JP4270694B2 - Iron oxide manufacturing method and manufacturing equipment - Google Patents

Iron oxide manufacturing method and manufacturing equipment Download PDF

Info

Publication number
JP4270694B2
JP4270694B2 JP35356099A JP35356099A JP4270694B2 JP 4270694 B2 JP4270694 B2 JP 4270694B2 JP 35356099 A JP35356099 A JP 35356099A JP 35356099 A JP35356099 A JP 35356099A JP 4270694 B2 JP4270694 B2 JP 4270694B2
Authority
JP
Japan
Prior art keywords
hydrochloric acid
iron
iron oxide
liquid
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35356099A
Other languages
Japanese (ja)
Other versions
JP2001172021A (en
Inventor
英雄 浅越
堅志 ▲高▼木
広幸 峰村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP35356099A priority Critical patent/JP4270694B2/en
Publication of JP2001172021A publication Critical patent/JP2001172021A/en
Application granted granted Critical
Publication of JP4270694B2 publication Critical patent/JP4270694B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、鋼板の酸洗工程において発生する廃塩酸などの塩化鉄含有塩酸水溶液から歩留りに優れた方法で酸化鉄を製造することが可能な酸化鉄の製造方法および酸化鉄製造設備に関し、本発明によれば、安定した操業で廃棄物を生じることなく前記廃塩酸などの塩化鉄含有塩酸水溶液から酸化鉄を製造することが可能である。
【0002】
【従来の技術】
従来、鋼板の酸洗工程で発生する塩化鉄含有塩酸水溶液である廃塩酸は、濃縮、焙焼して、フェライト原料用酸化鉄などとして有効活用される。
図6に、従来の廃塩酸を原料とする酸化鉄製造設備を示す。
図6において、1は焙焼炉、2は酸素を含有する火炎および/または加熱された気体(:熱風)4の吹込み装置、3は熱風吹込み口、5は旋回流、6は塩化鉄含有塩酸水溶液(以下塩化鉄含有廃塩酸とも記す)、7はスプレーヘッダ、8は洗浄塔(濃縮塔)、9はサイクロン、10は焙焼炉1の高温排ガス出口、11は吸収塔、12は回収塩酸貯槽、13は送液ポンプ、14は焙焼炉胴部炉内温度計、15、16は酸化鉄、17は燃料、18は燃焼用空気、19は水、20は排ガス、f1は塩化鉄含有廃塩酸の濃縮液の送液方向、f2は焙焼炉1の高温排ガスの流れ方向、f3は排ガスの流れ方向、f4は回収塩酸の送液方向を示す。
【0003】
図6に示す酸化鉄製造設備においては、下記工程によって、酸化鉄を製造すると共に塩酸を回収する。
すなわち、鋼板酸洗工程において発生する塩化鉄含有廃塩酸6は、洗浄塔(濃縮塔)8において焙焼炉1からの高温排ガスと熱交換し濃縮された後、送液ポンプ13によって焙焼炉1に送液され、焙焼炉1の頂部からスプレーヘッダ7によって焙焼炉1内に噴霧される。
【0004】
焙焼炉1内では熱風4が旋回流5を形成しており、下記反応式(1) 、(2) に従って酸化鉄と塩化水素を生成する。
2FeCl2+(1/2)O2+2H2O →Fe2O3+4HCl………(1)
2FeCl3+3H2O →Fe2O3+6HCl…………………(2)
生成した酸化鉄は、焙焼炉1の下部から回収されると共に、熱風気流中に同伴された酸化鉄はサイクロン9で回収され、回収された酸化鉄は、フェライト原料用酸化鉄などとして有効活用される。
【0005】
また、酸化鉄が除去、回収された焙焼炉1の高温排ガスは、洗浄塔8において塩化鉄含有廃塩酸6と熱交換された後、吸収塔11に導入され、吸収塔11の頂部から噴霧される水と接触し、塩化水素が吸収、除去され、塩酸が回収される。
一方、鋼板酸洗工程において発生する塩化鉄含有廃塩酸は、SiO2、Al、Crなどの不純物を含有し、不純物含有量の多い酸洗廃液を濃縮、焙焼して得られた酸化鉄はハードフェライト原料用酸化鉄、触媒用酸化鉄、ベンガラ塗料用酸化鉄として用いることはできるが、ソフトフェライト原料用酸化鉄などの高純度酸化鉄として用いることができず用途が限定される。
【0006】
このため、従来、高純度酸化鉄を製造する場合、事前に酸洗廃塩酸中のSiO2などの不純物を沈降分離法、濾過法などによって除去した後、焙焼する方法が採用されている。
また、上記した方法の場合、分離除去された不純物を含む残渣は、中和後埋立、中和後脱水埋立もしくは中和焼却後埋立によって処理されていた。
【0007】
しかし、この場合、アルカリ中和工程が必要であり、何ら副産物の生成もなく、また、地球環境の観点からも廃棄物を埋立処理するこれら従来技術は工業上優れた方法とはいえない。
上記した問題点を解決する方法として、特開平1−208331号公報において、酸洗廃液中の不純物を凝集沈澱などによって除去し、処理後の酸洗廃液を焙焼し高純度の酸化鉄を回収すると共に、回収工程で副生する不純物の濃化したブロー液から低純度の酸化鉄を回収するフェライト用酸化鉄の製造方法が開示されている。
【0008】
しかしながら、上記したブロー液は、ゲーサイトなどの未溶解鉄分を多量に含んでおり、焙焼炉で噴霧焙焼を行う酸化鉄の製造方法においては、その未溶解鉄分およびその他の固形分が、配管の閉塞、スプレーノズルの閉塞を招き、安定操業が行えないという問題点がある。
【0009】
【発明が解決しようとする課題】
本発明は、前記した従来技術の問題点を解決し、鋼板の酸洗工程において発生する廃塩酸などの塩化鉄含有塩酸水溶液から歩留りに優れた方法で酸化鉄を製造することが可能な酸化鉄の製造方法および酸化鉄製造設備を提供することを目的とする。
【0010】
また、本発明は、配管、スプレーノズルなどの閉塞を防止し、安定した操業で、廃棄物を生じることなく前記廃塩酸などの塩化鉄含有塩酸水溶液から酸化鉄を製造することが可能な酸化鉄の製造方法および酸化鉄製造設備を提供することを目的とする。
【0011】
【課題を解決するための手段】
第1の発明は、塩化鉄含有塩酸水溶液を焙焼炉で焙焼し酸化鉄を製造すると共に、焙焼炉の排ガスを水に吸収せしめて塩酸を回収する酸化鉄の製造方法において、予め、前記塩化鉄含有塩酸水溶液に金属鉄および/または鉄化合物を添加し該水溶液のpHを2〜4に調整した後、得られた水溶液を、酸素含有気体およびアルカリ剤と接触せしめ、得られた水溶液を固液分離し、固液分離後の分離液を焙焼して酸化鉄および塩酸を製造、回収する一方、前記固液分離後の残渣に塩酸を添加し固形分を溶解した後、得られた溶解液を、上記した分離液の焙焼とは別個に焙焼して酸化鉄および塩酸を製造、回収することを特徴とする酸化鉄の製造方法である。
【0012】
前記した第1の発明においては、前記した固液分離後の残渣に添加する塩酸の温度が50〜100 ℃であることが好ましい(第1の発明の第1の好適態様)。
また、前記した第1の発明、第1の発明の第1の好適態様においては、前記した固液分離後の残渣に添加する塩酸の濃度が10質量百分率以上(以下、質量百分率を%と記す)であることが好ましく、さらには12〜35%であることがより好ましい(第1の発明の第2の好適態様、第3の好適態様)。
【0013】
また、前記した第1の発明、第1の発明の第1の好適態様〜第3の好適態様においては、前記した固液分離後の残渣に添加する塩酸の添加量が、容積比で、残渣:100 に対して40〜120 であることが好ましい(第1の発明の第4の好適態様〜第7の好適態様)。
また、前記した第1の発明、第1の発明の第1の好適態様〜第7の好適態様においては、前記した固液分離後の残渣に添加する塩酸が、前記した酸化鉄の製造方法で得られた回収塩酸であることが好ましい(第1の発明の第8の好適態様〜第15の好適態様)。
【0014】
さらに、前記した第1の発明、第1の発明の第1の好適態様〜第15の好適態様の酸化鉄の製造方法は、前記した溶解液を、前記した分離液の焙焼とは別個に焙焼する際の焙焼法が噴霧焙焼法である酸化鉄の製造方法として好適に適用される。
第2の発明は、塩化鉄含有塩酸水溶液を焙焼する焙焼炉1と、該焙焼炉1から排出される塩化水素を水と接触せしめ塩酸を回収する吸収塔11を有する酸化鉄製造設備であって、前記塩化鉄含有塩酸水溶液の前処理設備として、前記塩化鉄含有塩酸水溶液に金属鉄および/または鉄化合物を添加、混合する鉄添加、混合装置30と、該鉄添加、混合装置30で得られた水溶液にアルカリを添加し、酸素含有気体を吹き込むアルカリ添加、酸化装置32と、該アルカリ添加、酸化装置32で処理された水溶液の固液分離装置33と、該固液分離装置33で得られた分離液を前記焙焼炉1に送液するための送液系統37と、前記固液分離装置33で得られた残渣へ塩酸を添加し固形分を溶解する溶解装置34と、該溶解装置34で得られた溶解液を貯液する貯液槽35と、該貯液槽35の溶解液を前記焙焼炉1に送液するための送液系統38とから構成される前処理設備を有することを特徴とする酸化鉄製造設備である。
【0015】
前記した第2の発明の酸化鉄製造設備においては、前記吸収塔11で回収された塩酸を前記溶解装置34へ送液するための送液系統39を有することが好ましい(第2の発明の好適態様)。
前記した第2の発明、第2の発明の好適態様の酸化鉄製造設備においては、前記焙焼炉1が、前記分離液または溶解液を噴霧焙焼するためのスプレーヘッダ7を配設した焙焼炉であることが好ましい。
【0016】
【発明の実施の形態】
以下、本発明をさらに詳細に説明する。
本発明者らは、前記した従来技術の問題点を解決するために鋭意検討した結果、鋼板の酸洗工程において発生する廃塩酸中のSiO2、Al、Crなどの不純物を分離・除去し、分離液(以下、清浄廃塩酸とも記す)および残渣を得、清浄廃塩酸を焙焼し、高純度酸化鉄を製造する一方、鉄分および不純物を含有する残渣に塩酸を添加し、残渣中の鉄含有不溶解物(以下、固形分とも記す)を溶解し、得られた溶解液を上記した清浄廃塩酸の焙焼とは別個に焙焼することによって、廃塩酸から歩留りに優れた方法で酸化鉄を製造することが可能であることを見出し、本発明に到った。
【0017】
以下、本発明の酸化鉄製造設備、酸化鉄の製造方法を、図面に基づいて説明する。
〔I.酸化鉄製造設備:〕
図1に、本発明の酸化鉄製造設備の一例を、工程図(側面図)によって示す。図1において、30は鉄添加、混合装置、31は鉄分離槽、32はアルカリ添加、酸化装置、33は固液分離装置、34は溶解装置、35は貯液槽、36はフィルタ、37、38、39は送液系統、40は金属鉄および/または鉄化合物、41はアルカリ剤、42は酸素含有気体、43、44は攪拌装置、45は鉄添加、混合装置に金属鉄および/または鉄化合物40を供給する鉄供給装置、46はアルカリ添加、酸化装置にアルカリ剤41を供給するアルカリ供給装置、47は弁を示し、その他の符号は図6と同様の内容を示す。
【0018】
すなわち、本発明の酸化鉄製造設備は、下記(1) 〜(3) で構成されている。
(1) 焙焼炉:
本発明においては、下記▲1▼〜▲4▼の水溶液もしくはそれらの混合溶液を、焙焼炉1で、O2を含有する熱風によって焙焼(:酸化焙焼)する。
▲1▼後記する固液分離装置33で得られる分離液(清浄廃塩酸)
▲2▼後記する溶解装置34で得られる溶解液
▲3▼塩化鉄含有塩酸水溶液(:塩化鉄含有廃塩酸)
▲4▼塩化鉄含有塩酸水溶液(:塩化鉄含有廃塩酸)の濃縮液
本発明においては、焙焼炉1の胴部炉内温度を420 〜950 ℃に設定することが好ましい。
【0019】
胴部炉内温度が420 ℃未満の場合、前記した反応式(1) 、(2) における反応速度が遅く、胴部炉内温度が950 ℃を超える場合は過剰の燃料を要すると共に、設備の劣化が進むため好ましくない。
また、本発明においては、焙焼炉1が、前記した▲1▼〜▲4▼の水溶液もしくはそれらの混合溶液を噴霧焙焼するためのスプレーヘッダ7を配設した焙焼炉であることが好ましい。
【0020】
(2) 吸収塔:
焙焼炉1から排出される塩化水素含有ガス(排ガス)を水と接触せしめ塩酸を回収する吸収塔11
(3) 焙焼炉へ送液する塩化鉄含有塩酸水溶液の前処理設備:
本前処理設備は、下記▲1▼〜▲7▼の装置、貯液槽および送液系統で構成され、それぞれ下記機能を有している。
【0021】
▲1▼鉄添加、混合装置:
塩化鉄含有塩酸水溶液に金属鉄および/または鉄化合物を添加、混合する鉄添加、混合装置30
本発明においては、金属鉄として、例えば、スクラップ、鉄粉などを用いることができ、また鉄化合物としては製鉄所で発生するミルスケールなどを用いることができる。
【0022】
鉄添加、混合装置においては、好ましくは金属鉄添加によって下記反応式(3) に従って塩化第2鉄を塩化第1鉄に還元し、塩化鉄含有塩酸水溶液のpHを上昇せしめ、後工程のアルカリ添加、酸化装置32における水酸化第2鉄およびゲーサイト(Fe00H)の形成を促進する。
2FeCl3+Fe→3FeCl2………(3)
鉄添加、混合装置においては、金属鉄および/または鉄化合物の添加によって、水溶液のpHを2〜4に調整することが好ましい。
【0023】
水溶液のpHが2未満の場合、後工程のアルカリ添加、酸化装置32および固液分離装置33における水酸化第2鉄およびゲーサイト(Fe00H)の形成およびこれらの化合物と不純物との共沈による不純物の除去が不十分となる。
水溶液のpHが4を超える場合、上記した後工程においてゲーサイトが過剰に沈澱し、固液分離装置33で得られる残渣の量が増加し、残渣の処理の負荷が増加し経済的でない。
【0024】
▲2▼鉄分離槽:
塩化鉄含有塩酸水溶液から余剰の金属鉄、鉄化合物を分離する鉄分離槽31
▲3▼アルカリ添加、酸化装置:
本発明において用いるアルカリ剤の種類は特に制限されるものではないが、後記する分離液(:清浄廃塩酸)、溶解液の焙焼によって得られる酸化鉄中に残留しないアルカリ剤を用いることが好ましく、アンモニア水などを用いることが好ましい。
【0025】
なお、アルカリ添加、酸化装置においては塩化鉄含有塩酸水溶液中にアンモニアガスを直接吹き込んでもよい。
アルカリ添加、酸化装置32においては、例えばアルカリ剤としてアンモニア水を用いた場合、下記反応式(4) 、(5) に従って水酸化第2鉄およびゲーサイトが生成する。
【0026】
FeCl3 +3NH4OH→Fe(OH)3 ↓+3NH4Cl……………………(4)
FeCl2 +1/4O2 +1/6H2O→1/3FeOOH↓+2/3FeCl3………(5)
本アルカリ添加、酸化装置において用いる酸素含有気体としては、空気、酸素、酸素富化空気などを用いることができる。
なお、本アルカリ添加、酸化装置は、塩化鉄含有塩酸水溶液中にアルカリ剤を添加した状態で酸素含有気体と接触せしめることが好ましいが、上記した反応式(4) 、(5) に示されるように、塩化鉄含有塩酸水溶液を酸素含有気体と接触せしめた後、アルカリ剤と接触せしめてもよく、塩化鉄含有塩酸水溶液をアルカリ剤と接触せしめた後、酸素含有気体と接触せしめることも可能である。
【0027】
▲4▼固液分離装置:
固液分離装置33においては、水酸化第2鉄およびゲーサイトの沈澱が形成されると共に、沈澱中にSiO2、Al、Cr、Pなどの不純物が共沈し、スラリー状あるいはスラッジ状あるいはケーキ状の残渣として分離される。
不純物が除去された分離液(:清浄廃塩酸)は、焙焼炉1へ送液され、高純度酸化鉄が製造され塩酸が回収される。
【0028】
また、残渣は、下記する溶解装置34において塩酸を添加することによって固形分(鉄含有不溶解物、すなわち水酸化第2鉄、ゲーサイトとAl、Crなどとの共沈物)が溶解され、得られた溶解液は、上記した清浄廃塩酸とは別個に焙焼して酸化鉄を製造し、塩酸を回収する。
なお、固液分離装置33としては、シックナーなどの沈降分離装置が好ましいが、アルカリ添加、酸化装置における水酸化第2鉄、ゲーサイトの析出、不純物の吸着(共沈)が十分進行する場合は、濾過装置、遠心分離機を用いてもよく、またこれらを併用してもよい。
【0029】
▲5▼溶解装置:
固液分離装置33で得られた残渣へ塩酸を添加し、残渣中の鉄含有不溶解物(:固形分)を溶解する溶解装置34
本発明においては、固液分離装置33で得られたスラリー状の残渣あるいはスラッジ状の残渣あるいはケーキ状の残渣へ塩酸を添加し、残渣中の固形分を溶解し、得られた溶解液を、清浄廃塩酸の焙焼とは別個に焙焼する。
【0030】
(塩酸の温度:)
固液分離後の残渣に添加する塩酸の温度は、50〜100 ℃であることが好ましい。
塩酸の温度が50℃未満の場合、残渣中の鉄含有不溶解物(:固形分)の溶解時間が長くなり、生産性が劣り、塩酸の温度が100 ℃を超える場合、固形分の溶解時間の短縮効果が実用上飽和し、経済的でない。
【0031】
(塩酸の濃度:)
固液分離後の残渣に添加する塩酸の濃度は、10%(質量百分率)以上であることが好ましく、さらには12〜35%(質量百分率)であることがより好ましい。
塩酸の濃度が10%未満の場合、残渣中の固形分の溶解が不十分となり、酸化鉄製造設備の配管、焙焼炉のスプレーノズルなどの閉塞が生じ、安定した操業を達成することができない。
【0032】
(塩酸の添加量:)
表1に、塩酸の添加量を変えて行った残渣の溶解試験結果を示す。
なお、試験条件は下記の通りである。
〔溶解試験試験条件:〕
(残渣:)
固液分離装置(シックナー)33で分離後のスラリー状の残渣
鉄濃度:26g/100cm3- スラリー
供試スラリー温度:60℃
(塩酸:)
酸化鉄製造設備における回収塩酸
塩酸濃度:18%
供試塩酸温度:80℃(回収塩酸貯槽12から抜き出した塩酸で、非加熱)
表1に示されるように、固液分離後の残渣に添加する塩酸の添加量は、容積比で、好ましくは残渣:100 に対して40〜120 であり、さらに好ましくは容積比で、残渣:100 に対して50〜110 である。
【0033】
塩酸の添加量が、容積比で、残渣:100 に対して40未満の場合、残渣中の鉄含有不溶解物(:固形分)の溶解が不十分となり、酸化鉄製造設備の配管、焙焼炉のスプレーノズルなどの閉塞が生じ易く、安定した操業を達成し難い。
塩酸の添加量が、容積比で、残渣:100 に対して120 を超える場合、残渣中の鉄含有不溶解物(:固形分)の溶解効果が実用上飽和し、経済的でない。
【0034】
本発明においては、固液分離後の残渣に添加する塩酸として、本発明の酸化鉄の製造方法、製造設備で得られた回収塩酸を用いることが特に好ましい。
これは、本発明の酸化鉄の製造方法、製造設備で得られた回収塩酸が、前記した塩酸の好適な温度範囲、濃度範囲を満足するため、塩酸温度、塩酸濃度を調節するための付帯設備が不要となるためである。
【0035】
本発明によれば、残渣の溶解に使用した塩酸が、焙焼炉で塩化水素となり、吸収塔11で塩酸として回収されるため、薬剤が有効に活用されるという優れた効果が得られる。
▲6▼貯液槽:
本発明の酸化鉄製造設備においては、溶解装置34で得られた溶解液を貯液する貯液槽35を配設する。
【0036】
これは、ソフトフェライト原料用酸化鉄の規格を満足する高純度酸化鉄および不純物に対する制限条件が少ない酸化鉄(例えばハードフェライト原料用、触媒用、ベンガラ塗料用などの酸化鉄)の両者を製造し、廃塩酸から歩留りに優れた方法で酸化鉄を製造し、廃棄物の埋立処理を伴うことなく、資源を有効に活用するためである。
【0037】
すなわち、本発明の酸化鉄製造設備においては、固液分離装置33で分離後の分離液を焙焼して高純度酸化鉄および塩酸を製造、回収する一方、分離後の残渣を塩酸で溶解して得た溶解液を貯液槽35に貯液し、高純度酸化鉄の製造が終了した後、貯液槽35から溶解液を抜き出し、送液系統38を経由して焙焼炉1へ送液し焙焼して酸化鉄および塩酸を製造、回収する。
【0038】
▲7▼送液系統:
▲7▼−1:固液分離装置33で得られた分離液(:清浄廃塩酸)を焙焼炉1に送液するための送液系統37
▲7▼−2:
貯液槽35の溶解液を焙焼炉1に送液するための送液系統38
なお、送液系統38には、塩酸添加時の未溶解分を除去するためのフィルタ36を配設してもよい。
【0039】
▲7▼−3:
本発明の酸化鉄製造設備においては、吸収塔11で回収された塩酸を溶解装置34へ送液するための送液系統39を配設することが好ましい。
これは、前記したように、本発明によれば、溶解装置34において用いる塩酸として酸化鉄製造設備で回収した塩酸を何ら処理を施すことなく有効に利用できるためである。
【0040】
また、本発明の酸化鉄製造設備においては、図1に例示するように、前記した送液系統37、38、39に送液のための送液ポンプを設けることが好ましい。
【0041】
【表1】

Figure 0004270694
【0042】
〔II. 酸化鉄の製造方法:〕
前記した図1に本発明の酸化鉄製造設備の一例を示したが、本発明の酸化鉄の製造方法においては、図1に例示した酸化鉄製造設備を用い、下記の2つの製造方法で酸化鉄を製造し、塩酸を回収することができる。
1.高純度酸化鉄の製造方法:
塩化鉄含有塩酸水溶液から不純物を除去し、得られた水溶液(:清浄廃塩酸)を焙焼し、高純度酸化鉄を製造し、塩酸を回収する。
【0043】
2.固液分離後の残渣からの酸化鉄の製造方法:
塩化鉄含有塩酸水溶液から不純物を除去する際に得られた残渣は、塩酸を添加し、残渣中の鉄分および不純物を溶解し、得られた溶解液を、不純物に対する制限条件が少ない酸化鉄(低純度酸化鉄)の製造に用いる。
すなわち、塩酸によって残渣中の鉄分および不純物を溶解して得られた溶解液を、焙焼炉を用いて焙焼し酸化鉄を製造する。
【0044】
なお、同一の焙焼炉を用いて、上記した高純度酸化鉄および低純度酸化鉄の両者を製造する場合は、残渣中の鉄分および不純物を溶解して得られた溶解液は貯液槽に貯液し、高純度酸化鉄製造後に溶解液を同一の焙焼炉を用いて焙焼し酸化鉄を製造する。
以下、上記した1.高純度酸化鉄の製造方法および2.固液分離後の残渣からの酸化鉄の製造方法について図面に基づいて説明する。
【0045】
〔1.高純度酸化鉄の製造方法:〕
図2に、高純度酸化鉄の製造方法の一例を、工程図(側面図)によって示す。
なお、図2おいて、f5は塩化鉄含有塩酸溶液(:塩化鉄含有廃塩酸)の送液方向、f6は分離液(:清浄廃塩酸)の送液方向、f7は残渣の送給方向、f8は溶解液の送液方向を示し、その他の符号は図1、図6と同一の内容を示す。
【0046】
また、図2おいて、送液方向などの矢印を付したラインが、稼働中のラインを示す。
すなわち、先ず、塩化鉄含有塩酸水溶液(:塩化鉄含有廃塩酸)6は、洗浄塔(:濃縮塔)8で焙焼炉1の高温排ガスとの熱交換によって濃縮された後、鉄添加、混合装置30、鉄分離槽31、アルカリ添加、酸化装置32、固液分離装置33によって不純物が除去され清浄化される。
【0047】
得られた分離液である清浄廃塩酸は焙焼炉1へ送液され焙焼され高純度酸化鉄が製造されると共に、焙焼炉1の高温排ガスは洗浄塔8を経由して吸収塔11へ送給され、排ガス中の塩化水素が塩酸として回収される。
一方、固液分離装置33で得られた残渣は溶解槽34へ送給され、残渣中の鉄含有不溶解物(:固形分)が、回収塩酸貯槽12から送液される塩酸によって溶解する。
【0048】
得られた溶解液は貯液槽35へ送液され貯液され、高純度酸化鉄製造後の酸化鉄(低純度酸化鉄)の製造用原料として用いられる。
次に、図3に、高純度酸化鉄の製造方法の他の一例を、工程図(側面図)によって示す。
なお、図3おける各符号は図1、図2、図6と同一の内容を示す。
【0049】
また、図3おいて、送液方向などの矢印を付したラインが、稼働中のラインを示す。
図3に示す高純度酸化鉄の製造方法においては、塩化鉄含有塩酸水溶液(:塩化鉄含有廃塩酸)6を、洗浄塔(:濃縮塔)8を経由せず、直接、鉄添加、混合装置30、鉄分離槽31、アルカリ添加、酸化装置32、固液分離装置33に送液し、不純物を除去し清浄化した後、焙焼し、高純度酸化鉄を製造し、塩酸を回収する。
【0050】
一方、固液分離装置33で得られた残渣は溶解槽34へ送給され、残渣中の鉄含有不溶解物(:固形分)が、回収塩酸貯槽12から送液される塩酸によって溶解する。
得られた溶解液は貯液槽35へ送液され貯液され、高純度酸化鉄製造後の酸化鉄(低純度酸化鉄)の製造用原料として用いられる。
【0051】
〔2.固液分離後の残渣からの酸化鉄の製造方法:〕
前記したように、固液分離装置33で得られた残渣は溶解槽34へ送給され、残渣中の鉄含有不溶解物(:固形分)が、回収塩酸貯槽12から送液される塩酸によって溶解する。
得られた溶解液は貯液槽35へ送液され貯液される。
【0052】
図4に、溶解液からの酸化鉄の製造方法の一例を、工程図(側面図)によって示す。
なお、図4おいて、f9は溶解液の送液方向を示し、その他の符号は図1〜図3、図6と同一の内容を示す。
また、図4おいて、送液方向などの矢印を付したラインが、稼働中のラインを示す。
【0053】
すなわち、図4に示す酸化鉄の製造方法においては、前記した高純度酸化鉄の製造において貯液槽35に貯液された溶解液を抜き出し、溶解液中の固形分(未溶解分)をフィルタ36で除去した後、焙焼炉1へ送液し焙焼し酸化鉄を製造すると共に、焙焼炉の高温排ガスを洗浄塔8を経由して吸収塔11へ送給し、排ガス中の塩化水素を塩酸として回収する。
【0054】
この結果、高純度酸化鉄の製造時に発生した残渣を有効に活用し、廃塩酸から歩留りに優れた方法で酸化鉄を製造し、廃棄物の埋立処理を伴うことなく、資源を有効に活用することができる。
次に、図5に、溶解液からの酸化鉄の製造方法の他の一例を、工程図(側面図)によって示す。
【0055】
なお、図5における各符号は図1〜図4、図6と同一の内容を示す。
また、図5において、送液方向などの矢印を付したラインが、稼働中のラインを示す。
図5に示す酸化鉄の製造方法においては、前記した図4に示す酸化鉄の製造方法と同様に、貯液槽35に貯液された溶解液を焙焼炉1へ送液し、酸化鉄の原料として用いると共に、塩化鉄含有塩酸水溶液(:塩化鉄含有廃塩酸)6を、洗浄塔(:濃縮塔)8を経由して焙焼炉1に供給して酸化鉄を製造し、塩酸を回収する。
【0056】
この結果、高純度酸化鉄の製造時に発生した残渣を有効に活用し、廃塩酸から歩留りに優れた方法で酸化鉄を製造し、廃棄物の埋立処理を伴うことなく、資源を有効に活用することができる。
【0057】
【実施例】
以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は、以下の実施例に限定されるものではない。
本実施例においては、前記した図1に示す酸化鉄製造設備を用い、図2、図4に示す酸化鉄の製造方法によって酸化鉄を製造した。
【0058】
〔高純度酸化鉄の製造:〕
鋼板の塩酸酸洗ラインにおいて発生した塩化鉄含有塩酸水溶液(:塩化鉄含有廃塩酸)6を、洗浄塔(:濃縮塔)8で焙焼炉1の高温排ガスとの熱交換によって濃縮した後、鉄添加、混合装置30、鉄分離槽31、アルカリ添加、酸化装置32、固液分離装置33によって不純物を除去し清浄化した。
【0059】
なお、鉄添加、混合装置30においては、金属鉄(スクラップ)を供給し水溶液のpHを3.0 に調整し、またアルカリ添加、酸化装置32にはアルカリ剤としてアンモニア水を、酸素含有気体として空気を供給した。
得られた分離液である清浄廃塩酸は焙焼炉1へ送液し、焙焼炉胴部炉内温度: 650℃で噴霧焙焼し、高純度酸化鉄を製造すると共に、焙焼炉の高温排ガスを洗浄塔8を経由して吸収塔11へ送給し、排ガス中の塩化水素を塩酸として回収した。
【0060】
〔固液分離後の残渣からの酸化鉄の製造:〕
上記した固液分離装置33で得られたスラリー状の残渣は、そのままでは配管の閉塞を生じるため焙焼炉1で噴霧焙焼することができない。
このため、溶解槽34において、上記したスラリー状の残渣中の固形分を、下記条件下で溶解した。
【0061】
〔溶解条件:〕
(残渣:)
固液分離装置(シックナー)33で分離後のスラリー状の残渣
鉄濃度:26g/100cm3- スラリー
供試スラリー温度:60℃
(塩酸:)
酸化鉄製造設備における回収塩酸
塩酸濃度:18%
供試塩酸温度:80℃(回収塩酸貯槽12から抜き出した塩酸で、非加熱)
塩酸の添加量:残渣100cm3に対して100cm3の割合で添加
上記で得られた溶解液を、貯液槽35へ送液し貯液した。
【0062】
前記した高純度酸化鉄の製造後、貯液槽35に貯液した溶解液を抜き出し、溶解液中の固形分残分(未溶解分)をフィルタ36で除去した後、焙焼炉1へ送液し、焙焼炉胴部炉内温度:700 ℃で噴霧焙焼し、酸化鉄を製造すると共に、塩酸を回収した。
上記で得られた酸化鉄は、SiO2、Al、Crなどを含有し、ソフトフェライト原料用酸化鉄として使用することはできないが、ハードフェライト原料用酸化鉄、触媒用酸化鉄、ベンガラ塗料用酸化鉄などとして十分使用可能であり、製鉄原料として使用してもよい。
【0063】
【発明の効果】
本発明によれば、鋼板の酸洗工程において発生する廃塩酸などの塩化鉄含有塩酸水溶液から歩留りに優れた方法で酸化鉄を製造することが可能となった。
また、本発明によれば、酸化鉄製造設備における配管、スプレーノズルなどの閉塞を防止し、安定した操業で酸化鉄を製造することが可能となり、さらには、高純度酸化鉄の製造時に発生した残渣を活用するため、廃棄物の埋立処理を伴うことなく、資源を有効に活用することが可能となった。
【図面の簡単な説明】
【図1】本発明の酸化鉄製造設備の一例を示す工程図(側面図)である。
【図2】本発明の酸化鉄の製造方法の一例を示す工程図(側面図)である。
【図3】本発明の酸化鉄の製造方法の一例を示す工程図(側面図)である。
【図4】本発明の酸化鉄の製造方法の一例を示す工程図(側面図)である。
【図5】本発明の酸化鉄の製造方法の一例を示す工程図(側面図)である。
【図6】従来の酸化鉄製造設備を示す工程図(側面図)である。
【符号の説明】
1 焙焼炉
2 熱風の吹込み装置
3 熱風吹込み口
4 熱風(:酸素を含有する熱風)
5 旋回流
6 塩化鉄含有塩酸水溶液(:塩化鉄含有廃塩酸)
7 スプレーヘッダ
8 洗浄塔(濃縮塔)
9 サイクロン
10 焙焼炉の高温排ガス出口
11 吸収塔
12 回収塩酸貯槽
13 送液ポンプ
14 焙焼炉胴部炉内温度計
15、16 酸化鉄
17 燃料
18 燃焼用空気
19 水
20 排ガス
30 鉄添加、混合装置
31 鉄分離槽
32 アルカリ添加、酸化装置
33 固液分離装置
34 溶解装置
35 貯液槽
36 フィルタ
37、38、39 送液系統
40 金属鉄および/または鉄化合物
41 アルカリ剤
42 酸素含有気体
43、44 攪拌装置
45 鉄供給装置
46 アルカリ供給装置
47 弁
f1 塩化鉄含有廃塩酸の濃縮液の送液方向
f2 焙焼炉の高温排ガスの流れ方向
f3 排ガスの流れ方向
f4 回収塩酸の送液方向
f5 塩化鉄含有塩酸溶液(:塩化鉄含有廃塩酸)の送液方向
f6 分離液(:清浄廃塩酸)の送液方向
f7 残渣の送給方向
f8、f9 溶解液の送液方向[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an iron oxide production method and an iron oxide production facility capable of producing iron oxide from an aqueous solution containing hydrochloric acid containing iron chloride such as waste hydrochloric acid generated in a pickling process of a steel sheet by a method excellent in yield. According to the invention, it is possible to produce iron oxide from an aqueous solution containing hydrochloric acid containing iron chloride such as waste hydrochloric acid without generating waste by stable operation.
[0002]
[Prior art]
Conventionally, waste hydrochloric acid, which is an iron chloride-containing aqueous hydrochloric acid solution generated in a steel plate pickling process, is concentrated and roasted and effectively used as iron oxide for ferrite raw materials.
FIG. 6 shows a conventional iron oxide production facility using waste hydrochloric acid as a raw material.
In FIG. 6, 1 is a roasting furnace, 2 is a flame containing oxygen and / or a heated gas (: hot air) 4 blowing device, 3 is a hot air blowing port, 5 is a swirling flow, and 6 is iron chloride. Containing hydrochloric acid aqueous solution (hereinafter also referred to as iron chloride-containing waste hydrochloric acid), 7 is a spray header, 8 is a washing tower (concentration tower), 9 is a cyclone, 10 is a high temperature exhaust gas outlet of the roasting furnace 1, 11 is an absorption tower, 12 is Recovered hydrochloric acid storage tank, 13 feed pump, 14 roasting furnace thermometer, 15 and 16 iron oxide, 17 fuel, 18 combustion air, 19 water, 20 exhaust gas, f 1 Is the feeding direction of the concentrated solution of waste hydrochloric acid containing iron chloride, f 2 Is the flow direction of the high temperature exhaust gas in the roasting furnace 1, f Three Is the flow direction of the exhaust gas, f Four Indicates the direction of the recovered hydrochloric acid.
[0003]
In the iron oxide production facility shown in FIG. 6, iron oxide is produced and hydrochloric acid is recovered by the following steps.
That is, the iron chloride-containing waste hydrochloric acid 6 generated in the steel plate pickling step is concentrated by exchanging heat with the high-temperature exhaust gas from the roasting furnace 1 in the washing tower (concentration tower) 8 and then concentrated by the feed pump 13. 1 and is sprayed into the roasting furnace 1 by the spray header 7 from the top of the roasting furnace 1.
[0004]
Hot air 4 forms a swirl flow 5 in the roasting furnace 1, and iron oxide and hydrogen chloride are generated according to the following reaction formulas (1) and (2).
2FeCl 2 + (1/2) O 2 + 2H 2 O → Fe 2 O Three + 4HCl ……… (1)
2FeCl Three + 3H 2 O → Fe 2 O Three + 6HCl ………………… (2)
The generated iron oxide is recovered from the lower part of the roasting furnace 1, and the iron oxide entrained in the hot air stream is recovered by the cyclone 9, and the recovered iron oxide is effectively used as iron oxide for ferrite raw materials. Is done.
[0005]
The high-temperature exhaust gas from the roasting furnace 1 from which iron oxide has been removed and recovered is heat-exchanged with the iron chloride-containing waste hydrochloric acid 6 in the washing tower 8 and then introduced into the absorption tower 11 and sprayed from the top of the absorption tower 11. In contact with water, hydrogen chloride is absorbed and removed, and hydrochloric acid is recovered.
On the other hand, the waste hydrochloric acid containing iron chloride generated in the steel plate pickling process is SiO. 2 Iron oxide obtained by concentrating and roasting pickling waste liquor containing impurities such as Al, Cr, etc., as iron oxide for hard ferrite raw materials, iron oxide for catalysts, iron oxide for Bengala paint Although it can be used, it cannot be used as high-purity iron oxide such as iron oxide for soft ferrite raw materials, and its application is limited.
[0006]
For this reason, conventionally, when producing high-purity iron oxide, SiO in the pickling waste hydrochloric acid in advance. 2 After removing impurities such as sedimentation and filtration, etc., a method of roasting is employed.
In the case of the above-described method, the residue containing the separated and removed impurities is treated by landfill after neutralization, dewatering landfill after neutralization, or landfill after neutralization incineration.
[0007]
However, in this case, an alkali neutralization step is necessary, no by-product is generated, and these conventional techniques for landfilling waste from the viewpoint of the global environment are not industrially superior methods.
As a method for solving the above-mentioned problems, in JP-A-1-208331, impurities in the pickling waste liquid are removed by coagulation precipitation, and the pickling waste liquid after treatment is roasted to recover high-purity iron oxide. In addition, a method for producing iron oxide for ferrite is disclosed in which low-purity iron oxide is recovered from a blow liquid in which impurities produced as a by-product in the recovery process are concentrated.
[0008]
However, the above-mentioned blow liquid contains a large amount of undissolved iron such as goethite, and in the iron oxide production method in which spray roasting is performed in a roasting furnace, the undissolved iron and other solid components are There is a problem that the piping and the spray nozzle are blocked and stable operation cannot be performed.
[0009]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art, and can produce iron oxide from an aqueous solution containing hydrochloric acid containing iron chloride such as waste hydrochloric acid generated in the pickling process of a steel sheet by a method having excellent yield. An object of the present invention is to provide a production method and an iron oxide production facility.
[0010]
In addition, the present invention is an iron oxide which can prevent clogging of pipes, spray nozzles, etc., and can produce iron oxide from an aqueous solution containing hydrochloric acid containing iron chloride, such as waste hydrochloric acid, without causing waste by stable operation. An object of the present invention is to provide a production method and an iron oxide production facility.
[0011]
[Means for Solving the Problems]
The first invention is a method for producing iron oxide in which an aqueous solution containing hydrochloric acid containing iron chloride is roasted in a roasting furnace to produce iron oxide, and the exhaust gas from the roasting furnace is absorbed in water to recover hydrochloric acid. After adding metallic iron and / or an iron compound to the iron chloride-containing hydrochloric acid aqueous solution to adjust the pH of the aqueous solution to 2 to 4, the obtained aqueous solution is brought into contact with an oxygen-containing gas and an alkali agent, and the obtained aqueous solution It is obtained after solid-liquid separation and roasting the separation liquid after solid-liquid separation to produce and recover iron oxide and hydrochloric acid, while adding hydrochloric acid to the residue after solid-liquid separation to dissolve the solid content. The iron oxide and hydrochloric acid are produced and recovered by roasting the dissolved solution separately from the above-described roasting of the separated liquid.
[0012]
In the first invention described above, the temperature of hydrochloric acid added to the residue after the solid-liquid separation described above is preferably 50 to 100 ° C. (first preferred embodiment of the first invention).
In the first preferred embodiment of the first invention and the first preferred embodiment of the first invention, the concentration of hydrochloric acid added to the residue after the solid-liquid separation is 10 mass percent or more (hereinafter, the mass percentage is expressed as%). ), More preferably 12 to 35% (second preferred embodiment of the first invention, third preferred embodiment).
[0013]
In the first invention and the first to third preferred embodiments of the first invention, the amount of hydrochloric acid added to the residue after the solid-liquid separation is a volume ratio, and the residue : It is preferable that it is 40-120 with respect to 100 (4th suitable aspect-1st suitable aspect of 1st invention).
In the first invention and the first to seventh preferred embodiments of the first invention, the hydrochloric acid added to the residue after the solid-liquid separation is the iron oxide production method described above. The recovered hydrochloric acid thus obtained is preferred (eighth preferred embodiment to fifteenth preferred embodiment of the first invention).
[0014]
Furthermore, in the method for producing iron oxide according to the first invention and the first to fifteenth preferred embodiments of the first invention, the above-described solution is separated from the above-described roasting of the separated solution. The roasting method at the time of roasting is suitably applied as a method for producing iron oxide, which is a spray roasting method.
The second invention comprises a roasting furnace 1 for roasting an aqueous solution of hydrochloric acid containing iron chloride, and an iron oxide production facility having an absorption tower 11 for recovering hydrochloric acid by bringing hydrogen chloride discharged from the roasting furnace 1 into contact with water. An iron addition and mixing device 30 for adding and mixing metallic iron and / or an iron compound to the iron chloride-containing hydrochloric acid aqueous solution as a pretreatment facility for the iron chloride-containing hydrochloric acid aqueous solution, and the iron addition and mixing device 30 An alkali is added to the aqueous solution obtained by the above and an oxygen-containing gas is blown into the oxygen-containing gas, an oxidizer 32, a solid-liquid separator 33 of the aqueous solution treated with the alkali-added and oxidizer 32, and the solid-liquid separator 33 A liquid feeding system 37 for feeding the separation liquid obtained in step 1 to the roasting furnace 1, a dissolution apparatus 34 for adding hydrochloric acid to the residue obtained in the solid-liquid separation apparatus 33 to dissolve solids, A storage tank 35 for storing the solution obtained by the dissolution apparatus 34, and the storage tank 3 It is an iron oxide manufacturing facility characterized by having a pretreatment facility comprising a liquid feed system 38 for feeding the 5 solution to the roasting furnace 1.
[0015]
The iron oxide production facility of the second invention described above preferably has a liquid feeding system 39 for feeding hydrochloric acid recovered by the absorption tower 11 to the dissolving device 34 (preferred for the second invention). Embodiment).
In the iron oxide production facility according to the second aspect and the preferred aspect of the second aspect described above, the roasting furnace 1 is provided with a spray header 7 for spray roasting the separated liquid or dissolved liquid. A firing furnace is preferred.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
As a result of intensive studies to solve the problems of the prior art described above, the present inventors have found that SiO in waste hydrochloric acid generated in the pickling process of the steel sheet. 2 Separating and removing impurities such as Al, Cr, etc. to obtain a separated liquid (hereinafter also referred to as clean waste hydrochloric acid) and residue, roasting clean waste hydrochloric acid to produce high-purity iron oxide, while removing iron and impurities Hydrochloric acid is added to the contained residue, the iron-containing insoluble matter (hereinafter also referred to as solid content) in the residue is dissolved, and the resulting solution is roasted separately from the above-described roasting of clean waste hydrochloric acid. Thus, it has been found that iron oxide can be produced from waste hydrochloric acid by a method excellent in yield, and the present invention has been achieved.
[0017]
Hereinafter, an iron oxide production facility and an iron oxide production method of the present invention will be described with reference to the drawings.
[I. Iron oxide production equipment:]
In FIG. 1, an example of the iron oxide manufacturing equipment of this invention is shown with a process drawing (side view). In FIG. 1, 30 is an iron addition and mixing device, 31 is an iron separation tank, 32 is an alkali addition and oxidation device, 33 is a solid-liquid separation device, 34 is a dissolution device, 35 is a storage tank, 36 is a filter, 37, 38 and 39 are liquid feeding systems, 40 is metallic iron and / or iron compounds, 41 is an alkaline agent, 42 is an oxygen-containing gas, 43 and 44 are stirring devices, 45 is iron addition, and metallic iron and / or iron is added to the mixing device The iron supply device for supplying the compound 40, 46 for alkali addition, the alkali supply device for supplying the alkali agent 41 to the oxidizer, 47 indicates a valve, and the other symbols indicate the same contents as in FIG.
[0018]
That is, the iron oxide production facility of the present invention is composed of the following (1) to (3).
(1) Roasting furnace:
In the present invention, the following aqueous solutions (1) to (4) or a mixed solution thereof are mixed in the roasting furnace 1 with O 2 Roasting with hot air containing (: oxidation roasting).
(1) Separate liquid (clean waste hydrochloric acid) obtained by the solid-liquid separator 33 described later
(2) Dissolved solution obtained by the dissolution apparatus 34 described later
(3) Hydrochloric acid aqueous solution containing iron chloride (: Waste hydrochloric acid containing iron chloride)
(4) Concentrated liquid of aqueous hydrochloric acid containing iron chloride (: Waste hydrochloric acid containing iron chloride)
In the present invention, it is preferable to set the temperature in the body furnace of the roasting furnace 1 to 420 to 950 ° C.
[0019]
When the temperature in the trunk furnace is less than 420 ° C, the reaction rate in the above reaction formulas (1) and (2) is slow, and when the temperature in the trunk furnace exceeds 950 ° C, excess fuel is required and Since deterioration progresses, it is not preferable.
In the present invention, the roasting furnace 1 is a roasting furnace provided with a spray header 7 for spray roasting the aqueous solutions (1) to (4) described above or a mixed solution thereof. preferable.
[0020]
(2) Absorption tower:
Absorption tower 11 for recovering hydrochloric acid by bringing hydrogen chloride-containing gas (exhaust gas) discharged from roasting furnace 1 into contact with water
(3) Pretreatment equipment for iron chloride-containing hydrochloric acid solution to be sent to the roasting furnace:
This pretreatment facility is composed of the following devices (1) to (7), a storage tank and a liquid feed system, and each has the following functions.
[0021]
(1) Iron addition and mixing equipment:
Iron addition and mixing equipment 30 for adding and mixing metallic iron and / or iron compounds to aqueous hydrochloric acid containing iron chloride
In the present invention, for example, scrap or iron powder can be used as metallic iron, and a mill scale generated at an ironworks can be used as an iron compound.
[0022]
In iron addition and mixing equipment, ferric chloride is preferably reduced to ferrous chloride according to the following reaction formula (3) by adding metal iron, raising the pH of the aqueous hydrochloric acid solution containing iron chloride, and adding alkali in the subsequent step The formation of ferric hydroxide and goethite (Fe00H) in the oxidizer 32 is promoted.
2FeCl Three + Fe → 3FeCl 2 ……… (3)
In the iron addition and mixing apparatus, it is preferable to adjust the pH of the aqueous solution to 2 to 4 by adding metallic iron and / or an iron compound.
[0023]
When the pH of the aqueous solution is less than 2, impurities due to alkali addition in the subsequent step, formation of ferric hydroxide and goethite (Fe00H) in the oxidizer 32 and solid-liquid separator 33, and coprecipitation of these compounds and impurities The removal of is insufficient.
When the pH of the aqueous solution exceeds 4, the goethite precipitates excessively in the above-described post-process, the amount of the residue obtained in the solid-liquid separator 33 increases, and the load of the residue treatment increases, which is not economical.
[0024]
(2) Iron separation tank:
Iron separation tank 31 for separating excess metallic iron and iron compounds from aqueous hydrochloric acid containing iron chloride
(3) Alkali addition, oxidation equipment:
The type of the alkali agent used in the present invention is not particularly limited, but it is preferable to use an alkali agent that does not remain in the iron oxide obtained by roasting the separated liquid (cleaned waste hydrochloric acid) and the dissolved liquid described later. It is preferable to use ammonia water or the like.
[0025]
In addition, in an alkali addition or oxidation apparatus, ammonia gas may be directly blown into an aqueous solution of hydrochloric acid containing iron chloride.
In the alkali addition / oxidation apparatus 32, for example, when aqueous ammonia is used as the alkali agent, ferric hydroxide and goethite are generated according to the following reaction formulas (4) and (5).
[0026]
FeCl Three + 3NH Four OH → Fe (OH) Three ↓ + 3NH Four Cl …………………… (4)
FeCl 2 + 1 / 4O 2 + 1 / 6H 2 O → 1 / 3FeOOH ↓ + 2 / 3FeCl Three ………(Five)
As the oxygen-containing gas used in the alkali addition and oxidation apparatus, air, oxygen, oxygen-enriched air, or the like can be used.
The alkali addition / oxidation apparatus is preferably brought into contact with the oxygen-containing gas with an alkali agent added to the aqueous solution of iron chloride-containing hydrochloric acid, as shown in the above reaction formulas (4) and (5). In addition, the iron chloride-containing hydrochloric acid aqueous solution may be contacted with an oxygen-containing gas and then contacted with an alkali agent, or the iron chloride-containing hydrochloric acid aqueous solution may be contacted with an alkali agent and then contacted with an oxygen-containing gas. is there.
[0027]
(4) Solid-liquid separator:
In the solid-liquid separator 33, ferric hydroxide and goethite precipitates are formed, and SiO 2 is precipitated during the precipitation. 2 Impurities such as Al, Cr, and P are co-precipitated and separated as a slurry, sludge, or cake residue.
The separated liquid from which impurities have been removed (: clean waste hydrochloric acid) is sent to the roasting furnace 1, where high-purity iron oxide is produced and hydrochloric acid is recovered.
[0028]
Moreover, solids (iron-containing insoluble matter, that is, ferric hydroxide, coprecipitate of goethite with Al, Cr, etc.) are dissolved in the residue by adding hydrochloric acid in the dissolution apparatus 34 described below. The obtained solution is roasted separately from the above-described clean waste hydrochloric acid to produce iron oxide, and hydrochloric acid is recovered.
The solid-liquid separation device 33 is preferably a sedimentation separation device such as thickener. However, when alkali addition, ferric hydroxide, precipitation of goethite, and impurity adsorption (coprecipitation) in the oxidation device proceed sufficiently. Further, a filtration device or a centrifuge may be used, or these may be used in combination.
[0029]
(5) Dissolution device:
Dissolution device 34 for adding hydrochloric acid to the residue obtained by the solid-liquid separation device 33 and dissolving the iron-containing insoluble matter (: solid content) in the residue
In the present invention, hydrochloric acid is added to the slurry-like residue, sludge-like residue or cake-like residue obtained by the solid-liquid separation device 33, the solid content in the residue is dissolved, and the obtained solution is obtained. It is roasted separately from roasting of clean waste hydrochloric acid.
[0030]
(Hydrochloric acid temperature :)
The temperature of hydrochloric acid added to the residue after solid-liquid separation is preferably 50 to 100 ° C.
When the temperature of hydrochloric acid is less than 50 ° C, the dissolution time of the iron-containing insoluble matter (: solid content) in the residue becomes longer, resulting in poor productivity, and when the temperature of hydrochloric acid exceeds 100 ° C, the dissolution time of the solid content The shortening effect is practically saturated and is not economical.
[0031]
(Concentration of hydrochloric acid :)
The concentration of hydrochloric acid added to the residue after solid-liquid separation is preferably 10% (mass percentage) or more, more preferably 12 to 35% (mass percentage).
If the concentration of hydrochloric acid is less than 10%, the solid content in the residue will not be sufficiently dissolved, and the piping of the iron oxide production facility, the spray nozzle of the roasting furnace, etc. will become clogged and stable operation cannot be achieved. .
[0032]
(Addition amount of hydrochloric acid :)
Table 1 shows the results of the dissolution test of the residue performed by changing the addition amount of hydrochloric acid.
The test conditions are as follows.
[Dissolution test conditions:]
(Residue :)
Slurry residue after separation with solid-liquid separator (thickener) 33
Iron concentration: 26g / 100cm Three -Slurry
Sample slurry temperature: 60 ° C
(hydrochloric acid:)
Recovered hydrochloric acid at iron oxide production facilities
Hydrochloric acid concentration: 18%
Test hydrochloric acid temperature: 80 ° C (hydrochloric acid extracted from recovered hydrochloric acid storage tank 12, non-heated)
As shown in Table 1, the amount of hydrochloric acid added to the residue after the solid-liquid separation is in a volume ratio, preferably 40 to 120 with respect to the residue: 100, and more preferably in the volume ratio. 50 to 110 for 100.
[0033]
If the amount of hydrochloric acid added is less than 40 with respect to the residue: 100 by volume ratio, the iron-containing insoluble matter (: solid content) in the residue will not be sufficiently dissolved, and piping and roasting of iron oxide production equipment Blocking of the spray nozzle of the furnace is likely to occur and it is difficult to achieve stable operation.
When the addition amount of hydrochloric acid exceeds 120 by volume with respect to the residue: 100, the dissolution effect of the iron-containing insoluble matter (: solid content) in the residue is practically saturated and is not economical.
[0034]
In the present invention, as the hydrochloric acid added to the residue after solid-liquid separation, it is particularly preferable to use the recovered hydrochloric acid obtained by the iron oxide production method and production facility of the present invention.
This is because the recovered hydrochloric acid obtained by the iron oxide production method and production facility of the present invention satisfies the above-mentioned preferred temperature range and concentration range of hydrochloric acid, so that the incidental equipment for adjusting the hydrochloric acid temperature and hydrochloric acid concentration This is because no need is required.
[0035]
According to the present invention, the hydrochloric acid used for dissolving the residue becomes hydrogen chloride in the roasting furnace and is recovered as hydrochloric acid in the absorption tower 11, so that an excellent effect that the drug is effectively used is obtained.
(6) Liquid storage tank:
In the iron oxide production facility of the present invention, a storage tank 35 for storing the solution obtained by the dissolution apparatus 34 is provided.
[0036]
This produces both high-purity iron oxide that satisfies the specifications of iron oxide for raw materials of soft ferrite and iron oxides that have less restrictions on impurities (for example, iron oxide for hard ferrite materials, catalysts, and bengara paints). This is because iron oxide is produced from waste hydrochloric acid by a method excellent in yield, and resources are effectively utilized without waste disposal.
[0037]
That is, in the iron oxide production facility of the present invention, the separated liquid is roasted by the solid-liquid separator 33 to produce and collect high-purity iron oxide and hydrochloric acid, while the separated residue is dissolved with hydrochloric acid. The solution obtained in this way is stored in the storage tank 35, and after the production of high-purity iron oxide is completed, the solution is extracted from the storage tank 35 and sent to the roasting furnace 1 via the liquid supply system 38. Liquid and roasted to produce and recover iron oxide and hydrochloric acid.
[0038]
(7) Liquid feeding system:
(7) -1: Liquid feed system 37 for feeding the separated liquid (: clean waste hydrochloric acid) obtained by the solid-liquid separator 33 to the roasting furnace 1
(7) -2:
A liquid feed system 38 for sending the solution in the liquid storage tank 35 to the roasting furnace 1
Note that the liquid feeding system 38 may be provided with a filter 36 for removing undissolved components when hydrochloric acid is added.
[0039]
(7) -3:
In the iron oxide production facility of the present invention, it is preferable to provide a liquid feeding system 39 for feeding hydrochloric acid recovered in the absorption tower 11 to the dissolving device 34.
This is because, as described above, according to the present invention, the hydrochloric acid recovered in the iron oxide production facility can be effectively used as the hydrochloric acid used in the dissolution apparatus 34 without any treatment.
[0040]
Further, in the iron oxide production facility of the present invention, it is preferable to provide a liquid feed pump for liquid feeding in the liquid feeding systems 37, 38, 39 as illustrated in FIG.
[0041]
[Table 1]
Figure 0004270694
[0042]
[II. Method for producing iron oxide:]
FIG. 1 shows an example of the iron oxide production facility of the present invention. In the iron oxide production method of the present invention, the iron oxide production facility illustrated in FIG. Iron can be produced and hydrochloric acid can be recovered.
1. Manufacturing method of high purity iron oxide:
Impurities are removed from the aqueous hydrochloric acid solution containing iron chloride, and the obtained aqueous solution (: clean waste hydrochloric acid) is roasted to produce high-purity iron oxide, and hydrochloric acid is recovered.
[0043]
2. Manufacturing method of iron oxide from the residue after solid-liquid separation:
The residue obtained when removing impurities from the aqueous solution of iron chloride containing hydrochloric acid is added with hydrochloric acid to dissolve the iron and impurities in the residue, and the resulting solution is dissolved in iron oxide (low Used in the production of (purified iron oxide).
That is, a solution obtained by dissolving iron and impurities in the residue with hydrochloric acid is roasted using a roasting furnace to produce iron oxide.
[0044]
In addition, when manufacturing both the above-described high-purity iron oxide and low-purity iron oxide using the same roasting furnace, the solution obtained by dissolving the iron and impurities in the residue is stored in a storage tank. The solution is stored, and after producing high-purity iron oxide, the solution is roasted using the same roasting furnace to produce iron oxide.
Hereinafter, a method for producing 1. high purity iron oxide and 2. a method for producing iron oxide from the residue after solid-liquid separation will be described with reference to the drawings.
[0045]
[1. Production method of high purity iron oxide:]
In FIG. 2, an example of the manufacturing method of high purity iron oxide is shown with a process drawing (side view).
In FIG. 2, f Five Is the feeding direction of the iron chloride-containing hydrochloric acid solution (: iron chloride-containing waste hydrochloric acid), f 6 Is the direction of liquid separation (: clean waste hydrochloric acid), f 7 Is the residue feed direction, f 8 Indicates the liquid feeding direction, and the other symbols indicate the same contents as in FIGS.
[0046]
Moreover, in FIG. 2, the line which attached | subjected arrows, such as a liquid feeding direction, shows the line in operation.
That is, first, an iron chloride-containing hydrochloric acid aqueous solution (: iron chloride-containing waste hydrochloric acid) 6 is concentrated by heat exchange with the high-temperature exhaust gas of the roasting furnace 1 in the washing tower (: concentration tower) 8, and then added with iron and mixed. Impurities are removed and cleaned by the device 30, the iron separation tank 31, the alkali addition, the oxidation device 32, and the solid-liquid separation device 33.
[0047]
The purified waste hydrochloric acid, which is the separated liquid, is sent to the roasting furnace 1 and roasted to produce high-purity iron oxide, and the high-temperature exhaust gas from the roasting furnace 1 passes through the washing tower 8 to the absorption tower 11. The hydrogen chloride in the exhaust gas is recovered as hydrochloric acid.
On the other hand, the residue obtained in the solid-liquid separator 33 is fed to the dissolution tank 34, and the iron-containing insoluble matter (: solid content) in the residue is dissolved by hydrochloric acid fed from the recovered hydrochloric acid storage tank 12.
[0048]
The obtained solution is sent to and stored in the storage tank 35 and used as a raw material for producing iron oxide (low-purity iron oxide) after producing high-purity iron oxide.
Next, FIG. 3 shows another example of a method for producing high-purity iron oxide with a process diagram (side view).
3 denote the same contents as those in FIGS. 1, 2, and 6. FIG.
[0049]
Moreover, in FIG. 3, the line which attached | subjected arrows, such as a liquid feeding direction, shows the line in operation.
In the method for producing high-purity iron oxide shown in FIG. 3, an iron chloride-containing hydrochloric acid aqueous solution (: iron chloride-containing waste hydrochloric acid) 6 is directly added to the iron without mixing through the washing tower (: concentration tower) 8. 30, liquid is sent to an iron separation tank 31, an alkali addition, an oxidizer 32, and a solid-liquid separator 33 to remove impurities and clean, and then roast to produce high-purity iron oxide and collect hydrochloric acid.
[0050]
On the other hand, the residue obtained in the solid-liquid separator 33 is fed to the dissolution tank 34, and the iron-containing insoluble matter (: solid content) in the residue is dissolved by hydrochloric acid fed from the recovered hydrochloric acid storage tank 12.
The obtained solution is sent to and stored in the storage tank 35 and used as a raw material for producing iron oxide (low-purity iron oxide) after producing high-purity iron oxide.
[0051]
[2. Manufacturing method of iron oxide from the residue after solid-liquid separation:]
As described above, the residue obtained by the solid-liquid separator 33 is fed to the dissolution tank 34, and the iron-containing insoluble matter (: solid content) in the residue is separated by hydrochloric acid fed from the recovered hydrochloric acid storage tank 12. Dissolve.
The obtained solution is sent to the storage tank 35 and stored.
[0052]
In FIG. 4, an example of the manufacturing method of the iron oxide from a solution is shown with a process drawing (side view).
In FIG. 4, f 9 Indicates the direction of solution delivery, and the other symbols indicate the same contents as in FIGS.
Moreover, in FIG. 4, the line which attached | subjected arrows, such as a liquid feeding direction, shows the line in operation.
[0053]
That is, in the iron oxide manufacturing method shown in FIG. 4, the solution stored in the storage tank 35 in the above-described high-purity iron oxide manufacturing is extracted, and the solid (undissolved) in the solution is filtered. After removal at 36, the mixture is sent to the roasting furnace 1 and roasted to produce iron oxide, and the high-temperature exhaust gas from the roasting furnace is sent to the absorption tower 11 via the cleaning tower 8 to chlorinate in the exhaust gas. Hydrogen is recovered as hydrochloric acid.
[0054]
As a result, the residue generated during the production of high-purity iron oxide is effectively utilized, iron oxide is produced from waste hydrochloric acid by a method with excellent yield, and resources are effectively utilized without waste landfill treatment. be able to.
Next, FIG. 5 shows another example of a method for producing iron oxide from a solution by a process diagram (side view).
[0055]
In addition, each code | symbol in FIG. 5 shows the same content as FIGS. 1-4, FIG.
Moreover, in FIG. 5, the line which attached | subjected arrows, such as a liquid feeding direction, shows the line in operation.
In the method for producing iron oxide shown in FIG. 5, similarly to the method for producing iron oxide shown in FIG. 4 described above, the solution stored in the storage tank 35 is fed to the roasting furnace 1, and iron oxide is obtained. In addition to the above, the iron chloride-containing hydrochloric acid aqueous solution (: iron chloride-containing waste hydrochloric acid) 6 is supplied to the roasting furnace 1 via the washing tower (: concentration tower) 8 to produce iron oxide. to recover.
[0056]
As a result, the residue generated during the production of high-purity iron oxide is effectively utilized, iron oxide is produced from waste hydrochloric acid by a method with excellent yield, and resources are effectively utilized without waste landfill treatment. be able to.
[0057]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited to a following example.
In this example, iron oxide was manufactured by the iron oxide manufacturing apparatus shown in FIG. 1 and the iron oxide manufacturing method shown in FIGS.
[0058]
[Production of high-purity iron oxide:]
After the iron chloride-containing hydrochloric acid aqueous solution (: iron chloride-containing waste hydrochloric acid) 6 generated in the hydrochloric acid pickling line of the steel sheet is concentrated by heat exchange with the high-temperature exhaust gas of the roasting furnace 1 in the cleaning tower (: concentration tower) 8, Impurities were removed and cleaned by iron addition, mixing device 30, iron separation tank 31, alkali addition, oxidation device 32, and solid-liquid separation device 33.
[0059]
In addition, in the iron addition / mixing device 30, metallic iron (scrap) is supplied to adjust the pH of the aqueous solution to 3.0, and in the alkali addition / oxidation device 32, ammonia water is used as an alkali agent and air is used as an oxygen-containing gas. Supplied.
Purified waste hydrochloric acid, which is the separated liquid, is sent to the roasting furnace 1 and spray roasted at a temperature in the roasting furnace body: 650 ° C. to produce high-purity iron oxide. The high temperature exhaust gas was fed to the absorption tower 11 via the cleaning tower 8, and the hydrogen chloride in the exhaust gas was recovered as hydrochloric acid.
[0060]
[Production of iron oxide from the residue after solid-liquid separation:]
The slurry-like residue obtained in the solid-liquid separator 33 described above cannot be sprayed and roasted in the roasting furnace 1 because the pipe is blocked as it is.
For this reason, in the dissolution tank 34, the solid content in the above slurry-like residue was dissolved under the following conditions.
[0061]
〔solubility condition:〕
(Residue :)
Slurry residue after separation with solid-liquid separator (thickener) 33
Iron concentration: 26g / 100cm Three -Slurry
Sample slurry temperature: 60 ° C
(hydrochloric acid:)
Recovered hydrochloric acid at iron oxide production facilities
Hydrochloric acid concentration: 18%
Test hydrochloric acid temperature: 80 ° C (hydrochloric acid extracted from recovered hydrochloric acid storage tank 12, non-heated)
Amount of hydrochloric acid added: 100 cm residue Three Against 100cm Three Added at a rate of
The solution obtained above was sent to the storage tank 35 and stored.
[0062]
After manufacturing the high-purity iron oxide described above, the solution stored in the storage tank 35 is extracted, and the solid content residue (undissolved component) in the solution is removed by the filter 36 and then sent to the roasting furnace 1. Liquid and spray roasting at 700 ° C. in the roasting furnace body temperature to produce iron oxide and collect hydrochloric acid.
The iron oxide obtained above is SiO 2 , Al, Cr, etc., can not be used as iron oxide for soft ferrite raw materials, but can be used sufficiently as iron oxide for hard ferrite raw materials, iron oxide for catalysts, iron oxide for Bengala paint, etc. May be used as
[0063]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it became possible to manufacture iron oxide by the method excellent in the yield from iron chloride containing hydrochloric acid aqueous solutions, such as waste hydrochloric acid generated in the pickling process of a steel plate.
Further, according to the present invention, it is possible to prevent clogging of piping, spray nozzles, etc. in an iron oxide production facility, and to produce iron oxide with a stable operation, and further, occurred during the production of high-purity iron oxide. In order to utilize the residue, it has become possible to effectively use the resources without waste disposal.
[Brief description of the drawings]
FIG. 1 is a process diagram (side view) showing an example of an iron oxide production facility of the present invention.
FIG. 2 is a process diagram (side view) showing an example of the iron oxide production method of the present invention.
FIG. 3 is a process diagram (side view) showing an example of the iron oxide production method of the present invention.
FIG. 4 is a process diagram (side view) showing an example of the iron oxide production method of the present invention.
FIG. 5 is a process diagram (side view) showing an example of the iron oxide production method of the present invention.
FIG. 6 is a process diagram (side view) showing a conventional iron oxide production facility.
[Explanation of symbols]
1 Roasting furnace
2 Hot air blowing device
3 Hot air inlet
4 Hot air (: Hot air containing oxygen)
5 Swirl flow
6 Hydrochloric acid aqueous solution containing iron chloride (: Waste hydrochloric acid containing iron chloride)
7 Spray header
8 Washing tower (concentration tower)
9 Cyclone
10 High temperature exhaust gas outlet of roasting furnace
11 Absorption tower
12 Recovered hydrochloric acid storage tank
13 Liquid feed pump
14 Roasting furnace body thermometer
15, 16 Iron oxide
17 Fuel
18 Combustion air
19 water
20 exhaust gas
30 Iron addition and mixing equipment
31 Iron separation tank
32 Alkali addition, oxidation equipment
33 Solid-liquid separator
34 Dissolution equipment
35 Liquid storage tank
36 Filter
37, 38, 39 Liquid transfer system
40 Metallic iron and / or iron compounds
41 Alkaline agent
42 Oxygen-containing gas
43, 44 Stirrer
45 Iron supply equipment
46 Alkaline feeder
47 valves
f 1 Flow direction of concentrate of waste hydrochloric acid containing iron chloride
f 2 Flow direction of high temperature exhaust gas in roasting furnace
f Three Flow direction of exhaust gas
f Four Flow direction of recovered hydrochloric acid
f Five Feeding direction of hydrochloric acid solution containing iron chloride (: Waste hydrochloric acid containing iron chloride)
f 6 Liquid feed direction of separated liquid (: clean waste hydrochloric acid)
f 7 Residue feeding direction
f 8 , F 9 Solution feeding direction

Claims (2)

塩化鉄含有塩酸水溶液を焙焼炉で焙焼し酸化鉄を製造すると共に、焙焼炉の排ガスを水に吸収せしめて塩酸を回収する酸化鉄の製造方法において、予め、前記塩化鉄含有塩酸水溶液に金属鉄および/または鉄化合物を添加し該水溶液のpHを2〜4に調整した後、得られた水溶液を、酸素含有気体およびアルカリ剤と接触せしめ、得られた水溶液を固液分離し、固液分離後の分離液を焙焼して酸化鉄および塩酸を製造、回収する一方、前記固液分離後の残渣に塩酸を添加し固形分を溶解した後、得られた溶解液を、上記した分離液の焙焼とは別個に焙焼して酸化鉄および塩酸を製造、回収することを特徴とする酸化鉄の製造方法。An iron chloride-containing hydrochloric acid aqueous solution is prepared by roasting an aqueous solution of hydrochloric acid containing iron chloride in a roasting furnace to produce iron oxide and recovering hydrochloric acid by absorbing the exhaust gas of the roasting furnace into water. After adding metallic iron and / or an iron compound to adjust the pH of the aqueous solution to 2 to 4, the obtained aqueous solution is contacted with an oxygen-containing gas and an alkali agent, and the obtained aqueous solution is subjected to solid-liquid separation, The separated liquid after solid-liquid separation is roasted to produce and recover iron oxide and hydrochloric acid, while hydrochloric acid is added to the residue after solid-liquid separation to dissolve the solids, and the obtained dissolved liquid is A method for producing iron oxide, characterized by producing and recovering iron oxide and hydrochloric acid by roasting separately from the roasting of the separated liquid. 塩化鉄含有塩酸水溶液を焙焼する焙焼炉(1) と、該焙焼炉(1) から排出される塩化水素を水と接触せしめ塩酸を回収する吸収塔(11)を有する酸化鉄製造設備であって、前記塩化鉄含有塩酸水溶液の前処理設備として、前記塩化鉄含有塩酸水溶液に金属鉄および/または鉄化合物を添加、混合する鉄添加、混合装置(30)と、該鉄添加、混合装置(30)で得られた水溶液にアルカリを添加し、酸素含有気体を吹き込むアルカリ添加、酸化装置(32)と、該アルカリ添加、酸化装置(32)で処理された水溶液の固液分離装置(33)と、該固液分離装置(33)で得られた分離液を前記焙焼炉(1) に送液するための送液系統(37)と、前記固液分離装置(33)で得られた残渣へ塩酸を添加し固形分を溶解する溶解装置(34)と、該溶解装置(34)で得られた溶解液を貯液する貯液槽(35)と、該貯液槽(35)の溶解液を前記焙焼炉(1) に送液するための送液系統(38)とから構成される前処理設備を有することを特徴とする酸化鉄製造設備。Iron oxide production facility having a roasting furnace (1) for roasting an aqueous solution of hydrochloric acid containing iron chloride and an absorption tower (11) for recovering hydrochloric acid by bringing hydrogen chloride discharged from the roasting furnace (1) into contact with water The iron chloride-containing hydrochloric acid aqueous solution as a pretreatment facility, wherein the iron chloride-containing hydrochloric acid aqueous solution is added and mixed with metallic iron and / or iron compound, and the iron addition and mixing device (30), and the iron addition and mixing An alkali is added to the aqueous solution obtained in the apparatus (30), and an alkali is added to blow an oxygen-containing gas, an oxidizer (32), and an apparatus for solid-liquid separation of the aqueous solution treated by the alkali addition and oxidizer (32) ( 33), a liquid feeding system (37) for feeding the separated liquid obtained by the solid-liquid separator (33) to the roasting furnace (1), and the solid-liquid separator (33). A dissolution apparatus (34) for adding hydrochloric acid to the obtained residue to dissolve the solid content, a storage tank (35) for storing the solution obtained by the dissolution apparatus (34), and the storage Tank (35) of the iron oxide production equipment characterized by having a pre-treatment facility constructed from solution and liquid feed system for feeding the roasting furnace (1) to (38).
JP35356099A 1999-12-13 1999-12-13 Iron oxide manufacturing method and manufacturing equipment Expired - Lifetime JP4270694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35356099A JP4270694B2 (en) 1999-12-13 1999-12-13 Iron oxide manufacturing method and manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35356099A JP4270694B2 (en) 1999-12-13 1999-12-13 Iron oxide manufacturing method and manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2001172021A JP2001172021A (en) 2001-06-26
JP4270694B2 true JP4270694B2 (en) 2009-06-03

Family

ID=18431673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35356099A Expired - Lifetime JP4270694B2 (en) 1999-12-13 1999-12-13 Iron oxide manufacturing method and manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4270694B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102689930A (en) * 2011-03-24 2012-09-26 镇江市丹徒区江南热镀锌有限公司 Hydrochloric acid pickling waste liquid resource integrated utilization method for preparing iron oxide and ammonium sulfate
CN103391897A (en) * 2010-12-24 2013-11-13 昭荣化学工业株式会社 Manufacturing method and manufacturing device for multiple oxide

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4735359B2 (en) * 2006-03-22 2011-07-27 Jfeスチール株式会社 Treatment method of iron-containing waste liquid
JP5143232B2 (en) 2007-09-21 2013-02-13 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー Method for producing iron nickel-containing raw material and cobalt-containing raw material from petrochemical desulfurization catalyst recycling residue, method for producing stainless steel raw material using iron nickel-containing raw material, and method for producing ferronickel
CN102408133B (en) * 2011-08-25 2013-05-15 重庆大学 Method for preparing nanometer iron oxide film by natural pyrite
CN103071648B (en) * 2013-01-04 2015-03-25 中冶南方工程技术有限公司 Washing method for acid gun in acid regeneration system with atomization roasting method
CN109205561B (en) * 2018-09-25 2020-10-30 中宁县峰之源农业发展有限公司 Industrial concentrated hydrochloric acid recovery method
CN114835170B (en) * 2022-06-06 2023-11-28 湖南华菱涟钢特种新材料有限公司 Production process of low-calcium-content ferric oxide powder
CN115215377B (en) * 2022-06-08 2024-02-06 日照宝华新材料有限公司 Production system and production process for producing ferric oxide powder by self-circulation of waste acid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103391897A (en) * 2010-12-24 2013-11-13 昭荣化学工业株式会社 Manufacturing method and manufacturing device for multiple oxide
CN103391897B (en) * 2010-12-24 2016-05-18 昭荣化学工业株式会社 The manufacture method of double oxide and manufacturing installation
CN102689930A (en) * 2011-03-24 2012-09-26 镇江市丹徒区江南热镀锌有限公司 Hydrochloric acid pickling waste liquid resource integrated utilization method for preparing iron oxide and ammonium sulfate
CN102689930B (en) * 2011-03-24 2014-07-30 镇江市丹徒区江南热镀锌有限公司 Hydrochloric acid pickling waste liquid resource integrated utilization method for preparing iron oxide and ammonium sulfate

Also Published As

Publication number Publication date
JP2001172021A (en) 2001-06-26

Similar Documents

Publication Publication Date Title
JP4969313B2 (en) Recovery method of rare earth elements
CN104302791B (en) Method for processing red mud
CN104520237A (en) Processes for treating fly ashes
CN107604165A (en) A kind of method of platinum group metal extraction and refining in ternary catalyst for automobile tail gas
JP2014526431A (en) Preparation process for alumina and various other products
KR20070043736A (en) A recovering method of 98% of precious metals including vanadium and molybdenum from discarded desulfurization catalyst used in oil via lower temperature roaster
CN106435197A (en) Process and device for alkaline extraction and recovery from waste catalysts in SCR (selective catalytic reduction) denitrification
US20180002190A1 (en) System and Method for Purifying Vanadium Pentoxide
JP4270694B2 (en) Iron oxide manufacturing method and manufacturing equipment
CN110775998A (en) System and method for producing nano zinc oxide by industrially recycling zinc
CN109835951B (en) System and method for producing powdered vanadium by chlorination process
CN106947864A (en) A kind of system and its processing method that heavy metal is reclaimed from discarded SCR catalyst
JP5086021B2 (en) Recovery method of rare earth elements
CA1214382A (en) Method for regenerating pickling acids
GB2051759A (en) Producing magnesium oxide
CN111876606A (en) Hydrogenation waste catalyst recovery device and process
CN211198624U (en) Waste residue processing system who contains nickel and ammonium bifluoride
TW416932B (en) A wet-processing method for combustion ashes of petroleum fuels, containingammonium sulfate and a method of utilizing ammonia components recovered by the wet-processing method
CN109231258B (en) Method for comprehensively treating copper slag tailings and smelting flue gas
CN114804077B (en) Purification method and device for carbon nano tube
CN214299311U (en) System for realizing resource utilization of aluminum ash by plasma technology
JPS63315519A (en) Method for recovering waste liquor from acid cleaning of steel
CN207987329U (en) A kind of system that nickelous carbonate is extracted in the waste mixed acid from acid-washing stainless steel
CN109835949B (en) System and method for producing high-purity vanadium pentoxide by clean chlorination of vanadium slag
CN114729419A (en) Vanadium recovery process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4270694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

EXPY Cancellation because of completion of term