JP4269124B2 - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine Download PDF

Info

Publication number
JP4269124B2
JP4269124B2 JP2000242744A JP2000242744A JP4269124B2 JP 4269124 B2 JP4269124 B2 JP 4269124B2 JP 2000242744 A JP2000242744 A JP 2000242744A JP 2000242744 A JP2000242744 A JP 2000242744A JP 4269124 B2 JP4269124 B2 JP 4269124B2
Authority
JP
Japan
Prior art keywords
fuel
amount
cylinder
fuel injection
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000242744A
Other languages
Japanese (ja)
Other versions
JP2002047972A (en
Inventor
直行 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000242744A priority Critical patent/JP4269124B2/en
Publication of JP2002047972A publication Critical patent/JP2002047972A/en
Application granted granted Critical
Publication of JP4269124B2 publication Critical patent/JP4269124B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、少なくとも吸気バルブの閉弁タイミングを可変する可変バルブ装置を備えた内燃機関の燃料噴射制御装置に関するものである。
【0002】
【従来の技術】
近年、車両の内燃機関に採用されている可変バルブ装置は、吸気バルブのバルブタイミングの進角量を制御するものが多い。しかし、吸気バルブのバルブタイミングを進角させてバルブオーバーラップ量(吸気バルブと排気バルブの両方が開弁している期間[図6の▲1▼参照])を増大させると、バルブオーバーラップ期間中に発生する排気の吹き返しによって筒内から吸気系に戻される燃料量が増えるため、筒内の空燃比がリーンとなってしまう。この対策として、特開平7−224697号公報に示すように、バルブオーバーラップ量に応じて燃料噴射量を補正するようにしたものがある。
【0003】
【発明が解決しようとする課題】
ところで、最近では、吸気バルブの閉弁タイミングを圧縮行程中期まで遅らせて、吸気バルブを圧縮行程中期まで開いておくことで、ポンピング損失を低減させて燃費の向上を図ることが考えられているが、吸気バルブの閉弁タイミングを遅らせると、圧縮行程中の吸気バルブの開弁期間(図6の▲2▼参照)が長くなって、筒内の燃料(混合気)のうち、上昇するピストンに押されて吸気系に戻される燃料量が増加する。しかし、上記公報の構成では、バルブオーバーラップ(図6の▲1▼参照)による燃料の吹き戻しが考慮されているだけであり、圧縮行程中に吸気系に戻される燃料については全く考慮されていないため、特に、要求燃料量が増加する加速時等の高負荷運転時には、要求燃料量に対して実際に筒内に残留する燃料量が少なくなって筒内の空燃比がリーンとなってしまい、ドライバビリティや排気エミッションが悪化するおそれがある。
【0004】
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、圧縮行程中に吸気系に戻される燃料を考慮した燃料噴射制御を行うことができ、常に筒内に残留する燃料量を適正に制御することができる内燃機関の燃料噴射量制御装置を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1の内燃機関の燃料噴射制御装置は、各気筒の吸気ポートに燃料を噴射する燃料噴射弁と、少なくとも吸気バルブの閉弁タイミングを可変する可変バルブ装置を備えた内燃機関において、内燃機関の運転状態に基づいて要求燃料量を要求燃料量算出手段で算出すると共に、圧縮行程中に吸気バルブが閉弁するまでに筒内から吸気系に戻される燃料戻り量を吸気バルブの閉弁タイミングに基づいて燃料戻り量推定手段で推定し、筒内に残留する燃料量が要求燃料量と一致するように燃料戻り量を考慮して燃料噴射量算出手段により要求燃料量を補正して燃料噴射量を求める。更に、吸気バルブの閉弁タイミングを圧縮行程中まで遅らせると共に、前記燃料戻り量推定手段は、筒内の燃料の気化状態が良くなるほど前記燃料戻り量が多くなるように推定する。
【0006】
一般に、圧縮行程中に筒内から吸気系に戻される燃料量は、吸気バルブの閉弁タイミング(圧縮行程中の吸気バルブの開弁期間)に応じて増減するため、吸気バルブの閉弁タイミングを用いれば、圧縮行程中の燃料戻り量を精度良く推定することができ、この燃料戻り量を用いることで、筒内に残留する燃料量が要求燃料量と一致するように燃料噴射量を算出することができる。このため、吸気バルブの閉弁タイミングを圧縮行程中まで遅らせたときに筒内の燃料の一部が吸気系に戻されても、最終的に筒内に残留する燃料量を要求燃料量に一致させることができ、筒内の空燃比を目標空燃比に制御できて、ドライバビリティや排気エミッションを向上することができる。
【0007】
この場合、請求項2のように、圧縮行程中に吸気バルブの閉弁タイミングが遅くなるほど、燃料戻り量が多くなるように推定すると良い。このようにすれば、吸気バルブの閉弁タイミングが遅くなるほど、圧縮行程中の吸気バルブの開弁期間が長くなって燃料戻り量が多くなるのに対応して、燃料戻り量を精度良く推定することができる。
【0008】
ところで、圧縮行程の吸気バルブの開弁期間中に筒内から吸気系に戻される燃料は、上昇するピストンによって吸気系に押し出される空気の流れに乗って流出する燃料であるため、筒内の燃料の気化状態が良いほど、吸気系に押し出される空気の流れに乗って流出する燃料量が多くなる。
【0009】
この点を考慮して、請求項のように、筒内の燃料の気化状態が良くなるほど燃料戻り量が多くなるように推定するようにすると良い。このようにすれば、燃料戻り量を変化させる要因となる筒内の燃料の気化状態を考慮して燃料戻り量を精度良く推定することができる。
【0010】
また、筒内温度が高くなるほど筒内の燃料が気化しやすくなるため、請求項のように、筒内の燃料の気化状態を評価するパラメータとして筒内温度又はその代用情報である冷却水温を用い、筒内温度又は冷却水温が高くなるほど燃料戻り量が多くなるように推定するようにしても良い。このようにすれば、筒内の燃料の気化状態を直接検出しなくても、内燃機関の制御パラメータとして用いられる筒内温度又は冷却水温を利用して、筒内の燃料の気化状態を考慮して燃料戻り量を精度良く推定することができる。
更に、請求項4のように、前回の燃料戻り量と今回の燃料戻り量とを考慮して要求燃料量を補正するようにしても良い。
【0011】
【発明の実施の形態】
以下、本発明の一実施形態を図面に基づいて説明する。まず、図1に基づいてエンジン全体の概略構成を説明する。内燃機関であるエンジン11の各気筒の吸気ポート12には、電磁駆動式の吸気バルブ13が1個又は複数個設けられ、各気筒の排気ポート14には、電磁駆動式の排気バルブ15が1個又は複数個設けられている。吸気バルブ13と排気バルブ15は、それぞれ電磁アクチュエータ16,17(可変バルブ装置)によって駆動される。また、各気筒の吸気ポート12の近傍には、燃料を噴射する燃料噴射弁18が設けられ、エンジン11のシリンダブロックには、冷却水温を検出する水温センサ19や、エンジン回転速度を検出するクランク角センサ20が取り付けられている。
【0012】
これら水温センサ19、クランク角センサ20等の各種のセンサ出力は、エンジン制御回路21に入力される。このエンジン制御回路21は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種の制御プログラムを実行することで、燃料噴射弁18の燃料噴射量や点火プラグ22の点火時期を制御すると共に、各バルブ13,15の電磁アクチュエータ16,17を制御して各バルブ13,15のバルブタイミング(開弁タイミング及び閉弁タイミング)を制御する。
【0013】
ところで、図6に示すように、吸気バルブ13の閉弁タイミングをBDC(下死点)よりも遅角させると、圧縮行程における吸気バルブ13の開弁期間中(▲2▼参照)に、筒内の燃料(混合気)の一部が吸気系に戻されるため、特に、筒内燃焼に必要な要求燃料量が増大する加速時等には、要求燃料量に対して実際に筒内に残留する燃料量が少なくなって筒内の空燃比がリーンとなってしまい、ドライバビリティや排気エミッションが悪化するおそれがある。
【0014】
そこで、エンジン制御回路21は、図2の燃料戻り率推定プログラム及び図5の燃料噴射量算出プログラムを実行することで、吸気バルブ13の閉弁タイミングに基づいて燃料戻り率(燃料戻り量)を推定すると共に、エンジン運転状態に応じて要求燃料量を算出し、筒内に残留する燃料量が要求燃料量と一致するように燃料噴射量を燃料戻り率を用いて算出する。以下、図2及び図5の各プログラムの処理内容を説明する。
【0015】
図2の燃料戻り率推定プログラムは、所定時間毎又は所定クランク角毎に実行され、特許請求の範囲でいう燃料戻り量推定手段に相当する役割を果たす。本プログラムが起動されると、まず、ステップ101で、現在の吸気バルブ13の閉弁タイミングを読み込み、次のステップ102で、図3に示すマップを検索して、現在の吸気バルブ13の閉弁タイミングに応じて基本燃料戻り率Aを算出する。この基本燃料戻り率Aは、吸気行程で筒内に吸入される総燃料量に対する圧縮行程中に筒内から吸気系に戻される燃料量の割合である。
【0016】
一般に、吸気バルブ13の閉弁タイミングがBDC又はBDCよりも進角側(吸気行程)に制御されているときは、圧縮行程前に吸気バルブ13が閉弁されて圧縮行程で筒内から吸気系に戻される燃料量が0となる。一方、吸気バルブ13の閉弁タイミングがBDCよりも遅角側(圧縮行程)に制御されているときは、吸気バルブ13の閉弁タイミングが遅くなるほど、圧縮行程中の吸気バルブ13の開弁期間が長くなって筒内から吸気系に戻される燃料量が増加する。このため、図3の基本燃料戻り率Aのマップ特性は、吸気バルブ13の閉弁タイミングがBDC及びBDCよりも進角側の領域では、基本燃料戻り率Aが0%に設定され、吸気バルブ13の閉弁タイミングがBDCよりも遅角側の領域では、吸気バルブ13の閉弁タイミングが遅くなるほど、基本燃料戻り率Aが大きくなるように設定されている。
【0017】
基本燃料戻り率Aの算出後、ステップ103に進み、図4に示すマップを検索して、基本燃料戻り率Aに対する補正率Bを現在の冷却水温に応じて算出する。
一般に、圧縮行程中に筒内から吸気系に戻される燃料は、筒内に吸入された燃料が気化して混合気となった状態で吸気ポート12から空気の流れに乗って排出れるため、筒内の燃料の気化状態が良くなるほど、筒内から吸気系に戻される燃料量が多くなる。この場合、筒内温度(又はその代用情報である冷却水温)が高くなるほど、筒内の燃料が気化しやすくなって燃料の気化状態が良くなるため、図5の補正率Bのマップ特性は、筒内温度の代用情報である冷却水温が高くなるほど、補正率Bが大きくなるように設定されている。尚、筒内温度を推定又は検出し、筒内温度に応じて補正率Bを算出するようにしても良い。
【0018】
この後、ステップ104に進み、基本燃料戻り率Aに補正率Bを乗算して最終的な燃料戻り率KBACKを算出し、本プログラムを終了する。
KBACK=A×B
【0019】
次に、図5の燃料噴射量算出プログラムの処理内容を説明する。本プログラムの処理内容の理解を容易にするために、最終的に筒内に残留する燃料量FZ が要求燃料量FBASEと一致するように燃料噴射量FR を算出する方法を説明する。
【0020】
前回の圧縮行程で筒内から吸気系に戻された戻り燃料量FBACK(i-1) は、次の吸気行程で噴射燃料と共に筒内に吸入されるため、今回の吸気行程中に、一旦、筒内に吸入される総燃料吸入量FTOTAL は、今回の燃料噴射量FR(i)に前回の戻り燃料量FBACK(i-1) を加算して求めることができる。
FTOTAL =FR(i)+FBACK(i-1) ……(1)
【0021】
今回の圧縮行程中に筒内から吸気系に戻される戻り燃料量FBACK(i) は、総燃料吸入量FTOTAL に燃料戻り率KBACK(i) を乗算して求めることができる。

Figure 0004269124
【0022】
今回、筒内に残留する燃料量FZ は、総燃料吸入量FTOTAL から今回の戻り燃料量FBACK(i) を減算して求めることができる。
Figure 0004269124
【0023】
また、筒内に残留する燃料量FZ を要求燃料量FBASE(i) と等しくするには、次式を満たす必要がある。
FZ =FBASE(i) ……(4)
【0024】
上記(1)〜(4)式を解くことで、次式を導くことができる。
FR(i)=FBASE(i) /{1−KBACK(i) }−FBACK(i-1) ……(5)
この(5)式により、筒内に残留する燃料量FZ を要求燃料量FBASE(i) と一致させる燃料噴射量FR(i)を算出することができる。
【0025】
図5の燃料噴射量算出プログラムは、所定時間毎又は所定クランク角毎に実行され、特許請求の範囲でいう要求燃料量算出手段及び燃料噴射量算出手段に相当する役割を果たす。本プログラムが起動されると、まず、ステップ201で、現在の運転状態(例えば、吸気管圧力Pm、エンジン回転速度Ne、冷却水温、吸気温、バルブタイミング等)に応じて要求燃料量FBASE(i) を算出する。
【0026】
この後、ステップ202に進み、前回の戻り燃料量FBACK(i-1) を読み込み、次のステップ203で、図2の燃料戻り率推定プログラムで算出した燃料戻り率KBACK(i) を読み込む。この後、ステップ204に進み、筒内に残留する燃料量FZ を要求燃料量FBASE(i) と一致させる燃料噴射量FR(i)を、次式{前記(5)式}により算出する。
FR(i)=FBASE(i) /{1−KBACK(i) }−FBACK(i-1)
【0027】
この後、ステップ205に進み、今回の戻り燃料量FBACK(i) を、次式{前記(2)}により算出する。
FBACK(i) ={FR(i)+FBACK(i-1) }×KBACK(i)
【0028】
上式により算出した今回の戻り燃料量FBACK(i) は、次回の燃料噴射量FR の算出に用いるため、エンジン制御回路21のメモリにFBACK(i-1) として記憶しておく。
【0029】
この後、ステップ206に進み、ステップ205で算出した燃料噴射量FR に相当するパルス幅の噴射パルスを所定の噴射タイミングで燃料噴射弁18に出力して燃料噴射を実行し、本プログラムを終了する。
【0030】
以上説明した本実施形態では、吸気バルブ13の閉弁タイミングに基づいて燃料戻り率KBACKを算出し、この燃料戻り率KBACKを用いて、筒内に残留する燃料量FZ が要求燃料量FBASEと一致するように燃料噴射量FR を算出したので、吸気バルブ13の閉弁タイミングを圧縮行程中まで遅らせたときに筒内の燃料の一部が吸気系に戻されても、最終的に筒内に残留する燃料量FZ を要求燃料量FBASEに精度良く制御することができ、筒内の空燃比を目標空燃比に制御することができて、ドライバビリティや排気エミッションを向上することができる。
【0031】
更に、本実施形態では、筒内温度が高くなるほど、筒内の燃料が気化しやすくなって、筒内から吸気系に戻される燃料量が増加することを考慮して、筒内温度の代用情報である冷却水温が高くなるほど、基本燃料戻り率Aに対する補正率Bを大きくして燃料戻り率KBACKを大きくするようにしたので、燃料戻り率KBACKをより正確に求めることができ、燃料噴射量の制御精度を更に向上することができる。
【0032】
尚、本実施形態では、吸気バルブ13の閉弁タイミングに基づいて燃料戻り率KBACK(基本燃料戻り率A)を算出するようにしたが、吸気バルブ13の閉弁タイミングと相関関係のあるパラメータ(例えば吸気バルブ13の閉弁タイミングにおける筒内空間体積や圧縮比等)に基づいて燃料戻り率KBACK(基本燃料戻り率A)を算出するようにしても良い。
【0033】
また、本実施形態は、吸気バルブ13と排気バルブ15の両方のバルブタイミングを制御するようにしたが、吸気バルブ13のバルブタイミングのみを制御するようにしても良く、また、バルブの駆動源も、電磁アクチュエータ16,17に限定されず、油圧でバルブタイミングを制御するようにしても良い。また、本発明は、バルブの作用角を可変するシステムを搭載したエンジンに適用しても良い。
【図面の簡単な説明】
【図1】本発明の一実施形態におけるエンジンの構造を概略的に示す縦断面図
【図2】燃料戻り率推定プログラムの処理の流れを示すフローチャート
【図3】基本燃料戻り率のマップの一例を概念的に示す図
【図4】基本燃料戻り率に対する補正率のマップの一例を概念的に示す図
【図5】燃料噴射量算出プログラムの処理の流れを示すフローチャート
【図6】バルブタイミングの一例を示す図
【符号の説明】
11…エンジン(内燃機関)、13…吸気バルブ、15…排気バルブ、16,17…電磁アクチュエータ(可変バルブ装置)、18…燃料噴射弁、19…水温センサ、21…エンジン制御回路(要求燃料量算出手段,燃料戻り量推定手段,燃料噴射量算出手段)。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel injection control device for an internal combustion engine provided with a variable valve device that varies at least the closing timing of an intake valve.
[0002]
[Prior art]
In recent years, many variable valve devices employed in internal combustion engines of vehicles control the advance amount of the valve timing of the intake valve. However, if the valve timing of the intake valve is advanced to increase the valve overlap amount (period in which both the intake valve and the exhaust valve are open [see (1) in FIG. 6)), the valve overlap period Since the amount of fuel returned from the cylinder to the intake system increases due to the exhaust gas blown back, the air-fuel ratio in the cylinder becomes lean. As a countermeasure, there is one in which the fuel injection amount is corrected in accordance with the valve overlap amount as disclosed in JP-A-7-224697.
[0003]
[Problems to be solved by the invention]
By the way, recently, it is considered that the closing timing of the intake valve is delayed until the middle of the compression stroke, and the intake valve is opened until the middle of the compression stroke, thereby reducing the pumping loss and improving the fuel consumption. If the closing timing of the intake valve is delayed, the opening period of the intake valve during the compression stroke (see (2) in FIG. 6) becomes longer, and the rising piston of the cylinder fuel (air mixture) The amount of fuel that is pushed back to the intake system increases. However, in the configuration of the above publication, only fuel blowback due to valve overlap (see (1) in FIG. 6) is considered, and fuel returned to the intake system during the compression stroke is completely considered. Therefore, the amount of fuel actually remaining in the cylinder with respect to the required fuel amount becomes smaller and the air-fuel ratio in the cylinder becomes lean, especially during high load operation such as during acceleration when the required fuel amount increases. , Drivability and exhaust emissions may deteriorate.
[0004]
The present invention has been made in consideration of such circumstances. Accordingly, the object of the present invention is to perform fuel injection control in consideration of the fuel returned to the intake system during the compression stroke, and always remains in the cylinder. An object of the present invention is to provide a fuel injection amount control device for an internal combustion engine capable of appropriately controlling the fuel amount.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a fuel injection control device for an internal combustion engine according to claim 1 of the present invention includes a fuel injection valve that injects fuel into an intake port of each cylinder, and a variable that varies at least the closing timing of the intake valve. In an internal combustion engine equipped with a valve device, the required fuel amount is calculated by the required fuel amount calculation means based on the operating state of the internal combustion engine, and is returned from the cylinder to the intake system until the intake valve is closed during the compression stroke. The fuel return amount is estimated by the fuel return amount estimation means based on the closing timing of the intake valve, and the fuel injection amount is calculated in consideration of the fuel return amount so that the fuel amount remaining in the cylinder matches the required fuel amount The required fuel amount is corrected by means to obtain the fuel injection amount. Further, the valve closing timing of the intake valve is delayed until the compression stroke, and the fuel return amount estimation means estimates that the fuel return amount increases as the fuel vaporization state in the cylinder becomes better.
[0006]
In general, the amount of fuel that is returned from the cylinder to the intake system during the compression stroke increases or decreases in accordance with the closing timing of the intake valve (the opening period of the intake valve during the compression stroke). If used, the fuel return amount during the compression stroke can be accurately estimated, and by using this fuel return amount, the fuel injection amount is calculated so that the fuel amount remaining in the cylinder matches the required fuel amount. be able to. For this reason, even if part of the fuel in the cylinder is returned to the intake system when the closing timing of the intake valve is delayed until the compression stroke, the amount of fuel remaining in the cylinder eventually matches the required fuel quantity The air-fuel ratio in the cylinder can be controlled to the target air-fuel ratio, and drivability and exhaust emission can be improved.
[0007]
In this case, as in claim 2, it may be estimated that the fuel return amount increases as the closing timing of the intake valve is delayed during the compression stroke. In this way, the later the intake valve closing timing is, the longer the intake valve opening period during the compression stroke becomes and the more fuel return amount is estimated, so that the fuel return amount is accurately estimated. be able to.
[0008]
By the way, the fuel returned to the intake system from the cylinder during the opening period of the intake valve in the compression stroke is the fuel that flows out on the flow of air pushed out to the intake system by the rising piston. The better the state of vaporization, the greater the amount of fuel that flows out on the air flow pushed out into the intake system.
[0009]
With this in mind, as claimed in claim 1, as a result good estimate as fuel return amount as vaporized state is improved in fuel in the cylinder is increased. In this way, it is possible to accurately estimate the fuel return amount in consideration of the vaporization state of the fuel in the cylinder that causes the fuel return amount to change.
[0010]
Further, as the in-cylinder temperature becomes higher, the fuel in the cylinder becomes easier to vaporize. Therefore, as in the third aspect , the in-cylinder temperature or the cooling water temperature as its substitute information is used as a parameter for evaluating the vaporization state of the fuel in the cylinder. It may be estimated that the fuel return amount increases as the in-cylinder temperature or the cooling water temperature increases. In this way, even if the vaporization state of the fuel in the cylinder is not directly detected, the vaporization state of the fuel in the cylinder is taken into account using the in-cylinder temperature or the cooling water temperature used as a control parameter of the internal combustion engine. Thus, the fuel return amount can be accurately estimated.
Further, as in claim 4, the required fuel amount may be corrected in consideration of the previous fuel return amount and the current fuel return amount.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. First, a schematic configuration of the entire engine will be described with reference to FIG. One or a plurality of electromagnetically driven intake valves 13 are provided in the intake port 12 of each cylinder of the engine 11 that is an internal combustion engine, and one electromagnetically driven exhaust valve 15 is provided in the exhaust port 14 of each cylinder. One or a plurality are provided. The intake valve 13 and the exhaust valve 15 are driven by electromagnetic actuators 16 and 17 (variable valve devices), respectively. A fuel injection valve 18 for injecting fuel is provided in the vicinity of the intake port 12 of each cylinder. A cylinder block of the engine 11 includes a water temperature sensor 19 for detecting the coolant temperature and a crank for detecting the engine speed. An angle sensor 20 is attached.
[0012]
Various sensor outputs such as the water temperature sensor 19 and the crank angle sensor 20 are input to the engine control circuit 21. The engine control circuit 21 is mainly composed of a microcomputer, and executes various control programs stored in a built-in ROM (storage medium), whereby the fuel injection amount of the fuel injection valve 18 and the spark plug 22 are controlled. The ignition timing is controlled, and the electromagnetic actuators 16 and 17 of the valves 13 and 15 are controlled to control the valve timing (valve opening timing and valve closing timing) of the valves 13 and 15.
[0013]
Incidentally, as shown in FIG. 6, when the closing timing of the intake valve 13 is retarded from BDC (bottom dead center), the cylinder is opened during the valve opening period of the intake valve 13 in the compression stroke (see (2)). Because part of the fuel (air mixture) is returned to the intake system, it remains in the cylinder with respect to the required amount of fuel, especially during acceleration when the required amount of fuel required for in-cylinder combustion increases. As a result, the amount of fuel to be reduced is reduced, the air-fuel ratio in the cylinder becomes lean, and drivability and exhaust emission may be deteriorated.
[0014]
Therefore, the engine control circuit 21 executes the fuel return rate estimation program in FIG. 2 and the fuel injection amount calculation program in FIG. 5 to obtain the fuel return rate (fuel return amount) based on the closing timing of the intake valve 13. In addition to the estimation, the required fuel amount is calculated according to the engine operating state, and the fuel injection amount is calculated using the fuel return rate so that the fuel amount remaining in the cylinder matches the required fuel amount. Hereinafter, the processing contents of each program of FIGS. 2 and 5 will be described.
[0015]
The fuel return rate estimation program of FIG. 2 is executed every predetermined time or every predetermined crank angle, and plays a role corresponding to the fuel return amount estimating means in the claims. When this program is started, first, in step 101, the current valve closing timing of the intake valve 13 is read, and in the next step 102, the map shown in FIG. The basic fuel return rate A is calculated according to the timing. The basic fuel return rate A is the ratio of the amount of fuel returned from the cylinder to the intake system during the compression stroke with respect to the total amount of fuel drawn into the cylinder during the intake stroke.
[0016]
In general, when the closing timing of the intake valve 13 is controlled to the advance side (intake stroke) with respect to BDC or BDC, the intake valve 13 is closed before the compression stroke, and the intake system from the cylinder in the compression stroke The amount of fuel returned to 0 becomes zero. On the other hand, when the valve closing timing of the intake valve 13 is controlled to the retard side (compression stroke) with respect to BDC, the valve opening period of the intake valve 13 during the compression stroke is delayed as the valve closing timing of the intake valve 13 is delayed. The amount of fuel returned from the cylinder to the intake system increases. For this reason, the map characteristic of the basic fuel return rate A in FIG. 3 is that the basic fuel return rate A is set to 0% in the region where the closing timing of the intake valve 13 is more advanced than BDC and BDC. In the region where the valve closing timing of 13 is retarded from BDC, the basic fuel return rate A is set to increase as the valve closing timing of the intake valve 13 is delayed.
[0017]
After calculating the basic fuel return rate A, the process proceeds to step 103, and a map shown in FIG. 4 is searched to calculate a correction rate B for the basic fuel return rate A according to the current coolant temperature.
In general, the fuel that is returned from the cylinder to the intake system during the compression stroke is discharged from the intake port 12 with the air flow in a state where the fuel sucked into the cylinder is vaporized into a mixture. The better the fuel is vaporized, the more fuel is returned from the cylinder to the intake system. In this case, the higher the in-cylinder temperature (or the cooling water temperature that is the substitute information), the easier the fuel in the cylinder is vaporized and the better the vaporization state of the fuel. Therefore, the map characteristic of the correction factor B in FIG. The correction factor B is set so as to increase as the coolant temperature, which is substitute information for the in-cylinder temperature, increases. The in-cylinder temperature may be estimated or detected, and the correction factor B may be calculated according to the in-cylinder temperature.
[0018]
Thereafter, the routine proceeds to step 104, where the basic fuel return rate A is multiplied by the correction rate B to calculate the final fuel return rate KBACK, and this program ends.
KBACK = A × B
[0019]
Next, processing contents of the fuel injection amount calculation program of FIG. 5 will be described. In order to facilitate understanding of the processing contents of this program, a method for calculating the fuel injection amount FR so that the fuel amount FZ remaining in the cylinder finally matches the required fuel amount FBASE will be described.
[0020]
The return fuel amount FBACK (i-1) returned from the cylinder to the intake system in the previous compression stroke is sucked into the cylinder together with the injected fuel in the next intake stroke. The total fuel intake amount FTOTAL sucked into the cylinder can be obtained by adding the previous return fuel amount FBACK (i-1) to the current fuel injection amount FR (i).
FTOTAL = FR (i) + FBACK (i-1) (1)
[0021]
The return fuel amount FBACK (i) returned from the cylinder to the intake system during the current compression stroke can be obtained by multiplying the total fuel intake amount FTOTAL by the fuel return rate KBACK (i).
Figure 0004269124
[0022]
This time, the fuel amount FZ remaining in the cylinder can be obtained by subtracting the current return fuel amount FBACK (i) from the total fuel intake amount FTOTAL.
Figure 0004269124
[0023]
Further, in order to make the fuel amount FZ remaining in the cylinder equal to the required fuel amount FBASE (i), the following equation must be satisfied.
FZ = FBASE (i) (4)
[0024]
The following equation can be derived by solving the above equations (1) to (4).
FR (i) = FBASE (i) / {1-KBACK (i)}-FBACK (i-1) (5)
From this equation (5), the fuel injection amount FR (i) for making the fuel amount FZ remaining in the cylinder coincide with the required fuel amount FBASE (i) can be calculated.
[0025]
The fuel injection amount calculation program of FIG. 5 is executed every predetermined time or every predetermined crank angle, and plays a role corresponding to the required fuel amount calculation means and the fuel injection amount calculation means in the claims. When this program is started, first, in step 201, the required fuel amount FBASE (i) is determined according to the current operating state (for example, intake pipe pressure Pm, engine speed Ne, cooling water temperature, intake air temperature, valve timing, etc.). ) Is calculated.
[0026]
Thereafter, the routine proceeds to step 202, where the previous return fuel amount FBACK (i-1) is read, and at the next step 203, the fuel return rate KBACK (i) calculated by the fuel return rate estimation program of FIG. Thereafter, the routine proceeds to step 204, where a fuel injection amount FR (i) for making the fuel amount FZ remaining in the cylinder coincide with the required fuel amount FBASE (i) is calculated by the following equation {formula (5)}.
FR (i) = FBASE (i) / {1-KBACK (i)}-FBACK (i-1)
[0027]
Thereafter, the routine proceeds to step 205, where the current return fuel amount FBACK (i) is calculated by the following equation {(2)}.
FBACK (i) = {FR (i) + FBACK (i-1)} × KBACK (i)
[0028]
The current return fuel amount FBACK (i) calculated by the above equation is stored in the memory of the engine control circuit 21 as FBACK (i-1) in order to be used for the calculation of the next fuel injection amount FR.
[0029]
Thereafter, the process proceeds to step 206, where an injection pulse having a pulse width corresponding to the fuel injection amount FR calculated in step 205 is output to the fuel injection valve 18 at a predetermined injection timing, fuel injection is executed, and this program is terminated. .
[0030]
In the present embodiment described above, the fuel return rate KBACK is calculated based on the closing timing of the intake valve 13, and the fuel amount FZ remaining in the cylinder matches the required fuel amount FBASE using this fuel return rate KBACK. Since the fuel injection amount FR is calculated as described above, even if a part of the fuel in the cylinder is returned to the intake system when the closing timing of the intake valve 13 is delayed to the middle of the compression stroke, the fuel injection quantity FR is finally put into the cylinder. The remaining fuel amount FZ can be accurately controlled to the required fuel amount FBASE, the air-fuel ratio in the cylinder can be controlled to the target air-fuel ratio, and drivability and exhaust emission can be improved.
[0031]
Furthermore, in the present embodiment, the higher the in-cylinder temperature, the more easily the fuel in the cylinder is vaporized, and the amount of fuel returned from the in-cylinder to the intake system increases. As the cooling water temperature increases, the correction rate B for the basic fuel return rate A is increased to increase the fuel return rate KBACK. Therefore, the fuel return rate KBACK can be obtained more accurately, and the fuel injection amount Control accuracy can be further improved.
[0032]
In the present embodiment, the fuel return rate KBACK (basic fuel return rate A) is calculated based on the closing timing of the intake valve 13, but a parameter (correlation with the closing timing of the intake valve 13) ( For example, the fuel return rate KBACK (basic fuel return rate A) may be calculated based on the in-cylinder space volume and the compression ratio at the closing timing of the intake valve 13.
[0033]
In this embodiment, the valve timings of both the intake valve 13 and the exhaust valve 15 are controlled. However, only the valve timing of the intake valve 13 may be controlled, and the valve drive source is also used. The valve timing is not limited to the electromagnetic actuators 16 and 17 and may be controlled by hydraulic pressure. The present invention may also be applied to an engine equipped with a system that varies the valve operating angle.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view schematically showing the structure of an engine in an embodiment of the present invention. FIG. 2 is a flowchart showing a flow of processing of a fuel return rate estimation program. FIG. 4 is a diagram conceptually showing an example of a map of a correction rate with respect to a basic fuel return rate. FIG. 5 is a flowchart showing a processing flow of a fuel injection amount calculation program. Diagram showing an example [Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 13 ... Intake valve, 15 ... Exhaust valve, 16, 17 ... Electromagnetic actuator (variable valve apparatus), 18 ... Fuel injection valve, 19 ... Water temperature sensor, 21 ... Engine control circuit (required fuel amount) Calculation means, fuel return amount estimation means, fuel injection amount calculation means).

Claims (4)

各気筒の吸気ポートに燃料を噴射する燃料噴射弁と、少なくとも吸気バルブの閉弁タイミングを可変する可変バルブ装置を備えた内燃機関において、
内燃機関の運転状態に基づいて要求燃料量を算出する要求燃料量算出手段と、
圧縮行程中に前記吸気バルブが閉弁するまでに筒内から吸気系に戻される燃料戻り量を前記吸気バルブの閉弁タイミングに基づいて推定する燃料戻り量推定手段と、
筒内に残留する燃料量が前記要求燃料量と一致するように前記燃料戻り量を考慮して前記要求燃料量を補正して燃料噴射量を求める燃料噴射量算出手段と
前記吸気バルブの閉弁タイミングを圧縮行程中まで遅らせる手段と
を備え、
前記燃料戻り量推定手段は、筒内の燃料の気化状態が良くなるほど前記燃料戻り量が多くなるように推定することを特徴とする内燃機関の燃料噴射制御装置。
In an internal combustion engine comprising a fuel injection valve that injects fuel into the intake port of each cylinder and a variable valve device that varies at least the closing timing of the intake valve,
A required fuel amount calculating means for calculating a required fuel amount based on the operating state of the internal combustion engine;
Fuel return amount estimation means for estimating a fuel return amount that is returned from the cylinder to the intake system before the intake valve is closed during a compression stroke, based on the closing timing of the intake valve;
Fuel injection amount calculation means for obtaining a fuel injection amount by correcting the required fuel amount in consideration of the fuel return amount so that a fuel amount remaining in a cylinder matches the required fuel amount ;
Means for delaying the closing timing of the intake valve until during the compression stroke;
With
The fuel injection control device for an internal combustion engine, wherein the fuel return amount estimation means estimates that the fuel return amount increases as the vaporization state of the fuel in the cylinder becomes better .
前記燃料戻り量推定手段は、圧縮行程中に前記吸気バルブの閉弁タイミングが遅くなるほど前記燃料戻り量が多くなるように推定することを特徴とする請求項1に記載の内燃機関の燃料噴射制御装置。  2. The fuel injection control for an internal combustion engine according to claim 1, wherein the fuel return amount estimating means estimates that the fuel return amount increases as the closing timing of the intake valve is delayed during a compression stroke. apparatus. 前記燃料戻り量推定手段は、筒内の燃料の気化状態を評価するパラメータとして筒内温度又は冷却水温を用い、筒内温度又は冷却水温が高くなるほど前記燃料戻り量が多くなるように推定することを特徴とする請求項1又は2に記載の内燃機関の燃料噴射制御装置。The fuel return amount estimation means uses the in-cylinder temperature or the cooling water temperature as a parameter for evaluating the vaporization state of the fuel in the cylinder, and estimates that the fuel return amount increases as the in-cylinder temperature or the cooling water temperature increases. The fuel injection control device for an internal combustion engine according to claim 1 or 2 . 前記燃料噴射量算出手段は、前回の燃料戻り量と今回の燃料戻り量とを考慮して前記要求燃料量を補正することを特徴とする請求項1に記載の内燃機関の燃料噴射制御装置。2. The fuel injection control device for an internal combustion engine according to claim 1, wherein the fuel injection amount calculating means corrects the required fuel amount in consideration of a previous fuel return amount and a current fuel return amount.
JP2000242744A 2000-08-04 2000-08-04 Fuel injection control device for internal combustion engine Expired - Lifetime JP4269124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000242744A JP4269124B2 (en) 2000-08-04 2000-08-04 Fuel injection control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000242744A JP4269124B2 (en) 2000-08-04 2000-08-04 Fuel injection control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002047972A JP2002047972A (en) 2002-02-15
JP4269124B2 true JP4269124B2 (en) 2009-05-27

Family

ID=18733715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000242744A Expired - Lifetime JP4269124B2 (en) 2000-08-04 2000-08-04 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4269124B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138799A (en) * 2008-12-11 2010-06-24 Mitsubishi Electric Corp Fuel injection control device for internal combustion engine
JP6301597B2 (en) * 2013-06-24 2018-03-28 株式会社Subaru In-cylinder injection engine control device
JP5792236B2 (en) * 2013-07-31 2015-10-07 本田技研工業株式会社 Fuel injection control device for internal combustion engine
JP7021579B2 (en) * 2018-03-22 2022-02-17 トヨタ自動車株式会社 Internal combustion engine control device

Also Published As

Publication number Publication date
JP2002047972A (en) 2002-02-15

Similar Documents

Publication Publication Date Title
RU2716103C2 (en) Method for heating exhaust gas catalytic converter (embodiments) and engine system
US6681741B2 (en) Control apparatus for internal combustion engine
RU2707647C2 (en) Method and system for selective disconnection of cylinders
US7004148B2 (en) Control apparatus for internal combustion engine
US7628013B2 (en) Control device of charge compression ignition-type internal combustion engine
US7347183B2 (en) Control apparatus and control method for engine
US7207315B2 (en) Device and method for controlling internal combustion engine
US9103293B2 (en) Method for reducing sensitivity for engine scavenging
US20110023454A1 (en) Late post injection of fuel for particulate filter heating
US20110144892A1 (en) Control apparatus for internal combustion engine
US20160363071A1 (en) Control apparatus for internal combustion engine
JP2007332944A (en) Fuel injection control device of internal combustion engine
JP5514601B2 (en) Control device for internal combustion engine
JP5780391B2 (en) Fuel injection control device for internal combustion engine
JP4605505B2 (en) Engine control device
US20230332535A1 (en) Controller and control method for internal combustion engine
JP4269124B2 (en) Fuel injection control device for internal combustion engine
US20080147298A1 (en) Control system and control method for internal combustion engine
JP4348705B2 (en) Fuel injection control device for internal combustion engine
JP4166135B2 (en) Operating region control device for internal combustion engine
JP4254395B2 (en) Control device for internal combustion engine
JP4692204B2 (en) Control device for compression ignition type internal combustion engine
JP4956473B2 (en) Fuel injection control device
US11913391B2 (en) Controller and control method for internal combustion engine
JP4114201B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4269124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term