JP4270189B2 - Combustion chamber structure of internal combustion engine - Google Patents

Combustion chamber structure of internal combustion engine Download PDF

Info

Publication number
JP4270189B2
JP4270189B2 JP2005297749A JP2005297749A JP4270189B2 JP 4270189 B2 JP4270189 B2 JP 4270189B2 JP 2005297749 A JP2005297749 A JP 2005297749A JP 2005297749 A JP2005297749 A JP 2005297749A JP 4270189 B2 JP4270189 B2 JP 4270189B2
Authority
JP
Japan
Prior art keywords
piston
combustion chamber
intake
engine
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005297749A
Other languages
Japanese (ja)
Other versions
JP2007107423A (en
Inventor
義幸 干場
勝彦 宮本
清隆 細野
俊一 平尾
昌弘 藤本
和志 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2005297749A priority Critical patent/JP4270189B2/en
Publication of JP2007107423A publication Critical patent/JP2007107423A/en
Application granted granted Critical
Publication of JP4270189B2 publication Critical patent/JP4270189B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、内燃機関の燃焼室構造に係り、吸入行程及び圧縮行程での各気流の流動を促進できる内燃機関の燃焼室構造に関する。   The present invention relates to a combustion chamber structure of an internal combustion engine, and more particularly to a combustion chamber structure of an internal combustion engine that can promote the flow of airflows in an intake stroke and a compression stroke.

内燃機関では出力向上、燃費低減、排ガス無害化を図るという要望を達成するための一手段として、シリンダ内の燃焼室の形状を適正に設定することが行われている。例えば、4サイクルのガソリンエンジン(以後単にエンジンと記す)はその吸気ポートが比較的大きく形成されており、これにより吸入行程で混合気を燃焼室内に比較的流動抵抗が少ない状態で吸入し、体積効率の向上を図っている。更に、エンジンは圧縮行程での上死点近傍において点火プラグによる混合気への着火容易化が図られるように、混合気を点火プラグ近傍に比較的コンパクトに集めることができるよう、ピストン頂面やシリンダヘッド下面形状が設定されている。   In an internal combustion engine, as a means for achieving the demands of improving output, reducing fuel consumption, and detoxifying exhaust gas, appropriately setting the shape of a combustion chamber in a cylinder is performed. For example, a four-cycle gasoline engine (hereinafter simply referred to as an engine) has an intake port that is relatively large, so that the air-fuel mixture is sucked into the combustion chamber in a state of relatively low flow resistance during the intake stroke. Improving efficiency. Further, in order to facilitate the ignition of the air-fuel mixture by the spark plug near the top dead center in the compression stroke, the engine top surface and the piston surface can be collected so that the air-fuel mixture can be collected relatively near the spark plug. The cylinder head bottom surface shape is set.

更に、シリンダのピストンが圧縮行程で上死点に接近する際、ピストン頂面の周縁とシリンダヘッドのシリンダ対向部における下面との間の隙間が混合気を挟み、燃焼室中央側にスキッシュ流として押し出すスキッシュエリアを確保するように形成され、このスキッシュエリアに挟まれて押し出されるスキッシュ流が圧縮中の混合気を更に撹拌し、燃焼促進を図れるようにしている。   Furthermore, when the piston of the cylinder approaches top dead center in the compression stroke, the gap between the periphery of the piston top surface and the lower surface of the cylinder head facing the cylinder sandwiches the air-fuel mixture, creating a squish flow toward the center of the combustion chamber. The squish area is formed so as to secure an extruding squish area, and the squish flow pushed out by being sandwiched between the squish areas further agitates the air-fuel mixture being compressed, thereby promoting combustion.

例えば、特開2005−127255号公報(特許文献1)には、ピストン頂面のテーパ部とシリンダヘッド下面の周縁部とで環状の隙間をスキッシュ領域として形成し、このピストン半径方向の隙間幅がピストン内周方向で変化して形成される。即ち、一対の吸気バルブ間及び一対の排気バルブ間の各テーパ部のピストン半径方向の幅を比較的小さく形成し、2つの吸排気バルブ間のテーパ部のピストン半径方向の幅は比較的大きく形成されている。この場合、圧縮行程において、吸、排バルブの各周辺近傍の混合気が燃焼室の周縁方向に沿って二方向に向けて分流し、吸気バルブと排気バルブ間の比較的隙間幅の大きな部位よりスキッシュ流が燃焼室中央の凹部に押し出され、凹部の混合気が撹拌されるようにしている。   For example, in Japanese Patent Application Laid-Open No. 2005-127255 (Patent Document 1), an annular gap is formed as a squish area between the tapered portion of the piston top surface and the peripheral portion of the lower surface of the cylinder head. It is formed by changing in the piston inner circumferential direction. That is, the taper portion between the pair of intake valves and the pair of exhaust valves is formed with a relatively small width in the piston radial direction, and the taper portion between the two intake and exhaust valves is formed with a relatively large width in the piston radial direction. Has been. In this case, in the compression stroke, the air-fuel mixture in the vicinity of each of the intake and exhaust valves is diverted in two directions along the peripheral direction of the combustion chamber, and from a portion having a relatively large gap width between the intake valve and the exhaust valve. The squish flow is pushed out into the recess at the center of the combustion chamber so that the air-fuel mixture in the recess is agitated.

ところで、エンジンのピストンが、図9(a)、(b)、図10(a)、(b)に示すようなピストン頂部形状を採るとする。この場合、ピストン頂部の周縁には圧縮行程時にスキッシュ流fsを生成するためのテーパ部100が環状に形成される。更に、図9(a)、図10(a)に示すピストン101ではそのテーパ部100のうちのエンジン長手方向Xとの対向部位におけるピストン半径方向の幅bSが比較的小さく、高さh1も比較的小さく形成され、これに応じてピストン101の頂面の中央凹部102が図10(a)に示すように楕円型に形成され(後述の図7(B)の(a)〜(g)も同様の構成)、この中央凹部102が比較的大容量に形成される。ここで、図9(a)に示すように、ピストン頂面のテーパ部100とヘッド下面側との間のスキッシュ領域a1はエンジンが吸入行程にある場合、流動抵抗を生じるが、この領域でのピストン半径方向の幅bSが比較的狭いことより、比較的容量の大きな楕円型の中央凹部102内への吸入空気の流れが容易化され、体積効率が向上する。   By the way, it is assumed that the piston of the engine takes a piston top shape as shown in FIGS. 9 (a), 9 (b), 10 (a), and 10 (b). In this case, a tapered portion 100 for generating the squish flow fs during the compression stroke is formed in an annular shape at the periphery of the piston top. Further, in the piston 101 shown in FIGS. 9A and 10A, the width bS in the piston radial direction at the portion of the tapered portion 100 facing the engine longitudinal direction X is relatively small, and the height h1 is also compared. In accordance with this, the central recess 102 on the top surface of the piston 101 is formed in an elliptical shape as shown in FIG. 10 (a) ((a) to (g) in FIG. (Similar configuration), the central recess 102 is formed with a relatively large capacity. Here, as shown in FIG. 9A, a squish region a1 between the taper portion 100 on the piston top surface and the lower surface of the head causes flow resistance when the engine is in the intake stroke. Since the width bS in the piston radial direction is relatively narrow, the flow of intake air into the elliptical central recess 102 having a relatively large capacity is facilitated, and the volumetric efficiency is improved.

一方、図9(b)に示すピストン103ではそのテーパ部104のピストン半径方向の幅bLが全周にわたって比較的大きく、高さh2も大きく形成され、これに応じてピストン103の頂面の中央凹部105が図10(b)に示すように円型に形成され、この中央凹部105が比較的小容量に形成される。この場合、ピストン頂面のテーパ部104とヘッド下面間にできるスキッシュ領域a2でのピストン半径方向の幅bLが比較的広く確保され、正スキッシュ流fs、逆スキッシュ流−fsによるエンドガス部の乱れと、比較的容量の小さい円形を成す中央凹部105によるコンパクト燃焼室での燃焼促進が図られ、点火進角が可能となる。   On the other hand, in the piston 103 shown in FIG. 9B, the width bL of the taper portion 104 in the piston radial direction is relatively large over the entire circumference, and the height h2 is also large, and the center of the top surface of the piston 103 is accordingly formed. The concave portion 105 is formed in a circular shape as shown in FIG. 10B, and the central concave portion 105 is formed with a relatively small capacity. In this case, the width bL in the piston radial direction in the squish region a2 formed between the tapered portion 104 of the piston top surface and the lower surface of the head is ensured relatively wide, and the end gas portion is disturbed by the forward squish flow fs and the reverse squish flow -fs. Further, combustion is promoted in the compact combustion chamber by the central concave portion 105 having a relatively small capacity, and ignition advance is possible.

特開2005−127255号公報JP 2005-127255 A

ところで、図9(a)、図10(a)のピストン101では、中央凹部102が横に広く楕円型で比較的大容量をなすこととなり、ノックし易く、点火進角を図る上で問題を生じ易い。
一方、図9(b)、図10(b)のピストン103では、中央凹部105が比較的容量の小さい円形を成すコンパクト燃焼室を形成するので着火性が改善されるが、ピストン半径方向の幅bLが比較的大きなテーパ部104によりスキッシュ領域a2が大きく形成されることより、この場合、吸気ポートから中央凹部105内へ向かう吸気の流れe(図9(b)参照)にとっての流動抵抗が比較的大きくなり、体積効率が抑制され易い。
By the way, in the piston 101 of FIGS. 9A and 10A, the central recess 102 is wide and elliptical and has a relatively large capacity, which is easy to knock and causes a problem in aiming at the ignition advance angle. It is likely to occur.
On the other hand, in the piston 103 of FIG. 9B and FIG. 10B, the central recess 105 forms a compact combustion chamber having a relatively small volume and thus improves ignitability, but the width in the piston radial direction is improved. Since the squish region a2 is formed by the tapered portion 104 having a relatively large bL, in this case, the flow resistance for the intake flow e (see FIG. 9B) from the intake port into the central recess 105 is compared. The volume efficiency is likely to be suppressed.

本発明は上述のような問題点を解決するためになされたもので、その目的とするところは、吸入空気量の確保と点火進角を可能とすることで、出力向上を図れる内燃機関の燃焼室構造を提供することにある。   The present invention has been made to solve the above-described problems, and the object of the present invention is combustion of an internal combustion engine capable of improving the output by ensuring the intake air amount and enabling the ignition advance angle. It is to provide a chamber structure.

上記した目的を達成するために、請求項1の内燃機関の燃焼室構造は、シリンダヘッド下面とピストン上面とシリンダとで囲まれて燃焼室が形成される内燃機関の燃焼室構造において、前記シリンダヘッド下面は、平面視円形をなし、該平面視円形のエンジン長手方向に向かう所定の弦を挟んで一側に少なくとも一つの吸気バルブが設けられるとともに他側に少なくとも一つの排気バルブが設けられ、前記ピストン上面には、周縁に沿って同周縁からピストン中心方向に向かう円錐状のテーパ部が突き出し形成されるとともに中央に凹部が形成され、前記テーパ部は前記弦の近傍位置において、前記排気バルブの配設側部位より前記吸気バルブの配設側部位のピストン半径方向の幅が小さく形成されると共に両部位が段差を持って連続形成されたことを特長としている。   To achieve the above object, the combustion chamber structure of an internal combustion engine according to claim 1 is a combustion chamber structure of an internal combustion engine in which a combustion chamber is formed by being surrounded by a cylinder head lower surface, a piston upper surface and a cylinder. The lower surface of the head has a circular shape in plan view, and at least one intake valve is provided on one side with a predetermined string extending in the longitudinal direction of the engine in the plan view circular shape, and at least one exhaust valve is provided on the other side. On the upper surface of the piston, a conical taper portion protruding from the periphery toward the center of the piston is formed along the periphery, and a recess is formed in the center, and the taper portion is located near the string at the exhaust valve. The width of the piston radial direction of the intake valve arrangement side part is formed smaller than the arrangement side part of the intake valve, and both parts are continuously formed with a step. It is a feature that was.

請求項2の内燃機関の燃焼室構造は、請求項1記載の内燃機関の燃焼室構造において、前記シリンダヘッド下面は上記所定の弦を挟んで一側に一対の吸気バルブが設けられるとともに他側に一対の排気バルブが設けられていることを特徴としている。   The combustion chamber structure of the internal combustion engine according to claim 2 is the combustion chamber structure of the internal combustion engine according to claim 1, wherein the cylinder head lower surface is provided with a pair of intake valves on one side with the predetermined string interposed therebetween and the other side. It is characterized in that a pair of exhaust valves is provided.

請求項3の内燃機関の燃焼室構造は、請求項1記載の内燃機関の燃焼室構造において、前記シリンダヘッド下面は、前記弦を頂点として前記一側の面と他側の面とが互いに対峙するよう断面逆V字状に形成されていることを特徴としている。   The combustion chamber structure of the internal combustion engine according to claim 3 is the combustion chamber structure of the internal combustion engine according to claim 1, wherein the one surface and the other surface of the cylinder head lower surface face each other with the string as a vertex. It is characterized by being formed in an inverted V-shaped cross section.

本発明の請求項1の内燃機関の燃焼室構造によれば、吸気バルブの開放時に吸気ポートの開口より燃焼室内に向かう吸気は、開口と対向するピストン上面の円錐状のテーパ部との隙間に流入すると共に、そのテーパ部のうち段差手前側で吸気バルブの配設側部位が比較的短く形成されている内端縁を乗り越え容易に中央凹部に流入でき、流入促進による体積効率促進が図られ、しかも、テーパ部のピストン半径方向の幅が比較的大きい部位を確保できるので、中央凹部のコンパクト化を図り易く、その中央凹部の混合気の点火進角を図りやすく、これらの各点よりピストン上面における吸気側と排気側のテーパ部が異形状を成すので出力アップを図りやすくなる。   According to the combustion chamber structure of the internal combustion engine of claim 1 of the present invention, when the intake valve is opened, the intake air that is directed from the opening of the intake port into the combustion chamber is in the gap between the conical taper portion on the upper surface of the piston facing the opening. In addition to flowing in, the taper can easily flow over the inner end edge where the intake valve is located relatively short on the front side of the step, and flow into the central recess, facilitating volume efficiency by promoting inflow. In addition, since it is possible to secure a relatively large portion of the taper portion in the radial direction of the piston, it is easy to make the central concave portion compact and to facilitate the ignition advance of the air-fuel mixture in the central concave portion. Since the intake side and exhaust side tapered portions on the upper surface have different shapes, it is easy to increase the output.

請求項2の内燃機関の燃焼室構造によれば、弦を挟んで一側に一対の吸気バルブが設けられる場合も、両吸気ポートの開口より燃焼室内に向かう吸気は、両開口と対向するピストン上面の円錐状のテーパ部との隙間にそれぞれ流入すると共に、そのテーパ部のうち段差手前側で吸気バルブの配設側部位が比較的短く形成されている内端縁を乗り越え容易に中央凹部に流入でき、流入促進による体積効率を図れ、しかも、中央凹部のコンパクト化を図り易く、点火進角を図りやすく、これらの各点よりピストン上面における一対の吸気バルブ側と一対の排気バルブ側のテーパ部が異形状を成すことで、出力アップを図りやすくなる。   According to the combustion chamber structure of the internal combustion engine of claim 2, even when a pair of intake valves are provided on one side across the string, the intake air that is directed into the combustion chamber from the openings of both intake ports is a piston opposed to both openings. It flows into the gap with the conical taper portion on the upper surface, and it easily crosses the inner end edge where the installation side portion of the intake valve is formed relatively short on the front side of the step in the taper portion and easily enters the central recess. It is possible to flow in, volume efficiency can be achieved by facilitating inflow, and it is easy to make the central recess compact and facilitate ignition advance. From these points, the taper on the piston upper surface side and the pair of exhaust valve side on the piston upper surface It becomes easy to increase output because the part has an irregular shape.

請求項3の内燃機関の燃焼室構造によれば、シリンダヘッド下面の一側の面と他側の面とが互いに対峙する断面逆V字状に形成されることで、これらと対向するピストン上面の周縁の円錐状テーパ部との間の隙間確保が容易化され、スキッシュ流の生成が促進され、燃焼効率向上に寄与できる。   According to the combustion chamber structure of the internal combustion engine of claim 3, the upper surface of the piston opposed to each other is formed in a reverse V-shaped cross section in which one surface and the other surface of the cylinder head lower surface face each other. Securing a gap with the conical tapered portion at the periphery of the squeeze is facilitated, the generation of the squish flow is promoted, and the combustion efficiency can be improved.

以下、本発明の内燃機関の燃焼室構造を説明する。
本発明に係る内燃機関の燃焼室構造は、内燃機関としてのDOHC―4バルブ式の4気筒エンジン(以後単にエンジン1と記す)に適用されている。
ここでエンジン1はその本体が燃焼室Cを形成するシリンダSをエンジン長手方向(紙面垂直方向)Xに4つ順次等間隔で配設するシリンダブロック2と、その下部に結合されるオイルパン3と、その上部に結合されるシリンダヘッド4及びヘッドカバー5とで形成される。
Hereinafter, the combustion chamber structure of the internal combustion engine of the present invention will be described.
The combustion chamber structure of an internal combustion engine according to the present invention is applied to a DOHC-4 valve type four-cylinder engine (hereinafter simply referred to as engine 1) as an internal combustion engine.
Here, the engine 1 has a cylinder block 2 in which four cylinders S whose main body forms a combustion chamber C are sequentially arranged in the engine longitudinal direction (perpendicular to the plane of the paper) X at equal intervals, and an oil pan 3 coupled to the lower part thereof. And a cylinder head 4 and a head cover 5 coupled to the upper portion thereof.

シリンダブロック2は各シリンダSを覆うウオータージャケット6、外壁201、下部のスカート部202、その内部に枢支する長手方向(紙面垂直方向)Xに長いクランクシャフト7、そのクランクシャフト7の各シリンダSとの対向部にそれぞれ連結されるコンロッド8、各コンロッド8の上端にピン結合されるピストン9とを備える。なお、図1には1気筒のみ示し、他の気筒は同一構成のため、重複説明を略す。   The cylinder block 2 includes a water jacket 6 covering each cylinder S, an outer wall 201, a lower skirt portion 202, a crankshaft 7 which is long in the longitudinal direction (perpendicular to the plane of the drawing) X, and each cylinder S of the crankshaft 7 Connecting rods 8 respectively connected to the opposed parts, and pistons 9 pin-connected to the upper ends of the connecting rods 8. Note that FIG. 1 shows only one cylinder, and the other cylinders have the same configuration, and therefore, a duplicate description is omitted.

シリンダヘッド4には各シリンダSとの対向部に燃焼室Cに通じる吸気通路I側の吸気ポートipおよび排気通路E側の排気ポートepがそれぞれ二股状に形成され(図4参照)、吸気通路Iと燃焼室Cとは一対の吸気弁11により、排気通路Eと燃焼室Cとは一対の排気弁12によりそれぞれ開閉制御される。   In the cylinder head 4, an intake port ip on the intake passage I side and an exhaust port ep on the exhaust passage E side communicating with the combustion chamber C are formed in a bifurcated shape at a portion facing each cylinder S (see FIG. 4). I and the combustion chamber C are controlled to open and close by a pair of intake valves 11, and the exhaust passage E and the combustion chamber C are controlled to open and close by a pair of exhaust valves 12.

エンジン1の動弁機構はDOHC式であり、これによりクランク軸7の回転に伴って吸気弁11及び排気弁12が開閉駆動される。更に、エンジン1は吸気管噴射型(MPI)エンジン1として構成されており、各気筒の吸気ポートipにインジェクタ13が設けられ(ここでは1つのみ示した)、各インジェクタ13は不図示の燃料供給系に接続されると共に不図示の噴射コイル及びこれに接続されたエンジンコントローラによって開閉制御されるようになっている。   The valve mechanism of the engine 1 is a DOHC type, and as a result, the intake valve 11 and the exhaust valve 12 are driven to open and close as the crankshaft 7 rotates. Further, the engine 1 is configured as an intake pipe injection type (MPI) engine 1, and an injector 13 is provided at an intake port ip of each cylinder (only one is shown here), and each injector 13 is a fuel (not shown). It is connected to a supply system and is controlled to be opened and closed by an unillustrated injection coil and an engine controller connected thereto.

エンジン1の燃焼室C内の混合気はシリンダヘッド4下面の中心部に設けられる点火プラグ14により点火される。各点火プラグ14は不図示の点火回路の働きで順次混合気の着火作動を行っている。ここで燃焼した後の排ガスは排気弁12の開弁時にピストンの上昇に伴って排気ポートepから排気通路Eに流下し、図示しない触媒コンバータ及び消音器を経て外部に排出される。   The air-fuel mixture in the combustion chamber C of the engine 1 is ignited by a spark plug 14 provided at the center of the lower surface of the cylinder head 4. Each spark plug 14 performs the ignition operation of the air-fuel mixture sequentially by the action of an ignition circuit (not shown). The exhaust gas after burning here flows down from the exhaust port ep to the exhaust passage E as the piston rises when the exhaust valve 12 is opened, and is discharged outside through a catalytic converter and a silencer (not shown).

図5に示すように、エンジン1の各シリンダS内の燃焼室Cは、シリンダヘッド下面であるシリンダ対向面Fsとピストン上面Fpとシリンダ内面Fcとで囲まれて形成され、ピストン9の上下動に応じて容積が可変される。
ここで、シリンダヘッド下面であるシリンダ対向面Fsは、図4に示すように、平面視円形をなし、該平面視円形のエンジン長手方向Xに向かうと共にピストン中心線Lpと交差する弦A(太い2点差線参照)を挟んで一側に一対の吸気バルブ11が配設されるとともに他側に一対の排気バルブ12が配設されている。
As shown in FIG. 5, the combustion chamber C in each cylinder S of the engine 1 is formed by being surrounded by a cylinder facing surface Fs, a piston upper surface Fp, and a cylinder inner surface Fc that are lower surfaces of the cylinder head. The volume is varied according to the above.
Here, as shown in FIG. 4, the cylinder facing surface Fs, which is the lower surface of the cylinder head, has a circular shape in plan view, and extends in the engine longitudinal direction X of the circular shape in plan view and intersects the piston center line Lp. A pair of intake valves 11 is disposed on one side with a pair of exhaust valves 12 disposed on the other side with a two-point difference line (see two-point difference line) therebetween.

図5に示すように、シリンダヘッド下面であるシリンダ対向面Fsは弦Aを頂点とし、吸気側の面(一側)Fsiと排気側の面(他側)Fseとがそれぞれ傾斜平面をなし、互いに対峙するよう断面逆V字状に成形されている。
吸気側面Fsiには吸気ポートipと燃焼室Cとの連通と遮断を吸気バルブ11で行う開口O(吸気ポートip側)が一対形成され、排気側面Fseには排気ポートepと燃焼室Cとの連通と遮断を排気バルブ12で行う一対の開口O(排気ポートep側)が設けられている。
As shown in FIG. 5, the cylinder facing surface Fs, which is the lower surface of the cylinder head, has the chord A as a vertex, and the intake side surface (one side) Fsi and the exhaust side surface (other side) Fse each form an inclined plane, The cross section is shaped like an inverted V so as to face each other.
A pair of openings O (intake port ip side) for communicating and blocking between the intake port ip and the combustion chamber C by the intake valve 11 is formed on the intake side surface Fsi, and the exhaust port ep and the combustion chamber C are connected to the exhaust side surface Fse. A pair of openings O (exhaust port ep side) for communicating and blocking with the exhaust valve 12 are provided.

図1、2に示すように、シリンダS内に上下摺動自在に嵌挿されたピストン9はその頂部901が燃焼室Cと対向し、頂部901の下部周縁より筒状スカート部902及びその下方に連続して延びるコンロッド枢支部903とを一体的に形成した形状を成す。コンロッド枢支部903はピストン中心線Lpと交差するピストンピン904を介してコンロッド8にピン結合され、これによりピストン9、コンロッド8、クランクシャフト7とがクランク機構を成し、ピストン9がエンジン1の燃焼行程で受ける燃焼圧力をクランクシャフト7の回転力に変換している。
ピストン9の頂部901は図1〜図4に示すように、そのピストン頂面Fpの周縁に沿って同周縁からピストン中心方向に向かう円錐状のテーパ部16が突き出し形成され、テーパ部16に囲まれる中央に中央凹部17が形成される。
As shown in FIGS. 1 and 2, the piston 9 fitted in the cylinder S so as to be slidable up and down has a top portion 901 facing the combustion chamber C, and a cylindrical skirt portion 902 and its lower part from the lower peripheral edge of the top portion 901. The connecting rod pivotal support portion 903 that extends continuously is integrally formed. The connecting rod pivot 903 is pin-coupled to the connecting rod 8 via a piston pin 904 that intersects the piston center line Lp, whereby the piston 9, connecting rod 8, and crankshaft 7 form a crank mechanism. The combustion pressure received in the combustion stroke is converted into the rotational force of the crankshaft 7.
As shown in FIGS. 1 to 4, the top portion 901 of the piston 9 is formed with a conical taper portion 16 protruding from the periphery toward the center of the piston along the periphery of the piston top surface Fp. A central recess 17 is formed at the center.

図2、4に示すように、ピストンの円錐状のテーパ部16は環状に突き出し形成され、吸気ポートip側には一対の吸気バルブ11用のバルブリセス18が、排気ポートep側には一対の排気バルブ12用のバルブリセス19が間歇的に配備され、それぞれ凹状に削られて形成されている。このバルブリセス18、19はピストン9の圧縮行程後期において対向する各バルブの底面の一部を嵌合することで、相互の干渉を避けるよう機能し、エンジンの高圧縮比の確保を図るのに寄与している。   As shown in FIGS. 2 and 4, the conical taper portion 16 of the piston protrudes in an annular shape, and a pair of valve recesses 18 for the intake valve 11 is formed on the intake port ip side, and a pair of exhaust ports is formed on the exhaust port ep side. Valve recesses 19 for the valves 12 are provided intermittently, and each is formed by cutting into a concave shape. The valve recesses 18 and 19 function to avoid mutual interference by fitting part of the bottom surfaces of the opposing valves in the latter half of the compression stroke of the piston 9 and contribute to securing a high compression ratio of the engine. is doing.

各バルブリセス18、19は各一対の吸気バルブ11及び排気バルブ12がピストン中心線Lpとに対して逆方向に傾斜しているため(図1、3参照)、これに応じて各バルブの底面も傾きを持ち、これと対向する各バルブリセス18、19の底面も、ピストン頂面Fpに対して傾斜している。
図4、5に示すように、ピストン頂部901より円錐面を成して突き出すテーパ部16はそのピストン中心線Lpと交差するエンジン長手方向Xの中心線Lxと重なる弦A(図5参照)の両側部においてそれぞれ形状が異なるように、即ち、異形状面を成して形成される。
Since each of the valve recesses 18 and 19 has the pair of intake valves 11 and exhaust valves 12 inclined in the opposite direction with respect to the piston center line Lp (see FIGS. 1 and 3), the bottom surface of each valve is accordingly The bottom surfaces of the valve recesses 18 and 19 that have an inclination and are opposed thereto are also inclined with respect to the piston top surface Fp.
As shown in FIGS. 4 and 5, the taper portion 16 protruding in a conical surface from the piston top portion 901 has a string A (see FIG. 5) that overlaps the center line Lx in the engine longitudinal direction X intersecting the piston center line Lp. The two side portions are formed so as to have different shapes, that is, formed in different shapes.

図4において、弦Aの上下2箇所の近傍位置(エンジン長手方向Xの中心線Lxの近傍位置でもある)におけるテーパ部16は、そのうちの紙面左側の排気バルブ12の配設側部位e1のピストン半径方向の幅b1より右側の吸気バルブ11の配設側部位e2のピストン半径方向の幅b2が小さく形成される。更に、これら両部位e1、e2の突合せ部分はピストン半径方向において段差δ(=b1−b1)を保つ段部cを成しており、アールr部によりエッジ状部を排除して、連続形成される。   In FIG. 4, the taper portion 16 in the vicinity of the upper and lower two positions of the string A (also in the vicinity of the center line Lx in the engine longitudinal direction X) is the piston of the arrangement side portion e1 of the exhaust valve 12 on the left side of the page. The piston radial direction width b2 of the arrangement side portion e2 of the intake valve 11 on the right side is formed smaller than the radial width b1. Further, the abutting portions of both the portions e1 and e2 form a stepped portion c that maintains a step δ (= b1−b1) in the piston radial direction, and is continuously formed by excluding the edge-shaped portion by the radius r portion. The

ここで、燃焼室Cの上壁となるシリンダヘッド4の下面である排気側面Fseと吸気側面Fsiはそれぞれの形状が燃焼室Cの下壁に沿うように、即ち、テーパ部16と所定隙間を保って対向するよう形成されている。
図4、5において、燃焼室Cの周縁部のうち、弦Aの左半部においては、燃焼室Cの底面となるピストン頂面Fpのテーパ部16のうちの一対の排気バルブリセス間域m1及び突合せ部m2とが形成され、これに対して上壁となるシリンダヘッド下面である排気側面Fse(図3参照)との間にできるスキッシュ領域seのピストン半径方向の幅b1が比較的大きく形成される。
Here, the exhaust side surface Fse and the intake side surface Fsi, which are the lower surface of the cylinder head 4 serving as the upper wall of the combustion chamber C, are arranged so that their shapes follow the lower wall of the combustion chamber C, that is, with a predetermined gap from the tapered portion 16. It is formed so as to be opposed to each other.
4 and 5, in the left half portion of the string A in the peripheral portion of the combustion chamber C, a pair of exhaust valve recess interspaces m1 in the taper portion 16 of the piston top surface Fp serving as the bottom surface of the combustion chamber C and A butt portion m2 is formed, and the width b1 in the piston radial direction of the squish region se formed between the exhaust side Fse (see FIG. 3) that is the lower surface of the cylinder head that is the upper wall is formed relatively large. The

一方、図3、4において、燃焼室Cの周縁部のうち、弦Aの右半部には、燃焼室Cの底面となるピストン頂面Fpのテーパ部16のうちの一対の吸気バルブリセス間域n1と突合せ部n2とが形成される。これらのピストン半径方向の幅はb1とb2(<b1)と互いに異なるよう形成される。これに伴い、これらと対向し上壁となる吸気側面Fsiとの間にできるスキッシュ領域si(図3参照)のピストン半径方向の幅も異なることとなる。テーパ部16の弦Aの右半部は、突合せ部n2でのピストン半径方向の幅b2(<b1)が小さく形成され、これにより吸気ポートipの開口Oから燃焼室Cへ向かう吸気の流動抵抗を比較的小さくでき、吸入抵抗低減により体積効率の向上を図れるようにしている。テーパ部16の左右が異形状に形成され
図4において、弦Aの左半部の上下一対の突合せ部m2と、右半部の上下一対の突合せ部n2との間の段部cが右半部の一対の吸気バルブリセス間域n1側より上下一対の突合せ部n2に迂回してきた気流の流動方向をヒストン中心線Lp側である中央凹部17側に偏向させるガイドとして機能でき、この部位より比較的強い気流を中央凹部17側に流入させて、混合気の攪拌による燃焼促進に寄与できる。
このような内燃機関の燃焼室構造を備えるエンジン1の作動を説明する。
エンジン駆動時において、排気行程の終了と吸入行程の開始の時期に達するとする。
この際、ピストン9が上死点近傍にあり、排気バルブ12の底部が排気バルブリセス19に接近する状態より閉方向に変動し、吸気バルブ底部が吸気バルブリセス18に接近する方向に開作動し、排気ポートepの開口Oより排気が排出終了にあり、吸気ポートipの開口Oより吸気が流入を開始する。
On the other hand, in FIGS. 3 and 4, in the right half of the string A in the peripheral portion of the combustion chamber C, the region between the pair of intake valve recesses in the taper portion 16 of the piston top surface Fp serving as the bottom surface of the combustion chamber C. n1 and butt portion n2 are formed. These piston radial widths are different from b1 and b2 (<b1). Accordingly, the width in the piston radial direction of the squish area si (see FIG. 3) formed between the intake side Fsi that is opposed to these and the intake side Fsi is also different. The right half of the string A of the taper portion 16 is formed with a small piston radial width b2 (<b1) at the butting portion n2, and thereby the flow resistance of the intake air from the opening O of the intake port ip to the combustion chamber C is reduced. The volume efficiency can be improved by reducing the suction resistance. In FIG. 4, the stepped portion c between the pair of upper and lower butted portions m2 in the left half of the string A and the pair of upper and lower butted portions n2 in the right half is the right half. It can function as a guide for deflecting the flow direction of the airflow detoured to the pair of upper and lower butting portions n2 from the paired intake valve recess inter-region n1 side to the central concave portion 17 side that is the histone center line Lp side. A strong airflow can be flowed into the central recessed part 17 side, and it can contribute to the combustion promotion by stirring of air-fuel | gaseous mixture.
The operation of the engine 1 having such a combustion chamber structure of the internal combustion engine will be described.
It is assumed that when the engine is driven, the end of the exhaust stroke and the start of the intake stroke are reached.
At this time, the piston 9 is in the vicinity of the top dead center, the bottom of the exhaust valve 12 changes in the closing direction from the state in which the exhaust valve 12 approaches the exhaust valve recess 19, and the opening operation is performed in the direction in which the intake valve bottom approaches the intake valve recess 18. Exhaust is exhausted from the opening O of the port ep, and intake starts to flow in from the opening O of the intake port ip.

この際、燃焼室Cの周縁部のピストン頂面Fpのテーパ部16とシリンダヘッド1の下面の周縁部は接近しており、右半部の一対の吸気ポートipの開口Oよりの吸気の流動は規制される状態にあるが、特に、ここでは一対の吸気バルブリセス間域n1におけるピストン半径方向の幅がb1(>b2)と比較的大きく幅がb2と比較的小さい上下一対の突合せ部n2に吸気流が分岐して迂回することとなり、しかも、吸気流は段部cによる燃焼室C中央方向への偏向機能も受け、スムーズに中央凹部17に流入でき、吸気の吸入抵抗を低減でき、体積効率の向上に寄与できる。   At this time, the tapered portion 16 of the piston top surface Fp at the peripheral portion of the combustion chamber C and the peripheral portion of the lower surface of the cylinder head 1 are close to each other, and the flow of intake air from the openings O of the pair of intake ports ip in the right half portion. However, in this case, in the pair of intake valve recess inter-region n1, the pair of upper and lower butting portions n2 are relatively small in width in the piston radial direction b1 (> b2) and relatively small in width b2. The intake air flow is diverted and detoured, and the intake air flow also receives a function of deflecting the combustion chamber C toward the center by the step portion c, and can smoothly flow into the central recess 17 to reduce the intake resistance of the intake air. Contributes to improved efficiency.

エンジン1が圧縮行程に入り、ピストン9が圧縮上死点に向けて上昇るとする。この場合、シリンダヘッド下面であるシリンダ対向面Fsとピストン上面Fpとシリンダ内面Fcとで囲まれて形成される燃焼室Cの混合気は、ピストン9の上昇に応じて容積が低減して加圧される。次いで、シリンダヘッド下面であるシリンダ対向面Fsとピストン頂部901のテーパ部16とにより形成されるスキッシュ領域se、siよりスキッシュ流fsが中央凹部17に噴出され、中央凹部17の混合気を更に攪拌し、点火容易化、燃焼促進を図れる。   It is assumed that the engine 1 enters a compression stroke and the piston 9 rises toward the compression top dead center. In this case, the air-fuel mixture in the combustion chamber C formed by being surrounded by the cylinder facing surface Fs that is the lower surface of the cylinder head, the piston upper surface Fp, and the cylinder inner surface Fc is reduced in volume as the piston 9 rises and is pressurized. Is done. Next, a squish flow fs is ejected from the squish region se and si formed by the cylinder facing surface Fs, which is the lower surface of the cylinder head, and the tapered portion 16 of the piston top portion 901 to the central concave portion 17, and the air-fuel mixture in the central concave portion 17 is further stirred. This facilitates ignition and promotes combustion.

特に、ピストン頂部901のテーパ部16のうち、弦Aを頂点として排気側の面(図4で左側の面)Fseと一対の排気バルブリセス間域m1及び突合せ部m2間のスキッシュ領域seは全域のピストン半径方向の幅b1が比較的大きく形成され(図3における実線表示参照)、十分なスキッシュ流fsを形成できる。しかも、弦Aを頂点として吸気側の面(図4で右側の面)Fsiと一対の吸気バルブリセス間域n1との間にできるスキッシュ領域siも同様に比較的ピストン半径方向の幅b1が大きく形成され、十分なスキッシュ流を形成できる。   In particular, in the taper portion 16 of the piston top portion 901, the exhaust side surface (left surface in FIG. 4) Fse and the squish region se between the pair of exhaust valve recesses m1 and the butting portion m2 with the string A as the apex are the entire region. The width b1 in the piston radial direction is formed to be relatively large (see the solid line display in FIG. 3), and a sufficient squish flow fs can be formed. Moreover, the squish area si formed between the intake side surface (the right side surface in FIG. 4) Fsi and the pair of intake valve recess areas n1 with the string A as the apex is similarly formed with a relatively large width b1 in the piston radial direction. And a sufficient squish flow can be formed.

このように図1乃至図5に示す内燃機関の燃焼室構造によれば、弦Aを頂点として排気側及び吸気側の各スキッシュ領域se、siのスキッシュ流fsが十分に生成され、例えば、図7(b)に示すように楕円型で容積が大きくなる従来の中央凹部102と比べて比較的小容量で、コンパクトな中央凹部17が混合気の攪拌を確実に促進でき、着火性確保、燃焼促進を図れ、エンジンの出力向上に寄与できる。   As described above, according to the combustion chamber structure of the internal combustion engine shown in FIGS. 1 to 5, the squish flow fs in the exhaust side and intake side squish regions se and si with the string A as the apex is sufficiently generated. As shown in FIG. 7 (b), the compact central concave portion 17 with a relatively small volume compared to the conventional central concave portion 102 having an elliptical shape and a large volume can surely promote the stirring of the air-fuel mixture, ensuring ignitability and combustion. It can be promoted and can contribute to the improvement of engine output.

なお、図8(a),(b)には、本発明者が同一エンジンを用い、ピストンのみが異なる形状のものを用いて行った点火時期特性試験と体積効率特性の各結果を示す。ここでの各線図は、本願発明の適用されたテーパ部が異形状のピストン(本願発明適用:○)の場合、図9(a)の従来のピストン101(テーパ部小:□)の場合、図9(b)の従来のピストン103(テーパ部大:△)との場合を対比して示した。図8(a)で明らかなように、本願発明の適用されたピストン(本願発明適用:○)の場合、各回転数域において、他の同一条件での計測値と比較し、点火進角δT(図中の各黒塗り印が対比された同一条件での計測値)を図ることができた点が確認された。更に、図8(b)で明らかなように、本願発明の適用されたピストン(本願発明適用:○)の場合、各回転数域において、体積効率アップ量δQが図られていることが確認された。   FIGS. 8A and 8B show the results of the ignition timing characteristic test and the volumetric efficiency characteristic that the present inventor conducted using the same engine and only the pistons having different shapes. Each diagram here shows the case where the tapered portion to which the present invention is applied is an irregularly shaped piston (application of the present invention: ○), the case of the conventional piston 101 (small tapered portion: □) in FIG. The comparison with the conventional piston 103 (taper portion large: Δ) in FIG. 9B is shown in comparison. As is clear from FIG. 8A, in the case of the piston to which the present invention is applied (application of the present invention: ◯), the ignition advance angle δT is compared with the measured value under other same conditions in each rotation speed range. It was confirmed that (measured values under the same conditions in which each black mark in the figure was compared) could be achieved. Further, as is clear from FIG. 8B, in the case of the piston to which the present invention is applied (application of the present invention: ◯), it is confirmed that the volume efficiency increase amount δQ is achieved in each rotation speed range. It was.

上述のところにおいて、ピストン頂部901のテーパ部16のうち、弦Aを頂点として吸気側の面(一側)Fsiと対向した突合せ部n2は一対の吸気バルブリセス間域n1と異なり、ピストン半径方向の幅がb1と大きく形成され、スキッシュ流生成に寄与していたが、場合により、図4に2点差線d1で示すように、上下一対の突合せ部n2におけるピストン半径方向の幅b1と同等に形成して、吸気流の流入抵抗を低減して、体積効率の向上を図るようにしても良く、ピストン半径方向の幅b1をb1とb2の中間値に設定して、流入抵抗低減とスキッシュ流の生成とをそれぞれ適度に得られるように設定することも可能である。   In the above description, of the tapered portion 16 of the piston top portion 901, the butting portion n2 facing the intake side surface (one side) Fsi with the chord A as the apex is different from the pair of intake valve recess inter-region n1, and in the piston radial direction. The width was formed as large as b1 and contributed to the generation of the squish flow. In some cases, as shown by a two-dotted line d1 in FIG. 4, it was formed to be equal to the width b1 in the piston radial direction at the pair of upper and lower butting portions n2. Then, the inflow resistance of the intake air flow may be reduced to improve the volume efficiency. The width b1 in the piston radial direction is set to an intermediate value between b1 and b2, and the inflow resistance is reduced and the squish flow is reduced. It is also possible to set the generation so as to be obtained appropriately.

更に、図1のエンジンにおけるピストン頂部901のテーパ部16はピストン中心線と交差する弦Aを挟んで吸気ポートip側と排気ポートep側とに異なる形状を採るように形成されていたが、場合により、図6に2点差線で示すように、吸入抵抗低減の効果を強化したい場合は弦Aを排気側(図中左側)に偏らせて設定しても良く、逆にスキッシュ生成による点火性、燃焼効率向上のためには2点差線で示すように吸気側(図中左側)に偏らせて設定しても良い。   Further, the tapered portion 16 of the piston top portion 901 in the engine of FIG. 1 is formed so as to have different shapes on the intake port ip side and the exhaust port ep side across the string A intersecting the piston center line. Accordingly, as shown by a two-dotted line in FIG. 6, when it is desired to enhance the effect of reducing the suction resistance, the string A may be set so as to be biased toward the exhaust side (the left side in the figure). In order to improve the combustion efficiency, it may be set so as to be biased toward the intake side (left side in the figure) as indicated by a two-dot difference line.

本発明の一実施形態としてのエンジンの燃料制御装置が適用されたエンジンの概略断面図である。1 is a schematic cross-sectional view of an engine to which a fuel control device for an engine according to an embodiment of the present invention is applied. 図1のエンジンのピストンの斜視図である。It is a perspective view of the piston of the engine of FIG. 図1のエンジンのピストン頂部と吸入抵抗及びスキッシュ流の生成説明図を示している。The piston top part of the engine of FIG. 1, the suction | inhalation resistance, and the production | generation explanatory drawing of the squish flow are shown. 図1のエンジンのピストン頂部及び吸気、排気ポートの拡大平面図である。FIG. 2 is an enlarged plan view of a piston top portion and intake / exhaust ports of the engine of FIG. 1. 図1のエンジンのピストン頂部とシリンダヘッド下面の関係を説明する概略斜視図である。It is a schematic perspective view explaining the relationship between the piston top part of the engine of FIG. 1, and a cylinder head lower surface. 図1のエンジンのピストン頂部の変形例の平面図である。It is a top view of the modification of the piston top part of the engine of FIG. 図1のエンジンのピストン頂部を示し、側面視より平面視に向けて目視方向角を(a)〜(g)に向けて順次異なるようにした複数の斜視図で、(A)は図1の吸気側と排気側のテーパ部が異形状のピストン頂部を、(B)は従来例を示す。1 is a plurality of perspective views showing a piston top portion of the engine of FIG. 1 and sequentially changing the viewing direction angle from (a) to (g) from a side view to a plan view. (B) shows a conventional example, in which the tapered portions on the intake side and the exhaust side have different shapes. 図1のエンジンの燃料制御装置と従来例の各機能特性線図であり、(a)は点火時期特性を、(b)は体積効率特性を示す特性線図である。2 is a functional characteristic diagram of the engine fuel control device of FIG. 1 and a conventional example, where (a) is an ignition timing characteristic, and (b) is a characteristic diagram showing a volumetric efficiency characteristic. FIG. 従来のエンジンにおけるピストン頂部のテーパ部の側面説明図で、(a)は小幅のテーパ部の場合、(b)は大幅のテーパ部の場合を示す。It is side surface explanatory drawing of the taper part of the piston top part in the conventional engine, (a) shows the case of a small taper part, (b) shows the case of a large taper part. 従来のエンジンにおけるピストン頂部のテーパ部の平面説明図で、(a)は小幅のテーパ部の場合、(b)は大幅のテーパ部の場合を示す。It is plane explanatory drawing of the taper part of the piston top part in the conventional engine, (a) shows the case of a small taper part, (b) shows the case of a large taper part.

符号の説明Explanation of symbols

1 エンジン
11 吸気バルブ
12 排気バルブ
16 テーパ部
17 中央凹部
b1、b2 ピストン半径方向の幅
e1 排気バルブの配設側部位
e2 吸気バルブの配設側部位
A 弦
C 燃焼室
Fp ピストン上面
X エンジン長手方向
DESCRIPTION OF SYMBOLS 1 Engine 11 Intake valve 12 Exhaust valve 16 Taper part 17 Center recessed part b1, b2 Piston radial width e1 Exhaust valve arrangement side part e2 Intake valve arrangement side part A String C Combustion chamber Fp Piston upper surface X Engine longitudinal direction

Claims (3)

シリンダヘッド下面とピストン上面とシリンダとで囲まれて燃焼室が形成される内燃機関の燃焼室構造において、
前記シリンダヘッド下面は、平面視円形をなし、該平面視円形のエンジン長手方向に向かう所定の弦を挟んで一側に少なくとも一つの吸気バルブが設けられるとともに他側に少なくとも一つの排気バルブが設けられ、
前記ピストン上面には、周縁に沿って同周縁からピストン中心方向に向かう円錐状のテーパ部が突き出し形成されるとともに中央に凹部が形成され、
前記テーパ部は前記弦の近傍位置において、前記排気バルブの配設側部位より前記吸気バルブの配設側部位のピストン半径方向の幅が小さく形成されると共に両部位が段差を持って連続形成されたことを特長とする内燃機関の燃焼室構造。
In the combustion chamber structure of the internal combustion engine in which the combustion chamber is formed by being surrounded by the cylinder head lower surface, the piston upper surface and the cylinder,
The lower surface of the cylinder head has a circular shape in plan view, and at least one intake valve is provided on one side and at least one exhaust valve is provided on the other side across a predetermined string extending in the engine longitudinal direction of the circular shape in plan view. And
On the upper surface of the piston, a conical taper portion protruding from the peripheral edge toward the piston center along the peripheral edge is formed and a concave portion is formed in the center,
The tapered portion is formed at a position in the vicinity of the chord so that the width in the piston radial direction of the portion on the side where the intake valve is disposed is smaller than the portion on the side where the exhaust valve is disposed, and both portions are continuously formed with a step. A combustion chamber structure of an internal combustion engine characterized by that.
請求項1記載の内燃機関の燃焼室構造において、
前記シリンダヘッド下面は上記所定の弦を挟んで一側に一対の吸気バルブが設けられるとともに他側に一対の排気バルブが設けられていることを特徴とする請求項1記載の内燃機関の燃焼室構造。
The combustion chamber structure of the internal combustion engine according to claim 1,
2. The combustion chamber of an internal combustion engine according to claim 1, wherein the cylinder head lower surface is provided with a pair of intake valves on one side and a pair of exhaust valves on the other side across the predetermined string. Construction.
請求項1記載の内燃機関の燃焼室構造において、
前記シリンダヘッド下面は、前記弦を頂点として前記一側の面と他側の面とが互いに対峙するよう断面逆V字状に形成されていることを特徴とする請求項1記載の内燃機関の燃焼室構造。
The combustion chamber structure of the internal combustion engine according to claim 1,
2. The internal combustion engine according to claim 1, wherein the lower surface of the cylinder head is formed in an inverted V-shaped cross section so that the surface on one side and the surface on the other side face each other with the string as a vertex. Combustion chamber structure.
JP2005297749A 2005-10-12 2005-10-12 Combustion chamber structure of internal combustion engine Expired - Fee Related JP4270189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005297749A JP4270189B2 (en) 2005-10-12 2005-10-12 Combustion chamber structure of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005297749A JP4270189B2 (en) 2005-10-12 2005-10-12 Combustion chamber structure of internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007107423A JP2007107423A (en) 2007-04-26
JP4270189B2 true JP4270189B2 (en) 2009-05-27

Family

ID=38033484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005297749A Expired - Fee Related JP4270189B2 (en) 2005-10-12 2005-10-12 Combustion chamber structure of internal combustion engine

Country Status (1)

Country Link
JP (1) JP4270189B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103154462B (en) * 2010-10-15 2015-07-22 三菱自动车工业株式会社 Intake port fuel injection engine
JP5894520B2 (en) * 2012-03-30 2016-03-30 本田技研工業株式会社 Internal combustion engine
JP2022022938A (en) * 2020-07-09 2022-02-07 秀樹 早川 Engine of concave piston head and exhaust gas interlocking intake device

Also Published As

Publication number Publication date
JP2007107423A (en) 2007-04-26

Similar Documents

Publication Publication Date Title
JP5748156B2 (en) Piston arranged to reciprocate in the combustion engine cylinder
JPS5949407B2 (en) Combustion chamber of internal combustion engine
JP4054223B2 (en) In-cylinder injection engine and control method for in-cylinder injection engine
EP2278137B1 (en) Two-stroke internal combustion engine
JP5971321B2 (en) Combustion chamber structure of direct injection engine
JP2007113464A (en) Cylinder direct injection engine
JP4270189B2 (en) Combustion chamber structure of internal combustion engine
JP4438726B2 (en) Combustion chamber structure of spark ignition engine
JP7189683B2 (en) Intake system for internal combustion engine
KR20010041124A (en) Internal combustion engine
JP3982482B2 (en) Combustion chamber structure of direct injection internal combustion engine
JP3201790B2 (en) Engine intake device and intake supply method
JP3775038B2 (en) In-cylinder injection spark ignition internal combustion engine piston
JPH06117250A (en) Two-point ignition engine
JP5664349B2 (en) Internal combustion engine
JPS5840258Y2 (en) Combustion chamber of internal combustion engine
JP2022136396A (en) Combustion chamber structure for engine
JP2022136395A (en) Combustion chamber structure for engine
JP2022136399A (en) Combustion chamber structure for engine
JP2022136397A (en) Combustion chamber structure for engine
JP3194602B2 (en) Engine intake system
JP2010019143A (en) Internal combustion engine
JP3903581B2 (en) Piston for in-cylinder internal combustion engine
JP2022136398A (en) Combustion chamber structure for engine
JP4216944B2 (en) Combustion chamber structure of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4270189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees