JP4269392B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP4269392B2
JP4269392B2 JP05252199A JP5252199A JP4269392B2 JP 4269392 B2 JP4269392 B2 JP 4269392B2 JP 05252199 A JP05252199 A JP 05252199A JP 5252199 A JP5252199 A JP 5252199A JP 4269392 B2 JP4269392 B2 JP 4269392B2
Authority
JP
Japan
Prior art keywords
heat storage
heat
compressor
hot water
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05252199A
Other languages
Japanese (ja)
Other versions
JP2000249419A (en
Inventor
繁治 平良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP05252199A priority Critical patent/JP4269392B2/en
Publication of JP2000249419A publication Critical patent/JP2000249419A/en
Application granted granted Critical
Publication of JP4269392B2 publication Critical patent/JP4269392B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、たとえば給湯機能付き空気調和機等の冷凍装置に関する。
【0002】
【従来の技術】
従来、給湯機能付き空気調和機は、圧縮機と凝縮器との間から高温のHCFC(ハイドロクロロフルオロカーボン)22系冷媒を給湯用熱交換器に供給して、この給湯用熱交換器でHCFC22系冷媒と水との間で熱交換して、50℃から60℃の湯を得、さらに、この湯を夜間電力を利用して、大容量のヒータで加熱して、70℃以上の湯を得て、この70℃以上の湯をタンクに蓄えるようにしている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来の給湯機能付き空気調和機では、70℃以上の高温の湯を得るために、大容量のヒータを必要とするために、ランニングコストおよび製造コストが高くなるという問題があった。
【0004】
また、給湯機能を持たない空気調和機においても、HCFC22系冷媒を用いているが、圧縮機から吐出されるHCFC22系冷媒の温度が十分に高くないため、暖房能力、デフロスト能力が低いという問題があった。
【0005】
そこで、この発明の目的は、給湯能力、暖房能力、デフロスト能力を向上できる冷凍装置を提供することにある。より詳しくは、たとえば、給湯機能付き冷凍装置については、ヒータを用いることなく、あるいは、大容量ではなくて小容量のヒータを用いて、たとえば70℃以上の高温の湯を得ることができて、ランニングコストおよび製造コストが安い給湯機能付き冷凍装置を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するため、請求項1の発明の冷凍装置は、
圧縮機、凝縮器、減圧機構および蒸発器を順次接続してなる主冷媒回路と、
上記圧縮機からの廃熱を蓄える蓄熱槽内に設けた蓄熱熱交換器を有して上記蓄熱槽内に蓄えられた熱を回収して上記主冷媒回路に供給する蓄熱回収回路と、
上記主冷媒回路および蓄熱回収回路に充填されたHFC(ハイドロフルオロカーボン)32系冷媒と
を備え
上記圧縮機は、蓄熱媒体を収容した上記蓄熱槽内に配置されており、
上記蓄熱槽内において、上記圧縮機の外周面に上記蓄熱熱交換器が接触している
ことを特徴としている。
【0007】
上記構成の冷凍装置によれば、上記蓄熱媒体を収容した蓄熱槽内に配置された圧縮機からの廃熱の一部は蓄熱槽内の蓄熱媒体に蓄えられる。また、上記圧縮機からの廃熱の他の一部は、この圧縮機の外周面に接触している蓄熱熱交換器に、直接伝達される。そして、この蓄熱槽の蓄熱媒体に蓄えられた熱と、圧縮機からその外周面に接触している蓄熱熱交換器に直接伝えられた熱とは、蓄熱熱交換器を有する蓄熱回収回路によって回収されて、主冷媒回路に供給される。したがって、この主冷媒回路の圧縮機からの吐出されたHFC32系冷媒ガスの温度は高温になる。
【0008】
それに加えて、上記主冷媒回路および蓄熱回収回路に充填されているHFC32系冷媒はHCFC22系冷媒に比べて断熱指数が大きいため、圧縮機から吐出されたHFC32系冷媒ガスの温度がHCFC22系冷媒ガスの温度に比べて10〜20℃も高くなる。したがって、このHFC32系冷媒と蓄熱回収回路との相乗作用によって、上記圧縮機から吐出されるHFC32系冷媒の温度はたとえば70℃を越えた温度になる。したがって、請求項1の冷凍装置は、暖房能力が高くなり、デフロスト能力が高くなる。
また、請求項2の発明の冷凍装置は、
圧縮機、凝縮器、減圧機構および蒸発器を順次接続してなる主冷媒回路と、
上記圧縮機からの廃熱を蓄える蓄熱槽内に設けた蓄熱熱交換器を有して上記蓄熱槽内に蓄えられた熱を回収して上記主冷媒回路に供給する蓄熱回収回路と、
上記主冷媒回路および蓄熱回収回路に充填されたHFC32系冷媒と、
上記HFC32系冷媒と水との間で熱交換する給湯用熱交換器を有する給湯回路と
を備え
上記圧縮機は、蓄熱媒体を収容した上記蓄熱槽内に配置されており、
上記蓄熱槽内において、上記圧縮機の外周面に上記蓄熱熱交換器が接触している
ことを特徴としている。
【0009】
上記構成の冷凍装置によれば、上記蓄熱媒体を収容した蓄熱槽内に配置された圧縮機からの廃熱の一部は蓄熱槽内の蓄熱媒体に蓄えられる。また、上記圧縮機からの廃熱の他の一部は、この圧縮機の外周面に接触している蓄熱熱交換器に、直接伝達される。そして、この蓄熱槽の蓄熱媒体に蓄えられた熱と、圧縮機からその外周面に接触している蓄熱熱交換器に直接伝えられた熱とは、蓄熱熱交換器を有する蓄熱回収回路によって回収されて、主冷媒回路に供給される。したがって、この主冷媒回路の圧縮機からの吐出されたHFC32系冷媒ガスの温度は高温になる。
【0010】
それに加えて、上記主冷媒回路、蓄熱回収回路および給湯回路に充填されているHFC32系冷媒はHCFC22系冷媒に比べて断熱指数が大きいため、圧縮機から吐出されたHFC32系冷媒ガスの温度がHCFC22系冷媒ガスの温度に比べて10〜20℃も高くなる。したがって、このHFC32系冷媒と蓄熱回収回路との相乗作用によって、上記圧縮機から吐出されるHFC32系冷媒の温度はたとえば70℃を越えた温度になる。したがって、この冷凍装置の暖房能力、デフロスト能力が高くなる。また、この高温のHFC32系冷媒と水とを給湯用熱交換器で熱交換することによって、ヒータを用いることなく、あるいは、大容量ではなくて小容量のヒータを用いて、70℃以上の極めて高温の湯を得ることができる。このように、70℃以上の高温の湯が得ることができる上に、ヒータを用いないで、あるいは、小容量のヒータを用いるので、ランニングコストおよび製造コストが安い給湯機能付き冷凍装置を得ることができる。
【0011】
【発明の実施の形態】
以下、この発明の冷凍装置を、一実施の形態の給湯機能付き空気調和機により詳細に説明する。
【0012】
図1に示すように、この給湯機能付き空気調和機は、圧縮機1と、四路切換弁2と、ガス閉鎖弁3と、室内熱交換器5と、液閉鎖弁6と、減圧機構の一例としての膨張弁7と、室外熱交換器8とを順次配管で接続して、主冷媒回路10を形成している。図1の四路切換弁2は暖房運転状態を示し、室内熱交換器5は凝縮器として機能し、室外熱交換器8は蒸発器として機能する。
【0013】
上記圧縮機1は、モータ一体型で、図示しないが、ケーシング1a内に圧縮機本体とその圧縮機本体を駆動するモータとを収容してなる。上記圧縮機1は、蓄熱媒体を収容した蓄熱槽22内に配置し、この蓄熱槽22内に、圧縮機1の外周面に接触させた蓄熱熱交換器23を設けている。
【0014】
上記蓄熱熱交換器23と弁24とを直列に接続してなる蓄熱回収回路25を、上記室外熱交換器8と膨張弁7との間の配管と、圧縮機1の吸い込み側との間に接続している。
【0015】
また、上記四路切換弁2とガス閉鎖弁3との間の配管と、室内熱交換器5とガス閉鎖弁6との間の配管とを、弁31と給湯用熱交換器32の冷媒通路部33とを直列接続してなる給湯用冷媒回路35で接続している。さらに、上記給湯用熱交換器32の水通路部34と湯タンク36とポンプ37を順次接続して、給湯用水回路40を形成している。上記給湯用冷媒回路35と給湯用水回路40とで給湯回路50を形成している。
【0016】
上記主冷媒回路10と蓄熱回収回路25と給湯用冷媒回路35にHFC(ハイドロフルオロカーボン)32系冷媒を充填している。ここで、HFC32系冷媒とは、HFC32冷媒単体あるいはHFC32冷媒を含む混合冷媒をいう。
【0017】
上記構成の給湯機能付き空気調和機において、上記圧縮機1から吐出された高温高圧のHFC32系冷媒はガス閉鎖弁3を通って室内熱交換器5で室内を暖房するために室内に熱を放出して凝縮する。そして、上記室内熱交換器5からのHFC32系冷媒は液閉鎖弁6を通り、さらに、膨張弁7を通って減圧されて、室外熱交換器8で外部より吸熱して蒸発して、四路切換弁2を通って圧縮機1に吸入される。
【0018】
一方、上記圧縮機1からの廃熱は蓄熱槽22内の蓄熱媒体に蓄えられている。そして、上記膨張弁7からのHFC32系冷媒の一部は、蓄熱回収回路25の弁24を通り、さらに、蓄熱熱交換器23で圧縮機1からの廃熱を蓄熱媒体を介して吸収して、圧縮機1に吸入される。このように、蓄熱槽22の蓄熱媒体に蓄えられた圧縮機1の廃熱は、蓄熱熱交換器23を有する蓄熱回収回路25によって回収されて、主冷媒回路10に供給される。したがって、この主冷媒回路10の圧縮機1からの吐出HFC32系冷媒ガスの温度は高温になる。
【0019】
それに加えて、上記主冷媒回路10、蓄熱回収回路25および給湯用冷媒回路35に充填されているHFC32系冷媒は、HCFC22系冷媒に比べて断熱指数が大きい。そのため、同じ圧縮比で圧縮した場合で比較すると、HFC32系冷媒ガスの温度がHCFC22系冷媒ガスの温度に比べて10〜20℃も高くなる。したがって、このHFC32系冷媒の断熱指数の大きさと蓄熱回収回路25との相乗作用によって、上記圧縮機1から吐出されるHFC32系冷媒の温度は70℃を遥かに越えた温度になる。したがって、この給湯機能付き空気調和機の暖房能力が高くなる。また、この圧縮機1から吐出された高温のHFC32系冷媒は、四路切換弁2を通り、さらに、ガス閉鎖弁3を通って室内熱交換器5に供給されると共に、給湯用冷媒回路35の弁31を通って給湯用熱交換器32で水と熱交換して、この水を70℃以上に暖める。給湯用水回路40の湯タンク36の水は、ポンプ37によって給湯用熱交換器32の水通路部34を通って湯タンク36に戻るように循環させられる。
【0020】
このように、HFC32系冷媒の断熱指数の大きさと蓄熱回収回路25との相乗作用によって得られた70℃を遥かに越えた高温のHFC32系冷媒と水とを給湯用熱交換器32で熱交換することによって、ヒータを用いることなく、70℃以上の極めて高温な湯を得ることができる。このように、ヒータを必要としないから、ランニングコストおよび製造コストが安い給湯機能付き空気調和機を得ることができる。
【0021】
上記四路切換弁2を冷房側に切り換えて、ガス閉鎖弁3と液閉鎖弁6とを全閉にして、逆サイクルデフロスト運転をすることができる。このとき、蓄熱回収回路25で圧縮機1の廃熱が回収され、かつ、HFC32系冷媒が大きい断熱指数を持つから、圧縮機1から極めて高温のHFC32系冷媒が吐出されるから、きわめて効果的にデフロストが行われる。
【0022】
上記実施の形態では給湯回路50を設けているが、給湯回路50を取り除いて、暖房能力の向上あるいはデフロスト能力の向上のうちの少なくとも一方の能力の向上を図ってもよい。
【0023】
上記実施の形態では、アキュムレータを省略したが、このアキュムレータは蓄熱槽22の内側に設けてもよく、あるいは、蓄熱槽22の外側に設けてもよい。
【0024】
なお、図示していないが、冷房運転時にも給湯回路40が動作できるように、四路切換弁2と室外熱交換器8との間の配管と、給湯用熱交換器32とを弁を有する配管で接続し、かつ、給湯用冷媒回路35の給湯用熱交換器32の下流側に膨張弁を設けてもよい。また、減圧機構としてキャピラリを用いてもよい。
【0025】
【発明の効果】
以上より明らかなように、請求項1の発明によれば、蓄熱媒体を収容した蓄熱槽内に配置された圧縮機からの廃熱の一部を蓄熱槽内の蓄熱媒体に蓄えると共に圧縮機からの廃熱の他の一部を、この圧縮機の外周面に接触している蓄熱熱交換器に直接伝達し、この蓄熱槽内の蓄熱媒体に蓄えた熱と、圧縮機からその外周面に接触している蓄熱熱交換器に直接伝達された熱とを、蓄熱熱交換器を有する蓄熱回収回路によって主冷媒回路に回収することと、上記主冷媒回路および蓄熱回収回路に充填したHFC32系冷媒がHCFC22系冷媒に比べて断熱指数が大きいこととの相乗作用によって、上記圧縮機から吐出されるHFC32系冷媒の温度はたとえば70℃を遥かに越えた温度になるので、暖房能力、デフロスト能力の高い冷凍装置を得ることができる。
【0026】
また、請求項2の発明によれば、蓄熱媒体を収容した蓄熱槽内に配置された圧縮機からの廃熱の一部を蓄熱槽内の蓄熱媒体に蓄えると共に圧縮機からの廃熱の他の一部を、この圧縮機の外周面に接触している蓄熱熱交換器に直接伝達し、この蓄熱槽内の蓄熱媒体に蓄えた熱と、圧縮機からその外周面に接触している蓄熱熱交換器に直接伝達された熱とを、蓄熱熱交換器を有する蓄熱回収回路によって主冷媒回路に回収することと、上記主冷媒回路、蓄熱回収回路および給湯回路に充填したHFC32系冷媒がHCFC22系冷媒に比べて断熱指数が大きいこととの相乗作用によって、上記圧縮機から吐出されるHFC32系冷媒の温度はたとえば70℃を遥かに越えた温度になって、この高温のHFC32系冷媒と水とを給湯用熱交換器で熱交換しているので、ヒータを用いることなく、あるいは、小容量のヒータを用いて70℃以上の極めて高温の湯が得ることができて、ランニングコストおよび製造コストが安い給湯機能付き冷凍装置を得ることができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態の給湯機能付き空気調和機の回路図である。
【符号の説明】
1 圧縮機 5 室内熱交換器
7 膨張弁 8 室外熱交換器
22 蓄熱槽 23 蓄熱熱交換器
25 蓄熱回収回路 32 給湯用熱交換器
35 給湯用冷媒回路 40 給湯用水回路
50 給湯回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigeration apparatus such as an air conditioner with a hot water supply function.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, an air conditioner with a hot water supply function supplies a high-temperature HCFC (hydrochlorofluorocarbon) 22 system refrigerant from between a compressor and a condenser to a hot water supply heat exchanger, and this hot water supply heat exchanger uses the HCFC 22 system. Heat is exchanged between the refrigerant and water to obtain hot water of 50 ° C to 60 ° C. Further, this hot water is heated with a large-capacity heater using nighttime power to obtain hot water of 70 ° C or higher. The hot water of 70 ° C. or higher is stored in the tank.
[0003]
[Problems to be solved by the invention]
However, the conventional air conditioner with a hot water supply function has a problem that the running cost and the manufacturing cost are increased because a large-capacity heater is required to obtain hot water of 70 ° C. or higher.
[0004]
Further, even in an air conditioner having no hot water supply function, the HCFC 22-based refrigerant is used. However, since the temperature of the HCFC 22-based refrigerant discharged from the compressor is not sufficiently high, there is a problem that the heating capacity and the defrost capacity are low. there were.
[0005]
Accordingly, an object of the present invention is to provide a refrigeration apparatus capable of improving hot water supply capacity, heating capacity, and defrost capacity. More specifically, for example, for a refrigeration apparatus with a hot water supply function, high temperature hot water of, for example, 70 ° C. or more can be obtained without using a heater or using a small capacity heater instead of a large capacity, An object of the present invention is to provide a refrigeration apparatus with a hot water supply function that has low running costs and low manufacturing costs.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the refrigeration apparatus of the invention of claim 1 comprises:
A main refrigerant circuit formed by sequentially connecting a compressor, a condenser, a decompression mechanism, and an evaporator;
A heat storage recovery circuit that has a heat storage heat exchanger provided in a heat storage tank for storing waste heat from the compressor and recovers the heat stored in the heat storage tank and supplies the heat to the main refrigerant circuit;
An HFC (hydrofluorocarbon) 32-based refrigerant filled in the main refrigerant circuit and the heat storage and recovery circuit ,
The compressor is disposed in the heat storage tank containing a heat storage medium,
The heat storage heat exchanger is in contact with the outer peripheral surface of the compressor in the heat storage tank .
[0007]
According to the refrigeration apparatus having the above configuration, part of the waste heat from the compressor disposed in the heat storage tank containing the heat storage medium is stored in the heat storage medium in the heat storage tank. The other part of the waste heat from the compressor is directly transmitted to the heat storage heat exchanger in contact with the outer peripheral surface of the compressor. The heat stored in the heat storage medium of the heat storage tank and the heat directly transferred from the compressor to the heat storage heat exchanger in contact with the outer peripheral surface are recovered by a heat storage recovery circuit having a heat storage heat exchanger. And supplied to the main refrigerant circuit. Therefore, the temperature of the HFC32 refrigerant gas discharged from the compressor of the main refrigerant circuit becomes high.
[0008]
In addition, since the HFC32 refrigerant filled in the main refrigerant circuit and the heat storage and recovery circuit has a larger adiabatic index than the HCFC22 refrigerant, the temperature of the HFC32 refrigerant gas discharged from the compressor is HCFC22 refrigerant gas. 10 to 20 ° C. is higher than the above temperature. Therefore, due to the synergistic action of the HFC32 refrigerant and the heat storage and recovery circuit, the temperature of the HFC32 refrigerant discharged from the compressor becomes, for example, a temperature exceeding 70 ° C. Therefore, the refrigeration apparatus of claim 1 has high heating capacity and high defrosting capacity.
The refrigeration apparatus of the invention of claim 2
A main refrigerant circuit formed by sequentially connecting a compressor, a condenser, a decompression mechanism, and an evaporator;
A heat storage recovery circuit that has a heat storage heat exchanger provided in a heat storage tank for storing waste heat from the compressor and recovers the heat stored in the heat storage tank and supplies the heat to the main refrigerant circuit;
HFC32 refrigerant filled in the main refrigerant circuit and the heat storage and recovery circuit;
A hot water supply circuit having a hot water supply heat exchanger for exchanging heat between the HFC32 refrigerant and water ,
The compressor is disposed in the heat storage tank containing a heat storage medium,
The heat storage heat exchanger is in contact with the outer peripheral surface of the compressor in the heat storage tank .
[0009]
According to the refrigeration apparatus having the above configuration, part of the waste heat from the compressor disposed in the heat storage tank containing the heat storage medium is stored in the heat storage medium in the heat storage tank. The other part of the waste heat from the compressor is directly transmitted to the heat storage heat exchanger in contact with the outer peripheral surface of the compressor. The heat stored in the heat storage medium of the heat storage tank and the heat directly transferred from the compressor to the heat storage heat exchanger in contact with the outer peripheral surface are recovered by a heat storage recovery circuit having a heat storage heat exchanger. And supplied to the main refrigerant circuit. Therefore, the temperature of the HFC32 refrigerant gas discharged from the compressor of the main refrigerant circuit becomes high.
[0010]
In addition, since the HFC32 refrigerant filled in the main refrigerant circuit, the heat storage and recovery circuit, and the hot water supply circuit has a larger adiabatic index than the HCFC22 refrigerant, the temperature of the HFC32 refrigerant gas discharged from the compressor is HCFC22. 10-20 degreeC becomes high compared with the temperature of system refrigerant gas. Therefore, due to the synergistic action of the HFC32 refrigerant and the heat storage and recovery circuit, the temperature of the HFC32 refrigerant discharged from the compressor becomes, for example, a temperature exceeding 70 ° C. Therefore, the heating capacity and defrost capacity of the refrigeration apparatus are increased. Moreover, by exchanging heat between this high-temperature HFC32 refrigerant and water with a heat exchanger for hot water supply, it is possible to use an extremely high temperature of 70 ° C. or higher without using a heater or using a small capacity heater instead of a large capacity. Hot water can be obtained. In this way, hot water having a temperature of 70 ° C. or higher can be obtained, and a refrigeration apparatus with a hot water supply function can be obtained without using a heater or using a small-capacity heater, so that running costs and manufacturing costs are low. Can do.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the refrigeration apparatus of the present invention will be described in detail by an air conditioner with a hot water supply function of one embodiment.
[0012]
As shown in FIG. 1, this air conditioner with a hot water supply function includes a compressor 1, a four-way switching valve 2, a gas closing valve 3, an indoor heat exchanger 5, a liquid closing valve 6, and a pressure reducing mechanism. An expansion valve 7 as an example and an outdoor heat exchanger 8 are sequentially connected by piping to form a main refrigerant circuit 10. The four-way switching valve 2 in FIG. 1 shows a heating operation state, the indoor heat exchanger 5 functions as a condenser, and the outdoor heat exchanger 8 functions as an evaporator.
[0013]
The compressor 1 is of a motor-integrated type and includes a compressor main body and a motor for driving the compressor main body in a casing 1a (not shown). The compressor 1 is disposed in a heat storage tank 22 containing a heat storage medium, and a heat storage heat exchanger 23 that is in contact with the outer peripheral surface of the compressor 1 is provided in the heat storage tank 22.
[0014]
A heat storage and recovery circuit 25 in which the heat storage heat exchanger 23 and the valve 24 are connected in series is provided between the pipe between the outdoor heat exchanger 8 and the expansion valve 7 and the suction side of the compressor 1. Connected.
[0015]
Further, a pipe between the four-way switching valve 2 and the gas shut-off valve 3 and a pipe between the indoor heat exchanger 5 and the gas shut-off valve 6 are connected to the refrigerant passages of the valve 31 and the hot water supply heat exchanger 32. It connects with the hot water supply refrigerant circuit 35 formed by connecting the part 33 in series. Further, the water passage 34 of the hot water supply heat exchanger 32, the hot water tank 36, and the pump 37 are sequentially connected to form a hot water supply water circuit 40. The hot water supply refrigerant circuit 35 and the hot water supply water circuit 40 form a hot water supply circuit 50.
[0016]
The main refrigerant circuit 10, the heat storage and recovery circuit 25, and the hot water supply refrigerant circuit 35 are filled with an HFC (hydrofluorocarbon) 32 system refrigerant. Here, the HFC32 refrigerant refers to an HFC32 refrigerant alone or a mixed refrigerant containing an HFC32 refrigerant.
[0017]
In the air conditioner with a hot water supply function having the above-described configuration, the high-temperature and high-pressure HFC32 refrigerant discharged from the compressor 1 releases heat into the room through the gas shut-off valve 3 to heat the room with the indoor heat exchanger 5. And condense. The HFC32 refrigerant from the indoor heat exchanger 5 passes through the liquid shut-off valve 6, is further reduced in pressure through the expansion valve 7, absorbs heat from the outside in the outdoor heat exchanger 8, and evaporates. The air is sucked into the compressor 1 through the switching valve 2.
[0018]
On the other hand, the waste heat from the compressor 1 is stored in a heat storage medium in the heat storage tank 22. A part of the HFC32 refrigerant from the expansion valve 7 passes through the valve 24 of the heat storage recovery circuit 25, and further absorbs the waste heat from the compressor 1 through the heat storage medium by the heat storage heat exchanger 23. Then, it is sucked into the compressor 1. Thus, the waste heat of the compressor 1 stored in the heat storage medium of the heat storage tank 22 is recovered by the heat storage recovery circuit 25 having the heat storage heat exchanger 23 and supplied to the main refrigerant circuit 10. Therefore, the temperature of the HFC32 refrigerant gas discharged from the compressor 1 of the main refrigerant circuit 10 becomes high.
[0019]
In addition, the HFC32 refrigerant filled in the main refrigerant circuit 10, the heat storage and recovery circuit 25, and the hot water supply refrigerant circuit 35 has a larger adiabatic index than the HCFC22 refrigerant. Therefore, when compared with the case of compression at the same compression ratio, the temperature of the HFC32-based refrigerant gas is 10 to 20 ° C. higher than the temperature of the HCFC22-based refrigerant gas. Therefore, due to the synergistic effect of the heat insulation index of the HFC32 refrigerant and the heat storage and recovery circuit 25, the temperature of the HFC32 refrigerant discharged from the compressor 1 becomes a temperature far exceeding 70 ° C. Therefore, the heating capacity of the air conditioner with a hot water supply function is increased. The high-temperature HFC32 refrigerant discharged from the compressor 1 is supplied to the indoor heat exchanger 5 through the four-way switching valve 2 and further through the gas shut-off valve 3, and the hot water supply refrigerant circuit 35. Heat is exchanged with water in the hot water supply heat exchanger 32 through the valve 31 and the water is heated to 70 ° C. or higher. The water in the hot water tank 36 of the hot water supply water circuit 40 is circulated by the pump 37 so as to return to the hot water tank 36 through the water passage 34 of the hot water supply heat exchanger 32.
[0020]
As described above, heat exchange is performed between the high-temperature HFC32 refrigerant and water far exceeding 70 ° C. obtained by the synergistic effect of the heat insulation index of the HFC32 refrigerant and the heat storage and recovery circuit 25 in the hot water supply heat exchanger 32. By doing so, an extremely hot water of 70 ° C. or higher can be obtained without using a heater. Thus, since a heater is not required, an air conditioner with a hot water supply function can be obtained that has low running costs and low manufacturing costs.
[0021]
The four-way switching valve 2 is switched to the cooling side, the gas closing valve 3 and the liquid closing valve 6 are fully closed, and the reverse cycle defrosting operation can be performed. At this time, the waste heat of the compressor 1 is recovered by the heat storage and recovery circuit 25, and the HFC32 refrigerant has a large adiabatic index, so that a very high-temperature HFC32 refrigerant is discharged from the compressor 1, which is extremely effective. Defrosting takes place.
[0022]
Although the hot water supply circuit 50 is provided in the above embodiment, the hot water supply circuit 50 may be removed to improve at least one of the heating capacity and the defrosting capacity.
[0023]
In the above embodiment, the accumulator is omitted, but this accumulator may be provided inside the heat storage tank 22 or may be provided outside the heat storage tank 22.
[0024]
Although not shown, the piping between the four-way switching valve 2 and the outdoor heat exchanger 8 and the hot water supply heat exchanger 32 have valves so that the hot water supply circuit 40 can operate even during the cooling operation. An expansion valve may be provided on the downstream side of the hot water supply heat exchanger 32 of the hot water supply refrigerant circuit 35 connected by piping. Further, a capillary may be used as the pressure reducing mechanism.
[0025]
【The invention's effect】
As is clear from above, according to the invention of claim 1, Rutotomoni stored part of the waste heat from the arranged compressor to the heat storage tank containing the heat storage medium in the heat storage medium in the heat storage tank, compression The other part of the waste heat from the compressor is directly transferred to the heat storage heat exchanger in contact with the outer peripheral surface of the compressor, and the heat stored in the heat storage medium in the heat storage tank and the outer periphery from the compressor The heat directly transferred to the heat storage heat exchanger in contact with the surface is recovered in the main refrigerant circuit by the heat storage recovery circuit having the heat storage heat exchanger, and the HFC 32 filled in the main refrigerant circuit and the heat storage recovery circuit. Since the temperature of the HFC32 refrigerant discharged from the compressor is, for example, much higher than, for example, 70 ° C. due to the synergistic effect of the refrigerant having a larger adiabatic index than the HCFC22 refrigerant, the heating capacity, defrost Refrigeration equipment with high capacity Rukoto can.
[0026]
Further, according to the invention of claim 2, Rutotomoni stored part of the waste heat from the arranged compressor to the heat storage tank containing the heat storage medium in the heat storage medium in the heat storage tank, the waste heat from the compressor The other part is directly transferred to the heat storage heat exchanger that is in contact with the outer peripheral surface of the compressor, and the heat stored in the heat storage medium in the heat storage tank is contacted with the outer peripheral surface from the compressor. The heat directly transferred to the heat storage heat exchanger is recovered in the main refrigerant circuit by the heat storage recovery circuit having the heat storage heat exchanger, and the HFC32 refrigerant filled in the main refrigerant circuit, the heat storage recovery circuit, and the hot water supply circuit Due to the synergistic effect that the heat insulation index is larger than that of the HCFC22 refrigerant, the temperature of the HFC32 refrigerant discharged from the compressor becomes a temperature far exceeding, for example, 70 ° C., and this high-temperature HFC32 refrigerant And water with a heat exchanger for hot water supply Since it is replaced, a very high temperature hot water of 70 ° C. or higher can be obtained without using a heater or with a small capacity heater, and a refrigeration apparatus with a hot water supply function can be obtained with low running costs and manufacturing costs. be able to.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of an air conditioner with a hot water supply function according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 5 Indoor heat exchanger 7 Expansion valve 8 Outdoor heat exchanger 22 Heat storage tank 23 Heat storage heat exchanger 25 Heat storage recovery circuit 32 Heat exchanger for hot water supply 35 Refrigerant circuit for hot water supply 40 Water supply water supply circuit 50 Hot water supply circuit

Claims (2)

圧縮機(1)、凝縮器(5)、減圧機構(7)および蒸発器(8)を順次接続してなる主冷媒回路(10)と、
上記圧縮機(1)からの廃熱を蓄える蓄熱槽(22)内に設けた蓄熱熱交換器(23)を有して上記蓄熱槽(22)内に蓄えられた熱を回収して上記主冷媒回路(10)に供給する蓄熱回収回路(25)と、
上記主冷媒回路(10)および蓄熱回収回路(25)に充填されたHFC32系冷媒と
を備え
上記圧縮機(1)は、蓄熱媒体を収容した上記蓄熱槽(22)内に配置されており、
上記蓄熱槽(22)内において、上記圧縮機(1)の外周面に上記蓄熱熱交換器(23)が接触している
ことを特徴とする冷凍装置。
A main refrigerant circuit (10) formed by sequentially connecting a compressor (1), a condenser (5), a decompression mechanism (7), and an evaporator (8);
It has a heat storage heat exchanger (23) provided in a heat storage tank (22) for storing waste heat from the compressor (1), and recovers the heat stored in the heat storage tank (22) to collect the main heat. A heat storage and recovery circuit (25) for supplying to the refrigerant circuit (10);
An HFC32 refrigerant filled in the main refrigerant circuit (10) and the heat storage and recovery circuit (25) ,
The compressor (1) is disposed in the heat storage tank (22) containing a heat storage medium,
The refrigerating apparatus, wherein the heat storage heat exchanger (23) is in contact with the outer peripheral surface of the compressor (1) in the heat storage tank (22) .
圧縮機(1)、凝縮器(5)、減圧機構(7)および蒸発器(8)を順次接続してなる主冷媒回路(10)と、
上記圧縮機(1)からの廃熱を蓄える蓄熱槽(22)内に設けた蓄熱熱交換器(23)を有して上記蓄熱槽(22)内に蓄えられた熱を回収して上記主冷媒回路(10)に供給する蓄熱回収回路(25)と、
上記主冷媒回路(10)および蓄熱回収回路(25)に充填されたHFC32系冷媒と、
上記HFC32系冷媒と水との間で熱交換する給湯用熱交換器(32)を有する給湯回路(50)と
を備え
上記圧縮機(1)は、蓄熱媒体を収容した上記蓄熱槽(22)内に配置されており、
上記蓄熱槽(22)内において、上記圧縮機(1)の外周面に上記蓄熱熱交換器(23)が接触している
ことを特徴とする冷凍装置。
A main refrigerant circuit (10) formed by sequentially connecting a compressor (1), a condenser (5), a decompression mechanism (7), and an evaporator (8);
It has a heat storage heat exchanger (23) provided in a heat storage tank (22) for storing waste heat from the compressor (1), and recovers the heat stored in the heat storage tank (22) to collect the main heat. A heat storage and recovery circuit (25) for supplying to the refrigerant circuit (10);
HFC32 refrigerant filled in the main refrigerant circuit (10) and the heat storage and recovery circuit (25);
A hot water supply circuit (50) having a hot water supply heat exchanger (32) for exchanging heat between the HFC32 refrigerant and water ,
The compressor (1) is disposed in the heat storage tank (22) containing a heat storage medium,
The refrigerating apparatus, wherein the heat storage heat exchanger (23) is in contact with the outer peripheral surface of the compressor (1) in the heat storage tank (22) .
JP05252199A 1999-03-01 1999-03-01 Refrigeration equipment Expired - Lifetime JP4269392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05252199A JP4269392B2 (en) 1999-03-01 1999-03-01 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05252199A JP4269392B2 (en) 1999-03-01 1999-03-01 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2000249419A JP2000249419A (en) 2000-09-14
JP4269392B2 true JP4269392B2 (en) 2009-05-27

Family

ID=12917058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05252199A Expired - Lifetime JP4269392B2 (en) 1999-03-01 1999-03-01 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4269392B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353136A (en) * 2011-08-26 2012-02-15 珠海格力电器股份有限公司 Heat pump water heater and water heating method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132303A (en) * 2005-11-11 2007-05-31 Daikin Ind Ltd Fluid transport device
CN100404975C (en) * 2006-07-25 2008-07-23 江苏天银电器有限公司 Heat pump system of heat pump water heater
GB2451091A (en) * 2007-07-16 2009-01-21 Jack Culley Waste Heat Recovery from a Refrigeration Circuit
JP4760996B1 (en) * 2010-10-01 2011-08-31 パナソニック株式会社 Heat storage device and air conditioner equipped with the heat storage device
CN105444465B (en) * 2014-08-29 2018-06-22 大连旺兴新能源科技有限公司 Super low temperature heat pump refrigeration recuperation of heat and accumulation of heat heating system
CN108088116B (en) * 2017-12-04 2018-12-11 珠海格力电器股份有限公司 Heat pump system for increasing air supplement amount by utilizing heat recovery and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353136A (en) * 2011-08-26 2012-02-15 珠海格力电器股份有限公司 Heat pump water heater and water heating method thereof

Also Published As

Publication number Publication date
JP2000249419A (en) 2000-09-14

Similar Documents

Publication Publication Date Title
KR100785116B1 (en) Refrigerator
JP4298990B2 (en) Refrigeration equipment using carbon dioxide as refrigerant
CN110595089B (en) Air conditioning system capable of recovering indoor residual cold and residual heat after shutdown
JP4269392B2 (en) Refrigeration equipment
CN112815570B (en) Gas heat pump multi-split air conditioning system and efficient defrosting control method thereof
CN214199279U (en) CO2 air source heat pump unit without defrosting reversing device
JP4062663B2 (en) Production system for supercooled water and hot water
JPH09250839A (en) Heat pump hot water supply apparatus
JP2001296068A (en) Regenerative refrigerating device
KR100816450B1 (en) Air conditioning method and system using brine heat exchanger
CN105928290A (en) Adsorbing and frost restraining technology based refrigerating system of air-cooled refrigerator
JP2001263848A (en) Air conditioner
KR20200084238A (en) A cooling system without an outdoor unit combining a freezer and an air conditioner
JP2005098586A (en) Air conditioner
JP2002061980A (en) Compression type heat pump air conditioner and method for operating the same
JP2004251557A (en) Refrigeration device using carbon dioxide as refrigerant
WO2016199671A1 (en) Refrigeration system
CN112484342A (en) CO without defrosting reversing device2Air source heat pump unit and defrosting method thereof
CN112460847A (en) Air source heat pump unit with fluorine pump defrosting function and defrosting method thereof
JP3814877B2 (en) Thermal storage air conditioner
JP2004143951A (en) Scroll compressor
KR100643689B1 (en) Heat pump air-conditioner
KR20030082822A (en) The Combined Cooling and Heating Ice Regenerative System
CN218120240U (en) Heat pump system
JPH04257660A (en) Two stage compression refrigerating cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

EXPY Cancellation because of completion of term