JP4269011B2 - Method for producing porous glass ceramics using coal ash, dust from metal refining furnace, etc. as raw materials - Google Patents

Method for producing porous glass ceramics using coal ash, dust from metal refining furnace, etc. as raw materials Download PDF

Info

Publication number
JP4269011B2
JP4269011B2 JP2002229422A JP2002229422A JP4269011B2 JP 4269011 B2 JP4269011 B2 JP 4269011B2 JP 2002229422 A JP2002229422 A JP 2002229422A JP 2002229422 A JP2002229422 A JP 2002229422A JP 4269011 B2 JP4269011 B2 JP 4269011B2
Authority
JP
Japan
Prior art keywords
glass
porous glass
raw materials
minutes
coal ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002229422A
Other languages
Japanese (ja)
Other versions
JP2004067450A (en
Inventor
哲明 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitakyushu Foundation for Advancement of Industry Science and Technology
Original Assignee
Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitakyushu Foundation for Advancement of Industry Science and Technology filed Critical Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority to JP2002229422A priority Critical patent/JP4269011B2/en
Publication of JP2004067450A publication Critical patent/JP2004067450A/en
Application granted granted Critical
Publication of JP4269011B2 publication Critical patent/JP4269011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/002Use of waste materials, e.g. slags
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0063Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing waste materials, e.g. slags
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、石炭灰および/または金属精錬、鋳造、鋳造品のサンドブラスト等のプロセスから発生したダストと、ガラスカレットを原料とする多孔質ガラスセラミックスの製造方法に関する。
【0002】
【従来の技術】
燃料資源の長期的展望から、電力供給において石炭火力発電が重視されつつあり、石炭灰の生成量もたとえば平成11年度で760万トンであり、前年度比11%増と増加の傾向にある。石炭灰はセメント分野、土木分野、建築分野などで多く消費されているが、石炭灰発生量増加の傾向に鑑み新たな用途の開発が望まれている。
【0003】
一方、ガラスは年間100万トン以上の生産量があり、廃棄されるガラスの多くが埋め立て処分等されている。ガラスカレットは、再度ガラス化するときに必要なガラス化反応熱が零であり、ガラス原料の溶融に要するエネルギーを大きく減少せしめ得る。このような利点も併せ考え、新規な材料の原料としての研究・開発が望まれている。
【0004】
このようなガラス質原料を原料の一部とするガラス質焼結体が、たとえば特開平5−279084号公報に開示されている。この先行技術は、針状および板状の結晶構造を有する天然珪石で形成された骨格組織の骨格内部に、人工または天然のガラス質原料を主成分とする組成物の硬化体が充填されてなるガラス質焼結体であって耐熱衝撃強度が高い点によって特徴づけられる。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来技術によるときは、本発明が狙いとしている良好な賦形性、広い細孔構造の選択性といった多孔質ガラスが有する特性を得ることができない。本発明は、産業廃棄物や一般廃棄物である石炭灰や金属精錬、鋳造、鋳造品のサンドブラスト等のプロセスから発生したダストと、ガラスカレットを原料とする多孔質ガラスセラミックスの製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するための請求項1に記載の発明は、石炭灰とガラスカレットの質量比率が1:1〜9:1の範囲内となるように配合した原料を混合し、該配合原料を1100℃〜1200℃の温度域で30分間〜120分間加熱・溶融せしめた後急冷する工程からなる多孔質ガラスセラミックスの製造方法である。
0007
請求項2に記載の発明は、石炭灰および金属精錬、鋳造、鋳造品のサンドブラスト等のプロセスから発生したダストと、ガラスカレットの質量比率が1:1〜9:1の範囲内となるように配合した原料を混合し、該配合原料を1100℃〜1200℃の温度域で30分間〜120分間加熱・溶融せしめた後急冷することからなる多孔質ガラスセラミックスの製造方法である。この製造方法によって得られた多孔質ガラスセラミックスは、金属精錬プロセスからのダストがクロム酸化物を含んでいる場合であってもCrイオンの溶出がなく、前記金属精錬プロセスからのダストの廃棄処理に特別の処理を施す過程を不要にできる効果がある。
0008
請求項3に記載の発明は、金属精錬、鋳造、鋳造品のサンドブラスト等のプロセスから発生したダストと、ガラスカレットの質量比率が1:1〜9:1の範囲内となるように配合した原料を混合し、該配合原料を1100℃〜1200℃の温度域で30分間〜120分間加熱・溶融せしめた後急冷する工程からなる多孔質ガラスセラミックスの製造方法である。この製造方法によって得られた多孔質ガラス又は多孔質ガラスセラミックスは、金属精錬プロセスからのダストがクロム酸化物を含んでいる場合であってもCrイオンの溶出がなく、前記金属精錬プロセスからのダストの廃棄処理に特別の処理を施す過程を不要にできる効果がある。
0009
【発明の実施の形態】
以下、本発明をその好ましい実施形態に則して説明する。
0010
多孔質ガラスは無機質多孔材料の一種であり、次のような特性を有する。1)耐熱性 2)耐微生物汚損性 3)高い機械的強度 4)化学的耐久性 5)剛直な微細孔の存在 6)良好な賦形性 7)広い細孔構造の選択性 8)透光性 9)広い組成選択性 などである。特性6)〜9)は多孔質ガラス固有の特性であり、わけても特性6)、7)は、他の無機質多孔材料にはない大きな特徴である。
0011
多孔質ガラスの利用についてこれを概括すれば、分離膜、担体、触媒への利用のように細孔を利用しようとするもののほか、細孔に物質を充填して複合材料として利用しようとするものがある。複合材料として利用しようとするものの代表例として、光機能材料への利用がある。
0012
一方、泡ガラスは、極低温から高温まで幅広い温度域で使用可能な多孔質ガラス断熱材である。その物性として、密度が約0.13で他の断熱材特にプラスチック系断熱材に比し重い。圧縮強度、抗折強度は6kgf/cm〜7kgf/cmで断熱材としては高い水準である。0℃〜20℃における熱伝導率は、0.038kcal/m・h・℃〜0.04kcal/m・h・℃である。水分を含有すると熱伝導率は高くなるが、泡ガラスには吸水、吸湿、通気性は殆どないので長期間使用による経年劣化を来さない。また、耐薬品性、寸法安定性、不燃性に優れ、最高使用可能温度は約480℃である。而して泡ガラスは、石油・石炭化学、電力、ガス工業、船舶、ビル建設、醸造、食品加工など広い産業分野で使用されている。
0013
【実施例】
実施例1
発明者は先ず、石炭火力発電所から排出された、表1に示す組成をもつ石炭灰と、表2に示す組成をもつガラスカレット(市販の飲料用瓶を破砕したもの)の配合割合を質量比で1:1〜9:1、加熱・溶融温度:1150℃〜1400℃、加熱・溶融時間:30分間〜120分間の範囲内で変化させて、前記配合原料を溶融した後、これを氷水中で急冷してガラスを得た。
0014
【表1】

Figure 0004269011
0015
【表2】
Figure 0004269011
0016
石炭灰とガラスカレットの配合割合を質量比で1:1〜9:1の範囲内で変化させた配合原料を、1400℃で120分間、加熱・溶融してこれを氷水中で急冷して得たガラスを顕微鏡(60倍)で比較した処、石炭灰の配合割合が大きくなるに従って発泡が顕著であった。しかし、石炭灰の配合割合が大きくなり過ぎると、均質なガラスは得られなかった。
0017
石炭灰とガラスカレットの配合割合が質量比で5:1前後の配合原料から得られたガラスは、多孔質ガラスとは異なるが、発泡が顕著であり泡ガラスとして断熱材等に利用できる。
0018
石炭灰とガラスカレットの配合割合を質量比で1:1、2:1、および5:1として、これら配合原料を1200℃で60分間加熱・溶融後氷水中で急冷して多孔質ガラスを得た。石炭灰とガラスカレットの配合割合が質量比で1:1および2:1の配合原料から得られたガラスは、加熱・溶融温度が1400℃のガラスに比し、発泡が顕著な泡ガラスであった。
0019
石炭灰とガラスカレットの配合割合を質量比で5:1に固定し、
a)1400℃で60分間、 b)1200℃で60分間、 およびc)1150℃で60分間 加熱・溶融後急冷してガラスを得た。
0020
これらガラスのX線回折(XRD:X-Ray Diffraction)パターンを、図1に示す。図1から明かなように、ガラス特有のハローピークをもつ、1400℃で60分間の加熱・溶融条件で製造されたガラスは、泡ガラスであった。
Al . Si . 75 . 25、AlCa . Si11SiO、AlSiO及びFeの結晶化ピークをもつ、1200℃で60分間及び1150℃で60分間の加熱・溶融条件で製造されたものは、多孔質ガラスセラミックスであることが明らかとなった。これらのガラスセラミックスは、水の浄化要素としてまた、断熱材、アスファルトの補助材としてさらに、ビオトープなどへの応用が期待できる。
0021
次いで、上記a)、b)、およびc)の条件で製造された泡ガラスおよびガラスセラミックスの化学的耐久性を調べるために、ほぼ等量の硝酸(pH:3.5)と硫酸(pH:3.5)からなる模擬酸性雨を用いて溶出試験を行い、模擬酸性雨中に溶け出したFe(III)の濃度を原子吸光法で測定した。その結果を、図2に示す。図2に示す結果となったのは、1400℃で60分間の加熱・溶融条件で得られた泡ガラスは、溶出実験に用いたガラスが細かく比表面積が増したために、溶出Fe(III)の値が、平成12年度改正水道法における水質基準値(0.3ppm)ではあるものの、1150℃で60分間の加熱・溶融条件で得られたガラスセラミックスよりも多量に溶出した。1200℃で60分間の加熱・溶融条件で得られたガラスセラミックスについては、前記加熱・溶融条件下では発泡が顕著であり、溶融の際に結合の分断が生じたか或は多孔質であるために試料全体が表面化した結果、昭和46年度の水質汚濁防止法に基づく排水基準値(10ppm)以下ではあるものの、図2に示すように、多量のFe(III)の溶出となったものと考えられる。従って、Fe(III)の溶出が問題となるような用途、例えば土木、建築用に本発明の多孔質ガラス或はガラスセラミックスを用いる場合であって石炭灰とガラスカレットの配合割合を質量比で5:1とするときは、加熱・溶融温度と時間の組み合わせを適切に選ぶ必要がある。
0022
実施例2
電気炉溶解(金属精錬)ダスト、ステンレス鋼鋳物用調砂ダスト等、金属精錬・鋳造プロセスから発生したダストと、ガラスカレットを原料として多孔質ガラスを製造した。
表3に、ダストの化学成分を示す。
0023
【表3】
Figure 0004269011
0024
電気炉溶解(金属精錬)ダスト:ガラスカレットを質量比で5:3の割合で配合し、これを1150℃で60分間加熱・溶融した後、急冷して多孔質ガラスを得た。この多孔質ガラスは、実施例1における条件c)で得られたものと同様の特性を有していた。
0025
次に、この多孔質ガラスについて、模擬酸性雨(pH:3.5、HSO+HNO混合溶液)を用いてCrの溶出試験を行った。溶出試験は、30℃の模擬酸性雨中に試料を72時間浸漬した後、模擬酸性雨中のCrの濃度を原子吸光法によって定量する方法によった。測定は、各試料について、3回ずつ行った。その結果を、表4に示す。
0026
【表4】
Figure 0004269011
0027
上記Crの溶出試験結果は、土壌中のCrの環境基準値である50ppb以下である。また、下水道法で定められたCrの基準値:2ppm(2000ppb)以下である。さらに、水質汚濁防止法で定められたCrの基準値:2ppm(2000ppb)以下である。このように、本発明によれば、Crを含有する金属精錬ダスト等を原料とするときも、得られる多孔質ガラスセラミックスからはCrの溶出量が環境基準値をはるかに下回る僅少さであり、全く無害化される。
0028
実施例3
ステンレス鋼鋳物用調砂ダスト、ガラスカレット、および酸化鉄(Fe)をそれぞれ5:5:2の割合で配合し、これを1150℃で60分間加熱・溶融した後、急冷して多孔質ガラスを得た。この多孔質ガラスは、実施例1における条件c)で得られたものと同様の特性を有していた。
0029
次に、この多孔質ガラスについて、模擬酸性雨(pH:3.5、HSO+HNO混合溶液)を用いてCrの溶出試験を行った。溶出試験は、30℃の模擬酸性雨中に試料を72時間浸漬した後、模擬酸性雨中のCrの濃度を原子吸光法によって定量する方法によった。測定は、各試料について、3回ずつ行った。その結果を、表5に示す。
0030
【表5】
Figure 0004269011
0031
上記Crの溶出試験結果は、土壌中のCrの環境基準値である50ppb以下である。また、下水道法で定められたCrの基準値:2ppm(2000ppb)以下である。さらに、水質汚濁防止法で定められたCrの基準値:2ppm(2000ppb)以下である。このように、本発明によれば、Crを含有する金属精錬ダスト等を原料とするときも、得られる多孔質ガラスセラミックスからはCrの溶出量が環境基準値をはるかに下回る僅少さであり、全く無害化される。
0032
実施例4
表3に示す組成をもつ電気炉(金属精錬)ダストおよびガラスカレットを原料として多孔質ガラスを製造した。
0033
ダストとガラスカレットを質量比5:3で配合し、これを1200℃で60分間加熱・溶融した後、急冷して多孔質ガラスを得た。この多孔質ガラスを模擬酸性雨(pH:3.5、HSO+HNO混合溶液)を用いてCrの溶出試験を行った。溶出試験は、30℃の模擬酸性雨溶液中に試料を72次間浸漬した後、模擬酸性雨中のCrの濃度を原子吸光法によって決定する方法によった。測定は、各試料について、3回ずつ行った。その結果を、表6に示す。
0034
【表6】
Figure 0004269011
0035
上記Crの溶出試験結果は、土壌中のCrの環境基準値である50ppb以下である。また、下水道法で定められたCrの基準値:2ppm(2000ppb)以下である。さらに、水質汚濁防止法で定められたCrの基準値:2ppm(2000ppb)以下である。このように、本発明によれば、Crを含有する金属精錬ダスト等を原料とするときも、得られる多孔質ガラスセラミックスからはCrの溶出量が環境基準値をはるかに下回る僅少さであり、全く無害化される。
0036
【発明の効果】
本発明によれば、産業廃棄物や一般廃棄物である焼却灰、石炭灰、ガラスカレットを原料として多孔質ガラスや多孔質ガラスセラミックスを得ることができ、これらを水の浄化用要素、断熱材、アスファルトの補助材ならびにビオトープ用材として応用できる。
0037
請求項及び請求項に記載の発明によるときは、Cr化合物を含有する、金属精錬プロセス等からの排出ダストを原料として配合するときも、得られる多孔質ガラスやガラスセラミックスからのCrの溶出は殆どなく、環境保全上全く問題のない多孔質ガラスセラミックスを得ることができる。
【図面の簡単な説明】
0038
【図1】 本発明において、種々の温度・時間の配合原料加熱・溶融条件で得られる多孔質ガラス、ガラスセラミックスのX線回折パターンを示すグラフ
【図2】 本発明において、種々の温度・時間の配合原料加熱・溶融条件で得られる多孔質ガラス、ガラスセラミックスの模擬酸性雨によるFe(III)溶出試験結果を示すグラフ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing porous glass ceramics using dust generated from processes such as coal ash and / or metal refining, casting, sandblasting of cast products, and glass cullet as raw materials.
[0002]
[Prior art]
From the long-term perspective of fuel resources, coal-fired power generation is being emphasized in power supply, and the amount of coal ash generated is, for example, 7.6 million tons in FY 1999, an increase of 11% over the previous year. Coal ash is consumed in large quantities in the cement field, civil engineering field, construction field, and the like, but in view of the increasing trend of coal ash generation, development of new applications is desired.
[0003]
On the other hand, glass has a production volume of 1 million tons or more per year, and most of discarded glass is disposed of in landfills. The glass cullet has zero vitrification reaction heat required for vitrification again, and can greatly reduce the energy required for melting the glass raw material. Considering these advantages, research and development as a raw material for new materials are desired.
[0004]
A vitreous sintered body using such a vitreous raw material as a part of the raw material is disclosed, for example, in JP-A-5-279084. This prior art is obtained by filling a skeleton of a skeletal structure formed of natural quartzite having a needle-like and plate-like crystal structure with a hardened body of a composition mainly composed of an artificial or natural glassy raw material. It is a vitreous sintered body and is characterized by a high thermal shock strength.
[0005]
[Problems to be solved by the invention]
However, when the above prior art is used, the characteristics possessed by the porous glass, such as good shapeability and selectivity of a wide pore structure, which are aimed at by the present invention, cannot be obtained. The present invention provides a method for producing porous glass ceramics using dust generated from processes such as coal ash, which is industrial waste and general waste, metal smelting, casting, sandblasting of castings, and glass cullet as raw materials. For the purpose.
[0006]
[Means for Solving the Problems]
Invention of Claim 1 for solving the said subject mixes the raw material mix | blended so that the mass ratio of coal ash and glass cullet may be in the range of 1: 1-9: 1, and this mixing | blending raw material is used. It is a method for producing porous glass ceramics comprising a step of heating and melting in a temperature range of 1100 ° C. to 1200 ° C. for 30 minutes to 120 minutes and then rapidly cooling.
[ 0007 ]
The invention according to claim 2 is such that the mass ratio of dust generated from processes such as coal ash and metal refining, casting, sandblasting of castings and glass cullet is within a range of 1: 1 to 9: 1. This is a method for producing porous glass ceramics comprising mixing blended raw materials, heating and melting the blended raw materials in a temperature range of 1100 ° C. to 1200 ° C. for 30 minutes to 120 minutes, and then rapidly cooling. The porous glass ceramic obtained by this manufacturing method has no elution of Cr ions even when the dust from the metal refining process contains chromium oxide, and is used for the disposal of dust from the metal refining process. This has the effect of eliminating the need for special processing.
[ 0008 ]
The invention according to claim 3 is a raw material blended so that the mass ratio of dust generated from processes such as metal refining, casting, sandblasting of cast products, and glass cullet is within a range of 1: 1 to 9: 1. mixing a method for producing a porous glass ceramics comprising the step of rapidly cooling after allowed heating and melting for 30 minutes to 120 minutes at a temperature range of the mixed material 1100 ~ 1200 ℃. Porous glass or porous glass ceramic obtained by this production method has no elution of Cr ions even when the dust from the metal refining process contains chromium oxide, and dust from the metal refining process. There is an effect that the process of performing a special process in the disposal process can be eliminated.
[ 0009 ]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described according to preferred embodiments thereof.
[ 0010 ]
Porous glass is a kind of inorganic porous material and has the following characteristics. 1) Heat resistance 2) Microbial stain resistance 3) High mechanical strength 4) Chemical durability 5) Presence of rigid micropores 6) Good shapeability 7) Selectivity of wide pore structure 8) Translucent 9) Wide composition selectivity. The characteristics 6) to 9) are characteristics inherent to the porous glass, and the characteristics 6) and 7) are characteristics that are not found in other inorganic porous materials.
[ 0011 ]
To summarize the use of porous glass, in addition to those that use pores, such as those for separation membranes, supports, and catalysts, and those that try to use them as composite materials by filling the pores with substances. There is. As a representative example of what is to be used as a composite material, there is use in an optical functional material.
[ 0012 ]
On the other hand, foam glass is a porous glass heat insulating material that can be used in a wide temperature range from extremely low temperature to high temperature. As its physical properties, the density is about 0.13, which is heavier than other heat insulating materials, particularly plastic heat insulating materials. The compressive strength and flexural strength are 6 kgf / cm 2 to 7 kgf / cm 2, which is a high level as a heat insulating material. The thermal conductivity at 0 ° C. to 20 ° C. is 0.038 kcal / m 2 · h · ° C. to 0.04 kcal / m 2 · h · ° C. When moisture is contained, the thermal conductivity is increased, but the foam glass has almost no water absorption, moisture absorption or air permeability, and therefore does not deteriorate over time due to long-term use. Moreover, it is excellent in chemical resistance, dimensional stability and nonflammability, and the maximum usable temperature is about 480 ° C. Thus, foam glass is used in a wide range of industrial fields such as petroleum / coal chemistry, electric power, gas industry, ships, building construction, brewing, and food processing.
[ 0013 ]
【Example】
Example 1
The inventor first calculates the blending ratio of the coal ash having the composition shown in Table 1 and the glass cullet (commercially available beverage bottle crushed) having the composition shown in Table 2 discharged from the coal-fired power plant. The ratio was changed from 1: 1 to 9: 1, heating / melting temperature: 1150 ° C. to 1400 ° C., heating / melting time: 30 minutes to 120 minutes, and the blended raw material was melted. The glass was obtained by quenching in it.
[ 0014 ]
[Table 1]
Figure 0004269011
[ 0015 ]
[Table 2]
Figure 0004269011
[ 0016 ]
A blended raw material in which the blending ratio of coal ash and glass cullet is changed within a mass ratio of 1: 1 to 9: 1 is obtained by heating and melting at 1400 ° C. for 120 minutes and rapidly cooling it in ice water. When the glass was compared with a microscope (60 times), foaming became more pronounced as the coal ash content increased. However, when the blending ratio of coal ash becomes too large, a homogeneous glass cannot be obtained.
[ 0017 ]
Glass obtained from a blended raw material having a blending ratio of coal ash and glass cullet of around 5: 1 by mass ratio is different from porous glass, but foaming is remarkable and can be used as a heat insulating material or the like as foam glass.
[ 0018 ]
The mixing ratio of coal ash and glass cullet is 1: 1, 2: 1, and 5: 1, and these raw materials are heated and melted at 1200 ° C. for 60 minutes and then rapidly cooled in ice water to obtain porous glass. It was. Glass obtained from blended raw materials with a mixing ratio of coal ash and glass cullet of 1: 1 and 2: 1 is a foam glass with significant foaming compared to glass with a heating / melting temperature of 1400 ° C. It was.
[ 0019 ]
The blending ratio of coal ash and glass cullet is fixed at 5: 1 by mass ratio,
a) 60 minutes at 1400 ° C. b) 60 minutes at 1200 ° C. and c) 60 minutes at 1150 ° C. After heating and melting, a glass was obtained by rapid cooling.
[ 0020 ]
The X-ray diffraction (XRD) pattern of these glasses is shown in FIG. As is clear from FIG. 1, the glass produced under heating and melting conditions at 1400 ° C. for 60 minutes having a glass-specific halo peak was a bubble glass.
Al 0. 5 Si 0. 75 O 2. 25, Al 3 Ca 0. 5 Si 3 O 11 having a crystallization peak of SiO 2, Al 2 SiO 5 and Fe 2 O 3, 60 minutes and 1150 ° C. at 1200 ° C. It was clarified that those manufactured under heating and melting conditions for 60 minutes were porous glass ceramics. These glass ceramics can be expected to be applied to biotopes and the like as a water purification element, as a heat insulating material and asphalt auxiliary material.
[ 0021 ]
Next, in order to examine the chemical durability of the foam glass and glass ceramics produced under the conditions a), b), and c), approximately equal amounts of nitric acid (pH: 3.5) and sulfuric acid (pH: An elution test was conducted using simulated acid rain consisting of 3.5), and the concentration of Fe (III) dissolved in the simulated acid rain was measured by atomic absorption spectrometry. The result is shown in FIG. The result shown in FIG. 2 was that the foam glass obtained under heating and melting conditions at 1400 ° C. for 60 minutes was fine in the glass used in the elution experiment and increased in specific surface area. Although the value was the water quality standard value (0.3 ppm) in the 2000 Revised Waterworks Law, it was eluted in a larger amount than the glass ceramic obtained under heating and melting conditions at 1150 ° C. for 60 minutes. Glass ceramics obtained under heating / melting conditions at 1200 ° C. for 60 minutes are markedly foamed under the heating / melting conditions, because bond breakage occurred during melting or they were porous. As a result of the surface of the entire sample, although it was below the wastewater standard value (10 ppm) based on the Water Pollution Prevention Act of 1971, it is considered that a large amount of Fe (III) was eluted as shown in FIG. . Accordingly, when the porous glass or glass ceramic of the present invention is used for applications in which elution of Fe (III) becomes a problem, for example, civil engineering and construction, the mixing ratio of coal ash and glass cullet is expressed by mass ratio. When the ratio is 5: 1, it is necessary to appropriately select a combination of heating / melting temperature and time.
[ 0022 ]
Example 2
Porous glass was produced using dust generated from metal refining / casting processes, such as electric furnace melting (metal refining) dust, tempered sand for stainless steel casting, and glass cullet as raw materials.
Table 3 shows the chemical components of the dust.
[ 0023 ]
[Table 3]
Figure 0004269011
[ 0024 ]
Electric furnace melting (metal refining) dust: glass cullet was blended at a mass ratio of 5: 3, heated and melted at 1150 ° C. for 60 minutes, and then rapidly cooled to obtain porous glass. This porous glass had the same characteristics as those obtained under the condition c) in Example 1.
[ 0025 ]
Next, this porous glass was subjected to a Cr elution test using simulated acid rain (pH: 3.5, mixed solution of H 2 SO 4 + HNO 3 ). The dissolution test was performed by immersing the sample in simulated acid rain at 30 ° C. for 72 hours and then quantifying the Cr concentration in the simulated acid rain by atomic absorption spectrometry. The measurement was performed three times for each sample. The results are shown in Table 4.
[ 0026 ]
[Table 4]
Figure 0004269011
[ 0027 ]
The Cr dissolution test result is 50 ppb or less, which is the environmental standard value of Cr in soil. Moreover, the reference value of Cr defined by the Sewerage Law: 2 ppm (2000 ppb) or less. Furthermore, the reference value of Cr defined by the Water Pollution Control Law is 2 ppm (2000 ppb) or less. Thus, according to the present invention, even when using metal refining dust containing Cr as a raw material, the amount of elution of Cr is far below the environmental standard value from the obtained porous glass ceramics. It is completely harmless.
[ 0028 ]
Example 3
Stainless steel casting sand, glass cullet, and iron oxide (Fe 2 O 3 ) are blended at a ratio of 5: 5: 2, heated and melted at 1150 ° C. for 60 minutes, then rapidly cooled and porous. A quality glass was obtained. This porous glass had the same characteristics as those obtained under the condition c) in Example 1.
[ 0029 ]
Next, this porous glass was subjected to a Cr elution test using simulated acid rain (pH: 3.5, mixed solution of H 2 SO 4 + HNO 3 ). The dissolution test was performed by immersing the sample in simulated acid rain at 30 ° C. for 72 hours and then quantifying the Cr concentration in the simulated acid rain by atomic absorption spectrometry. The measurement was performed three times for each sample. The results are shown in Table 5.
[ 0030 ]
[Table 5]
Figure 0004269011
[ 0031 ]
The Cr dissolution test result is 50 ppb or less, which is the environmental standard value of Cr in soil. Moreover, the reference value of Cr defined by the Sewerage Law: 2 ppm (2000 ppb) or less. Furthermore, the reference value of Cr defined by the Water Pollution Control Law is 2 ppm (2000 ppb) or less. Thus, according to the present invention, even when using metal refining dust containing Cr as a raw material, the amount of elution of Cr is far below the environmental standard value from the obtained porous glass ceramics. It is completely harmless.
[ 0032 ]
Example 4
Porous glass was produced using electric furnace (metal refining) dust having the composition shown in Table 3 and glass cullet as raw materials.
[ 0033 ]
Dust and glass cullet were blended at a mass ratio of 5: 3, heated and melted at 1200 ° C. for 60 minutes, and then rapidly cooled to obtain porous glass. This porous glass was subjected to a Cr elution test using simulated acid rain (pH: 3.5, mixed solution of H 2 SO 4 + HNO 3 ). The dissolution test was performed by immersing the sample in a simulated acidic rain solution at 30 ° C. for 72 orders, and then determining the Cr concentration in the simulated acidic rain by atomic absorption spectrometry. The measurement was performed three times for each sample. The results are shown in Table 6.
[ 0034 ]
[Table 6]
Figure 0004269011
[ 0035 ]
The Cr dissolution test result is 50 ppb or less, which is the environmental standard value of Cr in soil. Moreover, the reference value of Cr defined by the Sewerage Law: 2 ppm (2000 ppb) or less. Furthermore, the reference value of Cr defined by the Water Pollution Control Law is 2 ppm (2000 ppb) or less. Thus, according to the present invention, even when using metal refining dust containing Cr as a raw material, the amount of elution of Cr is far below the environmental standard value from the obtained porous glass ceramics. It is completely harmless.
[ 0036 ]
【The invention's effect】
According to the present invention, porous glass and porous glass ceramics can be obtained from incineration ash, coal ash, and glass cullet, which are industrial waste and general waste, and these can be used as water purification elements and heat insulating materials. It can be applied as an asphalt auxiliary material and a biotope material.
[ 0037 ]
When the invention according to claim 2 and claim 3 is used, the dissolution of Cr from the porous glass or glass ceramic obtained also when blending as a raw material dust discharged from a metal refining process or the like containing a Cr compound There is almost no problem, and a porous glass ceramic having no problem in environmental conservation can be obtained.
[Brief description of the drawings]
[ 0038 ]
FIG. 1 is a graph showing X-ray diffraction patterns of porous glass and glass ceramics obtained under heating and melting conditions of various raw materials at various temperatures and times in the present invention. FIG. 2 shows various temperatures and times in the present invention. Showing Fe (III) elution test results by simulated acid rain of porous glass and glass ceramics obtained under heating and melting conditions

Claims (3)

石炭灰とガラスカレットの質量比率が1:1〜9:1の範囲内となるように配合した原料を混合し、該配合原料を1100℃〜1200℃
の温度域で30分間〜120分間加熱・溶融せしめた後急冷することを特徴とする多孔質ガラスセラミックスの製造方法。
The raw materials blended so that the mass ratio of coal ash and glass cullet is within the range of 1: 1 to 9: 1 are mixed, and the blended raw materials are 1100 ° C to 1200 ° C.
A method for producing porous glass ceramics, comprising heating and melting for 30 minutes to 120 minutes in the temperature range and then rapidly cooling.
石炭灰および金属精錬、鋳造、鋳造品のサンドブラスト等のプロセスから発生したダストと、ガラスカレットの質量比率が1:1〜9:1の範囲内となるように配合した原料を混合し、該配合原料を1100℃〜1200℃の温度域で30分間〜120分間加熱・溶融せしめた後急冷することを特徴とする多孔質ガラスセラミックスの製造方法。Dust generated from processes such as coal ash and metal refining, casting, sandblasting of castings, and raw materials blended so that the mass ratio of glass cullet is in the range of 1: 1 to 9: 1 are mixed, and the blending A method for producing porous glass ceramics, comprising heating and melting a raw material in a temperature range of 1100 ° C to 1200 ° C for 30 minutes to 120 minutes and then rapidly cooling the raw material. 金属精錬、鋳造、鋳造品のサンドブラスト等のプロセスから発生したダストと、ガラスカレットの質量比率が1:1〜9:1の範囲内となるように配合した原料を混合し、該配合原料を1100℃〜1200℃の温度域で30分間〜120分間加熱・溶融せしめた後急冷することを特徴とする多孔質ガラスセラミックスの製造方法。Dust generated from processes such as metal refining, casting, sandblasting of cast products, and raw materials blended so that the mass ratio of glass cullet is in the range of 1: 1 to 9: 1 are mixed, and the blended raw materials are 1100 A method for producing porous glass ceramics, comprising heating and melting in a temperature range of from C to 1200 C for 30 to 120 minutes and then rapidly cooling.
JP2002229422A 2002-08-07 2002-08-07 Method for producing porous glass ceramics using coal ash, dust from metal refining furnace, etc. as raw materials Expired - Fee Related JP4269011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002229422A JP4269011B2 (en) 2002-08-07 2002-08-07 Method for producing porous glass ceramics using coal ash, dust from metal refining furnace, etc. as raw materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002229422A JP4269011B2 (en) 2002-08-07 2002-08-07 Method for producing porous glass ceramics using coal ash, dust from metal refining furnace, etc. as raw materials

Publications (2)

Publication Number Publication Date
JP2004067450A JP2004067450A (en) 2004-03-04
JP4269011B2 true JP4269011B2 (en) 2009-05-27

Family

ID=32015802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002229422A Expired - Fee Related JP4269011B2 (en) 2002-08-07 2002-08-07 Method for producing porous glass ceramics using coal ash, dust from metal refining furnace, etc. as raw materials

Country Status (1)

Country Link
JP (1) JP4269011B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101102607B1 (en) 2010-01-25 2012-01-03 강원대학교산학협력단 Manufacturing method of the soda-lime glass by using refused coal ore

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5019308B2 (en) * 2006-03-30 2012-09-05 公益財団法人北九州産業学術推進機構 Porous fireproof insulation board and method for producing the same
JP2012131702A (en) * 2012-01-27 2012-07-12 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Method of manufacturing ceramic porous body
CN104230170B (en) * 2013-06-07 2017-06-16 北京中伦基业科技发展有限公司 A kind of preparation method of sintering process foaming micro crystal material product
CN103922598A (en) * 2014-03-10 2014-07-16 刘立强 All-solid waste black glass ceramic and preparation method and application thereof
CN103864306A (en) * 2014-03-10 2014-06-18 山东建筑大学 Full-solid waste high-strength glass ceramic as well as preparation method and application thereof
CN108545933A (en) * 2018-05-04 2018-09-18 环境保护部南京环境科学研究所 A kind of method that dangerous waste incineration lime-ash prepares vitreum
CN112499975A (en) * 2020-12-14 2021-03-16 商洛学院 Method for preparing mullite porous glass ceramic by using molybdenum tailings

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101102607B1 (en) 2010-01-25 2012-01-03 강원대학교산학협력단 Manufacturing method of the soda-lime glass by using refused coal ore

Also Published As

Publication number Publication date
JP2004067450A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
Chinnam et al. Functional glasses and glass-ceramics derived from iron rich waste and combination of industrial residues
Schabbach et al. Post-treated incinerator bottom ash as alternative raw material for ceramic manufacturing
Erdogan Properties of ground perlite geopolymer mortars
Lynn et al. Sewage sludge ash characteristics and potential for use in bricks, tiles and glass ceramics
Tulyaganov et al. Preparation and characterization of high compressive strength foams from sheet glass
Taurino et al. Glass–ceramic foams from borosilicate glass waste
CN101723587B (en) Manufacture method of igneous rock crystal glass material
JP4269011B2 (en) Method for producing porous glass ceramics using coal ash, dust from metal refining furnace, etc. as raw materials
Yatsenko et al. Investigation of the influence of foaming agents' type and ratio on the foaming and reactionary abilities of foamed slag glass
Rahman et al. Effects of waste glass additions on quality of textile sludge-based bricks
JPWO2013081115A1 (en) Porous ceramics and method for producing the same
Tang et al. Self-foaming high strength artificial lightweight aggregates derived from solid wastes: expansion mechanism and environmental impact
Chan et al. Water sorptivity and chloride diffusivity of oil shale ash concrete
Chen et al. Effects of electric arc furnace slag on promoting quality and environmental safety of fired bricks incorporating municipal solid waste incineration fly ash
Liu et al. Utilization of waste glass in alkali activated slag/fly ash blends: reaction process, microstructure, and chloride diffusion behavior
Vayghan et al. Studies on the effect of retention time of rice husk combustion on the ash’s chemo-physical properties and performance in cement mixtures
Xin et al. A Viable Solution for Industrial Waste Ash: Recycling in Fired Clay Bricks
Ho et al. Characteristics of porous ceramics prepared from sandblasting waste and waste diatomite by co‐sintering process
Kalpokaitė-Dičkuvienė et al. Utilization of sewage sludge-biomass gasification residue in cement-based materials: effect of pozzolant type
Păunescu et al. High mechanical strength porous material used as a foam glass gravel experimentally manufactured from glass waste by an unconventional technique
JPH10167800A (en) Pottery utilizing waste matter
CN108191247A (en) A kind of preparation method of silica sludge glass ceramics
Tay et al. Reuse of wastewater sludge with marine clay as a new resource of construction aggregates
JPH08183639A (en) Artificial lightweight aggregate and its production
JPH11343129A (en) Preparation of formed glass

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050331

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4269011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees