JP4272331B2 - Image forming apparatus - Google Patents

Image forming apparatus Download PDF

Info

Publication number
JP4272331B2
JP4272331B2 JP2000106202A JP2000106202A JP4272331B2 JP 4272331 B2 JP4272331 B2 JP 4272331B2 JP 2000106202 A JP2000106202 A JP 2000106202A JP 2000106202 A JP2000106202 A JP 2000106202A JP 4272331 B2 JP4272331 B2 JP 4272331B2
Authority
JP
Japan
Prior art keywords
voltage
charging
developing
toner
reflection density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000106202A
Other languages
Japanese (ja)
Other versions
JP2001290318A (en
Inventor
治司 水石
則之 碓井
勝 田中
謙三 巽
俊隆 山口
浩 水沢
英樹 善波
賢 雨宮
真由美 大堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2000106202A priority Critical patent/JP4272331B2/en
Publication of JP2001290318A publication Critical patent/JP2001290318A/en
Application granted granted Critical
Publication of JP4272331B2 publication Critical patent/JP4272331B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Or Security For Electrophotography (AREA)
  • Developing For Electrophotography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、近接あるいは接触方式の帯電部材を用いて像担持体の表面を帯電させる画像形成装置に関する。
【0002】
【従来の技術】
電子写真方式の画像形成装置では、像担持体の表面を帯電部材で均一に帯電し、この帯電された表面に潜像が形成された後、現像部材を介して現像剤を供給して該潜像を顕像化している。像担持体の表面への帯電方式としては、コロナ放電により帯電させるワイヤ式と、帯電部材を像担持体の表面に近接あるいは接触させて帯電させる接触式がある。最近の市場状況としては、画像形成装置本体の小型化・小スペース化や低コスト化が要望され、さらに安価で小型な装置であっても長期に渡って良好な画像を維持することが求められている。このような観点から考えると帯電方式としては、近接あるいは接触式の方が有効である。これはワイヤ式に比べ必要電圧が低いため、帯電パワーパックである高圧電源の容量が小さくて済み、高圧電源の小型化、低コスト化を図れるためである。また、接触式の場合、ワイヤ式に比べてオゾン発生量も少ないという利点がある。
【0003】
近接あるいは接触式の帯電方式は、温度や湿度などの使用環境により帯電部材の抵抗値や誘電率などの電気的特性が変動するという特性があり、像担持体表面の帯電電位の低下、帯電ムラなどの帯電状態にバラツキが出易い。そこで、特開平11−95529号公報では、像担持体の表面へのトナーが付着していない状態の該表面の反射濃度をVsgとし、トナーが若干付着した状態の該表面の反射濃度をVsdpとしたとき、これら反射濃度Vsgと反射濃度Vsdpとから像担持体表面の帯電状態を検知し、反射濃度比Vsdp/Vsgがある一定値になるように帯電部材への印加電圧(帯電電圧)を可変制御している。
【0004】
【発明が解決しようとする課題】
特開平11−95529号公報に記載のように、反射濃度比Vsdp/Vsgがある一定値になるように帯電部材への印加電圧(帯電電圧)を制御すると、像担持体表面の帯電電位の低下、帯電ムラなどの帯電状態のバラツキを低減することができるが、次のような問題点がある。現像剤としてトナーおよびキャリアからなる2成分現像剤を用いた場合、経時の使用においてトナーとキャリアとの摩擦によって生じるトナー帯電量(以下Q/M)がだんだん上昇し、逆に殆ど使用頻度が無い状態ではQ/Mが低下して行く。すなわち、Q/Mが上昇しすぎると、トナーとキャリアとの結合力が強すぎるため、像担持体表面の電荷を高くしないとトナーが潜像に対して付着しにくくなって画像が薄くなり、Q/Mが低すぎるとトナーとキャリアとの結合力が弱すぎるためトナー飛散や地肌汚れが発生し易くなる。
【0005】
Q/Mを安定させるためには、トナーとキャリアの混合率を磁気的に検知するトナー濃度検知手段や像担持体表面の反射濃度を検知する反射濃度検知手段としての光センサを用いて、現像剤中のQ/Mを安定させようとすることも考えられる。しかし画像形成装置の使用状態は、装置を使用するユーザーにバラツキがあるので、上手く制御するのが難しい。
【0006】
現像部材に対する現像電圧をQ/Mに応じて可変とすることで現像剤中のQ/Mの安定化を図る試みもある。一般に現像電圧は、地汚れ・キャリア付着等の問題を発生させない基準値(基準現像バイアス)に設定されているので、現像電圧を基準値に対して増減すると、地汚れ・キャリア付着等の問題が発生し易くなる。
【0007】
本発明は、帯電電圧制御を行う画像形成装置において、経時使用での現像剤のQ/Mが変動したときに現像バイアスを可変しても、地汚れ・キャリア付着等の発生を起こさずに、良好な画像を得られる画像形成装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、帯電部材に印加する帯電電圧と現像部材に印加する現像電圧を変化させる際に発生する不具合を解決するために、Q/Mや現像電圧を変更する際に帯電電圧を補正する点に着目した。
【0010】
請求項1記載の発明では、像担持体の表面に近接あるいは接触配置され、該表面を均一に帯電する帯電部材と、トナーとキャリアとを有する2成分現像剤が収納され、均一に帯電された表面に形成される潜像に現像部材を介してトナーを供給して顕像化する現像手段と、像担持体表面の、トナーが付着していない状態の反射濃度Vsgと、トナーが付着した状態の反射濃度Vsdpと反射濃度を検知する濃度検知手段と、帯電部材に帯電電圧を印加する帯電電圧印加手段と、濃度検知手段で検知した反射濃度Vsgと反射濃度Vsdpの反射濃度比Vsdp / Vsgが一定になるように帯電部材への帯電電圧を可変制御する電圧制御手段を有している。
【0011】
請求項記載の発明によると、帯電部材に印加される帯電電圧は、像担持体表面の反射濃度から検知することができる現像電圧の変化やトナー帯電量の変化に応じて変動する像担持体表面の状態に応じた補正が行われるため、環境変化やQ/Mの変化、現像電圧を可変した場合でも、像担持体表面の帯電電位が良好な状態とされる。
【0012】
請求項1記載の発明では、現像手段に現像電圧を印加する現像電圧印加手段を有し、電圧制御手段は、現像部材への現像電圧を可変し像担持体表面の反射濃度を検知する時の現像部材の現像電圧として可変時の現像電圧を用いて濃度検知手段で像担持体の表面の反射濃度を検知し、そのときの濃度検知手段からの出力値に基づき帯電部材への帯電電圧を定めている。このため、濃度検知手段で検知される像担持体表面の反射濃度は、可変された現像電圧に対応するものとなり、帯電電圧が現像変化後の現像電圧に対応する電圧に補正される。
【0013】
請求項2記載の発明では、像担持体の表面に近接あるいは接触配置され、該表面を均一に帯電する帯電部材と、トナーとキャリアとを有する2成分現像剤が収納され、均一に帯電された表面に形成される潜像に現像部材を介してトナーを供給して顕像化する現像手段と、像担持体表面の、トナーが付着していない状態の反射濃度Vsgと、トナーが付着した状態の反射濃度Vsdpと反射濃度を検知する濃度検知手段と、帯電部材に帯電電圧を印加する帯電電圧印加手段と、濃度検知手段で検知した反射濃度Vsgと反射濃度Vsdpの反射濃度比Vsdp / Vsgが一定になるように帯電部材への帯電電圧を可変制御する電圧制御手段を有する画像形成装置において、電圧制御手段は、現像部材への現像電圧を可変したとき、直ちに像担持体表面の反射濃度を検知する時の現像部材の現像電圧として可変時の現像電圧を用いて濃度検知手段で像担持体表面の反射濃度を検知し、そのときの濃度検知手段からの出力値に基づき帯電部材への帯電電圧を定めている。このため、濃度検知手段で検知される像担持体表面の反射濃度が、可変直後の現像電圧に対応するものとなり、現像電圧変化直後から変化した現像電圧に対応する帯電電圧が帯電部材に供給され、応答遅れが低減する。
【0014】
請求項3記載の発明では、像担持体の表面に近接あるいは接触配置され、該表面を均一に帯電する帯電部材と、トナーとキャリアとを有する2成分現像剤が収納され、均一に帯電された表面に形成される潜像に現像部材を介してトナーを供給して顕像化する現像手段と、像担持体表面の、トナーが付着していない状態の反射濃度Vsgと、トナーが付着した状態の反射濃度Vsdpと反射濃度を検知する濃度検知手段と、帯電部材に帯電電圧を印加する帯電電圧印加手段と、濃度検知手段で検知した反射濃度Vsgと反射濃度Vsdpの反射濃度比Vsdp / Vsgが一定になるように帯電部材への帯電電圧を可変制御する電圧制御手段を有する画像形成装置において、現像手段に現像電圧を印加する現像電圧印加手段を有し、電圧制御手段が、現像部材への現像電圧を可変したとき、この可変分(|基準値−可変出力|の差)を帯電部材への帯電電圧を定める際に考慮して、可変する帯電電圧を定めている。
【0015】
請求項記載の発明では、請求項記載の画像形成装置において、可変分が現像電圧の基準値よりも絶対値で大きい場合には、帯電電圧を定める際に、変更後の帯電電圧が変更前の帯電電圧よりも絶対値で大きくなるように補正電圧を加え、可変分が現像電圧の基準値よりも絶対値で小さい場合には可変後の帯電電圧が絶対値で小さくなるように補正電圧を加えるように電圧制御手段で制御している。
【0016】
請求項3、4記載の発明によると、現像部材への現像電圧の可変分を考慮されて帯電部材に対する帯電電圧が可変されるので、現像電圧の可変分に対応した帯電電圧が帯電部材に印加される。
【0017】
【発明の実施の形態】
以下、本発明にかかる実施の形態について図面を用いて説明する。図1は本発明が適用された画像形成装置の要部構成を示す。この画像形成装置は、像担持体としてのドラム状の感光体1と、感光体1の表面1a(以下、「感光体表面1a」と記す)に接触配置され、該表面を均一に帯電する帯電部材としての帯電ローラ2と、均一に帯電された感光体表面1aに潜像を形成する潜像形成手段としての書き込み装置12と、潜像に現像部材としての現像ローラ31を介して2成分現像剤のトナーを供給して該潜像を顕像化(現像)する現像手段3とを備えている。
【0018】
感光体としては、ベルト状のもの用いても良く、現像部材としてはブラシ状のものを用いても良い。本形態では帯電部材としての帯電ローラ2を感光体表面に接触させているが、両者を数十〜数百μm離した近接状態に配置して用いる形態でもよい。
【0019】
感光体1の周囲には、現像されたトナー像を転写材としての用紙17に転写する転写部18を、感光体表面1aとの間に形成する転写部材としての転写ローラ5と、転写時に感光体表面1aに静電的に付着した用紙17を分離する分離手段として機能する除電針13と分離爪6と、転写後の感光体表面1aに残留したトナーを回収するクリーニング手段7と、感光体表面1aの残留電荷を除電して初期化する除電部材としての除電ランプ8が配設されている。これら部材のうち、感光体1、帯電ローラ2、現像手段3、分離爪6、クリーニング手段7、除電ランプ8は、同一のケーシング100に装着されていて、1つの感光体ユニットとして構成されている。クリーニング手段7は、感光体表面1aに接触して残留トナーを掻き取るクリーニングブレード71と、掻き取ったトナーを現像手段3または図示しない廃トナーボトルに送る排出スクリュ72とを備えている。感光体ユニットは、画像形成装置本体に対して着脱自在とされている。図1では省略しているが、転写部18近傍のケーシング100には、感光体ユニットを画像形成装置本体に装着した際に開いて感光体表面1aをケーシング100内から露出し、感光体ユニットを画像形成装置本体から離脱した際にはケーシング100を閉じるシャッター部材が設けられている。
【0020】
転写部18の上流には、転写部18に対して用紙17を所定のタイミングで給紙する周知のレジストローラ対14が配置されている。これら転写ローラ5、除電針13、レジストローラ対14は、画像形成装置本体側に装着されている。
【0021】
現像手段3には、補給用のトナーを収納したトナー補給装置20が着脱可能に装着されている。トナー補給装置20は、トナー補給時期となると、トナーホッパ部16を介してトナー補給部15より補給用トナーを現像手段3に補給する。現像手段3は、現像ローラ31と現像ドクタ32とを有する剤担持体部と、トナーとキャリアとを有する2成分現像剤が収納され、この現像剤を攪拌する攪拌部材33,34を有する剤収容部とに分かれている。感光体ユニットの未使用状態において、剤担持体部と剤収容部との間は、シール部材36により隔離されており、ユニット使用時にはこのシール部材36を取り外す。現像手段3では、攪拌部材33,34によって略均一に混合された2成分現像剤が、現像ローラ31へと搬送され、感光体1へのトナーの供給量が現像ドクタ32で規制される。攪拌部材34の近傍には、現像剤中のトナーとキャリアの混合比を磁気的(透磁率)に検知するトナー濃度検知センサ35が装着されている。2成分現像剤におけるトナーの帯電量を示すQ/Mは、図3に示すように、プリントに用いる用紙17の使用枚数が増えると、帯電量Q/Mも上昇する比例関係になる特性をもっている。したがって、Q/Mの検知は、用紙17に対する一定枚数のプリント終了後に行うようにしても良い。
【0022】
帯電ローラの近傍には、感光体表面1aの反射濃度を検知する濃度検知手段としての光センサ9(以下「Pセンサ9」と記す)が配置されている。Pセンサ9は、反射型フォトセンサであり、図6に示すように、感光体表面1aにトナーが何も付着していない時の、感光体表面1aの地肌部の反射濃度を検知したときに、4Vの出力が得られるようにゲイン調整がされている。Pセンサ9は、同図に示すように、感光体表面1aに付着するトナーが増えると、その出力が低減し、およそ0.5mg/cm2でほとんど出力がなくなるようになっている。
【0023】
画像形成装置本体には、帯電ローラに帯電電圧(以下「帯電バイアス」と記す)を印加する帯電電圧印加手段としての帯電用高圧電源10と、現像ローラ31に現像電圧(以下「現像バイアス」と記す)を印加する現像電圧印加手段としての帯電用高圧電源11と、図示を省略したが、転写ローラ5に転写バイアスを印加する転写用高圧電源が配置されている。
【0024】
画像形成装置には、図2に示すように、帯電ローラ2に印加する帯電バイアスと、現像ローラ31に印加する現像バイアスを可変制御する電圧制御手段30が設けられている。この電圧制御手段30は、図示しないROMやRAMやCPUを備えた周知のコンピュータハードウェアで構成されている。電圧制御手段30の入力側には、トナー濃度検知センサ35、Pセンサ9、画像形成装置に対する入力操作などを行う各種キーや表示部を備えた操作部19が図示しない回路を介して接続されている。電圧制御手段30の出力側には、帯電用高圧電源10、現像用高圧電源11、書き込み装置12、トナー補給装置20が図示しない回路を介して接続されている。
【0025】
このような構成の画像形成装置の基本的動作を説明する。操作部19をオペレータが操作してプリント枚数が入力されプリント司令が出力されると、図1に示す感光体1が図示しない駆動モータで矢印方向に回転駆動され、所定の帯電バイアス(標準帯電バイアス)が印加される帯電ローラ2により感光体表面1aが所定の帯電電位に均一に帯電される。そして、書き込み装置12から画像情報に対応する露光光4が、この帯電された感光体表面1aに照射されて画像に対応する潜像が形成され、所定の現像バイアス(基準現像バイアス)が印加される現像ローラ31を介してトナーが供給されて潜像が顕像化されてトナー像が形成される。転写部18には、図示しない給紙部から搬送された用紙17が、レジストローラ対14によって転写部18でトナー像の位置と一致するタイミングで給紙され、転写ローラ5に印加される転写バイアスによってトナー像が用紙17に転写され、除電針13と分離爪6の作用により感光体表面1aから分離される。分離した用紙17は、図示しない定着部へと搬送されて熱と圧力を加えられ、トナー像を定着される。転写後の感光体表面1aは、クリーニング手段7によって残留トナーが取り除かれ、残留電位が除電ランプ8で除電されて初期化されて次の画像形成に備えられる。
【0026】
電圧制御手段30は、感光体表面1aに所定の濃度パターンを形成してこの濃度パターンをPセンサ9で定期的に検知するように各部を制御し、Pセンサ9からの出力値が予め設定した値となると、トナー補給装置20を作動させて補給用トナーを現像手段3の剤収容部へと補給し、トナー濃度検知センサ35からの出力値が予め設定した値となると、トナー補給動作を停止させる機能を備えている。このため、現像ローラ31から感光体表面1aへ供給されるトナー濃度は、このトナー濃度制御によって略均一な状態に保持される。
【0027】
電圧制御手段30は、Pセンサ9の出力値に基づき、帯電ローラ2に印加する帯電バイアスと現像ローラ31に印加する現像バイアスとを定める機能を備えている。すなわち、電圧制御手段30には帯電バイアスと現像バイアスとを可変し、この可変前後のPセンサ9からの出力比に応じて、帯電バイアスと現像バイアスを定める機能を備えている。より詳しくは、現像ローラ31への現像バイアスが可変されたとき、感光体表面1aの反射濃度を検知する時の現像ローラ31の現像バイアスとして、可変時の現像バイアスを用いてPセンサ9で濃度検知を行い、この出力値に基づき帯電ローラ2への帯電バイアスを定めている。このような帯電バイアス制御機能は、電圧制御手段30に予め記憶された電圧制御ルーチンによって行われる。
【0028】
本形態で用いる帯電ローラ2は、図4に示すような帯電特性を備えているものとする。すなわち、帯電ローラ2に対する帯電印加電圧としての帯電バイアスが、例えば実線で示すように室温30℃で湿度90%のときに−1600Vで印加されると、感光体表面1aを−900Vの帯電電位に帯電し、破線で示す室温10℃で湿度16%のときに−1600Vで印加されると、感光体表面1aを‐700Vの帯電電位に帯電する。このため、実線で示す環境の場合は、帯電バイアスの単位量に対する感光体表面1aの帯電電位の変化量が大きいので、トナー付着量(トナー濃度)の変化が大きく、Pセンサ9の出力比は大きくなる傾向となる。また、破線で示す環境の場合は、帯電バイアスの単位量に対する感光体表面1aの帯電電位の変化量が小さいのでトナー付着量(トナー濃度)の変化が小さく、Pセンサ9の出力比は小さくなる傾向となる。したがって、Pセンサ9の出力比が小さい場合には、帯電バイアスを高め、Pセンサ9の出力比が大きい場合には、帯電バイアスを低減する帯電バイアス制御を行えば良い。
【0029】
この段階では現像バイアスの変化は考慮していないので、次に現像バイアスの変化に対応する補正を行う。一般帯電バイアスを一定として現像バイアスの増減幅を一定とすると、感光体表面の帯電電位が高い場合には、トナー付着量(トナー濃度)の変化が大きくPセンサ9の出力比も大きくなる。感光体表面の帯電電位が低い場合には、トナー付着量(トナー濃度)の変化が小さくPセンサ9の出力比も小さくなる。このため、Pセンサ9の出力比が小さい場合には、帯電バイアスを増やす方向に補正し、Pセンサ9の出力比が大きい場合には、帯電バイアスを減らす方向に補正する帯電バイアス制御を行えばよい。
【0030】
図7は、帯電バイアス設定時に作像する基準トナー像と、帯電バイアス制御用の検知パターンとを示したものである。図7において、縦軸は帯電印加電圧としての帯電バイアス、現像バイアス、書き込み装置12による書き込み動作とPセンサ9の出力の関係を示し、横軸は感光体表面1aの周方向の位置を示す。帯電バイアスVtは、帯電プロセスで帯電ローラ2に印加される電圧値であって、通常の値は、本形態では‐1600Vであり、この値を基準値(基準帯電バイアス)とする。ΔVは、帯電バイアスレベル変更値で、本形態では−200Vしている。
【0031】
電圧制御手段30では、帯電バイアス設定時となると、図1に示す除電ランプ8で感光体表面1aを除電して、帯電バイアスVtのデータを図示しない帯電回路に与える。所定時間経過後に、Vt−ΔV=Vt+200Vのデータを図示しない帯電回路に与え、それからT1,T2の時間経過後に帯電バイアスVtのデータを図示しない帯電回路に与える。そして、感光体表面1aの周方向の位置に関して位置が合う関係で現像バイアス、書き込みオン/オフならびにPセンサ9の検知出力の読み込みを行う。この読み込みは、T1、T2、T3の各区間で所定回数読み込み、その平均値を算出し、それぞれVsp、Vsdp、Vsgとする。帯電バイアス設定時としては、装置の起動時や、ある枚数のプリント枚数経過後が挙げられる。
【0032】
例えば、帯電バイアスVtは通常−1600V(基準値)で、ΔVを−200Vとし、現像バイアスを通常−600V(基準値)とし、基準トナー像部を−400Vとし、書き込み動作がオンした(光照射)時の感光体表面1aの電位を−140Vとすると、本形態の場合、Pセンサ9は以下のような状態を検知することになる。すなわち、Vt=−1600V、△V=−200Vでは帯電バイアスが−1400Vとなり、感光体表面1aの帯電電位は−700Vで現像バイアス−400V、書き込みオンの電位が−140Vとなり、Pセンサ9の検知としては現像ポテンシャル260Vの中間調パターンを検知する(Vsp)。
【0033】
次に帯電バイアスをそのままで現像バイアスを−600V(基準値)にアップして、書き込みオフ(光照射停止)にすると、感光体表面1aの帯電電位−700Vに対して現像バイアス−600V、すなわち現像ポテンシャル100Vの地汚れパターンを検知する(Vsdp)。帯電バイアスをVt−△Vである−1400VからVtである−1600Vに戻すと、感光体表面1aの帯電電位は約−900Vになる。すなわち現像ポテンシャル−300Vの地肌部(白部)を検知する(Vsg)。
【0034】
ここで2成分現像剤を用いた現像の場合の現像特性を、図5を用いて検討すると、トナー濃度によって実線で示す現像特性となったり破線で示す現像特性となったりする。電圧制御手段30では、0.90≦Vsdp/Vsg≦0.95になるように帯電バイアスを制御するが、帯電ローラ2の環境変動でその抵抗値が変化すると帯電電位が図4に破線で示すように変わる。そこで、Vsdp/Vsg<0.90の時には感光体表面1aの帯電電位が低いので、帯電バイアスVtを所定量、例えば50Vか高くするように補正制御する。逆にVsdp/Vsg>0.95の時には帯電バイアスVtを50V低くするように補正制御する。また、現像バイアスの制御では、Vsp/Vsgを一定になるようトナー濃度検知センサ35からの信号で制御するが、2成分現像剤のQ/Mの変動によりVsp/Vsgが一定にならずに画像濃度が濃薄になると言う現象が発生する。
【0035】
このため、Vsp/Vsgが一定にならずに画像濃度に濃薄が発生するような場合には、現像バイアスを可変制御し、現像バイアスの電圧制御が狂って地汚れ等の問題が発生しないように帯電バイアスを適性値に補正する。
【0036】
図8は、現像バイアス−600Vを、100V高くしたときの、帯電バイアス設定時に作像する基準トナー像と、帯電バイアス制御用の検知パターンとを示したものである。同図において縦軸は、帯電バイアス、現像バイアス、書き込み装置12による書き込み動作とPセンサ9の出力の関係を示し、横軸は感光体表面1aの周方向の位置を示す。
【0037】
現像バイアスを−600Vから−700Vに可変したときは、このときの帯電バイアスとして、−600Vの時の帯電バイアスを使用する。つまり、Vt=−1600V、ΔV=−200vでは帯電バイアスが−1400Vとなり、感光体表面1aの帯電電位は−700Vで現像バイアス−400V、書き込み後の電位が−140Vとなり、Pセンサ9の検知としては図7に示す現像ポテンシャルと同様260Vの中間調パターンを区間T1で検知する(Vsp)。
【0038】
現像バイアスを−700Vに変更しても区間T1におけるVspの検知では、−400Vの現像バイアスを使用することでトナー濃度検知センサ35の制御を正常状態に維持することができる。区間T2でのVsdpの検知では、現像バイアスを−700Vとすると現像ポテンシャルが0Vとなるので地汚れがひどくなる。区間T3でのVsgの検知では、現像ポテンシャルが−200Vと小さくなるが、図5に示すように、Vsdp/Vsgでは0.90を大きく下回るので感光体表面1aの帯電電位は上がる方向に行く。これにより画像に地汚れを発生させないで済む。
【0039】
本形態にかかる帯電バイアス制御ルーチンのフローチャートを図9に示す。同図において、Xは、△V=−200V、Yは帯電バイアスの可変分で50V、Zは帯電バイアスの上限値となる。以下、このフローチャートに沿って説明する。
【0040】
図9において、ステップS1では感光体ユニットが新品かどうかを、例えばトナー濃度検知センサ35からの出力で判断し、新品であればステップS2に進んで帯電印加電圧補正値VcPをデフォルトに戻し、ステップS3において0.90≦Vsdp/Vsg≦0.95が判断され、この条件を満たすのであればステップS4において、帯電印加電圧補正値VcPからXを引き、すなわち、基準値−1600Vから−200Vを差し引く。そして、ステップS3において補正された帯電バイアス情報Vt'と、帯電バイアスの最大値とが比較され、最大値Xを超えなければステップS6に進みその値を最新の帯電バイアス情報Vt'として図示しないメモリにストアにする。ステップS6で最大値であれば、これ以上の帯電バイアス可変制御はできないので、ステップS11に進んで最大値Zを最新の帯電バイアス情報Vt'として図示しないメモリにストアにする。
【0041】
このフローチャートが二回目に開始される場合には、感光体ユニットは新品ではないので、メモリにストアされた帯電バイアス情報Vt'にXをプラスして帯電印加電圧補正値VcPとし、ステップS3で0.90≦Vsdp/Vsg≦0.95が判断される。この条件を満たしていればステップS4,S5に進み、最大値Zであるか否かで後の処理が変更される。一方、ステップS3での条件が満たされなければ、ステップS8に進みVsdp/Vsg<0.90を判断する。そして、この条件を満たしている場合には、帯電印加電圧補正値VcPから帯電バイアスの可変分Yを差し引いてステップS8に進み、条件が満たされない場合には、帯電印加電圧補正値VcPに対して可変分Yを加算してステップSに進む。ステップSでは補正された帯電バイアス情報Vt'が最大値と比較され、最大値であれば、最大値を最新の帯電バイアス情報Vt'としてメモリにストアし、最大値を超えなければ、ステップS5の帯電バイアス情報Vt'をメモリにストアして終了する。
【0042】
本形態では、装置の起動時や、ある枚数のプリント枚数経過後にPセンサ9の出力を検知しているので、最初の検知電圧の読み込みから次の読み込みまでにタイムラグがあり、この間に地汚れが発生する場合が考えられる。よって、このような不具合防止のためには、電圧制御手段30で、現像バイアスVtが可変されたとき、直ちに感光体表面1aの反射濃度をPセンサ9で検知して、その情報を読み込み、この出力値に基づき帯電ローラ2に印加する帯電バイアスVtを変更することで、常に最新の感光体表面1aの状態をマッチした帯電バイアスVtを帯電ローラ2に供給することができ、感光体表面1aの帯電電位を常に良好な状態とすることができる。
【0043】
本発明の別形態としては、上述の形態のように帯電バイアスの可変分Yを考慮するのではなく、電圧制御手段30によって現像ローラ31への現像バイアスを可変したとき、現像バイアスの可変分Y1を、帯電バイアスVtを決定する際に考慮することも考えられる。この場合には、可変分Y1が現像バイアスの基準値、例えば―600よりも絶対値で大きい場合には、帯電バイアスを定める際に、変更後の帯電バイアスが変更前の帯電バイアスよりも絶対値で大きくなるように補正電圧X1を加え、可変分Y1が現像バイアスの基準値よりも絶対値で小さい場合には、可変後の帯電バイアスが絶対値で小さくなるように補正電圧X2を補正前の現像バイアスに加えるように制御すればよい。
【0044】
このように現像ローラ31への現像バイアスの可変分を考慮して帯電ローラ2に対する帯電バイアスが可変されると、現像バイアスの可変分に対応した帯電バイアスを帯電ローラ2に印加することができる。
【0045】
【発明の効果】
本発明によれば、帯電部材に印加される帯電電圧に対して、像担持体表面の反射濃度から検知することができる現像電圧の変化やトナー帯電量の変化に応じて変動する感光体表面の状態に応じた補正が行われるので、環境変化やトナー帯電量の変化、現像電圧を可変した場合でも、像担持体表面の帯電電位が良好な状態とされ、地汚れ、キャリア付着等の発生がなく、良好な画像を得られる。
【0046】
本発明によれば、濃度検知手段で検知される像担持体の表面の濃度は、可変された現像電圧に対応するものとなり、帯電電圧が現像変化後の現像電圧に対応する電圧に補正されるので、環境変化やトナー帯電量の変化、現像電圧を可変した場合でも、像担持体表面の帯電電位を良好な状態とすることができ、地汚れ、キャリア付着等の発生がなく、良好な画像を得られる。
【0047】
本発明によれば、濃度検知手段で検知される像担持体の表面の濃度が、可変直後の現像電圧に対応するものとなり、現像電圧変化直後から変化した現像電圧に対応する帯電電圧が帯電部材に供給され、応答遅れが低減するので、環境変化やトナー帯電量の変化、現像電圧を可変した場合でも、即座に像担持体表面の帯電電位を良好な状態とすることができ、制御遅れによる地汚れ、キャリア付着等の発生がなく、良好な画像を得られる。
【0048】
本発明によれば、現像部材への現像電圧の可変分を考慮されて帯電部材に対する帯電電圧が可変されることで、現像電圧の可変分に対応した帯電電圧が帯電部材に印加されるので、環境変化やトナー帯電量の変化、現像電圧を可変した場合でも、像担持体表面の帯電電位を良好な状態とすることができ、地汚れ、キャリア付着等の発生がなく、良好な画像を得られる。
【図面の簡単な説明】
【図1】本発明が適用された画像形成装置の一形態を示す概略構成図である。
【図2】本発明の電圧制御手段とこれにつながる構成のブロックである。
【図3】現像剤帯電量の特性を示す線図である。
【図4】本発明にかかる帯電印加電圧と像担持体表面の帯電電位との関係を示す図である。
【図5】像担持体表面の帯電電位と反射濃度検知手段の検知信号の出力比との関係を示す図である。
【図6】反射濃度検知手段による像担持体表面のトナー濃度検出特性を示す図である。
【図7】帯電バイアス、現像バイアス、潜像書き込みオン/オフならびに反射濃度検知手段の出力の変化を示す図である。
【図8】現像バイアス可変時における、帯電バイアス、現像バイアス、潜像書き込みオン/オフならびに反射濃度検知手段の出力の変化を示す図である。
【図9】本発明の電圧制御手段で行われる帯電電圧制御の一形態を示すフローチャートである。
【符号の説明】
1 像担持体
1a 表面
2 帯電部材
3 現像手段
9 濃度検知手段(Pセンサ)
10 帯電電圧印加手段
11 現像電圧印加手段
12 潜像形成手段
30 電圧制御手段
31 現像部材
Vsdp/Vsg 出力比
X1,X2 補正電圧
Y1 現像電圧の可変分
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an image forming apparatus that charges a surface of an image carrier using a proximity or contact charging member.
[0002]
[Prior art]
In an electrophotographic image forming apparatus, the surface of an image carrier is uniformly charged by a charging member, and after a latent image is formed on the charged surface, a developer is supplied through the developing member to supply the latent image. The image is visualized. As a charging method for the surface of the image carrier, there are a wire type for charging by corona discharge and a contact type for charging by bringing a charging member close to or in contact with the surface of the image carrier. As the recent market situation, there is a demand for downsizing, space reduction and cost reduction of the main body of the image forming apparatus, and further, it is required to maintain a good image for a long time even with an inexpensive and small apparatus. ing. From this point of view, the proximity or contact type is more effective as the charging method. This is because the required voltage is lower than that of the wire type, so that the capacity of the high-voltage power supply, which is a charging power pack, can be reduced, and the high-voltage power supply can be reduced in size and cost. Further, the contact type has the advantage that the amount of ozone generated is smaller than that of the wire type.
[0003]
The proximity or contact type charging method has a characteristic that the electrical characteristics such as the resistance value and dielectric constant of the charging member vary depending on the usage environment such as temperature and humidity. Variations in the charged state are likely to occur. In Japanese Patent Application Laid-Open No. 11-95529, the reflection density of the surface when no toner is attached to the surface of the image carrier is Vsg, and the reflection density of the surface when the toner is slightly attached is Vsdp. Then, the charged state of the surface of the image carrier is detected from the reflection density Vsg and the reflection density Vsdp, and the applied voltage (charging voltage) to the charging member is varied so that the reflection density ratio Vsdp / Vsg becomes a certain value. I have control.
[0004]
[Problems to be solved by the invention]
As described in JP-A-11-95529, when the voltage applied to the charging member (charging voltage) is controlled so that the reflection density ratio Vsdp / Vsg becomes a certain value, the charging potential on the surface of the image carrier is decreased. Although variations in the charged state such as uneven charging can be reduced, there are the following problems. When a two-component developer comprising a toner and a carrier is used as the developer, the toner charge amount (hereinafter referred to as Q / M) caused by friction between the toner and the carrier gradually increases over time, and conversely there is almost no use frequency. In the state, Q / M decreases. That is, if the Q / M is increased too much, the binding force between the toner and the carrier is too strong. Therefore, if the charge on the surface of the image carrier is not increased, the toner hardly adheres to the latent image and the image becomes thin. If Q / M is too low, the binding force between the toner and the carrier is too weak, and toner scattering and background contamination are likely to occur.
[0005]
In order to stabilize the Q / M, development is performed using a toner density detecting means for magnetically detecting the mixing ratio of toner and carrier and an optical sensor as a reflection density detecting means for detecting the reflection density on the surface of the image carrier. It may be possible to stabilize the Q / M in the agent. However, the usage state of the image forming apparatus is difficult to control well because there are variations in users who use the apparatus.
[0006]
There is also an attempt to stabilize the Q / M in the developer by making the developing voltage for the developing member variable according to the Q / M. In general, the development voltage is set to a reference value (reference development bias) that does not cause problems such as scumming or carrier adhesion. Therefore, if the development voltage is increased or decreased from the reference value, problems such as scumming or carrier adhesion occur. It tends to occur.
[0007]
In the image forming apparatus that performs charging voltage control, the present invention does not cause scumming or carrier adhesion even if the developing bias is changed when the developer Q / M changes over time. An object of the present invention is to provide an image forming apparatus capable of obtaining a good image.
[0008]
[Means for Solving the Problems]
The present invention corrects the charging voltage when changing the Q / M or the developing voltage in order to solve the problem that occurs when the charging voltage applied to the charging member and the developing voltage applied to the developing member are changed. Focused on.
[0010]
  According to the first aspect of the present invention, there is provided a charging member that is disposed close to or in contact with the surface of the image carrier and uniformly charges the surface;Contains a two-component developer having toner and carrier,A latent image formed on a uniformly charged surface through a developing memberTonerDeveloping means for supplying and visualizing;Reflection density Vsg in the state where toner is not attached to the surface of the image carrier, density detection means for detecting the reflection density Vsdp and reflection density in the state where toner is attached, and charging voltage application for applying a charging voltage to the charging member Reflection ratio Vsdp between reflection density Vsg and reflection density Vsdp detected by the density detection means / Voltage control means for variably controlling the charging voltage to the charging member so that Vsg is constant is provided.
[0011]
  Claim1According to the described invention, the charging voltage applied to the charging member fluctuates in accordance with a change in development voltage or a change in toner charge amount that can be detected from the reflection density on the surface of the image carrier.Image carrierSince the correction according to the surface state is performed, the charged potential on the surface of the image carrier is in a good state even when the environmental change, the Q / M change, and the development voltage are varied.
[0012]
  Claim 1inventionThenA developing voltage applying means for applying a developing voltage to the developing means;The voltage control means is a developing voltage to the developing member.Variable,As the developing voltage of the developing member when detecting the reflection density on the surface of the image carrierWith density detection means using variable development voltageThe reflection density on the surface of the image carrierDetectFrom the concentration detection means at that timeThe charging voltage to the charging member is determined based on the output value. For this reason, the reflection density on the surface of the image carrier detected by the density detection means corresponds to the variable development voltage, and the charging voltage is corrected to a voltage corresponding to the development voltage after the development change.
[0013]
  In invention of Claim 2,And a two-component developer having a charging member that is disposed close to or in contact with the surface of the image carrier and uniformly charges the surface, and a toner and a carrier,A latent image formed on a uniformly charged surface through a developing memberTonerDeveloping means for supplying and visualizing;Reflection density Vsg in the state where toner is not attached to the surface of the image carrier, density detection means for detecting the reflection density Vsdp and reflection density in the state where toner is attached, and charging voltage application for applying a charging voltage to the charging member Reflection ratio Vsdp between reflection density Vsg and reflection density Vsdp detected by the density detection means / In the image forming apparatus having voltage control means for variably controlling the charging voltage to the charging member so that Vsg becomes constant,The voltage control means is a developing voltage to the developing member.When changing,right awayImage carrierThe density detection means uses the developing voltage at the time of variable as the developing voltage of the developing member when detecting the reflection density of the surface.The reflection density on the surface of the image carrierDetectFrom the concentration detection means at that timeThe charging voltage to the charging member is determined based on the output value. For this reason, the reflection density of the image carrier surface detected by the density detector corresponds to the development voltage immediately after the change, and the charging voltage corresponding to the development voltage changed immediately after the development voltage change is supplied to the charging member. Response delay is reduced.
[0014]
  In invention of Claim 3,A two-component developer having a charging member that is disposed close to or in contact with the surface of the image carrier and uniformly charges the surface, and a toner and a carrier is housed.A latent image formed on a uniformly charged surface through a developing memberTonerDeveloping means for supplying and visualizing;Reflection density Vsg in the state where toner is not attached to the surface of the image carrier, density detection means for detecting the reflection density Vsdp and reflection density in the state where toner is attached, and charging voltage application for applying a charging voltage to the charging member Reflection ratio Vsdp between reflection density Vsg and reflection density Vsdp detected by the density detection means / In the image forming apparatus having voltage control means for variably controlling the charging voltage to the charging member so that Vsg becomes constant,A developing voltage applying means for applying a developing voltage to the developing means is provided, and when the voltage control means changes the developing voltage to the developing member, the variable amount (difference of | reference value−variable output |) is supplied to the charging member. The variable charging voltage is determined in consideration of determining the charging voltage.
[0015]
  Claim4In the described invention, the claims3In the image forming apparatus described above, when the variable amount is larger in absolute value than the reference value of the developing voltage, the charging voltage after change becomes larger in absolute value than the charging voltage before change when determining the charging voltage. If the variable is an absolute value smaller than the reference value of the development voltage, the voltage control means controls the correction voltage to be applied so that the charging voltage after the variable becomes smaller in absolute value. Yes.
[0016]
  Claim3, 4According to the described invention, since the charging voltage for the charging member is varied in consideration of the variable amount of the developing voltage applied to the developing member, the charging voltage corresponding to the variable amount of the developing voltage is applied to the charging member.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a main configuration of an image forming apparatus to which the present invention is applied. This image forming apparatus is arranged in contact with a drum-shaped photosensitive member 1 as an image carrier and a surface 1a of the photosensitive member 1 (hereinafter referred to as "photosensitive member surface 1a"), and charging that uniformly charges the surface. Two-component development via a charging roller 2 as a member, a writing device 12 as a latent image forming means for forming a latent image on the uniformly charged photoreceptor surface 1a, and a developing roller 31 as a developing member on the latent image And developing means 3 for supplying the toner of the agent to visualize (develop) the latent image.
[0018]
A belt-like member may be used as the photosensitive member, and a brush member may be used as the developing member. In this embodiment, the charging roller 2 as a charging member is brought into contact with the surface of the photosensitive member. However, the charging roller 2 may be disposed and used in the proximity of several tens to several hundreds of micrometers.
[0019]
Around the photosensitive member 1, a transfer portion 18 for transferring the developed toner image onto a sheet 17 as a transfer material is formed between the transfer roller 5 as a transfer member formed between the photosensitive member surface 1a and photosensitive at the time of transfer. The neutralizing needle 13 and the separation claw 6 functioning as a separating means for separating the sheet 17 electrostatically attached to the body surface 1a, the cleaning means 7 for collecting the toner remaining on the photoreceptor surface 1a after the transfer, and the photoreceptor A static elimination lamp 8 is provided as a static elimination member that neutralizes and initializes the residual charges on the surface 1a. Among these members, the photosensitive member 1, the charging roller 2, the developing unit 3, the separation claw 6, the cleaning unit 7, and the charge eliminating lamp 8 are mounted on the same casing 100 and configured as one photosensitive unit. . The cleaning unit 7 includes a cleaning blade 71 that contacts the photoreceptor surface 1a and scrapes off residual toner, and a discharge screw 72 that sends the scraped toner to the developing unit 3 or a waste toner bottle (not shown). The photoreceptor unit is detachable from the image forming apparatus main body. Although omitted in FIG. 1, the casing 100 near the transfer unit 18 is opened when the photosensitive unit is mounted on the image forming apparatus main body, and the photosensitive member surface 1 a is exposed from the casing 100, so that the photosensitive unit is mounted. A shutter member that closes the casing 100 when it is detached from the image forming apparatus main body is provided.
[0020]
A well-known registration roller pair 14 for feeding the sheet 17 to the transfer unit 18 at a predetermined timing is disposed upstream of the transfer unit 18. The transfer roller 5, the charge eliminating needle 13, and the registration roller pair 14 are mounted on the image forming apparatus main body side.
[0021]
A toner replenishing device 20 containing replenishing toner is detachably attached to the developing means 3. The toner replenishing device 20 replenishes the developing means 3 with replenishing toner from the toner replenishing unit 15 via the toner hopper unit 16 when the toner replenishing time comes. The developing means 3 contains a developer carrying member having a developing roller 31 and a developing doctor 32, and a two-component developer having toner and carrier, and contains an agent having stirring members 33 and 34 for stirring the developer. Divided into parts. In the unused state of the photosensitive unit, the agent carrier and the agent container are separated by the seal member 36, and the seal member 36 is removed when the unit is used. In the developing unit 3, the two-component developer mixed substantially uniformly by the stirring members 33 and 34 is conveyed to the developing roller 31, and the amount of toner supplied to the photoreceptor 1 is regulated by the developing doctor 32. In the vicinity of the stirring member 34, a toner concentration detection sensor 35 for detecting the mixing ratio of the toner in the developer and the carrier magnetically (magnetic permeability) is mounted. As shown in FIG. 3, Q / M indicating the toner charge amount in the two-component developer has a proportional relationship in which the charge amount Q / M increases as the number of sheets 17 used for printing increases. . Therefore, the Q / M detection may be performed after a predetermined number of prints on the paper 17 are completed.
[0022]
  Charging roller2, An optical sensor 9 (hereinafter referred to as “P sensor 9”) as a density detecting means for detecting the reflection density of the photoreceptor surface 1a is disposed. The P sensor 9 is a reflection type photosensor. As shown in FIG. 6, the P sensor 9 detects the reflection density of the background portion of the photoreceptor surface 1a when no toner adheres to the photoreceptor surface 1a. The gain is adjusted so that an output of 4V can be obtained. As shown in the figure, when the amount of toner adhering to the photoreceptor surface 1a increases, the output of the P sensor 9 decreases, and almost no output is generated at about 0.5 mg / cm @ 2.
[0023]
  The image forming apparatus body has a charging roller2A charging high-voltage power supply 10 as charging voltage applying means for applying a charging voltage (hereinafter referred to as “charging bias”) to the developing roller, and a developing voltage applying means for applying a developing voltage (hereinafter referred to as “developing bias”) to the developing roller 31. A high-voltage power supply 11 for charging and a high-voltage power supply for transfer for applying a transfer bias to the transfer roller 5 are arranged.
[0024]
As shown in FIG. 2, the image forming apparatus is provided with voltage control means 30 that variably controls the charging bias applied to the charging roller 2 and the developing bias applied to the developing roller 31. The voltage control means 30 is configured by well-known computer hardware including a ROM, RAM, and CPU (not shown). On the input side of the voltage control means 30, an operation section 19 having various keys and a display section for performing input operations on the toner density detection sensor 35, the P sensor 9, and the image forming apparatus is connected through a circuit (not shown). Yes. To the output side of the voltage control means 30, a charging high voltage power source 10, a developing high voltage power source 11, a writing device 12, and a toner replenishing device 20 are connected through a circuit (not shown).
[0025]
The basic operation of the image forming apparatus having such a configuration will be described. When the operator operates the operation unit 19 to input the number of prints and output a print command, the photosensitive member 1 shown in FIG. 1 is driven to rotate in the direction of the arrow by a drive motor (not shown), and a predetermined charging bias (standard charging bias) ) Is uniformly charged to a predetermined charging potential by the charging roller 2 applied. Then, the exposure light 4 corresponding to the image information is irradiated from the writing device 12 to the charged photoreceptor surface 1a to form a latent image corresponding to the image, and a predetermined developing bias (reference developing bias) is applied. The toner is supplied through the developing roller 31 and the latent image is visualized to form a toner image. The transfer unit 18 is fed with a sheet 17 conveyed from a paper supply unit (not shown) by the registration roller pair 14 at a timing coincident with the position of the toner image by the transfer unit 18 and applied to the transfer roller 5. As a result, the toner image is transferred to the paper 17 and separated from the photoreceptor surface 1 a by the action of the charge eliminating needle 13 and the separation claw 6. The separated paper 17 is conveyed to a fixing unit (not shown), and heat and pressure are applied to fix the toner image. Residual toner is removed from the photoreceptor surface 1a after the transfer by the cleaning means 7, and the residual potential is neutralized by the neutralizing lamp 8, and is prepared for the next image formation.
[0026]
The voltage control means 30 controls each part so as to form a predetermined density pattern on the photoreceptor surface 1a and periodically detect this density pattern with the P sensor 9, and the output value from the P sensor 9 is preset. When the value is reached, the toner replenishing device 20 is operated to replenish the toner for replenishment to the agent container of the developing means 3, and the toner replenishment operation is stopped when the output value from the toner density detection sensor 35 reaches a preset value. It has a function to let you. For this reason, the toner density supplied from the developing roller 31 to the photoreceptor surface 1a is maintained in a substantially uniform state by this toner density control.
[0027]
  The voltage control means 30 is based on the output value of the P sensor 9 and the charging bias applied to the charging roller 2 and the developing roller.31Has a function of determining a developing bias to be applied to. That is, the voltage control means 30 has a function of changing the charging bias and the developing bias and determining the charging bias and the developing bias according to the output ratio from the P sensor 9 before and after the variable. More specifically, the developing roller31Developing roller for detecting the reflection density of the photoreceptor surface 1a when the developing bias to the surface is varied31As the developing bias, density detection is performed by the P sensor 9 using the developing bias at the time of variable, and the charging bias to the charging roller 2 is determined based on this output value. Such a charging bias control function is performed by a voltage control routine stored in the voltage control means 30 in advance.
[0028]
It is assumed that the charging roller 2 used in this embodiment has charging characteristics as shown in FIG. That is, when a charging bias as a charging application voltage for the charging roller 2 is applied at −1600 V when the humidity is 90% at a room temperature of 30 ° C. as shown by a solid line, for example, the photosensitive member surface 1 a is set to a charging potential of −900 V. When charged and applied at -1600 V at a room temperature of 10 ° C. and a humidity of 16% as indicated by the broken line, the photosensitive member surface 1 a is charged to a charged potential of −700 V. For this reason, in the case of the environment indicated by the solid line, the amount of change in the charge potential of the photoreceptor surface 1a with respect to the unit amount of the charging bias is large. It tends to grow. Further, in the case of the environment shown by the broken line, since the change amount of the charging potential of the photoreceptor surface 1a with respect to the unit amount of the charging bias is small, the change in the toner adhesion amount (toner density) is small and the output ratio of the P sensor 9 is small. It becomes a trend. Therefore, charging bias control may be performed to increase the charging bias when the output ratio of the P sensor 9 is small, and to reduce the charging bias when the output ratio of the P sensor 9 is large.
[0029]
At this stage, since the change in the development bias is not taken into consideration, the correction corresponding to the change in the development bias is performed next. If the increase / decrease width of the developing bias is constant with the general charging bias being constant, the change in the toner adhesion amount (toner density) is large and the output ratio of the P sensor 9 is large when the charging potential on the surface of the photoreceptor is high. When the charged potential on the surface of the photoreceptor is low, the change in the toner adhesion amount (toner density) is small and the output ratio of the P sensor 9 is also small. For this reason, if the output ratio of the P sensor 9 is small, the charging bias is corrected in a direction to increase the charging bias. If the output ratio of the P sensor 9 is large, the charging bias control is performed to correct the charging bias in a decreasing direction. Good.
[0030]
FIG. 7 shows a reference toner image formed when the charging bias is set and a detection pattern for controlling the charging bias. In FIG. 7, the vertical axis indicates the relationship between the charging bias as the charging application voltage, the developing bias, the writing operation by the writing device 12, and the output of the P sensor 9, and the horizontal axis indicates the circumferential position of the photoreceptor surface 1a. The charging bias Vt is a voltage value applied to the charging roller 2 in the charging process, and a normal value is −1600 V in this embodiment, and this value is set as a reference value (reference charging bias). ΔV is a charging bias level change value, which is −200 V in this embodiment.
[0031]
In the voltage control means 30, when the charging bias is set, the surface of the photosensitive member 1a is neutralized by the neutralizing lamp 8 shown in FIG. 1, and data of the charging bias Vt is given to a charging circuit (not shown). After a predetermined time elapses, data of Vt−ΔV = Vt + 200V is applied to a charging circuit (not shown), and then data of charging bias Vt is applied to a charging circuit (not shown) after the elapse of time T1 and T2. Then, the developing bias, writing on / off, and reading of the detection output of the P sensor 9 are performed in a relationship where the positions in the circumferential direction of the photosensitive member surface 1a are matched. This reading is performed a predetermined number of times in each of the sections T1, T2, and T3, and the average values are calculated as Vsp, Vsdp, and Vsg, respectively. The charging bias can be set when the apparatus is started or after a certain number of prints have elapsed.
[0032]
For example, the charging bias Vt is normally −1600 V (reference value), ΔV is −200 V, the developing bias is normally −600 V (reference value), the reference toner image portion is −400 V, and the writing operation is turned on (light irradiation). ) When the potential of the photosensitive member surface 1a is −140V, the P sensor 9 detects the following state in this embodiment. That is, when Vt = −1600V and ΔV = −200V, the charging bias is −1400V, the charging potential of the photosensitive member surface 1a is −700V, the developing bias is −400V, and the writing-on potential is −140V. As a result, a halftone pattern having a development potential of 260 V is detected (Vsp).
[0033]
Next, when the developing bias is increased to -600 V (reference value) while the charging bias is kept as it is and writing is turned off (light irradiation is stopped), the developing bias is -600 V with respect to the charging potential of -700 V on the surface 1a of the photosensitive member, that is, development. A ground dirt pattern having a potential of 100 V is detected (Vsdp). When the charging bias is returned from −1400V, which is Vt−ΔV, to −1600V, which is Vt, the charged potential of the photoreceptor surface 1a becomes approximately −900V. That is, a background portion (white portion) having a development potential of −300 V is detected (Vsg).
[0034]
If the development characteristics in the case of development using a two-component developer are examined with reference to FIG. 5, the development characteristics indicated by a solid line or the development characteristics indicated by a broken line are obtained depending on the toner density. The voltage control means 30 controls the charging bias so that 0.90 ≦ Vsdp / Vsg ≦ 0.95. When the resistance value changes due to the environmental fluctuation of the charging roller 2, the charging potential is indicated by a broken line in FIG. It changes as follows. Therefore, when Vsdp / Vsg <0.90, the charging potential of the photosensitive member surface 1a is low, so correction control is performed so that the charging bias Vt is increased by a predetermined amount, for example, 50V. Conversely, when Vsdp / Vsg> 0.95, correction control is performed so that the charging bias Vt is lowered by 50V. In the development bias control, the signal from the toner density detection sensor 35 is controlled so that Vsp / Vsg becomes constant. However, the Vsp / Vsg does not become constant due to the fluctuation of Q / M of the two-component developer. A phenomenon occurs in which the density becomes thin.
[0035]
For this reason, when Vsp / Vsg does not become constant and the image density becomes dark, the development bias is variably controlled so that the voltage control of the development bias is out of order so that problems such as background contamination do not occur. The charging bias is corrected to an appropriate value.
[0036]
FIG. 8 shows a reference toner image formed at the time of setting the charging bias and a detection pattern for controlling the charging bias when the developing bias −600 V is increased by 100V. In the figure, the vertical axis represents the relationship between the charging bias, the developing bias, the writing operation by the writing device 12 and the output of the P sensor 9, and the horizontal axis represents the circumferential position of the photoreceptor surface 1a.
[0037]
When the developing bias is changed from −600 V to −700 V, the charging bias at −600 V is used as the charging bias at this time. That is, when Vt = −1600V and ΔV = −200v, the charging bias is −1400V, the charging potential on the surface 1a of the photoreceptor is −700V, the developing bias is −400V, and the potential after writing is −140V. Like the development potential shown in FIG. 7, a halftone pattern of 260 V is detected in section T1 (Vsp).
[0038]
Even when the developing bias is changed to -700 V, the control of the toner density detecting sensor 35 can be maintained in the normal state by using the developing bias of -400 V in the detection of Vsp in the section T1. In the detection of Vsdp in the section T2, if the developing bias is −700V, the developing potential becomes 0V, so the background stains become severe. In the detection of Vsg in the section T3, the developing potential is reduced to −200 V, but as shown in FIG. 5, the charged potential on the surface 1a of the photosensitive member 1a is increased because Vsdp / Vsg is significantly lower than 0.90. As a result, it is not necessary to cause background contamination on the image.
[0039]
FIG. 9 shows a flowchart of the charging bias control routine according to this embodiment. In the figure, X is ΔV = −200 V, Y is a variable amount of the charging bias, 50 V, and Z is an upper limit value of the charging bias. Hereinafter, it demonstrates along this flowchart.
[0040]
  In FIG. 9, in step S1, it is determined whether the photoconductor unit is a new product, for example, based on an output from the toner concentration detection sensor 35. If the photoconductor unit is a new product, the process proceeds to step S2 and the charge application voltage correction value VcP is returned to the default. In S3, 0.90 ≦ Vsdp / Vsg ≦ 0.95 is determined, and if this condition is satisfied, in step S4, X is subtracted from the charge application voltage correction value VcP, that is, −200 V is subtracted from the reference value −1600V. . Then, the charging bias information Vt ′ corrected in step S3 and the maximum value of the charging biasZIf the maximum value X is not exceeded, the process proceeds to step S6 and the value is stored in a memory (not shown) as the latest charging bias information Vt ′. Maximum value in step S6ZIf this is the case, no further charge bias variable control is possible.Z the mostThe new charging bias information Vt ′ is stored in a memory (not shown).
[0041]
  When this flowchart is started for the second time, the photosensitive unit is not new, so that X is added to the charging bias information Vt ′ stored in the memory to obtain the charging applied voltage correction value VcP, and 0 in step S3. .90 ≦ Vsdp / Vsg ≦ 0.95 is determined. If this condition is satisfied, the process proceeds to steps S4 and S5, and the subsequent processing is changed depending on whether or not the maximum value Z is reached. On the other hand, if the condition in step S3 is not satisfied, the process proceeds to step S8 to determine Vsdp / Vsg <0.90. If this condition is satisfied, the charging bias variable Y is subtracted from the charge application voltage correction value VcP, and the process proceeds to step S8. If the condition is not satisfied, the charge application voltage correction value VcP is determined. Add variable Y and step S5Proceed to Step S5The corrected charging bias information Vt ′ is the maximum value.ZCompared to the maximum valueZThen maximumZIs stored in the memory as the latest charging bias information Vt 'and the maximum value is stored.ZIf not, the charging bias information Vt ′ in step S5 is stored in the memory and the process is terminated.
[0042]
In this embodiment, since the output of the P sensor 9 is detected when the apparatus is started up or after a certain number of prints have elapsed, there is a time lag between the reading of the first detection voltage and the next reading. It may occur. Therefore, in order to prevent such a problem, when the developing bias Vt is changed by the voltage control means 30, the reflection density of the photoreceptor surface 1a is immediately detected by the P sensor 9, and the information is read. By changing the charging bias Vt applied to the charging roller 2 based on the output value, the charging bias Vt that matches the state of the latest photoreceptor surface 1a can be supplied to the charging roller 2 at all times. The charging potential can always be in a good state.
[0043]
As another form of the present invention, when the developing bias to the developing roller 31 is varied by the voltage control means 30 instead of considering the charging bias variable Y as in the above-described form, the developing bias variable Y1 is changed. Can be considered when determining the charging bias Vt. In this case, if the variable Y1 is larger in absolute value than the reference value of the developing bias, for example, −600, the charging bias after the change is more absolute than the charging bias before the change when determining the charging bias. When the variable voltage Y1 is smaller than the reference value of the developing bias by an absolute value, the correction voltage X2 is adjusted so that the charging bias after the variable becomes smaller by the absolute value. What is necessary is just to control so that it may add to developing bias.
[0044]
When the charging bias for the charging roller 2 is varied in consideration of the variable amount of the developing bias applied to the developing roller 31 as described above, a charging bias corresponding to the variable amount of the developing bias can be applied to the charging roller 2.
[0045]
【The invention's effect】
According to the present invention, with respect to the charging voltage applied to the charging member, the surface of the photoconductor that fluctuates in accordance with the change in the developing voltage that can be detected from the reflection density on the surface of the image carrier and the change in the toner charge amount Since correction is performed according to the state, even when the environment changes, the toner charge amount changes, or the development voltage is varied, the charged potential on the surface of the image carrier is kept in a good state, and background contamination, carrier adhesion, etc. occur. And a good image can be obtained.
[0046]
According to the present invention, the density of the surface of the image carrier detected by the density detecting unit corresponds to the variable development voltage, and the charging voltage is corrected to a voltage corresponding to the development voltage after the development change. Therefore, even when the environmental change, the change in toner charge amount, or the development voltage is varied, the charged potential on the surface of the image carrier can be in a good state, and there is no occurrence of background contamination, carrier adhesion, etc. Can be obtained.
[0047]
According to the present invention, the density of the surface of the image carrier detected by the density detector corresponds to the development voltage immediately after the change, and the charging voltage corresponding to the development voltage changed immediately after the change of the development voltage is the charging member. Since the response delay is reduced, the charged potential on the surface of the image carrier can be immediately brought into a good state even when the environment changes, the toner charge amount changes, or the development voltage is varied. Good images can be obtained without the occurrence of background stains or carrier adhesion.
[0048]
According to the present invention, since the charging voltage for the charging member is changed in consideration of the variable amount of the developing voltage to the developing member, the charging voltage corresponding to the variable amount of the developing voltage is applied to the charging member. Even when environmental changes, toner charge changes, and development voltages are varied, the charge potential on the surface of the image carrier can be in a good state, and there is no occurrence of background contamination or carrier adhesion, and a good image can be obtained. It is done.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of an image forming apparatus to which the present invention is applied.
FIG. 2 is a block diagram of a voltage control means of the present invention and a configuration connected thereto.
FIG. 3 is a diagram showing characteristics of developer charge amount.
FIG. 4 is a diagram showing a relationship between a charging applied voltage and a charging potential on the surface of an image carrier according to the present invention.
FIG. 5 is a diagram showing the relationship between the charged potential on the surface of the image carrier and the output ratio of the detection signal of the reflection density detection means.
FIG. 6 is a graph showing toner density detection characteristics on the surface of an image carrier by reflection density detection means.
FIG. 7 is a diagram showing changes in charging bias, developing bias, latent image writing on / off, and output of reflection density detecting means;
FIG. 8 is a diagram showing changes in charging bias, developing bias, latent image writing on / off, and output of reflection density detecting means when the developing bias is variable.
FIG. 9 is a flowchart showing one form of charging voltage control performed by the voltage control means of the present invention.
[Explanation of symbols]
1 Image carrier
1a Surface
2 Charging member
3 Development means
9 Concentration detection means (P sensor)
10 Charging voltage application means
11 Development voltage application means
12 Latent image forming means
30 Voltage control means
31 Development member
Vsdp / Vsg output ratio
X1, X2 correction voltage
Y1 Variable development voltage

Claims (4)

像担持体の表面に近接あるいは接触配置され、該表面を均一に帯電する帯電部材と、
トナーとキャリアとを有する2成分現像剤が収納され、前記均一に帯電された表面に形成される潜像に現像部材を介して前記トナーを供給して顕像化する現像手段と、
前記像担持体表面の、トナーが付着していない状態の反射濃度Vsgと、トナーが付着した状態の反射濃度Vsdpとを検知する濃度検知手段と、
前記帯電部材に帯電電圧を印加する帯電電圧印加手段と、
前記濃度検知手段で検知した反射濃度Vsgと反射濃度Vsdpの反射濃度比Vsdp / Vsgが一定になるように前記帯電部材への帯電電圧を可変制御する電圧制御手段を有する画像形成装置において、
前記現像手段に現像電圧を印加する現像電圧印加手段を有し、
前記電圧制御手段は、前記現像部材への現像電圧を可変し、前記像担持体表面の反射濃度を検知する時の前記現像部材の現像電圧として可変時の現像電圧を用いて前記濃度検知手段で前記像担持体の表面の反射濃度を検知し、そのときの前記濃度検知手段からの出力値に基づき前記帯電部材への帯電電圧を定める画像形成装置。
A charging member that is disposed close to or in contact with the surface of the image carrier and uniformly charges the surface;
A developing unit that stores a two-component developer having a toner and a carrier and supplies the toner to a latent image formed on the uniformly charged surface through a developing member to visualize the latent image;
Density detecting means for detecting a reflection density Vsg in a state where toner is not attached and a reflection density Vsdp in a state where toner is attached on the surface of the image carrier;
Charging voltage applying means for applying a charging voltage to the charging member;
In the image forming apparatus having voltage control means for variably controlling the charging voltage to the charging member so that the reflection density ratio Vsdp / Vsg between the reflection density Vsg and the reflection density Vsdp detected by the density detection means is constant .
A developing voltage applying means for applying a developing voltage to the developing means;
The voltage control means varies the developing voltage to the developing member and uses the developing voltage at the time of variable as the developing voltage of the developing member when detecting the reflection density on the surface of the image carrier. An image forming apparatus for detecting a reflection density on a surface of the image carrier and determining a charging voltage to the charging member based on an output value from the density detecting means at that time .
像担持体の表面に近接あるいは接触配置され、該表面を均一に帯電する帯電部材と、
トナーとキャリアとを有する2成分現像剤が収納され、前記均一に帯電された表面に形成される潜像に現像部材を介して前記トナーを供給して顕像化する現像手段と、
前記像担持体表面の、トナーが付着していない状態の反射濃度Vsgと、トナーが付着した状態の反射濃度Vsdpとを検知する濃度検知手段と、
前記帯電部材に帯電電圧を印加する帯電電圧印加手段と、
前記濃度検知手段で検知した反射濃度Vsgと反射濃度Vsdpの反射濃度比Vsdp / Vsgが一定になるように前記帯電部材への帯電電圧を可変制御する電圧制御手段を有する画像形成装置において、
前記電圧制御手段は、前記現像部材への現像電圧を可変したとき、直ちに前記像担持体表面の反射濃度を検知する時の前記現像部材の現像電圧として可変時の現像電圧を用いて前記濃度検知手段で前記像担持体表面の反射濃度を検知し、そのときの前記濃度検知手段からの出力値に基づき前記帯電部材への帯電電圧を定める画像形成装置。
A charging member that is disposed close to or in contact with the surface of the image carrier and uniformly charges the surface;
A developing unit that stores a two-component developer having a toner and a carrier and supplies the toner to a latent image formed on the uniformly charged surface through a developing member to visualize the latent image;
Density detecting means for detecting a reflection density Vsg in a state where toner is not attached and a reflection density Vsdp in a state where toner is attached on the surface of the image carrier;
Charging voltage applying means for applying a charging voltage to the charging member;
In the image forming apparatus having voltage control means for variably controlling the charging voltage to the charging member so that the reflection density ratio Vsdp / Vsg between the reflection density Vsg and the reflection density Vsdp detected by the density detection means is constant .
When the developing voltage to the developing member is varied , the voltage control means detects the density using the developing voltage at the time of variable as the developing voltage of the developing member when immediately detecting the reflection density on the surface of the image carrier. An image forming apparatus for detecting a reflection density on the surface of the image carrier by means and determining a charging voltage to the charging member based on an output value from the density detecting means at that time .
像担持体の表面に近接あるいは接触配置され、該表面を均一に帯電する帯電部材と、
トナーとキャリアとを有する2成分現像剤が収納され、前記均一に帯電された表面に形成される潜像に現像部材を介して前記トナーを供給して顕像化する現像手段と、
前記像担持体表面の、トナーが付着していない状態の反射濃度Vsgと、トナーが付着した状態の反射濃度Vsdpとを検知する濃度検知手段と、
前記帯電部材に帯電電圧を印加する帯電電圧印加手段と、
前記濃度検知手段で検知した反射濃度Vsgと反射濃度Vsdpの反射濃度比Vsdp / Vsgが一定になるように前記帯電部材への帯電電圧を可変制御する電圧制御手段を有する画像形成装置において、
前記現像手段に現像電圧を印加する現像電圧印加手段を有し、
前記電圧制御手段は、前記現像部材への現像電圧を可変したとき、この可変分を前記帯電部材への帯電電圧を定める際に考慮して、可変する帯電電圧を定める画像形成装置。
A charging member that is disposed close to or in contact with the surface of the image carrier and uniformly charges the surface;
A developing unit that stores a two-component developer having a toner and a carrier and supplies the toner to a latent image formed on the uniformly charged surface through a developing member to visualize the latent image;
Density detecting means for detecting a reflection density Vsg in a state where toner is not attached and a reflection density Vsdp in a state where toner is attached on the surface of the image carrier;
Charging voltage applying means for applying a charging voltage to the charging member;
In the image forming apparatus having voltage control means for variably controlling the charging voltage to the charging member so that the reflection density ratio Vsdp / Vsg between the reflection density Vsg and the reflection density Vsdp detected by the density detection means is constant .
A developing voltage applying means for applying a developing voltage to the developing means;
The voltage control unit is an image forming apparatus that determines a variable charging voltage in consideration of the variable amount when determining the charging voltage to the charging member when the developing voltage to the developing member is varied.
請求項3記載の画像形成装置において、
前記電圧制御手段は、前記可変分が前記現像電圧の基準値よりも絶対値で大きい場合には、前記帯電電圧を定める際に、変更後の帯電電圧が変更前の帯電電圧よりも絶対値で大きくなるように補正電圧を加え、前記可変分が前記現像電圧の基準値よりも絶対値で小さい場合には可変後の帯電電圧が絶対値で小さくなるように補正電圧を加える画像形成装置。
The image forming apparatus according to claim 3.
In the case where the variable portion is larger in absolute value than the reference value of the development voltage, the voltage control means is configured such that when the charging voltage is determined, the charging voltage after the change is an absolute value than the charging voltage before the change. An image forming apparatus that applies a correction voltage so as to increase, and applies the correction voltage so that the variable charging voltage becomes smaller in absolute value when the variable amount is smaller in absolute value than the reference value of the development voltage.
JP2000106202A 2000-04-07 2000-04-07 Image forming apparatus Expired - Fee Related JP4272331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000106202A JP4272331B2 (en) 2000-04-07 2000-04-07 Image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000106202A JP4272331B2 (en) 2000-04-07 2000-04-07 Image forming apparatus

Publications (2)

Publication Number Publication Date
JP2001290318A JP2001290318A (en) 2001-10-19
JP4272331B2 true JP4272331B2 (en) 2009-06-03

Family

ID=18619417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000106202A Expired - Fee Related JP4272331B2 (en) 2000-04-07 2000-04-07 Image forming apparatus

Country Status (1)

Country Link
JP (1) JP4272331B2 (en)

Also Published As

Publication number Publication date
JP2001290318A (en) 2001-10-19

Similar Documents

Publication Publication Date Title
JPH06124031A (en) Electrophotographic process controller
JPH0367276A (en) Image forming device
JPS60217376A (en) Electrophotographic device
JP4056216B2 (en) Image forming apparatus
JPH07271121A (en) Method for controlling electrophotography process using grid-voltage adjusting developer and current detection of photosensitive body
JP5150340B2 (en) Image forming apparatus
JP2013130597A (en) Image forming device
JP4272331B2 (en) Image forming apparatus
JPH06130818A (en) Electrophotographic device
JP2000221776A (en) Developing device
JP2018124400A (en) Image forming apparatus and control program
JP5097602B2 (en) Image forming apparatus
JP2003173074A (en) Electrophotographic printer and its printing control method
JP2986872B2 (en) Developer life detector
JP4194177B2 (en) Image forming apparatus
JPH1165255A (en) Image forming device
JPH08248705A (en) Image forming device
JP2023003685A (en) Image forming apparatus
JP2005157124A (en) Image forming apparatus, control method of same, and process cartridge
JP4297624B2 (en) Voltage control method for charging member, charging device, and image forming apparatus
JP2002229281A (en) Image forming device
JP3342594B2 (en) Image forming device
JPS63239474A (en) Image forming device
JP3343298B2 (en) Image forming device
JP2009282092A (en) Image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees