基があげられる。   The organic polymer siloxane catalyst having a sulfonic acid group-containing hydrocarbon group used in the present invention is described in Japanese Patent Application Laid-Open No. 2004-190021. Any hydrocarbon group having a sulfonic acid group can be used in the present invention as long as it is a hydrocarbon group having at least one sulfonic acid group. The hydrocarbon having a sulfonic acid group is preferably a hydrocarbon group having at least one sulfonic acid group-containing hydrocarbon group and having 1 to 20 carbon atoms. More preferably, it is a substituted or unsubstituted aromatic hydrocarbon group having 6 or more and 20 or less carbon atoms, more preferably 6 or more and 15 or less carbon atoms and having at least one sulfonic acid group (a sulfonic acid group is directly bonded to the aromatic group). Or a hydrocarbon group substituted with an aromatic group may be substituted with a sulfonic acid group), and preferably has at least one sulfonic acid group having 1 to 15 carbon atoms, more preferably Includes at least one hydrocarbon group selected from the group consisting of substituted or unsubstituted aliphatic and alicyclic hydrocarbon groups having 1 to 10 carbon atoms.

このようなスルホン酸基含有炭化水素基を有する炭化水素基の例としては、少なくとも1個のスルホン酸基により核置換されたフェニル基、トリル基、ナフチル基、メチルナフチル基等の芳香族基、ベンジル基、ナフチルメチル基等の芳香族置換アルキル基等、少なくとも1個のスルホン酸基で置換された、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、t−ブチル基、直鎖または分枝のペンチル基、直鎖または分枝のヘキシル基、直鎖または分枝のヘプチル基、直鎖または分枝のオクチル基、シクロヘキシル基、メチルシクロヘキシル基、エチルシクロヘキシル基等があげられる。さらにこれらの芳香族炭化水素基、または飽和・不飽和の脂肪族炭化水素(脂環式化合物を含む)基は、スルホン酸基の他にハロゲン原子、アルコキシ基、ニトロ基、ヒドロキシ基等の置換基を有する炭化水素基であってもよい。   Examples of the hydrocarbon group having such a sulfonic acid group-containing hydrocarbon group include aromatic groups such as a phenyl group, a tolyl group, a naphthyl group, and a methylnaphthyl group that are nucleus-substituted by at least one sulfonic acid group, A methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i- group substituted with at least one sulfonic acid group such as an aromatic substituted alkyl group such as a benzyl group or a naphthylmethyl group. Butyl group, t-butyl group, linear or branched pentyl group, linear or branched hexyl group, linear or branched heptyl group, linear or branched octyl group, cyclohexyl group, methylcyclohexyl group And ethylcyclohexyl group. Furthermore, these aromatic hydrocarbon groups or saturated / unsaturated aliphatic hydrocarbon (including alicyclic compounds) groups are substituted with halogen atoms, alkoxy groups, nitro groups, hydroxy groups, etc. in addition to sulfonic acid groups. It may be a hydrocarbon group having a group.

このような有機高分子シロキサンの調製法としては以下の方法で調製が可能である。実施しやすい調製方法として、例えば、(1)スルホン酸基含有炭化水素基を有するアルコキシシランとテトラアルコキシシランとを任意の割合で混合し、加水分解、共縮合する調製法、(2)水溶性のスルホン酸基含有炭化水素基を有するアルコキシシランの加水分解物とテトラアルコキシシランとを任意の割合で混合し加水分解させて共縮合する調製法、といったいわゆるアルコキシシランのゾル−ゲル法による調製法や、(3)スルホン酸基含有炭化水素基を有するアルコキシシランを有機高分子シロキサンに存在するシラノール基にシリル化しスルホン酸基を固定する、いわゆるシリル化による調製法が知られている。   Such an organic polymer siloxane can be prepared by the following method. Examples of preparation methods that are easy to implement include (1) a preparation method in which alkoxysilane having a sulfonic acid group-containing hydrocarbon group and tetraalkoxysilane are mixed in any proportion, hydrolyzed, and co-condensed; (2) water-soluble Preparation method of so-called alkoxysilane by sol-gel method, such as a preparation method in which hydrolyzate of alkoxysilane having a sulfonic acid group-containing hydrocarbon group and tetraalkoxysilane are mixed at an arbitrary ratio, hydrolyzed and co-condensed Also known is a preparation method by so-called silylation in which (3) alkoxysilane having a sulfonic acid group-containing hydrocarbon group is silylated to a silanol group present in the organic polymer siloxane to fix the sulfonic acid group.

これらの有機高分子シロキサンは多孔性物質であり、多孔性物質の細孔分布測定は窒素吸着法により測定可能である。本発明では測定装置としてMicromeritics社製のASAP2000測定装置を用い、細孔分布測定結果より表面積、及び細孔径が9〜500Åである容積と20〜500Åである容積を算出した。   These organic polymer siloxanes are porous substances, and the pore distribution of the porous substances can be measured by a nitrogen adsorption method. In the present invention, an ASAP2000 measuring device manufactured by Micromeritics was used as the measuring device, and the surface area and the volume having a pore diameter of 9 to 500 mm and the volume of 20 to 500 mm were calculated from the pore distribution measurement results.

9〜500Åの細孔の比表面積は500〜1500m2/gと非常に高く、本発明で重要なのは、この多孔性物質である有機高分子シロキサンの細孔径9〜500Åの細孔容積に対し、細孔径20〜500Å(メソポーラス部)の細孔容積の存在割合が0〜20%の有機高分子シロキサン触媒がオレフィンのオリゴメリゼーション反応において触媒寿命の長い触媒であることを見出したことである。 The specific surface area of 9 to 500 Å pores is as high as 500 to 1500 m 2 / g, and what is important in the present invention is the pore volume of 9 to 500 細孔 pore diameter of the organic polymer siloxane that is this porous material. The present inventors have found that an organic polymer siloxane catalyst having a pore volume of 20 to 500 mm (mesoporous part) and having a pore volume of 0 to 20% is a catalyst having a long catalyst life in an olefin oligomerization reaction.

細孔径20〜500Å(メソポーラス部)の細孔容積の存在割合を減少させる方法として以下の方法で調製することが可能であるが、本発明で用いる有機高分子シロキサンはこれらの調製法のみに限定されることはない。実施しやすい調製法としては、スルホン酸基含有炭化水素基を調製する際のスルホン化の収率を向上させ、さらに「テトラエトキシシランのモル量」と「スルホン酸基含有炭化水素基を有するアルコキシシランのモル量」との比を調整することにより調製が可能である。具体的に説明すると、フェニルスルホン酸を有するアルコキシシランの合成において、原料であるフェニルトリクロロシランに対し、スルホン化剤の無水硫酸を2.5当量と過剰に加え、反応温度を上げスルホン化する。さらにアルコールによりアルコキシ化したものをゾル−ゲル調製の原料として用いる。アルコールとしては特に限定されることがないが、好ましくは炭素数1〜5のアルキル基を有する直鎖飽和炭素を有するアルコールがあげられる。有機高分子シロキサンのゾル−ゲル調製法としては、上記したスルホン酸基含有炭化水素基を有するアルコキシシランとテトラエトキシシランを混合し、エタノール等を用い均一な混合溶媒とする。この際、「スルホン酸基含有炭化水素基を有するアルコキシシランのモル量」:「テトラエトキシシランのモル量」が1:3〜7であることが重要である。これに加水分解基量に対して1当量の水を加えた後、加熱攪拌し、酸性条件下で濃縮する。得られた高粘度の液体は一般にシリカゾルと呼ばれるものである。上記したシリカゾルに、加水分解基量に対して過剰の水とアンモニア水等を加え、塩基性条件下でゲル化させる。また、この時必要であるならば、加熱し長時間熟成させることもできる。得られたゲルは、溶媒を留去することにより単離できる。このゲルはスルホン酸がアンモニウム塩型であるため、固体酸触媒として用いるために酸処理により酸型に戻す必要がある。   Although it can be prepared by the following method as a method of reducing the existence ratio of the pore volume having a pore diameter of 20 to 500 mm (mesoporous part), the organic polymer siloxane used in the present invention is limited only to these preparation methods. It will never be done. An easy preparation method is to improve the yield of sulfonation when preparing a sulfonic acid group-containing hydrocarbon group, and further to improve the molar amount of tetraethoxysilane and alkoxy having a sulfonic acid group-containing hydrocarbon group. It can be prepared by adjusting the ratio to the “molar amount of silane”. Specifically, in the synthesis of an alkoxysilane having phenylsulfonic acid, an excess of 2.5 equivalents of sulfuric anhydride as a sulfonating agent is added to the raw material phenyltrichlorosilane to raise the reaction temperature and sulfonate. Further, an alkoxylated product with alcohol is used as a raw material for preparing a sol-gel. Although it does not specifically limit as alcohol, Preferably the alcohol which has a linear saturated carbon which has a C1-C5 alkyl group is mention | raise | lifted. As a method for preparing a sol-gel of an organic polymer siloxane, the above-described alkoxysilane having a sulfonic acid group-containing hydrocarbon group and tetraethoxysilane are mixed, and ethanol or the like is used as a uniform mixed solvent. At this time, it is important that “molar amount of alkoxysilane having a sulfonic acid group-containing hydrocarbon group”: “molar amount of tetraethoxysilane” is 1: 3-7. After adding 1 equivalent of water to the amount of hydrolyzable groups, the mixture is heated and stirred and concentrated under acidic conditions. The obtained high-viscosity liquid is generally called silica sol. To the silica sol described above, excess water, aqueous ammonia and the like are added with respect to the amount of hydrolyzable groups, and gelled under basic conditions. Moreover, if necessary at this time, it can be heated and aged for a long time. The resulting gel can be isolated by distilling off the solvent. In this gel, since sulfonic acid is in an ammonium salt form, it is necessary to return it to an acid form by acid treatment in order to use it as a solid acid catalyst.

本発明の製造法において、原料のオレフィンとしては、エチレン、プロピレン、ブテン類(イソブテン、1−ブテン、トランス−2−ブテン、シス−2−ブテン)、ペンテン類、ヘキセン類、等を単独でまたは混合して使用することができる。またナフサ分解で生成したC4留分(BB留分)を用いることができ、さらにBB留分からブタジエンを抽出したスペント−BB留分を用いることもできる。反応温度は触媒の使用量等によって変化するが、通常−20〜150℃が適当であり、特に好ましくは−15〜140℃である。反応温度が−20℃以下ではブテン重合体の収率が低下する。反応温度が150℃以上では反応槽内の圧力が3Mpa以上となり、装置が複雑な高圧装置となる。反応圧力は通常、1〜10Mpa、好ましくは液相反応を可能とする圧力であり、1〜5Mpaの範囲で実施する。反応時間は触媒の使用量、反応温度等によって変化するが、通常5〜180分間が適当である。反応には溶媒を使用しても無溶媒で実施してもよい。溶媒を用いる場合、通常はn−ヘキサン、シクロヘキサン等の飽和炭化水素を使用する。反応方式はバッチ式あるいは連続式の公知のいずれの方式によっても実施することができる。本発明に用いる触媒は反応終了後、ろ過により回収し、そのまま再使用することができる。本発明の製造法はAlCl3法のように反応装置の腐食の問題がなく、さらに反応生成物をアルカリ洗浄、水洗する必要がないので、後の精製が非常に容易にできる。   In the production method of the present invention, as the raw material olefin, ethylene, propylene, butenes (isobutene, 1-butene, trans-2-butene, cis-2-butene), pentenes, hexenes, etc. are used alone or Can be used as a mixture. Moreover, the C4 fraction (BB fraction) produced | generated by the naphtha decomposition | disassembly can be used, and also the spent-BB fraction which extracted the butadiene from the BB fraction can also be used. Although reaction temperature changes with the usage-amount of a catalyst etc., -20-150 degreeC is suitable normally, Especially preferably, it is -15-140 degreeC. When the reaction temperature is -20 ° C or lower, the yield of butene polymer decreases. When the reaction temperature is 150 ° C. or higher, the pressure in the reaction tank is 3 Mpa or higher, and the apparatus becomes a complex high-pressure apparatus. The reaction pressure is usually 1 to 10 Mpa, preferably a pressure enabling a liquid phase reaction, and is carried out in the range of 1 to 5 Mpa. The reaction time varies depending on the amount of catalyst used, reaction temperature, etc., but usually 5 to 180 minutes is appropriate. The reaction may be performed with or without a solvent. When using a solvent, usually saturated hydrocarbons such as n-hexane and cyclohexane are used. The reaction system can be carried out by any known system such as a batch system or a continuous system. After completion of the reaction, the catalyst used in the present invention can be recovered by filtration and reused as it is. The production method of the present invention does not have the problem of corrosion of the reactor unlike the AlCl 3 method, and further, the reaction product does not need to be washed with alkali and water, so that the subsequent purification can be made very easy.

以下、本発明を実施例、および比較例により具体的に説明する。しかしながら、この実施例は単なる例示であって、本発明はこれらに限定されるものではない。
なお、細孔径9〜500Åの細孔容積に対し、細孔径20〜500Å(メソポーラス部)の細孔容積の存在割合をメソ孔存在割合(20〜500Åの細孔容積の値を、9〜500Åの細孔容積の値で除した値)として表わした。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. However, this embodiment is merely an example, and the present invention is not limited thereto.
In addition, with respect to the pore volume having a pore diameter of 9 to 500 mm, the ratio of the pore volume having a pore diameter of 20 to 500 mm (mesoporous portion) is represented by the mesopore existence ratio (the value of the pore volume of 20 to 500 mm being 9 to 500 mm). The value is divided by the value of the pore volume.

また触媒寿命評価はバッチ試験により、触媒を繰り返し使用することで評価した。この時の触媒寿命の尺度として、初期から繰り返し反応試験の最終回までのイソブテン転化率の低下度合いを劣化率{劣化率(%)=(初期転化率−最終転化率)÷初期転化率×100}として算出し、触媒寿命の尺度として用いた。   Moreover, the catalyst life evaluation was evaluated by repeatedly using the catalyst by a batch test. As a measure of the catalyst life at this time, the degree of reduction in the isobutene conversion rate from the initial stage to the final round of the repeated reaction test is expressed as deterioration rate {deterioration rate (%) = (initial conversion rate−final conversion rate) ÷ initial conversion rate × 100. } And used as a measure of catalyst life.

[実施例1]
特開2004−190021号明細書の実施例に従い、有機高分子シロキサン触媒を調整した。
[Example 1]
An organic polymer siloxane catalyst was prepared according to the examples of JP-A-2004-190021.

(1)スルホン酸基含有アルコキシシランの合成
滴下ロートを取り付けた2口の300mlの丸底フラスコに塩化メチレンを100ml入れ、これにフェニルトリクロロシラン39.1g(0.19mol)を加え、氷冷した。これに無水硫酸37.3g(0.47mol)の塩化メチレン溶液20mlを、1時間かけて滴下した。滴下後外温を60℃にし、還流下2時間反応を行いスルホン化反応を行った。次に、外温60℃でエタノール46.0gを塩化水素を除きながら1時間かけて滴下し、ついで外温を100℃にし、塩化メチレンを留去した。さらに、エタノール46.0gを滴下し、外温100℃で2時間還流してエトキシ化反応を行った。得られた不純物を含むスルホン酸基含有エトキシシランのエタノール溶液162.7gを、スルホン酸基含有炭化水素基を有する有機高分子シロキサンのゾル−ゲル調製におけるスルホン酸成分の原料として用いた。この際、スルホン酸基含有アルコキシシランとテトラエトキシシランを任意の割合で混合し、ゾル−ゲル調製によりスルホン酸基含有炭化水素基を有する有機高分子シロキサンを調製し、その固体酸量を測定する。その求めた酸量から得られる、仕込時のスルホン酸基含有アルコキシシランの濃度から、スルホン化収率(仕込みフェニルトリクロロシランに対する、生成したスルホン酸基含有エトキシシランの収率)を求めた。スルホン酸基含有アルコキシシランでのスルホン化収率は70%であった。
(1) Synthesis of sulfonic acid group-containing alkoxysilane 100 ml of methylene chloride was placed in a two-necked 300 ml round bottom flask equipped with a dropping funnel, and 39.1 g (0.19 mol) of phenyltrichlorosilane was added thereto, and the mixture was ice-cooled. . To this, 20 ml of a methylene chloride solution containing 37.3 g (0.47 mol) of anhydrous sulfuric acid was added dropwise over 1 hour. After dripping, the external temperature was set to 60 ° C., and the reaction was carried out for 2 hours under reflux to carry out sulfonation reaction. Next, 46.0 g of ethanol was added dropwise over 1 hour while removing hydrogen chloride at an external temperature of 60 ° C., and then the external temperature was raised to 100 ° C. to distill off methylene chloride. Further, 46.0 g of ethanol was added dropwise and refluxed at an external temperature of 100 ° C. for 2 hours to carry out an ethoxylation reaction. 162.7 g of the obtained sulfonic acid group-containing ethoxysilane ethanol solution containing impurities was used as a raw material for the sulfonic acid component in the preparation of a sol-gel of an organic polymer siloxane having a sulfonic acid group-containing hydrocarbon group. At this time, sulfonic acid group-containing alkoxysilane and tetraethoxysilane are mixed at an arbitrary ratio to prepare an organic polymer siloxane having a sulfonic acid group-containing hydrocarbon group by sol-gel preparation, and the solid acid amount is measured. . The sulfonation yield (yield of the produced sulfonic acid group-containing ethoxysilane with respect to the charged phenyltrichlorosilane) was determined from the concentration of the sulfonic acid group-containing alkoxysilane obtained from the obtained acid amount. The sulfonation yield with the sulfonic acid group-containing alkoxysilane was 70%.

(2)触媒Aの調製
攪拌棒を取り付けた2口の1000mlの丸底フラスコに上記したスルホン酸基含有アルコキシシランを138.0g(0.11mol)、テトラエトキシシランを119.0g(0.57mol)、エタノール100mlを入れて混合した。これに水24.0gを15分かけて滴下し、60℃で3時間攪拌した。放冷後、水120.0gを1分間かけて滴下し、さらに28%アンモニア水35mlを滴下すると反応液は急速に固形化した。これを室温で4時間放置した後、60℃で3日間熟成させた。熟成後10mmHgの減圧下100℃で溶媒留去し、乾燥固体を得た。ついで2Nの塩酸300mlを加え、室温で30分間攪拌する操作を2回繰り返し、スルホン酸基をH型にもどした。酸処理後、イオン交換水500mlで洗浄し、これを10mmHgの減圧下100℃で10時間乾燥させた。以上の操作により、スルホン酸基含有炭化水素基を有する有機高分子シロキサン55.1gを得、触媒Aとした。この固体酸量を測定したところ、1.42meq/gであった。また、窒素ガス吸着法により測定した比表面積は464m/g、細孔径9〜500Åの細孔容積は0.21cc/g、細孔径20〜500Åでは細孔の存在は認められず、メソ孔存在割合は0%であった。
(2) Preparation of Catalyst A 138.0 g (0.11 mol) of the sulfonic acid group-containing alkoxysilane and 119.0 g (0.57 mol) of tetraethoxysilane were added to a 1000 ml round bottom flask equipped with a stirring rod. ), 100 ml of ethanol was added and mixed. To this, 24.0 g of water was added dropwise over 15 minutes and stirred at 60 ° C. for 3 hours. After allowing to cool, 120.0 g of water was added dropwise over 1 minute, and when 35 ml of 28% aqueous ammonia was added dropwise, the reaction solution rapidly solidified. This was allowed to stand at room temperature for 4 hours and then aged at 60 ° C. for 3 days. After aging, the solvent was distilled off at 100 ° C. under a reduced pressure of 10 mmHg to obtain a dry solid. Subsequently, the operation of adding 300 ml of 2N hydrochloric acid and stirring for 30 minutes at room temperature was repeated twice to return the sulfonic acid group to the H + type. After the acid treatment, it was washed with 500 ml of ion-exchanged water and dried at 100 ° C. under a reduced pressure of 10 mmHg for 10 hours. As a result of the above operation, 55.1 g of an organic polymer siloxane having a sulfonic acid group-containing hydrocarbon group was obtained as Catalyst A. When this solid acid amount was measured, it was 1.42 meq / g. In addition, the specific surface area measured by the nitrogen gas adsorption method was 464 m 2 / g, the pore volume of pore diameter 9 to 500 mm was 0.21 cc / g, and the presence of pores was not observed at pore diameters 20 to 500 mm, and the mesopore The existence ratio was 0%.

(3)イソブテンのオリゴメリゼーション反応
内容積100ccのステンレス製反応器に上記触媒A500mg、溶媒としてn−ヘキサン14.00g、原料オレフィンとしてイソブテン(アルドリッチ社製)5.10gを仕込み、100rpmの攪拌下、100℃で1時間反応させた。反応終了後、氷冷し、放圧後、反応液を回収して触媒と分離した後、ガスクロマトグラフィーで分析した。回収した触媒は再度反応器に装入し、同様な試験を繰り返し行った。結果は表1に示したように繰り返し触媒を使用する過程における触媒活性の低下は大きく抑制されていた。
(3) Oligomerization reaction of isobutene In a stainless steel reactor with an internal volume of 100 cc, 500 mg of the catalyst A, 14.00 g of n-hexane as a solvent, and 5.10 g of isobutene (manufactured by Aldrich) as a raw material olefin were charged and stirred at 100 rpm. And reacted at 100 ° C. for 1 hour. After completion of the reaction, the reaction solution was cooled with ice and released, and then the reaction solution was recovered and separated from the catalyst, and then analyzed by gas chromatography. The recovered catalyst was charged again into the reactor, and the same test was repeated. As shown in Table 1, the decrease in catalytic activity during the process of repeatedly using the catalyst was largely suppressed.

[比較例1]
(1)触媒Bの調製
J.Mol.Cata1.,43,41(1987)記載の方法にしたがって、スルホン酸基含有炭化水素基を有する有機高分子シロキサンを調製した。攪拌棒を取り付けた2口の1000mlの丸底フラスコに、フェニルトリエトキシシラン72.0g(0.30mol)、テトラエトキシシラン145.6g(0.70mol)、エタノール125mlを入れて混合した。これに0.01Nの塩酸35mlを滴下したのち、混合溶液の体積が120mlとなるまで加熱攪拌した。放冷後、エタノール60mlとシクロヘキサン90mlを加え混合した。ついで、水270gを滴下し、さらにアンモニア水50mlを滴下した。これを室温で4時間攪拌した後、濾別した。ついで水洗し、これを減圧下120℃で乾燥させ、フェニル基を有する有機高分子シロキサン80.0gを得た。500mlの2口の丸底フラスコに、上記で得たフェニル基を有する有機高分子シロキサン10.0g、モル比でクロロスルホン酸:クロロホルム=1:4の混合溶液200mlを混合し、還流下で3時間スルホン化を行いスルホン酸基含有炭化水素基を有する有機高分子シロキサン8.5gを得、触媒Bとした。この固体酸量を測定したところ、1.10meq/gであった。また、窒素ガス吸着法により測定した比表面積は772m/gであり、細孔径9〜500Åの細孔容積は0.21cc/g、細孔径20〜500Åの細孔容積は0.06cc/gでありメソ孔存在割合は30%であった。
[Comparative Example 1]
(1) Preparation of catalyst B Mol. Cat1. , 43, 41 (1987), an organic polymer siloxane having a sulfonic acid group-containing hydrocarbon group was prepared. 72.0 g (0.30 mol) of phenyltriethoxysilane, 145.6 g (0.70 mol) of tetraethoxysilane, and 125 ml of ethanol were mixed in a two-neck 1000 ml round bottom flask equipped with a stir bar. To this was added dropwise 35 ml of 0.01N hydrochloric acid, and the mixture was heated and stirred until the volume of the mixed solution reached 120 ml. After allowing to cool, 60 ml of ethanol and 90 ml of cyclohexane were added and mixed. Subsequently, 270 g of water was added dropwise, and 50 ml of aqueous ammonia was further added dropwise. This was stirred at room temperature for 4 hours and then filtered off. Subsequently, it was washed with water and dried at 120 ° C. under reduced pressure to obtain 80.0 g of an organic polymer siloxane having a phenyl group. In a 500 ml two-necked round bottom flask, 10.0 g of the organic polymer siloxane having a phenyl group obtained above and 200 ml of a mixed solution of chlorosulfonic acid: chloroform = 1: 4 at a molar ratio were mixed. Sulfonation was performed for a period of time to obtain 8.5 g of an organic polymer siloxane having a sulfonic acid group-containing hydrocarbon group. When this solid acid amount was measured, it was 1.10 meq / g. Moreover, the specific surface area measured by the nitrogen gas adsorption method is 772 m 2 / g, the pore volume of pore diameter 9 to 500 mm is 0.21 cc / g, and the pore volume of pore diameter 20 to 500 mm is 0.06 cc / g. The mesopore existence ratio was 30%.

(2)イソブテンのオリゴメリゼーション
内容積100ccのステンレス製反応器に上記触媒B500mg、溶媒としてn−ヘキサン14.00g、原料オレフィンとしてイソブテン(アルドリッチ社製)5.10gを仕込み、100rpmの攪拌下、100℃で1時間反応させた。反応終了後、氷冷し、放圧後、反応液を回収して触媒と分離した後、ガスクロマトグラフィーで分析した。回収した触媒は再度反応器に装入し、同様な試験を繰り返し行った。結果は表1に示した。
(2) Isobutene oligomerization Into a stainless steel reactor having an internal volume of 100 cc, 500 mg of the catalyst B, 14.00 g of n-hexane as a solvent, and 5.10 g of isobutene (manufactured by Aldrich) as a raw material olefin were charged, and stirred at 100 rpm. The reaction was performed at 100 ° C. for 1 hour. After completion of the reaction, the reaction solution was cooled with ice and released, and then the reaction solution was recovered and separated from the catalyst, and then analyzed by gas chromatography. The recovered catalyst was charged again into the reactor, and the same test was repeated. The results are shown in Table 1.

[比較例2]
(1)イソブテンのオリゴメリゼーション
内容積100ccのステンレス製反応器にY型ゼオライト(東ソー製:HSZ−331HSA)500mg、溶媒としてn−ヘキサン14.00g、原料オレフィンとしてイソブテン(アルドリッチ社製)5.10gを仕込み、100rpmの攪拌下、100℃で1時間反応させた。反応終了後、氷冷し、放圧後、反応液を回収して触媒と分離した後、ガスクロマトグラフィーで分析した。回収した触媒は再度反応器に装入し、同様な試験を繰り返し行った。結果は表1に示した。
[Comparative Example 2]
(1) Oligomerization of isobutene In a stainless steel reactor with an internal volume of 100 cc, 500 mg of Y-type zeolite (Tosoh: HSZ-331HSA), 14.00 g of n-hexane as a solvent, and isobutene as a raw material olefin (manufactured by Aldrich) 10 g was charged and reacted at 100 ° C. for 1 hour under stirring at 100 rpm. After completion of the reaction, the reaction solution was cooled with ice and released, and then the reaction solution was recovered and separated from the catalyst, and then analyzed by gas chromatography. The recovered catalyst was charged again into the reactor, and the same test was repeated. The results are shown in Table 1.

Figure 0004272633
Figure 0004272633

[実施例2]
(1)イソブテンのオリゴメリゼーション反応
内容積100ccのステンレス製反応器に実施例1で用いた触媒A150mg、溶媒としてn−ヘキサン14.00g、原料オレフィンとしてイソブテン(アルドリッチ社製)12.90gを仕込み、100rpmの攪拌下、150℃で3時間反応させた。反応終了後、氷冷し、放圧後、反応液を回収して触媒と分離した後、ガスクロマトグラフィーで分析した。回収した触媒は再度反応器に装入し、同様な試験を繰り返し行った。結果は表2に示したように繰り返し触媒を使用した結果、繰り返し試験時における触媒活性の低下の割合は小さかった。
[Example 2]
(1) Oligomerization reaction of isobutene In a 100 cc stainless steel reactor, 150 mg of catalyst A used in Example 1, 14.00 g of n-hexane as a solvent, and 12.90 g of isobutene (manufactured by Aldrich) as a raw material olefin were charged. The mixture was reacted at 150 ° C. for 3 hours under 100 rpm stirring. After completion of the reaction, the reaction solution was cooled with ice and released, and then the reaction solution was recovered and separated from the catalyst, and then analyzed by gas chromatography. The recovered catalyst was charged again into the reactor, and the same test was repeated. As a result, as shown in Table 2, as a result of using the catalyst repeatedly, the rate of decrease in the catalyst activity during the repetition test was small.

[比較例3]
(1)触媒Cの調製
特開昭57−102825号明細書実施例3に従って、ヘテロポリ酸を約40重量%担持したシリカ担持触媒、触媒Cを調製した。1000mlのビーカーにタングストリン酸40%水溶液75g、シリカゲル(Aerosil 300)50g、水50gを加え油浴上で100℃で混合しつつ、水を蒸発させた後、乾燥した固体粉末を取り出し、350℃で4時間焼成した。
[Comparative Example 3]
(1) Preparation of catalyst C According to Example 3 of JP-A-57-102825, a silica-supported catalyst supporting about 40% by weight of a heteropolyacid, catalyst C, was prepared. To a 1000 ml beaker, 75 g of a 40% aqueous solution of tungstophosphoric acid, 50 g of silica gel (Aerosil 300) and 50 g of water were added and mixed on an oil bath at 100 ° C., and the water was evaporated. For 4 hours.

(2)イソブテンのオリゴメリゼーション
内容積100ccのステンレス製反応器に上記触媒C150mg、溶媒としてn−ヘキサン14.00g、原料オレフィンとしてイソブテン(アルドリッチ社製)12.90gを仕込み、100rpmの攪拌下、150℃で1時間反応させた。反応終了後、氷冷し、放圧後、反応液を回収して触媒と分離した後、ガスクロマトグラフィーで分析した。回収した触媒は再度反応器に装入し、同様な試験を繰り返し行った。結果は表2に示した。
(2) Oligomerization of isobutene In a stainless steel reactor with an internal volume of 100 cc, 150 mg of the above catalyst C, 14.00 g of n-hexane as a solvent, and 12.90 g of isobutene (manufactured by Aldrich) as a raw material olefin were charged and stirred at 100 rpm. The reaction was carried out at 150 ° C. for 1 hour. After completion of the reaction, the reaction solution was cooled with ice and released, and then the reaction solution was recovered and separated from the catalyst, and then analyzed by gas chromatography. The recovered catalyst was charged again into the reactor, and the same test was repeated. The results are shown in Table 2.

Figure 0004272633
Figure 0004272633

[実施例3]
(1)イソブテンのオリゴメリゼーション反応
内容積100ccのステンレス製反応器に実施例1で用いた触媒A250mg、溶媒としてn−ヘキサン14.00g、原料オレフィンとしてイソブテン(アルドリッチ社製)12.90gを仕込み、100rpmの攪拌下、100℃で3時間反応させた。反応終了後、氷冷し、放圧後、反応液を回収して触媒と分離した後、ガスクロマトグラフィーで分析した。回収した触媒は再度反応器に装入し、同様な試験を繰り返し行った。結果は表3に示したように繰り返し触媒を使用したが触媒活性の低下はほとんどなかった。
[Example 3]
(1) Oligomerization reaction of isobutene In a stainless steel reactor having an internal volume of 100 cc, 250 mg of catalyst A used in Example 1, 14.00 g of n-hexane as a solvent, and 12.90 g of isobutene (manufactured by Aldrich) as a raw material olefin were charged. The reaction was carried out at 100 ° C. for 3 hours under stirring at 100 rpm. After completion of the reaction, the reaction solution was cooled with ice and released, and then the reaction solution was recovered and separated from the catalyst, and then analyzed by gas chromatography. The recovered catalyst was charged again into the reactor, and the same test was repeated. As shown in Table 3, the catalyst was used repeatedly as shown in Table 3, but there was almost no decrease in the catalyst activity.

Figure 0004272633
Figure 0004272633

本発明の方法によれば、長期間連続的にオレフィンオリゴマーを製造することができ、固体酸触媒を繰返し利用しても活性および選択性の低下がないので、工業的に極めて有用である。
According to the method of the present invention, an olefin oligomer can be produced continuously for a long period of time, and even if the solid acid catalyst is repeatedly used, there is no decrease in activity and selectivity, which is extremely useful industrially.

Claims (2)

細孔径9〜500Åの細孔容積に対し細孔径20〜500Åのメソポーラス部の細孔容積の存在割合が0〜20%であるスルホン酸基含有炭化水素基を有する有機高分子シロキサンを触媒として、前記触媒にオレフィンを接触させることを特徴とするオレフィンオリゴマーの製造方法。 An organic polymer siloxane having a sulfonic acid group-containing hydrocarbon group having a pore volume ratio of 0 to 20% in a mesoporous part having a pore diameter of 20 to 500 to a pore volume of 9 to 500 mm, The manufacturing method of the olefin oligomer characterized by making an olefin contact the said catalyst. オレフィンがイソブテン、1−ブテン、トランス−2−ブテン、シス−2−ブテンのうちの少なくとも1種を含むブテン類である請求項1記載の製造方法。
The process according to claim 1, wherein the olefin is a butene containing at least one of isobutene, 1-butene, trans-2-butene, and cis-2-butene.
JP2005063090A 2005-03-07 2005-03-07 Method for producing olefin oligomer Expired - Fee Related JP4272633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005063090A JP4272633B2 (en) 2005-03-07 2005-03-07 Method for producing olefin oligomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005063090A JP4272633B2 (en) 2005-03-07 2005-03-07 Method for producing olefin oligomer

Publications (2)

Publication Number Publication Date
JP2006241423A JP2006241423A (en) 2006-09-14
JP4272633B2 true JP4272633B2 (en) 2009-06-03

Family

ID=37048138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005063090A Expired - Fee Related JP4272633B2 (en) 2005-03-07 2005-03-07 Method for producing olefin oligomer

Country Status (1)

Country Link
JP (1) JP4272633B2 (en)

Also Published As

Publication number Publication date
JP2006241423A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP3486566B2 (en) Mesoporous acidic solid catalyst, its production method and its use
EP3230410A1 (en) Aromatic hydrogenation catalysts and uses thereof
JP6521979B2 (en) Catalyst and method for converting oxygenates to olefins
KR19990077717A (en) Catalyst and use thereof
US8604246B2 (en) Single step catalytic preparation of para-aminophenol
US6229037B1 (en) Polyorganosiloxane catalyst
JP4366338B2 (en) Solid phosphoric acid catalyst and olefin dimerization method using the same
JPH04247042A (en) Production of alpha-olefin by ethenolysis
JP4272633B2 (en) Method for producing olefin oligomer
US7629288B2 (en) Catalyst composition comprising ruthenium and a treated silica support component and processes therefor and therewith for preparing high molecular weight hydrocarbons such as polymethylene
KR102658500B1 (en) Method for producing butene polymer
JP4357393B2 (en) Method for producing aromatic polyamine
FR3069460A3 (en) PROCESS FOR PREPARING A HIERARCHIC ZEOLITE CATALYST FOR THE AROMATISATION OF C5 TO C9 ALKANES
JP5336239B2 (en) Process for producing olefin dimer, olefin dimer
JPH08501975A (en) Lewis Acid-Promoted Improved Transfer Alumina Catalysts and Isoparaffin Alkylation Processes Using These Catalysts
US6228797B1 (en) Oligomerization catalyst system and method of making and method of using such catalyst system in the oligomerization of olefins
JP2006306988A (en) Surface-modified organic polysiloxane and application of the same
US10987664B2 (en) Process for preparing a structurally selective oligomerization catalyst of prolonged stability by precipitation
RU2188812C1 (en) Isobutylene production process via skeleton isomerization of n-butylenes
RU2540324C1 (en) Catalyst for producing synthetic base oils during oligomerisation of decene-1 and method for production thereof
CN113680387B (en) Catalyst for synthesizing isooctane alkylate, and preparation method and application thereof
US11951461B2 (en) Solid acid catalyst, preparation therefor and use thereof
JP4571393B2 (en) Organopolymer siloxane and its use
JP4371388B2 (en) Organopolymer siloxane catalyst
RU2565770C1 (en) Method of preparing mesoporous catalyst for producing high-index synthetic decene base oils

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070709

RD03 Notification of appointment of power of attorney

Effective date: 20080414

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090224

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090227

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees