JP4271150B2 - Projection type display device and method of forming light intensity uniformizing element - Google Patents

Projection type display device and method of forming light intensity uniformizing element Download PDF

Info

Publication number
JP4271150B2
JP4271150B2 JP2005000475A JP2005000475A JP4271150B2 JP 4271150 B2 JP4271150 B2 JP 4271150B2 JP 2005000475 A JP2005000475 A JP 2005000475A JP 2005000475 A JP2005000475 A JP 2005000475A JP 4271150 B2 JP4271150 B2 JP 4271150B2
Authority
JP
Japan
Prior art keywords
light
light intensity
intensity uniformizing
uniformizing element
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005000475A
Other languages
Japanese (ja)
Other versions
JP2006189551A (en
Inventor
邦子 小島
博 木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005000475A priority Critical patent/JP4271150B2/en
Publication of JP2006189551A publication Critical patent/JP2006189551A/en
Application granted granted Critical
Publication of JP4271150B2 publication Critical patent/JP4271150B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)
  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Description

本発明は、スクリーン上に画像を投写する投写型表示装置に関し、より詳細には、ディジタル・マイクロミラー・デバイス(DMD)や反射型液晶表示素子等のような反射型ライトバルブを用いた投写型表示装置に関するものである。   The present invention relates to a projection display apparatus that projects an image on a screen, and more particularly, to a projection display using a reflective light valve such as a digital micromirror device (DMD) or a reflective liquid crystal display element. The present invention relates to a display device.

従来の投写型表示装置として、光源からの光束をライトトンネル(筒状光学素子)を通してライトバルブに導く構成のものがある(例えば、特許文献1参照)。このライトトンネルは、入射口側に断面積が連続的に減少するように形成されたテーパー部を有し、出射口側に断面形状が一定になるように形成された平行部を有している。そして、平行部の断面形状及び出射口の形状がライトバルブの形状(矩形)と相似形に形成されている。   As a conventional projection display device, there is a configuration in which a light beam from a light source is guided to a light valve through a light tunnel (cylindrical optical element) (see, for example, Patent Document 1). This light tunnel has a tapered portion formed so that the cross-sectional area continuously decreases on the entrance side, and has a parallel portion formed so that the cross-sectional shape is constant on the exit side. . The cross-sectional shape of the parallel portion and the shape of the emission port are similar to the shape of the light valve (rectangular shape).

特開2004−252112号公報(段落0034、図2)Japanese Patent Laying-Open No. 2004-252112 (paragraph 0034, FIG. 2)

しかしながら、例えば、ライトバルブの入射面(「被照明面」又は「画像形成領域」とも言う。)に対して垂直に光束を照射しない場合には、光強度均一化素子の断面形状をライトバルブの入射面の形状の相似形にしたとしても、ライトバルブ上における実際の照明領域(「実照明領域」とも言う。)は、ライトバルブの入射面と異なる形状になってしまい、ライトバルブ上における理想の照明領域に比べ大きく歪んだ照明領域になってしまうという問題があった。このような問題は、光学系の構成上、ライトバルブの入射面に対して垂直に光束を入射させることができない場合、例えば、反射型ライトバルブを用いたために、光束をライトバルブに導くミラーとライトバルブで反射された光束を拡大投写する投写光学系とが隣接して配置される場合等において生じることが多い。   However, for example, when the light beam is not irradiated perpendicularly to the incident surface of the light valve (also referred to as “illuminated surface” or “image forming region”), the cross-sectional shape of the light intensity equalizing element is changed to that of the light valve. Even if the shape of the incident surface is similar, the actual illumination area on the light valve (also referred to as the “real illumination area”) will be different from the incident surface of the light valve. There is a problem that the illumination area is greatly distorted compared to the illumination area. Such a problem is caused by a mirror that guides the light beam to the light valve because, for example, a reflective light valve is used when the light beam cannot enter the light valve perpendicularly to the incident surface of the light valve due to the configuration of the optical system. This often occurs when a projection optical system for enlarging and projecting the light beam reflected by the light valve is disposed adjacently.

そこで、本発明は、上記したような従来技術の課題を解決するためになされたものであり、反射型ライトバルブ上における実際の照明領域の形状を理想の照明領域の形状に略一致させることができる断面形状を持つ光強度均一化素子によって、光利用効率を向上させることができる投写型表示装置を提供することを目的とする。   Therefore, the present invention has been made to solve the above-described problems of the prior art, and it is possible to substantially match the shape of the actual illumination area on the reflective light valve with the shape of the ideal illumination area. An object of the present invention is to provide a projection display device capable of improving the light utilization efficiency by a light intensity uniformizing element having a cross-sectional shape that can be formed.

本発明に係る投写型表示装置は、光源と、前記光源から出射された光束の強度分布を均一化する光強度均一化素子と、矩形の画像形成領域を有する反射型ライトバルブと、前記光強度均一化素子から出射された光束を前記反射型ライトバルブに導くリレー光学系と、前記反射型ライトバルブの画像形成領域に形成された画像を拡大投写する投写光学系とを有し、前記光強度均一化素子は、中心光束に直交する方向の断面形状を四辺形とした光学素子であり、前記反射型ライトバルブ上において前記画像形成領域を含むように決められた矩形の理想の照明領域の各角部の位置と、中心光束に直交する方向の断面形状が前記反射型ライトバルブの画像形成領域と相似形状の矩形である基準用光強度均一化素子を用いたと仮定した場合における前記反射型ライトバルブ上の照明領域の各角部の位置と、前記基準用光強度均一化素子の断面形状の各角部の位置とに基づいて、前記光強度均一化素子の断面形状を決定するものである。   The projection display device according to the present invention includes a light source, a light intensity uniformizing element for uniformizing an intensity distribution of a light beam emitted from the light source, a reflective light valve having a rectangular image forming area, and the light intensity. A relay optical system for guiding the light beam emitted from the uniformizing element to the reflective light valve; and a projection optical system for enlarging and projecting an image formed in an image forming area of the reflective light valve; The uniformizing element is an optical element having a quadrilateral cross-sectional shape in a direction perpendicular to the central light beam, and each of the rectangular ideal illumination areas determined to include the image forming area on the reflective light valve. In the case where it is assumed that the reference light intensity uniformizing element is used in which the corner portion and the cross-sectional shape in the direction orthogonal to the central light beam are rectangular shapes similar to the image forming region of the reflective light valve. The cross-sectional shape of the light intensity uniformizing element is determined based on the position of each corner of the illumination area on the projecting light bulb and the position of each corner of the cross-sectional shape of the reference light intensity uniformizing element. Is.

本発明においては、反射型ライトバルブ上において画像形成領域を含む理想の照明領域の各角部の位置と、中心光束に直交する方向の断面形状が反射型ライトバルブの画像形成領域と相似形状の矩形である基準用光強度均一化素子を用いたと仮定した場合における反射型ライトバルブ上の照明領域の各角部の位置と、基準用光強度均一化素子の断面形状の各角部の位置とに基づいて、前記光強度均一化素子の断面形状を決定する。このため、本発明によれば、反射型ライトバルブの画像形成領域に対して垂直に光束を照射できない場合であっても、反射型ライトバルブ上に照射された光束による実際の照明領域を理想の照明領域に略一致させることが可能であり、光利用効率を向上させることができるという効果が得られる。   In the present invention, the position of each corner of the ideal illumination area including the image forming area on the reflective light valve and the cross-sectional shape in the direction perpendicular to the central light flux are similar to the image forming area of the reflective light valve. The position of each corner of the illumination area on the reflective light valve when it is assumed that a rectangular reference light intensity uniformizing element is used, and the position of each corner of the cross-sectional shape of the reference light intensity uniformizing element Based on the above, the cross-sectional shape of the light intensity uniformizing element is determined. For this reason, according to the present invention, even if the light beam cannot be irradiated perpendicularly to the image forming area of the reflective light valve, the actual illumination area by the light beam irradiated on the reflective light valve is ideal. It is possible to make it substantially coincide with the illumination area, and the effect that the light use efficiency can be improved is obtained.

また、本発明において、光強度均一化素子の光入射端の形状と、光強度均一化素子の断面形状と、光強度均一化素子の光出射端の形状とが同一形状である場合には、光強度均一化素子の入射端から出射端までの断面形状が一定であるので、製造が容易になり、光強度均一化素子の製造コストの低減を図ることができ、また、装置内における固定保持が容易になる。このため、この場合には、投写型表示装置の製造コストの低減を図ることができるという効果が得られる。   In the present invention, when the shape of the light incident end of the light intensity uniformizing element, the cross-sectional shape of the light intensity uniformizing element, and the shape of the light emitting end of the light intensity uniformizing element are the same shape, Since the cross-sectional shape from the entrance end to the exit end of the light intensity uniformizing element is constant, the manufacturing becomes easy, the manufacturing cost of the light intensity uniformizing element can be reduced, and it is fixedly held in the apparatus. Becomes easier. For this reason, in this case, it is possible to reduce the manufacturing cost of the projection display device.

実施の形態1.
図1は、本発明の実施の形態1に係る投写型表示装置の光学系の構成を概略的に示す図である。なお、図1には、投写型表示装置の実際の使用状態において、投写型表示装置の光学系を上から見た場合の各構成の配置が示されている。
Embodiment 1 FIG.
FIG. 1 is a diagram schematically showing a configuration of an optical system of a projection display apparatus according to Embodiment 1 of the present invention. FIG. 1 shows the arrangement of each component when the optical system of the projection display device is viewed from above in the actual usage state of the projection display device.

図1に示されるように、実施の形態1に係る投写型表示装置は、照明光学系1と、反射型ライトバルブとしてのDMD素子2と、照明光学系1により照明されたDMD素子2の被照明面(画像形成領域)2bの画像をスクリーン(図示せず)に投写する投写光学系3とを有している。照明光学系1は、DMD素子2の被照明面2bに光束を照射するための光学系である。照明光学系1は、光源ランプ4と、この光源ランプ4から射出された光束のうち特定の波長帯域の光束を通過させる回転カラーフィルタ5と、この回転カラーフィルタ5を透過した光束の当該光束断面内(すなわち、中心光束に直交する平面内)における強度分布を均一化する光強度均一化素子6と、レンズ71〜73を含むリレーレンズ群7と、第1ミラー8と、第2ミラー9とを有している。リレーレンズ群7、第1ミラー8、及び第2ミラー9は、光強度均一化素子6から出射した光束をDMD素子2に導くリレー光学系(すなわち、構成部材7,8,9)を構成している。   As shown in FIG. 1, the projection display apparatus according to the first embodiment includes an illumination optical system 1, a DMD element 2 as a reflective light valve, and a DMD element 2 illuminated by the illumination optical system 1. And a projection optical system 3 that projects an image of the illumination surface (image forming region) 2b onto a screen (not shown). The illumination optical system 1 is an optical system for irradiating the illuminated surface 2b of the DMD element 2 with a light beam. The illumination optical system 1 includes a light source lamp 4, a rotating color filter 5 that passes a light beam in a specific wavelength band among the light beams emitted from the light source lamp 4, and a light beam cross section of the light beam that has passed through the rotating color filter 5. A light intensity equalizing element 6 that equalizes the intensity distribution inside (that is, in a plane orthogonal to the central light beam), a relay lens group 7 including lenses 71 to 73, a first mirror 8, and a second mirror 9. have. The relay lens group 7, the first mirror 8, and the second mirror 9 constitute a relay optical system (that is, the constituent members 7, 8, 9) that guides the light beam emitted from the light intensity uniformizing element 6 to the DMD element 2. ing.

光源ランプ4は、例えば、白色光を射出する発光体4aと、この発光体4aの周囲に設けられた楕円面鏡4bとから構成されている。楕円面鏡4bは、楕円の第1中心に対応する第1焦点から射出された光束を反射して、楕円の第2中心に対応する第2焦点に収束させるものである。発光体4aは、楕円面鏡4bの第1焦点近傍に配置されており、この発光体4aから射出された光束は、楕円面鏡4bの第2焦点近傍に収束される。楕円面鏡4bの第1焦点と第2焦点とを通る軸線により、照明光学系1の照明光軸1аが規定される。なお、光源ランプ4は、図1に示した構成に限られず、例えば、楕円面鏡4bに代えて放物面鏡を用いてもよい。この場合には、発光体4aから射出された光束を放物面鏡により略平行化したのち、コンデンサレンズ(図示せず)により収束させればよい。また、楕円面鏡4bに代えて放物面鏡以外の凹面鏡を用いることもできる。   The light source lamp 4 includes, for example, a light emitting body 4a that emits white light and an elliptical mirror 4b provided around the light emitting body 4a. The ellipsoidal mirror 4b reflects the light beam emitted from the first focal point corresponding to the first center of the ellipse and converges it to the second focal point corresponding to the second center of the ellipse. The light emitter 4a is disposed near the first focal point of the ellipsoidal mirror 4b, and the light beam emitted from the light emitter 4a is converged near the second focal point of the ellipsoidal mirror 4b. An illumination optical axis 1a of the illumination optical system 1 is defined by an axis passing through the first focal point and the second focal point of the ellipsoidal mirror 4b. The light source lamp 4 is not limited to the configuration shown in FIG. 1, and a parabolic mirror may be used instead of the ellipsoidal mirror 4b, for example. In this case, the light beam emitted from the light emitter 4a may be made substantially parallel by a parabolic mirror and then converged by a condenser lens (not shown). Further, a concave mirror other than a parabolic mirror can be used instead of the ellipsoidal mirror 4b.

回転カラーフィルタ5は、円盤状の部材を、例えば、扇状に3分割して、それぞれ赤、緑、及び青の3つのフィルタ領域としたものである。赤、緑、及び青の3つのフィルタ領域は、それぞれ赤色、緑色、及び青色の各波長帯域に対応する光束のみを通過させるものである。回転カラーフィルタ5は、照明光軸1аと略平行な軸線5аを中心として回転し、それぞれのフィルタ領域が光源ランプ4の照明光軸1а上において、楕円面鏡4bの第2焦点近傍に位置するように構成されている。この回転カラーフィルタ5を画像信号に同期して回転させることにより、赤色光、緑色光、及び青色光が順に(フィールドシーケンシャルに)DMD素子2に照射される。   The rotating color filter 5 is obtained by dividing a disk-shaped member into, for example, a fan shape and forming three filter regions of red, green, and blue, respectively. The three filter regions of red, green, and blue pass only light beams corresponding to the red, green, and blue wavelength bands, respectively. The rotating color filter 5 rotates about an axis 5a that is substantially parallel to the illumination optical axis 1a, and each filter region is positioned on the illumination optical axis 1a of the light source lamp 4 in the vicinity of the second focal point of the ellipsoidal mirror 4b. It is configured as follows. By rotating the rotating color filter 5 in synchronization with the image signal, red light, green light, and blue light are sequentially applied to the DMD element 2 (in a field sequential manner).

光強度均一化素子6は、回転カラーフィルタ5を通過した光束の、当該光束断面内(すなわち、照明光軸1а上を進む中心光束に直交する平面内)における強度分布を均一化する(すなわち、照度ムラを低減する)機能を有する。光強度均一化素子6としては、一般的に、ガラス又は樹脂等の透明材料で作られ、側壁内側が全反射面となるように構成された四角柱状のロッド(すなわち、断面形状が四辺形の柱状部材)、又は、光反射面を内側にして筒状に組み合わされ、断面形状が四辺形のパイプ(管状部材)がある。光強度均一化素子6が四角柱状ロッドである場合には、透明材料と空気界面との全反射作用を利用して光を複数回反射させた後に出射端(出射口)から出射させる。光強度均一化素子6が四辺形のパイプである場合には、内側を向く表面鏡の反射作用を利用して光を複数回反射させた後に、出射口から出射させる。光強度均一化素子6は、光束の進行方向に適当な長さを確保すれば、内部で複数回反射した光が光強度均一化素子6の出射端6bの近傍に重畳照射され、光強度均一化素子6の出射端6b近傍においては、略均一な強度分布が得られる。この略均一な強度分布を有する出射端(「光源面」とも言う。)6bを、リレーレンズ群7、第1ミラー8、及び第2ミラー9によってDMD素子2へと導き、DMD素子2の被照明面2bを照明する。   The light intensity uniformizing element 6 equalizes the intensity distribution of the light beam that has passed through the rotating color filter 5 in the cross section of the light beam (that is, in the plane orthogonal to the central light beam that travels on the illumination optical axis 1a) (that is, It has a function to reduce illuminance unevenness. The light intensity uniformizing element 6 is generally made of a transparent material such as glass or resin, and is a quadrangular columnar rod (that is, the cross-sectional shape is a quadrilateral shape) configured such that the inside of the side wall becomes a total reflection surface. Columnar member) or a pipe (tubular member) having a cross-sectional shape of a quadrilateral that is combined in a cylindrical shape with the light reflection surface on the inside. When the light intensity equalizing element 6 is a square columnar rod, the light is reflected from a plurality of times using the total reflection action between the transparent material and the air interface, and then emitted from the exit end (exit port). When the light intensity uniformizing element 6 is a quadrilateral pipe, the light is reflected a plurality of times by using the reflecting action of the surface mirror facing inward, and then emitted from the emission port. If the light intensity equalizing element 6 secures an appropriate length in the traveling direction of the light beam, the light reflected inside the light intensity multiple times is superimposed and irradiated in the vicinity of the exit end 6b of the light intensity equalizing element 6 so that the light intensity is uniform. A substantially uniform intensity distribution is obtained in the vicinity of the emitting end 6 b of the activating element 6. The emission end (also referred to as “light source surface”) 6 b having a substantially uniform intensity distribution is led to the DMD element 2 by the relay lens group 7, the first mirror 8, and the second mirror 9. The illumination surface 2b is illuminated.

図2は、光源4が形成する光源像4c、光強度均一化素子6、及びDMD素子2の関係を概念的に示す模式図である。実施の形態1においては、リレーレンズ群7、第1ミラー8、及び第2ミラー9は、光強度均一化素子6の出射端6bとDMD素子2の被照明面2bとが光学的に共役な関係になるように構成されている。ここで、光源像4cの面積をS1とし、光強度均一化素子6の出射端6bの面積をS3とし、DMD素子2の被照明面2bの面積をS2とする。また、図2においては、光源像4cの位置と、光強度均一化素子6の入射端6aの位置とが異なるように描かれているが、実際の装置においては、光源像4cの位置と光強度均一化素子6の入射端6aの位置とは略一致するように構成されている。光源像4cから出射される光束の立体角をΩ1とすると、光強度均一化素子6へ入射する光束の立体角もΩ1となり、光強度均一化素子6内において角度が保存され、出射端6bから出射される光束の立体角もΩ1となる。一方、DMD素子2の被照明面2bにおける入射光束の立体角をΩ2とすると、それぞれの面積と立体角との積は一定に保たれる。即ち、S1×Ω1=S2×Ω2が成立する。   FIG. 2 is a schematic diagram conceptually showing the relationship between the light source image 4 c formed by the light source 4, the light intensity uniformizing element 6, and the DMD element 2. In the first embodiment, the relay lens group 7, the first mirror 8, and the second mirror 9 are configured such that the emission end 6 b of the light intensity uniformizing element 6 and the illuminated surface 2 b of the DMD element 2 are optically conjugate. Configured to be in a relationship. Here, the area of the light source image 4c is S1, the area of the emission end 6b of the light intensity uniformizing element 6 is S3, and the area of the illuminated surface 2b of the DMD element 2 is S2. In FIG. 2, the position of the light source image 4 c and the position of the incident end 6 a of the light intensity equalizing element 6 are depicted so as to be different. The position of the incident end 6a of the intensity uniformizing element 6 is configured to substantially coincide. If the solid angle of the light beam emitted from the light source image 4c is Ω1, the solid angle of the light beam incident on the light intensity uniformizing element 6 is also Ω1, the angle is stored in the light intensity uniformizing element 6, and the angle from the light emitting end 6b. The solid angle of the emitted light beam is also Ω1. On the other hand, when the solid angle of the incident light beam on the illuminated surface 2b of the DMD element 2 is Ω2, the product of each area and the solid angle is kept constant. That is, S1 × Ω1 = S2 × Ω2 is established.

DMD素子2は、各画素に対応する可動式のマイクロミラーを多数(例えば、数十万個)平面的に配列したものであり、画素情報に応じて各マイクロミラーの傾角(チルト)を変化させるように構成されている。マイクロミラーの配列された面(すなわち、マイクロミラーが形成された基板の表面)を基準面とすると、DMD素子2は、各マイクロミラーを基準面に対して一定の方向に角度α(例えば、12度)だけ傾けることにより、入射光束を投写光学系3に向けて反射し、投写光学系3に入射した光束はスクリーン(図示せず)上の画像投写に利用される。また、DMD素子2は、またマイクロミラーを基準面に対して反対方向に角度αだけ傾けることにより、入射光束を投写光学系3から離れた位置に設けられた光吸収板(図示せず)に向けて反射し、光吸収板に入射した光束はスクリーン上の画像投写に利用されない。   The DMD element 2 is a planar arrangement of a large number (for example, several hundred thousand) of movable micromirrors corresponding to each pixel, and changes the tilt angle of each micromirror according to pixel information. It is configured as follows. When the surface on which the micromirrors are arranged (that is, the surface of the substrate on which the micromirrors are formed) is used as a reference surface, the DMD element 2 has an angle α (for example, 12) in a certain direction with respect to the reference surface. The incident light beam is reflected toward the projection optical system 3, and the light beam incident on the projection optical system 3 is used for image projection on a screen (not shown). The DMD element 2 also tilts the micromirror in the opposite direction with respect to the reference plane by an angle α, so that the incident light beam is applied to a light absorbing plate (not shown) provided at a position away from the projection optical system 3. The light beam reflected and incident on the light absorbing plate is not used for image projection on the screen.

第1ミラー8は、反射面8bを有しており、図1に示すように、第1ミラー8の反射面8bの法線8аは、光軸1аに対して傾斜している。このような構成により、第1ミラー8の反射面8bは、リレーレンズ系7から入射した光束を第2ミラー9に向けて反射する。第1ミラー8は、DMD素子2を照射する照明光束の形状及び良好な照射位置を決定する作用を持ち、この第1ミラー8の形状は、平面ミラー又は凹状の反射ミラーで構成される。第1ミラー8を平面ミラーで構成した場合には、DMD素子2を照射する照明光束の形状を良好に決定する効果は弱くなるが、最も安価に構成できるとともに、第1ミラー8の厚みも最も薄く構成できるため、DMD素子2や第2ミラー9との干渉を回避し易くなる。第1ミラー8の反射面を円筒凹面で構成すると、DMD素子2へ斜めの照射することにより発生する歪曲収差を良好に補正し、良好な照明光束の形状及び照射位置を実現することが可能となる。第1ミラー8の反射面を凹状の非球面で構成した場合も、DMD素子2へ斜めの照射することにより発生する歪曲収差を良好に補正し、良好な照明光束の形状及び照射位置を実現することが可能となる。また、図1に示される第1ミラー8において、光強度均一化素子6の出射端6bの中心から射出された主光線(すなわち、中心光束)が、第1ミラー8の反射面8bに到達する位置を符号8cで示す。   The first mirror 8 has a reflecting surface 8b. As shown in FIG. 1, the normal 8a of the reflecting surface 8b of the first mirror 8 is inclined with respect to the optical axis 1a. With such a configuration, the reflecting surface 8 b of the first mirror 8 reflects the light beam incident from the relay lens system 7 toward the second mirror 9. The first mirror 8 has an action of determining the shape of the illumination light beam that irradiates the DMD element 2 and a good irradiation position, and the shape of the first mirror 8 is constituted by a plane mirror or a concave reflection mirror. When the first mirror 8 is configured by a plane mirror, the effect of favorably determining the shape of the illumination light beam that irradiates the DMD element 2 is weakened, but it can be configured at the lowest cost and the thickness of the first mirror 8 is also the largest. Since it can be made thin, it is easy to avoid interference with the DMD element 2 and the second mirror 9. When the reflecting surface of the first mirror 8 is formed of a cylindrical concave surface, it is possible to correct the distortion generated by obliquely irradiating the DMD element 2 and to realize a good illumination light beam shape and irradiation position. Become. Even when the reflecting surface of the first mirror 8 is formed of a concave aspherical surface, the distortion generated by obliquely irradiating the DMD element 2 is corrected well, and a good illumination beam shape and irradiation position are realized. It becomes possible. Further, in the first mirror 8 shown in FIG. 1, the principal ray (that is, the central light beam) emitted from the center of the emission end 6 b of the light intensity uniformizing element 6 reaches the reflection surface 8 b of the first mirror 8. The position is indicated by reference numeral 8c.

図3は、実施の形態1に係る投写型表示装置を、図1におけるIII−III線方向に見たときの構成を概略的に示す図である。DMD素子2は、照明光軸1а(図3には示さず)よりも図3において上方に配置されている。投写光学系3は、鏡筒3c内にレンズ群(図示せず)を配置したものであり、その入射側開口部3bがDMD素子2に略対向している。投写光学系3のレンズ群の投写光軸3аは、DMD素子2の被照明面(画像表示領域)2bの中心を通る法線2аに対して、平行でかつ所定量δずれている。   FIG. 3 is a diagram schematically showing the configuration of the projection display apparatus according to the first embodiment when viewed in the direction of the line III-III in FIG. The DMD element 2 is disposed above the illumination optical axis 1a (not shown in FIG. 3) in FIG. The projection optical system 3 includes a lens group (not shown) disposed in a lens barrel 3 c, and the incident side opening 3 b is substantially opposed to the DMD element 2. The projection optical axis 3a of the lens group of the projection optical system 3 is parallel to the normal line 2a passing through the center of the illuminated surface (image display area) 2b of the DMD element 2 and shifted by a predetermined amount δ.

第2ミラー9は、図3において投写光学系3の下側に隣接して配置されている。第2ミラー9と投写光学系3の鏡筒3cとは、互いに干渉し合わない範囲でできるだけ近接するように配置されている。第2ミラー9の反射面9bにより反射された光束は、DMD素子2の被照明面2bに入射し、DMD素子2の被照明面2bにより反射され、投写光学系3の入射開口部3bに入射する。第2ミラー9の反射面9bは、例えば、凹面状の球面や楕円反射面等で構成する。第2ミラー9の反射面を楕円反射面で構成すると、光利用効率を向上する効果が高い。   The second mirror 9 is disposed adjacent to the lower side of the projection optical system 3 in FIG. The second mirror 9 and the lens barrel 3c of the projection optical system 3 are arranged as close as possible within a range where they do not interfere with each other. The light beam reflected by the reflecting surface 9 b of the second mirror 9 is incident on the illuminated surface 2 b of the DMD element 2, reflected by the illuminated surface 2 b of the DMD element 2, and incident on the incident opening 3 b of the projection optical system 3. To do. The reflection surface 9b of the second mirror 9 is constituted by, for example, a concave spherical surface or an elliptical reflection surface. When the reflecting surface of the second mirror 9 is an elliptical reflecting surface, the effect of improving the light utilization efficiency is high.

なお、図1に示すように、DMD素子2から投写光学系3までの光束の進行方向は、光源ランプ4から第1ミラー8までの光束の進行方向に対し、上面視で(すなわち、図1において)略直交するようになっている。また、DMD素子2の被照明面2bの法線2а及び投写光学系3の投写光軸3аは、いずれも上面視では、照明光軸1аに対して略直交している。このように配置した理由は、第1に、DMD素子2の被照明面2bの法線2аと投写光学系3の投写光軸3аとの関係が略直交する関係から大きく外れた場合には、光源ランプ4、リレーレンズ群7、第1ミラー8、第2ミラー9、反射型ライトバルブ2、及び投写光学系3のそれぞれの光路を遮らずに、これらの構成部材を配置することが困難になるからである。また、第2に、光源ランプ4の傾き角度は、約15度程度までその使用を許可しているが、傾き角度が大きくなると明るさが低下してしまう共に、光源ランプ4のフリッカ現象を引き起こし良好な画像を得難くなるという欠点があるからである。これらの理由により、図1に示すように、照明光学系1の照明光軸1аとDMD素子2の被照明面2bの法線2аとの交わり角γ(照明光学系1の照明光軸1аと投写光学系3の投写光軸3аとの交わり角と同じ角度)は、90±5度で構成することが望ましい。   As shown in FIG. 1, the traveling direction of the light beam from the DMD element 2 to the projection optical system 3 is a top view with respect to the traveling direction of the light beam from the light source lamp 4 to the first mirror 8 (that is, FIG. 1). In) are substantially orthogonal. Further, the normal 2a of the illumination target surface 2b of the DMD element 2 and the projection optical axis 3a of the projection optical system 3 are both substantially orthogonal to the illumination optical axis 1a in a top view. The reason for this arrangement is that, first, when the relationship between the normal 2a of the illuminated surface 2b of the DMD element 2 and the projection optical axis 3a of the projection optical system 3 deviates greatly from the substantially orthogonal relationship, It is difficult to dispose these components without blocking the light paths of the light source lamp 4, the relay lens group 7, the first mirror 8, the second mirror 9, the reflective light valve 2, and the projection optical system 3. Because it becomes. Second, the tilt angle of the light source lamp 4 is permitted to be used up to about 15 degrees. However, as the tilt angle increases, the brightness decreases and the flicker phenomenon of the light source lamp 4 occurs. This is because it is difficult to obtain a good image. For these reasons, as shown in FIG. 1, the angle of intersection γ between the illumination optical axis 1a of the illumination optical system 1 and the normal 2a of the illuminated surface 2b of the DMD element 2 (with the illumination optical axis 1a of the illumination optical system 1). The angle of intersection of the projection optical system 3 and the projection optical axis 3a is preferably 90 ± 5 degrees.

次に、実施の形態1における光強度均一化素子6の断面形状(実施の形態1においては、出射端形状でもある)の決定方法について説明する。   Next, a method for determining the cross-sectional shape of the light intensity uniformizing element 6 in the first embodiment (which is also the emission end shape in the first embodiment) will be described.

図4は、DMD素子2上の被照明面2bと、断面形状をDMD素子の被照明面と相似形の矩形とした光強度均一化素子(本出願においては「基準用光強度均一化素子」と言う。)を用いた場合におけるDMD素子2上の実照明領域2c´とを概略的に示す図であり、図5は、DMD素子2上の被照明面2bと理想の照明領域2dとを概略的に示す図である。また、図6(a)は、基準用光強度均一化素子を用いた場合におけるDMD素子2上の実照明領域2c´を示す図であり、同図(b)は、基準用光強度均一化素子の断面形状6c´を概略的に示す図である。さらに、図7は、DMD素子2上の被照明面2bと、理想の照明領域2dと、基準用光強度均一化素子を用いた場合におけるDMD素子2上の実照明領域2c´とを概略的に示す図であり、図8は、基準用光強度均一化素子の断面形状6d´と、実施の形態1における光強度均一化素子6の断面形状(端部形状でもある)6eとを概略的に示す図である。さらにまた、図9は、DMD素子2上の被照明面2bと、理想の照明領域2dと、実施の形態1における光強度均一化素子6を用いた場合におけるDMD素子2上の実照明領域2fとを概略的に示す図であり、図10は、実施の形態1における光強度均一化素子6の形状を概略的に示す外観斜視図である。   FIG. 4 shows an illuminated surface 2b on the DMD element 2 and a light intensity equalizing element having a cross-sectional shape similar to the illuminated surface of the DMD element (in this application, “reference light intensity equalizing element”). FIG. 5 is a diagram schematically showing the actual illumination region 2c ′ on the DMD element 2 when FIG. 5 is used, and FIG. 5 shows the illuminated surface 2b on the DMD element 2 and the ideal illumination region 2d. It is a figure shown roughly. FIG. 6A is a diagram showing an actual illumination region 2c ′ on the DMD element 2 when the reference light intensity uniformizing element is used, and FIG. It is a figure which shows roughly the cross-sectional shape 6c 'of an element. Further, FIG. 7 schematically shows an illuminated surface 2b on the DMD element 2, an ideal illumination area 2d, and an actual illumination area 2c 'on the DMD element 2 when a reference light intensity uniformizing element is used. FIG. 8 schematically shows a cross-sectional shape 6d ′ of the reference light intensity uniformizing element and a cross-sectional shape (also an end shape) 6e of the light intensity uniformizing element 6 in the first embodiment. FIG. Furthermore, FIG. 9 shows an actual illumination area 2f on the DMD element 2 when the illuminated surface 2b on the DMD element 2, the ideal illumination area 2d, and the light intensity equalizing element 6 in the first embodiment are used. FIG. 10 is an external perspective view schematically showing the shape of the light intensity uniformizing element 6 in the first embodiment.

一般的な照明光学系(図1の照明光学系1に対応する照明光学系)おいては、光強度均一化素子(基準用光強度均一化素子)の断面形状6c´(図6(b)に示す。)は入射端(図1の入射端6aに対応する入射端)から出射端(図1の出射端6bに対応する出射端)まで一定であり、DMD素子2の被照明面2bと相似形である矩形で形成されている。また、DMD素子2を用いた照明光学系1においては、図1に示すように、第2ミラー9からDMD素子2の被照明面2bに対して垂直な法線方向(図1及び図3における軸線2a方向)に対して傾斜した斜め方向から照射するため、照明光学系1の設計を工夫しても、DMD素子2の被照明面2b上の実際の照明領域(実照明領域)に歪みが発生してしまうことが多い。   In a general illumination optical system (an illumination optical system corresponding to the illumination optical system 1 in FIG. 1), the cross-sectional shape 6c ′ of the light intensity uniformizing element (reference light intensity uniformizing element) (FIG. 6B). Is constant from the incident end (incident end corresponding to the incident end 6a in FIG. 1) to the outgoing end (outgoing end corresponding to the outgoing end 6b in FIG. 1), and the surface to be illuminated 2b of the DMD element 2 It is formed in a rectangle that is a similar shape. Further, in the illumination optical system 1 using the DMD element 2, as shown in FIG. 1, the normal direction perpendicular to the illuminated surface 2b of the DMD element 2 from the second mirror 9 (in FIGS. 1 and 3). Since the irradiation is performed from an oblique direction inclined with respect to the axis 2a direction), even if the design of the illumination optical system 1 is devised, the actual illumination area (actual illumination area) on the illuminated surface 2b of the DMD element 2 is distorted. It often happens.

例えば、表1に示すような構成で光学系を設計した場合の事例(断面形状をDMD素子の被照明面と相似形の矩形とした基準用光強度均一化素子を用いた事例であり、以下「基準例」と言う。)について説明する。   For example, an example in which an optical system is designed with a configuration as shown in Table 1 (an example using a reference light intensity uniformizing element whose cross-sectional shape is a rectangle that is similar to the illuminated surface of the DMD element. (Referred to as “reference example”).

Figure 0004271150
Figure 0004271150

基準例においては、表1に示すように、基準用光強度均一化素子(図1の光強度均一化素子6に対応する素子)の断面形状6c´(図6(b)に示す。)をDMD素子2の被照明面2bの形状と相似形の矩形で形成している。また、リレーレンズ群7を球面レンズ3枚で構成し、第1ミラー8を平面ミラーで構成し、第2ミラー9を凹状の球面ミラーで構成している。また、DMD素子2の被照明面2bのサイズが、縦10.51mm、横14.01mmである。   In the reference example, as shown in Table 1, a cross-sectional shape 6c ′ (shown in FIG. 6B) of a reference light intensity uniformizing element (an element corresponding to the light intensity uniformizing element 6 in FIG. 1). The DMD element 2 is formed in a rectangular shape similar to the shape of the illuminated surface 2b. The relay lens group 7 is composed of three spherical lenses, the first mirror 8 is composed of a plane mirror, and the second mirror 9 is composed of a concave spherical mirror. The size of the illuminated surface 2b of the DMD element 2 is 10.51 mm in length and 14.01 mm in width.

図4に示されるように、基準用光強度均一化素子を用いた基準例におけるけるDMD素子2上の実照明領域2c´はDMD素子2の被照明面2bの形状(矩形)に比べて歪んだ形状となっている。このように歪んだ実照明領域2c´になる場合には、DMD素子の製品のばらつきによっては、実照明領域2c´における照明マージンの小さい部分に光束が照射されない状況が発生することがある。このような場合には、表示された映像画面に暗くなり影として認識される部分が生じる問題がある。また、照明マージンの大きい部分においては照明光束が無駄に捨てられ、照明光束の損失が大きいという問題がある。   As shown in FIG. 4, the actual illumination area 2 c ′ on the DMD element 2 in the reference example using the reference light intensity uniformizing element is distorted as compared to the shape (rectangular shape) of the illuminated surface 2 b of the DMD element 2. It has a shape. When the actual illumination region 2c ′ is distorted as described above, depending on the product variation of the DMD element, there may be a situation in which the light beam is not irradiated to a portion with a small illumination margin in the actual illumination region 2c ′. In such a case, there is a problem that a portion that is darkened and recognized as a shadow appears on the displayed video screen. Further, there is a problem in that the illumination light beam is wasted in a portion where the illumination margin is large, and the loss of the illumination light beam is large.

図5に示されるように、DMD素子2上における理想の照明領域2dは、例えば、DMD素子2の被照明面2bに対して、全方向に一定幅の照明マージンを確保するような矩形の領域である。また、理想の照明領域2dを、例えば、DMD素子2の被照明面2bに相似形(DMD素子2の被照明面2bに一定の倍率(例えば、1.03倍)を掛けた領域)であって、DMD素子2の被照明面2bを含むような矩形の領域とすることもできる。さらに、理想の照明領域2dを、例えば、DMD素子2の被照明面2bを含み、水平走査方向(図5の横方向)に幅WHのマージンを確保し、垂直走査方向(図5の縦方向)に幅WV(≠WH)のマージンを確保するような矩形の領域にすることもできる。基準用光強度均一化素子を用いた基準例(表1)における実照明領域2c´を、理想の照明領域2dに近づけるために、照明光学系1の構成や設計で工夫しても、実際には限界があり、歪みが残ってしまう。そこで、本発明の実施の形態1においては、光強度均一化素子6の断面形状(端部形状を含む)を最適化することによって、実照明領域の歪みを、図9における符号2fのように少なくし、実照明領域2fを理想の照明領域2dに近づけることを検討した。   As shown in FIG. 5, the ideal illumination area 2d on the DMD element 2 is, for example, a rectangular area that ensures an illumination margin of a certain width in all directions with respect to the illuminated surface 2b of the DMD element 2. It is. Further, the ideal illumination area 2d is, for example, similar to the illuminated surface 2b of the DMD element 2 (an area obtained by multiplying the illuminated surface 2b of the DMD element 2 by a certain magnification (eg, 1.03 times)). Thus, a rectangular region including the illuminated surface 2b of the DMD element 2 may be used. Furthermore, the ideal illumination region 2d includes, for example, the illuminated surface 2b of the DMD element 2, and a margin of a width WH is secured in the horizontal scanning direction (lateral direction in FIG. 5), and the vertical scanning direction (vertical direction in FIG. 5). ) Can be a rectangular area that secures a margin of width WV (≠ WH). Even if the configuration and design of the illumination optical system 1 are devised to bring the actual illumination area 2c ′ in the reference example (Table 1) using the reference light intensity uniformizing element closer to the ideal illumination area 2d, There is a limit and distortion remains. Therefore, in the first embodiment of the present invention, by optimizing the cross-sectional shape (including the end portion shape) of the light intensity uniformizing element 6, the distortion of the actual illumination region is represented by reference numeral 2f in FIG. We studied to reduce the actual illumination area 2f closer to the ideal illumination area 2d.

ここで、実施の形態1における光強度均一化素子6の断面形状6e(図8に示す。)について説明する。図6(a)には、表1に示される基準例において、DMD素子2の被照明面2bに向かって見た場合の実照明領域2c´の4隅(4つの角部)の点A1,B1,C1,D1を示し、図6(b)には、同図(a)に示された点A1,B1,C1,D1に対応する、基準用光強度均一化素子の出射端に向かって見た場合の断面形状6cの4隅(4つの角部)の点A2,B2,C2,D2を示す。図6(a)に示されるDMD素子2上の実照明領域2c´の点A1,B1,C1,D1はそれぞれ、基準用光強度均一化素子の断面形状6c´の点A2,B2,C2,D2に対応する。   Here, the cross-sectional shape 6e (shown in FIG. 8) of the light intensity uniformizing element 6 in the first embodiment will be described. In FIG. 6A, in the reference example shown in Table 1, points A1 at four corners (four corners) of the actual illumination region 2c ′ when viewed toward the illuminated surface 2b of the DMD element 2 are shown. B1, C1, and D1 are shown. In FIG. 6B, toward the emission end of the reference light intensity uniformizing element corresponding to the points A1, B1, C1, and D1 shown in FIG. The four corners (four corners) A2, B2, C2, D2 of the cross-sectional shape 6c when viewed are shown. The points A1, B1, C1, and D1 of the actual illumination region 2c ′ on the DMD element 2 shown in FIG. 6A are respectively points A2, B2, C2, and the cross-sectional shape 6c ′ of the reference light intensity uniformizing element. Corresponds to D2.

上記したように、基準用光強度均一化素子を用いた基準例(表1)においては、DMD素子2上の実照明領域2c´が歪んだ形状となるが、実施の形態1における光強度均一化素子6を用いた場合には、DMD素子2上の実照明領域2fを理想の照明領域2dに近づけることができる。以下に、実施の形態1における光強度均一化素子6の断面形状6dについて説明する。図7に示されるように、DMD素子2の被照明面2bのサイズは、縦10.51mm、横14.01mmであり、一例として、3%の設計マージンを設定して、理想の照明領域2dを、縦10.83mm、横14.43mmとする。図7に示すように、基準用光強度均一化素子を用いた基準例(表1)における実照明領域2c´は理想の照明領域2dに比べて大きく歪んだ形状となっている。基準用光強度均一化素子を用いた基準例(表1)における実照明領域2c´の歪みの程度を示すため、理想の照明領域2dと実照明領域2c´の比較結果を表2に示す。   As described above, in the reference example (Table 1) using the reference light intensity uniformizing element, the actual illumination region 2c ′ on the DMD element 2 has a distorted shape. However, the uniform light intensity in the first embodiment is used. When the optimization element 6 is used, the actual illumination area 2f on the DMD element 2 can be brought close to the ideal illumination area 2d. Below, the cross-sectional shape 6d of the light intensity equalizing element 6 in Embodiment 1 is demonstrated. As shown in FIG. 7, the size of the illuminated surface 2b of the DMD element 2 is 10.51 mm in length and 14.01 mm in width. As an example, a design margin of 3% is set, and the ideal illumination area 2d Is 10.83 mm long and 14.43 mm wide. As shown in FIG. 7, the actual illumination region 2c ′ in the reference example (Table 1) using the reference light intensity uniformizing element has a greatly distorted shape as compared with the ideal illumination region 2d. Table 2 shows a comparison result between the ideal illumination region 2d and the actual illumination region 2c ′ in order to show the degree of distortion of the actual illumination region 2c ′ in the reference example (Table 1) using the reference light intensity uniformizing element.

Figure 0004271150
Figure 0004271150

図7及び表2において、x方向はDMD素子2の長手方向、y方向はDMD素子2の短手方向を示している。基準例において、基準用光強度均一化素子を縦4.23mm、横6.08mmの矩形で形成した場合(表1)、基準用光強度均一化素子の断面形状の4隅の点A2,B2,C2,D2から出射した光線がDMD素子2の被照明面2bを照射する位置をそれぞれ点A1,B1,C1,D1で示している。表2には、表2における理想の照明領域2d(すなわち、DMD素子2の被照明面2bに対して3%の設計マージンを設定した領域)の幅(x方向)及び高さ(y方向)をそれぞれ1とした時、実照明領域2c´について4隅の各点についてx方向、y方向の相対値を示している。   7 and Table 2, the x direction indicates the longitudinal direction of the DMD element 2, and the y direction indicates the short direction of the DMD element 2. In the reference example, when the reference light intensity uniformizing element is formed in a rectangular shape having a length of 4.23 mm and a width of 6.08 mm (Table 1), points A2 and B2 at the four corners of the cross-sectional shape of the reference light intensity uniformizing element. , C2, and D2, the positions at which the light rays emitted from the DMD element 2 illuminate the illuminated surface 2b are indicated by points A1, B1, C1, and D1, respectively. Table 2 shows the width (x direction) and height (y direction) of the ideal illumination region 2d in Table 2 (that is, a region where a design margin of 3% is set with respect to the illuminated surface 2b of the DMD element 2). When each is set to 1, relative values in the x direction and the y direction are shown for each of the four corners of the actual illumination region 2c ′.

表2において、点A1の到達位置は理想の照明領域2dに比べて、x方向が3%大きく、y方向は同じとなっており、点A1の到達位置はほとんど理想の位置になっていることがわかる。一方、点D1の到達位置は理想の照明領域2dに比べて、x方向が54%、y方向が15%大きくなっており、理想の位置から大きくずれている(すなわち、照射面積がかなり大きくなっている)ことがわかる。同様に、点B1及び点C1についても、理想の照明領域2dから、外れた到達位置となっている。   In Table 2, the arrival position of the point A1 is 3% larger in the x direction and the same in the y direction than the ideal illumination area 2d, and the arrival position of the point A1 is almost an ideal position. I understand. On the other hand, the arrival position of the point D1 is 54% larger in the x direction and 15% larger in the y direction than the ideal illumination region 2d, and is greatly deviated from the ideal position (that is, the irradiation area becomes considerably large). I understand). Similarly, the point B1 and the point C1 are reaching positions deviating from the ideal illumination region 2d.

実際に、図7及び表2に示した歪んだ実照明領域2c´を理想の照明領域2dに近づける方法について説明する。基本的な考え方としては、DMD素子2の実照明領域2c´の4隅の点A1,B1,C1,D1に対応する光強度均一化素子6の4隅の点A2,B2,C2,D2が、DMD素子2の実照明領域2c´を補正するように構成される四辺形で光強度均一化素子6を形成する。   Actually, a method of bringing the distorted actual illumination area 2c ′ shown in FIG. 7 and Table 2 closer to the ideal illumination area 2d will be described. The basic idea is that the four corner points A2, B2, C2, D2 of the light intensity equalizing element 6 corresponding to the four corner points A1, B1, C1, D1 of the actual illumination region 2c ′ of the DMD element 2 are as follows. The light intensity equalizing element 6 is formed in a quadrilateral shape configured to correct the actual illumination region 2c ′ of the DMD element 2.

図8に、表1に示される基準用光強度均一化素子の断面形状6d´と、補正後の(すなわち、本発明の実施の形態1における)光強度均一化素子6の断面形状6eを示す。図8における断面形状6d´及び6eは、光強度均一化素子6の出射端6bに向かって見た図である。   FIG. 8 shows a cross-sectional shape 6d ′ of the reference light intensity uniformizing element shown in Table 1 and a cross-sectional shape 6e of the light intensity uniformizing element 6 after correction (that is, in the first embodiment of the present invention). . Cross-sectional shapes 6 d ′ and 6 e in FIG. 8 are views seen toward the emission end 6 b of the light intensity uniformizing element 6.

補正後の光強度均一化素子6の断面形状6eの決定方法は、理論的には基準用光強度均一化素子の断面形状6d´で照射した場合のDMD素子2の実照明領域2c´の歪みを相殺するような形状にすればよい。表3に、表2に示した基準例における実照明領域2c´の歪みを相殺する光強度均一化素子6の断面形状6eについて、基準用光強度均一化素子の断面形状6d´の4隅の点を1とした場合の比を、表2と同様に光強度均一化素子6の長手方向をx方向、短手方向をy方向とした場合の補正位置を示す。   The method of determining the cross-sectional shape 6e of the light intensity uniformizing element 6 after correction is theoretically the distortion of the actual illumination region 2c 'of the DMD element 2 when irradiated with the cross-sectional shape 6d' of the reference light intensity uniformizing element. The shape may be offset. Table 3 shows the cross-sectional shape 6e of the light intensity uniformizing element 6 that cancels out the distortion of the actual illumination region 2c 'in the reference example shown in Table 2, with respect to the four corners of the cross-sectional shape 6d' of the reference light intensity uniformizing element. The ratio when the point is 1 indicates the correction position when the longitudinal direction of the light intensity uniformizing element 6 is the x direction and the short direction is the y direction as in Table 2.

Figure 0004271150
Figure 0004271150

実際の設計において、照明光学系1の持つ性能及び投写光学系3の性能をも考慮に入れて、光強度均一化素子6の断面形状6eを決定することが望ましい。例えば、表3に示した理論的な補正断面形状6eに対して各方向にそれぞれ、若干の裕度を持たせて決定することが望ましい。表3に、実施の形態1の設計事例における、最終的な光強度均一化素子6の補正後の断面形状6fを示す。また、図9に、補正後の断面形状6fの光強度均一化素子6で照射した場合の、DMD素子2の照明領域2fを示す。   In actual design, it is desirable to determine the cross-sectional shape 6e of the light intensity uniformizing element 6 in consideration of the performance of the illumination optical system 1 and the performance of the projection optical system 3. For example, it is desirable to determine the theoretical corrected cross-sectional shape 6e shown in Table 3 with a slight margin in each direction. Table 3 shows a cross-sectional shape 6f after correction of the final light intensity uniformizing element 6 in the design example of the first embodiment. FIG. 9 shows an illumination region 2f of the DMD element 2 when irradiated with the light intensity uniformizing element 6 having the corrected cross-sectional shape 6f.

図9において、補正後の断面形状6fを持つ光強度均一化素子6でDMD素子2を照射した場合の照明領域2f(断面形状6eを持つ光強度均一化素子6でDMD素子2を照射した場合の照明領域と略同じ形状である。)は、理想の照明領域2dにかなり近い形状となっていることがわかる。この場合の光強度均一化素子6の形状を図10に示す。この光強度均一化素子6は、入射端6аから出射端6bまでその断面形状が形状6fで一定の四辺形から形成されている。また、その断面形状6fの面積はもとの断面形状6dの面積と略等しくなっており、S1×Ω1=S2×Ω2の関係を保っている。   In FIG. 9, when the DMD element 2 is irradiated with the light intensity uniformizing element 6 having the corrected cross-sectional shape 6f, the illumination region 2f (when the DMD element 2 is irradiated with the light intensity uniformizing element 6 having the cross-sectional shape 6e) Is substantially the same shape as the illumination area 2), which is quite close to the ideal illumination area 2d. The shape of the light intensity equalizing element 6 in this case is shown in FIG. The light intensity uniformizing element 6 is formed from a constant quadrilateral shape with a cross-sectional shape of 6f from the incident end 6a to the outgoing end 6b. The area of the cross-sectional shape 6f is substantially equal to the area of the original cross-sectional shape 6d, and the relationship of S1 × Ω1 = S2 × Ω2 is maintained.

実施の形態1においては、図10に示すような光強度均一化素子6を用いているので、DMD素子の被照明面と相似形の矩形の断面形状を持つ基準用光強度均一化素子を用いた場合と比較して、DMD素子2の照明領域6fが被照明面6bに対して全方向に一定の設計マージンを確保した理想の照明領域6cに近い形状となるため、光利用効率が高まるとともに、画面の一部分が暗くなるというような不具合も発生しなくなる。   In the first embodiment, since the light intensity uniformizing element 6 as shown in FIG. 10 is used, a reference light intensity uniformizing element having a rectangular cross section similar to the illuminated surface of the DMD element is used. Compared with the case where the illumination area 6f of the DMD element 2 is formed, the illumination area 6f of the DMD element 2 has a shape close to the ideal illumination area 6c that secures a constant design margin in all directions with respect to the illuminated surface 6b. The problem that a part of the screen becomes dark will not occur.

具体的にいえば、実施の形態1においては、基準用光強度均一化素子を採用する場合に比べ、光利用効率が計算上約1割向上することが確認できた。   Specifically, in the first embodiment, it has been confirmed that the light utilization efficiency is improved by about 10% in comparison with the case where the reference light intensity uniformizing element is employed.

また、実施の形態1において、光強度均一化素子6から第1ミラー8までの光束の進行方向と、反射型ライトバルブ2から投写光学系3の入射側開口部3bまでの光束の進行方向とが略直交しているため、レイアウトし易く、光源ランプ4の不具合の発生を抑え、良好な画像を得ることが可能となる。   In the first embodiment, the traveling direction of the light beam from the light intensity uniformizing element 6 to the first mirror 8 and the traveling direction of the light beam from the reflective light valve 2 to the incident side opening 3b of the projection optical system 3 are as follows. Therefore, it is easy to lay out, and it is possible to suppress the occurrence of defects of the light source lamp 4 and obtain a good image.

さらに、実施の形態1において、反射型ライトバルブ2の各画素を反射角の傾角を変化させることのできる可動マイクロミラーにより構成したので、照明光束の断面内の強度分布を均一化し、照度ムラを抑えることが可能となる。   Furthermore, in Embodiment 1, each pixel of the reflective light valve 2 is configured by a movable micromirror that can change the tilt angle of the reflection angle, so that the intensity distribution in the cross section of the illumination light beam is made uniform, and uneven illuminance is reduced. It becomes possible to suppress.

さらにまた、実施の形態1において、光強度均一化素子6を管状部材でその内面で光束を反射するように構成した場合には、照明光束により素子自身の加熱が生じ難くなり、光強度均一化素子6の冷却及び保持が簡単になる。   Furthermore, in the first embodiment, when the light intensity uniformizing element 6 is configured by a tubular member so as to reflect the light beam on its inner surface, the element itself is less likely to be heated by the illumination light beam, and the light intensity is uniformized. The cooling and holding of the element 6 is simplified.

また、実施の形態1において、光強度均一化素子6を透明材料により四辺形柱状の部材で構成したので、光強度均一化素子6の設計が容易になる。   In the first embodiment, since the light intensity uniformizing element 6 is made of a quadrangular columnar member made of a transparent material, the light intensity uniformizing element 6 can be easily designed.

実施の形態2
図11は、本発明の実施の形態2におけるDMD素子上の被照明面と、理想の照明領域とを、中心光束を原点する直交座標系上に示す図であり、図12は、実施の形態2におけるDMD素子上の理想の照明領域と、基準用光強度均一化素子を用いた場合におけるDMD素子上の実照明領域とを、中心光束を原点する直交座標系上に示す図である。また、図13は、基準用光強度均一化素子の断面形状を、中心光束を原点する直交座標系上に示す図であり、図14は、基準用光強度均一化素子の断面形状と、実施の形態2における光強度均一化素子の断面形状とを、中心光束を原点する直交座標系上に示す図である。
Embodiment 2
FIG. 11 is a diagram showing a surface to be illuminated on the DMD element and an ideal illumination area on the Cartesian coordinate system with the central light flux as the origin in the second embodiment of the present invention, and FIG. 12 shows the embodiment. 2 is a diagram showing an ideal illumination area on the DMD element in FIG. 2 and an actual illumination area on the DMD element in the case where the reference light intensity uniformizing element is used, on an orthogonal coordinate system with the central light beam as the origin. FIG. 13 is a diagram showing the cross-sectional shape of the reference light intensity uniformizing element on an orthogonal coordinate system with the central light beam as the origin, and FIG. 14 shows the cross-sectional shape of the reference light intensity uniformizing element and the implementation. It is a figure which shows the cross-sectional shape of the light intensity equalization element in the form 2 on the orthogonal coordinate system which makes a center light beam the origin.

実施の形態2に係る投写型表示装置は、光強度均一化素子6の断面形状(端部形状を含む)の決定手法が上記実施の形態1に係る投写型表示装置の場合と相違する。他の点は、上記実施の形態1の場合と同じであるので、実施の形態2の説明においては、図1をも参照する。   The projection display device according to the second embodiment is different from the projection display device according to the first embodiment in the method of determining the cross-sectional shape (including the end shape) of the light intensity uniformizing element 6. Since the other points are the same as those in the first embodiment, FIG. 1 is also referred to in the description of the second embodiment.

実施の形態2においては、図11乃至図14に示されるように、中心光束に直交する平面内において、中心光束位置を原点とし、DMD素子2の被照明面(画像形成領域)2bの水平走査方向及び垂直走査方向のそれぞれにx軸及びy軸を置く座標系を用いる。このような座標系において、DMD素子2上における理想の照明領域2dの角部の座標をそれぞれ、(−Xa1,Ya1)、(Xb1,Yb1)、(−Xc1,−Yc1)、(Xd1,−Yd1)とし、基準用光強度均一化素子を用いたと仮定した場合におけるDMD素子2上の実照明領域2c´の角部の座標をそれぞれ、(−Xa2,Ya2)、(Xb2,Yb2)、(−Xc2,−Yc2)、(Xd2,−Yd2)とし、基準用光強度均一化素子の断面形状6d´の角部の座標をそれぞれ、(−Xa3,Ya3)、(Xb3,Yb3)、(−Xc3,−Yc3)、(Xd3,−Yd3)とし、実施の形態2における光強度均一化素子6の断面形状6eの角部の座標をそれぞれ、(−Xa4,Ya4)、(Xb4,Yb4)、(−Xc4,−Yc4)、(Xd4,−Yd4)とする。実施の形態2に係る投写型表示装置においては、以下の条件式1乃至8を満たすように、光強度均一化素子6の断面形状6eを決定する。
0.9×(Xa1/Xa2)<Xa4/Xa3<1.2×(Xa1/Xa2) …式1
0.9×(Xb1/Xb2)<Xb4/Xb3<1.2×(Xb1/Xb2) …式2
0.9×(Xc1/Xc2)<Xc4/Xc3<1.2×(Xc1/Xc2) …式3
0.9×(Xd1/Xd2)<Xd4/Xd3<1.2×(Xd1/Xd2) …式4
0.9×(Ya1/Ya2)<Ya4/Ya3<1.2×(Ya1/Ya2) …式5
0.9×(Yb1/Yb2)<Yb4/Yb3<1.2×(Yb1/Yb2) …式6
0.9×(Yc1/Yc2)<Yc4/Yc3<1.2×(Yc1/Yc2) …式7
0.9×(Yd1/Yd2)<Yd4/Yd3<1.2×(Yd1/Yd2) …式8
In the second embodiment, as shown in FIGS. 11 to 14, horizontal scanning of the illuminated surface (image forming area) 2b of the DMD element 2 is performed with the center light beam position as the origin in a plane orthogonal to the center light beam. A coordinate system in which the x-axis and the y-axis are placed in each of the direction and the vertical scanning direction is used. In such a coordinate system, the coordinates of the corners of the ideal illumination region 2d on the DMD element 2 are (−Xa1, Ya1), (Xb1, Yb1), (−Xc1, −Yc1), (Xd1, − Yd1), and the coordinates of the corners of the actual illumination region 2c ′ on the DMD element 2 on the assumption that the reference light intensity uniformizing element is used are (−Xa2, Ya2), (Xb2, Yb2), ( -Xc2, -Yc2), (Xd2, -Yd2), and the coordinates of the corners of the cross-sectional shape 6d 'of the reference light intensity uniformizing element are (-Xa3, Ya3), (Xb3, Yb3), (- Xc3, -Yc3), (Xd3, -Yd3), and the coordinates of the corners of the cross-sectional shape 6e of the light intensity uniformizing element 6 in the second embodiment are (-Xa4, Ya4), (Xb4, Yb4), (-Xc4,- Yc4) and (Xd4, -Yd4). In the projection display device according to Embodiment 2, the cross-sectional shape 6e of the light intensity uniformizing element 6 is determined so as to satisfy the following conditional expressions 1 to 8.
0.9 × (Xa1 / Xa2) <Xa4 / Xa3 <1.2 × (Xa1 / Xa2) Formula 1
0.9 × (Xb1 / Xb2) <Xb4 / Xb3 <1.2 × (Xb1 / Xb2) Equation 2
0.9 × (Xc1 / Xc2) <Xc4 / Xc3 <1.2 × (Xc1 / Xc2) Equation 3
0.9 × (Xd1 / Xd2) <Xd4 / Xd3 <1.2 × (Xd1 / Xd2) Equation 4
0.9 × (Ya1 / Ya2) <Ya4 / Ya3 <1.2 × (Ya1 / Ya2) Equation 5
0.9 × (Yb1 / Yb2) <Yb4 / Yb3 <1.2 × (Yb1 / Yb2) Equation 6
0.9 × (Yc1 / Yc2) <Yc4 / Yc3 <1.2 × (Yc1 / Yc2) Equation 7
0.9 × (Yd1 / Yd2) <Yd4 / Yd3 <1.2 × (Yd1 / Yd2) Equation 8

基準用光強度均一化素子の断面形状のサイズに対する実施の形態2の光強度均一化素子の断面形状のサイズの割合が、条件式1乃至8における下限値より小さくなると、DMD素子2上の実際の照明領域が小さくなり、投写画面の一部が暗くなる現象が発生し易くなる。また、基準用光強度均一化素子の断面形状のサイズに対する実施の形態2の光強度均一化素子の断面形状のサイズの割合が、条件式1乃至8における上限値より大きくなると、画像投写に利用されない光束が増加し、光利用効率が大きく低下する。   If the ratio of the cross-sectional shape size of the light intensity uniformizing element of the second embodiment to the size of the cross-sectional shape of the reference light intensity uniformizing element becomes smaller than the lower limit value in the conditional expressions 1 to 8, the actual condition on the DMD element 2 The illumination area becomes smaller, and a phenomenon in which a part of the projection screen becomes dark tends to occur. Further, when the ratio of the cross-sectional shape size of the light intensity uniformizing element of Embodiment 2 to the cross-sectional size size of the reference light intensity uniformizing element becomes larger than the upper limit value in the conditional expressions 1 to 8, it is used for image projection. The light flux that is not increased increases, and the light utilization efficiency is greatly reduced.

なお、理論的には、さらに、以下の条件式9乃至16を実質的に満たす(すなわち、条件式9乃至16において等号で示された条件式が略満たされる。)ことが望ましい。
Xa4/Xa3=Xa1/Xa2 …式9
Xb4/Xb3=Xb1/Xb2 …式10
Xc4/Xc3=Xc1/Xc2 …式11
Xd4/Xd3=Xd1/Xd2 …式12
Ya4/Ya3=Ya1/Ya2 …式13
Yb4/Yb3=Yb1/Yb2 …式14
Yc4/Yc3=Yc1/Yc2 …式15
Yd4/Yd3=Yd1/Yd2 …式16
Theoretically, it is further desirable that the following conditional expressions 9 to 16 are substantially satisfied (that is, the conditional expressions indicated by an equal sign in the conditional expressions 9 to 16 are substantially satisfied).
Xa4 / Xa3 = Xa1 / Xa2 Formula 9
Xb4 / Xb3 = Xb1 / Xb2 Formula 10
Xc4 / Xc3 = Xc1 / Xc2 Equation 11
Xd4 / Xd3 = Xd1 / Xd2 Equation 12
Ya4 / Ya3 = Ya1 / Ya2 Formula 13
Yb4 / Yb3 = Yb1 / Yb2 Formula 14
Yc4 / Yc3 = Yc1 / Yc2 Formula 15
Yd4 / Yd3 = Yd1 / Yd2 Equation 16

実施の形態2の投写型表示装置によれば、DMD素子2の画像形成領域2bに対して垂直に光束を照射できない場合であっても、確実に実際の照明領域2fを理想の照明領域2dに略一致させることが可能であり、光利用効率を向上させることができるという効果が得られる。なお、実施の形態2において、上記以外の点は、上記実施の形態1の場合と同じである。   According to the projection display apparatus of the second embodiment, even when the light beam cannot be irradiated perpendicularly to the image forming area 2b of the DMD element 2, the actual illumination area 2f is surely changed to the ideal illumination area 2d. It is possible to make them substantially coincide with each other, and the effect that the light utilization efficiency can be improved is obtained. In the second embodiment, points other than those described above are the same as those in the first embodiment.

変形例の説明.
上記説明においては、投写型表示装置の実際の使用状態における方向を示すために「上」又は「下」という表現を用いた、本発明の投写型表示装置は上記説明と異なる姿勢で設置することもできる。
Explanation of modification.
In the above description, the expression “up” or “down” is used to indicate the direction in the actual usage state of the projection display device, and the projection display device of the present invention is installed in a posture different from the above description. You can also.

また、上記説明においては、回転カラーフィルタ5を光源ランプ4と光強度均一化素子6の間に配置する構成を示したが、光強度均一化素子6の直後のように照明光束が小さく収束する箇所であれば、他の箇所に配置することも可能である。   In the above description, the rotating color filter 5 is disposed between the light source lamp 4 and the light intensity uniformizing element 6. However, the illumination light beam converges small just after the light intensity uniformizing element 6. If it is a place, it is also possible to arrange in another place.

さらに、上記説明においては、反射型ライトバルブとしてDMD素子を用いた場合を説明したが、反射型液晶表示素子のような他のライトバルブを用いてもよい。   Further, in the above description, the case where the DMD element is used as the reflective light valve has been described, but another light valve such as a reflective liquid crystal display element may be used.

本発明の実施の形態1に係る投写型表示装置の光学系の構成を概略的に示す図である。It is a figure which shows schematically the structure of the optical system of the projection type display apparatus which concerns on Embodiment 1 of this invention. 実施の形態1における光源像、光強度均一化素子、及びDMD素子の関係を概念的に示す模式図である。FIG. 3 is a schematic diagram conceptually showing a relationship between a light source image, a light intensity uniformizing element, and a DMD element in the first embodiment. 実施の形態1に係る投写型表示装置を、図1におけるIII−III線方向に見たときの構成を概略的に示す図である。It is a figure which shows schematically a structure when the projection type display apparatus which concerns on Embodiment 1 is seen in the III-III line direction in FIG. DMD素子上の被照明面と、断面形状をDMD素子の被照明面と相似形の矩形とした基準用光強度均一化素子を用いた場合におけるDMD素子上の実照明領域とを概略的に示す図である。1 schematically shows an illumination surface on a DMD element and an actual illumination area on the DMD element when a reference light intensity uniformizing element having a rectangular shape similar in cross section to the illumination surface of the DMD element is used. FIG. DMD素子上の被照明面と理想の照明領域とを概略的に示す図である。It is a figure which shows roughly the to-be-illuminated surface and ideal illumination area | region on a DMD element. (a)は、基準用光強度均一化素子を用いた場合におけるDMD素子上の実照明領域を示す図であり、(b)は、基準用光強度均一化素子の断面形状を概略的に示す図である。(A) is a figure which shows the actual illumination area | region on the DMD element at the time of using the reference light intensity equalization element, (b) shows roughly the cross-sectional shape of the reference light intensity equalization element. FIG. DMD素子上の被照明面と、理想の照明領域と、基準用光強度均一化素子を用いた場合におけるDMD素子上の実照明領域とを概略的に示す図である。It is a figure which shows roughly the to-be-illuminated surface on a DMD element, an ideal illumination area | region, and the actual illumination area | region on a DMD element in the case of using the reference | standard light intensity equalization element. 基準用光強度均一化素子の断面形状と、実施の形態1における光強度均一化素子の断面形状とを概略的に示す図である。It is a figure which shows roughly the cross-sectional shape of the reference | standard light intensity equalization element, and the cross-sectional shape of the light intensity equalization element in Embodiment 1. FIG. DMD素子上の被照明面と、理想の照明領域と、実施の形態1における光強度均一化素子を用いた場合におけるDMD素子上の実照明領域とを概略的に示す図である。It is a figure which shows roughly the to-be-illuminated surface on a DMD element, an ideal illumination area | region, and the actual illumination area | region on a DMD element at the time of using the light intensity equalization element in Embodiment 1. 実施の形態1における光強度均一化素子の形状を概略的に示す外観斜視図である。FIG. 3 is an external perspective view schematically showing the shape of the light intensity uniformizing element in the first embodiment. 本発明の実施の形態2におけるDMD素子上の被照明面と、理想の照明領域とを、中心光束を原点する直交座標系上に示す図である。It is a figure which shows the to-be-illuminated surface on the DMD element in Embodiment 2 of this invention, and an ideal illumination area | region on the orthogonal coordinate system which makes a center light beam the origin. 実施の形態2におけるDMD素子上の理想の照明領域と、基準用光強度均一化素子を用いた場合におけるDMD素子上の実照明領域とを、中心光束を原点する直交座標系上に示す図である。FIG. 5 is a diagram showing an ideal illumination area on the DMD element in Embodiment 2 and an actual illumination area on the DMD element when a reference light intensity uniformizing element is used on an orthogonal coordinate system with the center light flux as the origin. is there. 基準用光強度均一化素子の断面形状を、中心光束を原点する直交座標系上に示す図である。It is a figure which shows the cross-sectional shape of the reference | standard light intensity equalization element on the orthogonal coordinate system which makes a center light beam the origin. 基準用光強度均一化素子の断面形状と、実施の形態2における光強度均一化素子の断面形状とを、中心光束を原点する直交座標系上に示す図である。It is a figure which shows the cross-sectional shape of the reference | standard light intensity equalization element, and the cross-sectional shape of the light intensity equalization element in Embodiment 2 on the orthogonal coordinate system which makes a center light beam the origin.

符号の説明Explanation of symbols

1 照明光学系、 2 DMD素子、 2b DMD素子の被照明面、 2c´ 基準用光強度均一化素子を用いた場合の実照明領域、 2d 理想の照明領域、 2f 実照明領域、 3 投写光学系、 4 ランプ、 5 回転カラーフィルタ、 6 光強度均一化素子、 6a 入射端、 6b 出射端、 6d´ 基準用光強度均一化素子の断面形状、 リレーレンズ群、 8 第1ミラー、 9 第2ミラー。
DESCRIPTION OF SYMBOLS 1 Illumination optical system, 2 DMD element, 2b The to-be-illuminated surface of DMD element, 2c 'real illumination area | region at the time of using the light intensity equalization element for a reference | standard, 2d ideal illumination area, 2f real illumination area, 3 projection optical system , 4 lamp, 5 rotating color filter, 6 light intensity uniformizing element, 6a incident end, 6b exit end, 6d ′ cross sectional shape of reference light intensity uniformizing element, relay lens group, 8 first mirror, 9 second mirror .

Claims (11)

光源と、
前記光源から出射された光束の強度分布を均一化する光強度均一化素子と、
矩形の画像形成領域を有する反射型ライトバルブと、
前記光強度均一化素子から出射された光束を前記反射型ライトバルブに導くリレー光学系と、
前記反射型ライトバルブの画像形成領域に形成された画像を拡大投写する投写光学系と
を有し、
前記光強度均一化素子は、中心光束に直交する方向の断面形状を四辺形とした光学素子であり、
前記反射型ライトバルブ上において前記画像形成領域を含むように決められた矩形の理想の照明領域の各角部の位置と、中心光束に直交する方向の断面形状が前記反射型ライトバルブの画像形成領域と相似形状の矩形である基準用光強度均一化素子を用いたと仮定した場合における前記反射型ライトバルブ上の照明領域の各角部の位置と、前記基準用光強度均一化素子の断面形状の各角部の位置とに基づいて、前記光強度均一化素子の断面形状を決定する
ことを特徴とする投写型表示装置。
A light source;
A light intensity uniformizing element for uniformizing the intensity distribution of the light beam emitted from the light source;
A reflective light valve having a rectangular image forming area;
A relay optical system for guiding a light beam emitted from the light intensity uniformizing element to the reflective light valve;
A projection optical system for enlarging and projecting an image formed in the image forming area of the reflective light valve;
The light intensity uniformizing element is an optical element having a quadrilateral cross-sectional shape in a direction perpendicular to the central light beam,
The position of each corner of the rectangular ideal illumination area determined to include the image forming area on the reflective light valve and the cross-sectional shape in the direction perpendicular to the central light beam form the image of the reflective light valve. The position of each corner of the illumination area on the reflective light valve and the cross-sectional shape of the reference light intensity uniformizing element when it is assumed that a reference light intensity uniformizing element having a rectangular shape similar to the area is used A projection type display device, wherein the cross-sectional shape of the light intensity uniformizing element is determined based on the position of each corner.
中心光束に直交する平面内において、中心光束位置を原点とし、前記反射型ライトバルブの画像形成領域の水平走査方向及び垂直走査方向のそれぞれにx軸及びy軸を置く座標系において、
前記反射型ライトバルブ上における理想の照明領域の角部の座標をそれぞれ、(−Xa1,Ya1)、(Xb1,Yb1)、(−Xc1,−Yc1)、(Xd1,−Yd1)とし、
前記基準用光強度均一化素子を用いたと仮定した場合における前記反射型ライトバルブ上の照明領域の角部の座標をそれぞれ、(−Xa2,Ya2)、(Xb2,Yb2)、(−Xc2,−Yc2)、(Xd2,−Yd2)とし、
前記基準用光強度均一化素子の断面形状の角部の座標をそれぞれ、(−Xa3,Ya3)、(Xb3,Yb3)、(−Xc3,−Yc3)、(Xd3,−Yd3)とし、
前記光強度均一化素子の断面形状の角部の座標をそれぞれ、(−Xa4,Ya4)、(Xb4,Yb4)、(−Xc4,−Yc4)、(Xd4,−Yd4)とした場合に、
0.9×(Xa1/Xa2)<Xa4/Xa3<1.2×(Xa1/Xa2) …式1
0.9×(Xb1/Xb2)<Xb4/Xb3<1.2×(Xb1/Xb2) …式2
0.9×(Xc1/Xc2)<Xc4/Xc3<1.2×(Xc1/Xc2) …式3
0.9×(Xd1/Xd2)<Xd4/Xd3<1.2×(Xd1/Xd2) …式4
0.9×(Ya1/Ya2)<Ya4/Ya3<1.2×(Ya1/Ya2) …式5
0.9×(Yb1/Yb2)<Yb4/Yb3<1.2×(Yb1/Yb2) …式6
0.9×(Yc1/Yc2)<Yc4/Yc3<1.2×(Yc1/Yc2) …式7
0.9×(Yd1/Yd2)<Yd4/Yd3<1.2×(Yd1/Yd2) …式8
を満たすことを特徴とする請求項1に記載の投写型表示装置。
In a coordinate system in which the center beam position is the origin in the plane orthogonal to the center beam, and the x-axis and y-axis are respectively set in the horizontal scanning direction and the vertical scanning direction of the image forming area of the reflective light valve,
The coordinates of the corners of the ideal illumination area on the reflective light valve are (−Xa1, Ya1), (Xb1, Yb1), (−Xc1, −Yc1), (Xd1, −Yd1), respectively.
When it is assumed that the reference light intensity uniformizing element is used, the coordinates of the corners of the illumination area on the reflective light valve are (−Xa2, Ya2), (Xb2, Yb2), (−Xc2, − Yc2), (Xd2, -Yd2),
The coordinates of the corners of the cross-sectional shape of the reference light intensity uniformizing element are (−Xa3, Ya3), (Xb3, Yb3), (−Xc3, −Yc3), and (Xd3, −Yd3), respectively.
When the coordinates of the corners of the cross-sectional shape of the light intensity uniformizing element are (−Xa4, Ya4), (Xb4, Yb4), (−Xc4, −Yc4), (Xd4, −Yd4),
0.9 × (Xa1 / Xa2) <Xa4 / Xa3 <1.2 × (Xa1 / Xa2) Formula 1
0.9 × (Xb1 / Xb2) <Xb4 / Xb3 <1.2 × (Xb1 / Xb2) Equation 2
0.9 × (Xc1 / Xc2) <Xc4 / Xc3 <1.2 × (Xc1 / Xc2) Equation 3
0.9 × (Xd1 / Xd2) <Xd4 / Xd3 <1.2 × (Xd1 / Xd2) Equation 4
0.9 × (Ya1 / Ya2) <Ya4 / Ya3 <1.2 × (Ya1 / Ya2) Equation 5
0.9 × (Yb1 / Yb2) <Yb4 / Yb3 <1.2 × (Yb1 / Yb2) Equation 6
0.9 × (Yc1 / Yc2) <Yc4 / Yc3 <1.2 × (Yc1 / Yc2) Equation 7
0.9 × (Yd1 / Yd2) <Yd4 / Yd3 <1.2 × (Yd1 / Yd2) Equation 8
The projection display device according to claim 1, wherein:
Xa4/Xa3=Xa1/Xa2 …式9
Xb4/Xb3=Xb1/Xb2 …式10
Xc4/Xc3=Xc1/Xc2 …式11
Xd4/Xd3=Xd1/Xd2 …式12
Ya4/Ya3=Ya1/Ya2 …式13
Yb4/Yb3=Yb1/Yb2 …式14
Yc4/Yc3=Yc1/Yc2 …式15
Yd4/Yd3=Yd1/Yd2 …式16
をさらに満たすことを特徴とする請求項2に記載の投写型表示装置。
Xa4 / Xa3 = Xa1 / Xa2 Formula 9
Xb4 / Xb3 = Xb1 / Xb2 Formula 10
Xc4 / Xc3 = Xc1 / Xc2 Equation 11
Xd4 / Xd3 = Xd1 / Xd2 Equation 12
Ya4 / Ya3 = Ya1 / Ya2 Formula 13
Yb4 / Yb3 = Yb1 / Yb2 Formula 14
Yc4 / Yc3 = Yc1 / Yc2 Formula 15
Yd4 / Yd3 = Yd1 / Yd2 Equation 16
The projection display device according to claim 2, further satisfying:
前記光強度均一化素子の光入射端の形状と、前記光強度均一化素子の前記断面形状と、前記光強度均一化素子の光出射端の形状とが同一形状であることを特徴とする請求項1乃至3のいずれかに記載の投写型表示装置。   The shape of the light incident end of the light intensity uniformizing element, the cross-sectional shape of the light intensity uniformizing element, and the shape of the light emitting end of the light intensity uniformizing element are the same shape. Item 4. The projection display device according to any one of Items 1 to 3. 前記リレー光学系から前記反射型ライトバルブに向かう光束の中心光束は、前記反射型ライトバルブの画像形成領域の法線に対して傾斜していることを特徴とする請求項1乃至4のいずれかに記載の投写型表示装置。   5. The center light beam of the light beam traveling from the relay optical system toward the reflective light valve is inclined with respect to the normal line of the image forming area of the reflective light valve. 6. The projection display device described in 1. 前記反射型ライトバルブの画像形成領域から前記投写光学系に向かう光束の中心光束は、前記反射型ライトバルブの画像形成領域の法線に対して傾斜していることを特徴とする請求項1乃至5のいずれかに記載の投写型表示装置。   The center light beam of the light beam directed from the image forming area of the reflective light valve to the projection optical system is inclined with respect to the normal line of the image forming area of the reflective light valve. 6. The projection display device according to any one of 5 above. 前記リレー光学系が、
前記光強度均一化素子から出射された光束を反射する第1ミラーと、
前記投写光学系に隣接し、前記第1ミラーからの反射光束を前記反射型ライトバルブに向けて反射する第2ミラーと
を有することを特徴とする請求項1乃至6のいずれかに記載の投写型表示装置。
The relay optical system is
A first mirror that reflects the light beam emitted from the light intensity uniformizing element;
The projection according to claim 1, further comprising: a second mirror that is adjacent to the projection optical system and reflects a reflected light beam from the first mirror toward the reflective light valve. Type display device.
前記光強度均一化素子から前記第1ミラーに向かう光束の中心光束と、前記第2ミラーから前記反射型ライトバルブの画像形成領域に向かう光束の中心光束とが略直交していることを特徴とする請求項7に記載の投写型表示装置。   The central light beam of the light beam directed from the light intensity uniformizing element to the first mirror and the central light beam of the light beam directed from the second mirror to the image forming area of the reflective light valve are substantially orthogonal to each other. The projection display device according to claim 7. 前記反射型ライトバルブが、反射面の傾角を変化させることができる複数の可動マイクロミラーを有することを特徴とする請求項1乃至8のいずれかに記載の投写型表示装置。   9. The projection display device according to claim 1, wherein the reflection type light valve includes a plurality of movable micromirrors capable of changing an inclination angle of a reflection surface. 前記光強度均一化素子は、内面を光反射面とした断面形状が四辺形の管状部材、又は、透明材料により構成され側壁内側が全反射面となるように構成された断面形状が四辺形の柱状部材のいずれかであることを特徴とする請求項1乃至9のいずれかに記載の投写型表示装置。   The light intensity equalizing element has a quadrilateral cross-sectional shape configured such that the inner surface of the light-reflecting surface is a quadrilateral tubular member, or a transparent material and the side wall inside is a total reflection surface. The projection display device according to claim 1, wherein the projection display device is any one of columnar members. 光源と、前記光源から出射された光束の強度分布を均一化する光強度均一化素子と、矩形の画像形成領域を有する反射型ライトバルブと、前記光強度均一化素子から出射された光束を前記反射型ライトバルブに導くリレー光学系と、前記反射型ライトバルブの画像形成領域に形成された画像を拡大投写する投写光学系とを有する投写型表示装置における、中心光束に直交する方向の断面形状を四辺形とした前記光強度均一化素子の形成方法であって、A light source, a light intensity uniformizing element for uniformizing the intensity distribution of the light beam emitted from the light source, a reflective light valve having a rectangular image forming area, and a light beam emitted from the light intensity uniformizing element. A cross-sectional shape in a direction perpendicular to the central light beam in a projection display device having a relay optical system leading to a reflective light valve and a projection optical system for enlarging and projecting an image formed in an image forming area of the reflective light valve A method of forming the light intensity uniformizing element having a quadrilateral shape,
前記反射型ライトバルブ上において前記画像形成領域を含むように、前記画像形成領域に対して全方向にマージンを確保するような矩形の理想の照明領域の各角部の位置を決定し、Determining the position of each corner of a rectangular ideal illumination area to ensure a margin in all directions relative to the image formation area so as to include the image formation area on the reflective light valve;
中心光束に直交する方向の断面形状が前記反射型ライトバルブの画像形成領域と相似形状の矩形である基準用光強度均一化素子を用いた場合における前記反射型ライトバルブ上の実照明領域の各角部の位置を求め、Each of the actual illumination areas on the reflective light valve in the case of using a reference light intensity equalizing element whose cross-sectional shape in a direction perpendicular to the central light beam is a rectangle similar in shape to the image forming area of the reflective light valve Find the corner position,
求められた前記理想の照明領域の各角部の位置と、求められた前記実照明領域の各角部の位置と、前記基準用光強度均一化素子の断面形状の各角部の位置とに基づいて、前記光強度均一化素子の断面形状を決定するThe obtained position of each corner of the ideal illumination area, the position of each corner of the obtained actual illumination area, and the position of each corner of the cross-sectional shape of the reference light intensity equalizing element Based on this, the cross-sectional shape of the light intensity uniformizing element is determined.
ことを特徴とする光強度均一化素子の形成方法。A method for forming a light intensity uniformizing element.
JP2005000475A 2005-01-05 2005-01-05 Projection type display device and method of forming light intensity uniformizing element Expired - Fee Related JP4271150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005000475A JP4271150B2 (en) 2005-01-05 2005-01-05 Projection type display device and method of forming light intensity uniformizing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005000475A JP4271150B2 (en) 2005-01-05 2005-01-05 Projection type display device and method of forming light intensity uniformizing element

Publications (2)

Publication Number Publication Date
JP2006189551A JP2006189551A (en) 2006-07-20
JP4271150B2 true JP4271150B2 (en) 2009-06-03

Family

ID=36796842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005000475A Expired - Fee Related JP4271150B2 (en) 2005-01-05 2005-01-05 Projection type display device and method of forming light intensity uniformizing element

Country Status (1)

Country Link
JP (1) JP4271150B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4271219B2 (en) 2006-08-25 2009-06-03 三菱電機株式会社 Projection type display device and method of forming light intensity uniformizing element
JP2012014045A (en) * 2010-07-02 2012-01-19 Seiko Epson Corp Projector
JP2015059940A (en) * 2013-09-17 2015-03-30 株式会社リコー Illumination device and image display device
JP6503799B2 (en) * 2014-03-13 2019-04-24 株式会社リコー Lighting device and image display device
CN113281953B (en) * 2021-04-29 2023-02-07 歌尔光学科技有限公司 Method for reflecting illumination light spot

Also Published As

Publication number Publication date
JP2006189551A (en) 2006-07-20

Similar Documents

Publication Publication Date Title
JP4271219B2 (en) Projection type display device and method of forming light intensity uniformizing element
JP3904597B2 (en) Projection display
JP5126381B2 (en) Projection-type image display device and shading method
JP4032658B2 (en) Projection display
WO2014115493A1 (en) Projection-type display device
TWI439792B (en) Projection type display device
JP4572989B2 (en) Illumination device, projection display device, and optical integrator
JP6083149B2 (en) Image display device
TWI530750B (en) Projector
JPWO2008132831A1 (en) Projection display
JP5938335B2 (en) Projection display device
JP4550344B2 (en) Optical projection system for video projector
WO2010116427A1 (en) Projection display device
JP4271150B2 (en) Projection type display device and method of forming light intensity uniformizing element
US9638992B2 (en) Illumination optical system and image projection apparatus
US8434876B2 (en) Projection type display apparatus having a light source device with improved light utilization efficiency
JP2002196302A (en) Projection type display device and multi screen display device
KR100717015B1 (en) Image display
JP2007286391A (en) Illuminating device, illuminating method and projection type display apparatus using illuminating device
JP2000321527A (en) Optical projector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4271150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees