JP4269006B2 - Mycobacterium tuberculosis detection method - Google Patents

Mycobacterium tuberculosis detection method Download PDF

Info

Publication number
JP4269006B2
JP4269006B2 JP28260497A JP28260497A JP4269006B2 JP 4269006 B2 JP4269006 B2 JP 4269006B2 JP 28260497 A JP28260497 A JP 28260497A JP 28260497 A JP28260497 A JP 28260497A JP 4269006 B2 JP4269006 B2 JP 4269006B2
Authority
JP
Japan
Prior art keywords
antibody
color
mpb64 protein
mpb64
protein antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28260497A
Other languages
Japanese (ja)
Other versions
JPH11108931A (en
Inventor
靖治 難波
剛 望月
眞理子 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BL KK
Original Assignee
BL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BL KK filed Critical BL KK
Priority to JP28260497A priority Critical patent/JP4269006B2/en
Publication of JPH11108931A publication Critical patent/JPH11108931A/en
Application granted granted Critical
Publication of JP4269006B2 publication Critical patent/JP4269006B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)

Description

【技術分野】
【0001】
本発明は、結核菌検出法に関し、さらに詳細には、たとえば、喀痰のような被検体中のヒト型結核菌またはウシ型結核菌の存否を検査するための検出方法に係わる。
【背景技術】
【0002】
結核菌は分類学的には抗酸性菌に属する菌群である。結核菌には、ヒト型結核菌(ミコバクテリウム ツベルクローシス Mycobacterium tuberculosis)、ウシ型結核菌(ミコバクテリウム ボビス Mycobacterium bovis)、ネズミ型結核菌(ミコバクテリウム ミクロチ Mycobacterium microti)、トリ型結核菌(ミコバクテリウム アビウム Mycobacterium avium)および冷血動物結核菌などが知られている。しかして、これらの中でヒトの結核症に関与するのは、ほとんど全てヒト型結核菌であるが、稀には、ウシ型結核菌による感染がある。また、ヒト型結核菌およびウシ型結核菌以外のミコバクテリウム属に属する微生物は、非定型抗酸菌と呼ばれている。
【0003】
一方、ヒトの結核症の従来の診断法としては、所謂、「ナイアシン産生試験」が広く行なわれている。
このナイアシン産生試験は、結核症疑罹患患者の、たとえば、喀痰、暖めた1重量%滅菌食塩水をエアロゾルとしてネプライザーで深く吸入させて咳とともに喀出される痰、胃洗浄液、糞便および尿などのそれぞれの被検体を培地に培養して増殖せしめた結核菌から沸騰蒸留水で抽出し、抽出液中のナイアシンの存否を知ることによって、被検体中の結核菌の存否を知る方法である。
【0004】
しかしながら、ナイアシン産生試験においては、93%以上の結核菌が陽性を示すが、他の抗酸菌の或る菌種、または、稀に、非定型抗酸菌でも陽性を示すため、仮令、ナイアシン産生試験が陽性であったとしても、必ずしもその菌種を結核菌であると断定することはできない。よって、一般的には、ナイアシン産生試験の他に、菌の生育速度、色素発生およびコロニーの性状などを同時に調べて、結核菌とそれ以外の抗酸菌との鑑別がなされている。
【0005】
被検体の培養によって増殖した結核菌のナイアシンは定性的化学分析手段で検知されるが、この定性的化学分析は感度が低く、正確な検査結果を得るためには、多量のナイアシンが必要とされる。また、この定性的化学分析においては数工程にわたる分析学操作が行なわれるが、このような分析操作は菌体の飛散などによる結核菌感染の危険性が高い。したがってこれらの分析操作は、極めて安全性の高い環境で、かつ、極めて安全性の高い装置を使用し、しかも、細心の注意を払って行なわなければならないとされている。しかして、ナイアシン産生試験を実施するためには、定性的化学分析自体に多少の時間を要するだけでなく、被検体の培養を必要としこの培養には長時間かかるので、結果的には分析に長時間が費やされることになる。
【0006】
一方、このナイアシン産生試験は、被検体を液体培養で行なう場合と固体培養で行なう場合とがある。
前者は、たとえば、米国などで行なわれており、被検体の培養期間は短縮されるが、作業時における結核菌感染の危険性が大きく、高度に安全な施設および装置が必要とされる。
本邦では、後者が行なわれており、結核菌感染の危険性は軽減されるが、分析結果が判明するまでに2ヵ月間程度の長期間が必要とされている。
しかして、後者においては、作業時における結核菌感染の危険性は軽減されはするが、依然として、安全性の高い環境で、かつ、安全性の高い装置を使用し、しかも、細心の注意を払われなければならないとされている。
【0007】
蛋白質MPT64(以下、MPT64蛋白 と記す)はヒト型結核菌(ミコバクテリム ツベルクローシス Mycobacterium tuberculosis)が特異的に産生し、菌体外へ分泌するミコバクテリアル プロテイン(Mycobacterial protein)であり、また、蛋白質MPB64(以下、MPB64蛋白 と記す)と同一の物質であることが知られている。
他方、MPB64蛋白は、BCG菌株のウシ型結核菌(ミコバクテリウム ボビス BCG(Mycobacterium bovis BCG)(以下、BCG菌 と記す)によって産生され菌体外に分泌されるミコバクテリアル プロテインである。
エム.ハーボー(M.Harboe)は、このMPB64蛋白をBCG菌から分離、精製して、その性質などについて研究して報告している(Infection and Inmmunity 1986, Vol.52, No.1, 293〜302)。
【0008】
また、特開平1−247094号公報においても、MPB64蛋白は、ヒトに感染して結核症と酷似した症状を呈する非定型抗酸菌によっては産生されないが、ウシ型結核菌のBCG菌によって産生され、かつMPT64蛋白と同一物質であるというBCG菌およびヒト型結核菌のそれぞれに特異な蛋白質であるとしている。
【0009】
従って、このことは抗MPB64蛋白抗体は抗原をMPB64蛋白とする抗体であるが、同時にMPT64蛋白の抗体でもあることを意味する。
従って、病原性的には無害なBCG菌を培養し、その培養液からBCGによって産生されたMPB64蛋白を抽出、精製し、該MPB64蛋白を抗原として抗MPB64蛋白抗体を作成し、その抗体を用いた抗原抗体反応(免疫反応)によって被検体中の結核菌を検出することにより、ヒトの結核症を明確、かつ迅速に判別することができる結核症の簡便な診断法を確立することが可能となる。
【0010】
抗MPB64蛋白抗体を使用した結核菌の検査薬および検出方法として、たとえば、特開平7−110332号公報記載の方法が知られている。この方法における免疫学的方法として、逆受身血球凝集反応(RPHA)、逆受身ラテックス凝集反応(RPLA)および固相酵素免疫測定法(ELISA)などが記載されている。
前二者においては凝集時間が、たとえば、3時間程度と長く、感度が低く、かつ定量性は全くないなどの不都合な問題がある。
後者においては、前二者に比較して試験操作が煩雑で、かつ通常は特殊な機械を使用する関係上、安全キャビネット中での実施が容易ではないなどの欠点がある。
【発明が解決しようとする課題】
【0011】
本発明者らは、上記のような従来技術における欠点を解決し、被検体の採取から検査結果判明までの期間が短く、感度が高く、半定量性を有し、しかも、安全性が高い結核菌の検出法を開発すべく、鋭意、研鑚を重ねた結果、たとえば、抗MPB64蛋白抗体に金ゾルの分散粒子である金コロイド粒子のような呈色標識物質を結合せしめた呈色標識抗MPB64蛋白抗体を調製し、これを使用することにより上記の従来技術における欠点を解決することができるとの新知見を得、この知見に基づいて、本発明に到達した。
【課題を解決するための手段】
【0012】
すなわち、本発明は、被検体を固形培養して得られた培養物の溶液と、呈色標識抗MPB64蛋白抗体とを混合し、次いで、第二抗MPB64蛋白抗体を含浸させて形成された捕捉部位を備えてなるクロマト展開用膜担体に、この混合液をクロマト展開せしめ、MPT64蛋白またはMPB64蛋白と呈色標識抗MPB64蛋白抗体との結合物の前記捕捉部位での捕捉による呈色の有無により、ヒト型結核菌またはウシ型結核菌の有無を判断することからなり、前記呈色標識抗MPB64蛋白抗体の抗体がモノクローナル抗体であることを特徴とする結核菌検出方法である。
【0013】
本発明の好ましい実施形態によれば、本発明は、少なくとも、試料添加用部材5、呈色標識抗体含浸部材2、クロマト展開用膜担体3および吸収用部材4を有し、上記部材2および担体3には前記呈色標識抗MPB64蛋白抗体および第二抗MPB64蛋白抗体がそれぞれ含浸されており、上記部材5は部材2に積層され、上記担体3はその上流側端部が上記部材2に被覆されるとともに該部材2に連接され、上記部材4はその上流側端部が上記担体3に積層されるとともに該担体3と連接してなるクロマト法テストストリップを用い、前記固形培養して得られた培養物の溶液を前記試料添加用部材に灌注することによって行われる。
【0014】
前記呈色標識抗MPB64蛋白抗体において、抗MPB64蛋白抗体に結合せしめられる呈色標識物質は、コロイド状金属または着色ラテックスであることが好ましい。
前記第二抗MPB64蛋白抗体は、前記呈色標識抗MPB64蛋白抗体と異なる部位で抗原抗体反応するものであることが好ましい。
前記クロマト法テストストリップはケースに収容されていてもよい。
【発明を実施するための最良の形態】
【0015】
被検体は、主として結核症疑罹患患者および被検患者のそれぞれの喀痰などであるが、たとえば、滅菌食塩水のエアロゾルを吸入させて咳とともに喀出される痰、胃洗浄液、糞便および尿などのそれぞれをも使用することができる。
被検体は、常法により、固体培養または液体培養がなされる。
【0016】
固体培養の場合には、たとえば、試験管工藤PD固形斜面培地(協和薬品工業株式会社の商品)を使用して、37℃で培養される。この斜面に培養された結核菌に蒸留水を添加して培養期間中に菌体外に分泌された培養物を抽出し、この結核菌混在溶液を試料として検査に供する。
液体培養の場合には、たとえば、被検体液と水酸化ナトリウム水溶液とを混合して、この混合液から菌体を遠心分離によって分離し、分離された菌体を、たとえば、デュボス液体培地(ベクトン・デッキンソン社の商品)で37℃で培養した培養液を試料として検査に供する。
【0017】
MPB64蛋白は、たとえば、上記の、エム.ハーボーの分離、精製法のようなそれ自体公知の方法で調製される。
すなわち、ミコバクテリウム ボビスに属するBCG菌東京株のようなMPB64蛋白産生能力を有する菌株を、たとえば、ソートン培地のような液体培地で培養して得られた培養液から、塩析、透析、カラムクロマトグラフィおよび電気泳動などによる蛋白質の同定を逐次経由して精製MPB64蛋白が得られる。
【0018】
抗MPB64蛋白抗体は、このようにして得られた精製MPB64蛋白を抗原として、常法によって得られた単クローン抗体および多クローン抗体のいずれであってもよい。
単クローン抗体は、たとえば、ケラーミルシュタインの方法によって得られる。また、多クローン抗体は、好ましくは、ヤギを免疫して得られる。
【0019】
このようにして得られた抗MPB64蛋白抗体は、呈色標識物質と結合せしめられて呈色標識抗MPB64蛋白抗体とされる。
呈色標識物質には、たとえば、コロイド状金属および着色ラテックスなどがある。
コロイド状金属の代表例として、金ゾル、銀ゾル、セレンゾル、テルルゾルおよび白金ゾルなどのそれぞれの分散粒子である金属コロイド粒子を挙げることができる。
【0020】
コロイド状金属の粒子の大きさは、通常は、直径3〜60nm程度とされる。
また、着色ラテックスの代表例としては、赤色および青色などのそれぞれの顔料で着色されたポリスチレンラテックスなどの合成ラテックスを挙げることができる。ラテックスとして天然ゴムラテックスのような天然ラテックスを使用することができる。着色ラテックスの大きさは、直径数拾nm乃至数百nm程度から選択することができる。
これらの呈色標識物質は、市販品をそのまま使用することができるが、場合によりさらに加工し、または、それ自体公知の方法で製造することもできる。
【0021】
抗MPB64蛋白抗体と呈色標識物質との結合は常法によって行なわれる。すなわち、たとえば、呈色標識物質が金ゾルの分散粒子である金コロイド粒子の場合には、通常は、抗MPB64蛋白抗体と金ゾルとを室温乃至常温下で数分間、長くても10分間、混合することによって両者を物理的に結合せしめることが可能である。
【0022】
抗原であるMPB64蛋白または該蛋白質と同一物質であるMPT64蛋白(以下、MPT64蛋白をMPB64蛋白と同様に抗原と記す)と呈色標識抗MPB64蛋白抗体とは、通常の抗原抗体反応によって結合せしめられる。すなわち、たとえば、結核菌が産生する抗原であるMPB64蛋白またはMPT64蛋白を含有するかもしれない検査試料と呈色標識抗MPB64蛋白抗体との両者が混合せしめられた緩衝液中で常温乃至室温で静置することによって抗原抗体反応が行なわれ、抗原であるMPB64蛋白またはMPT64蛋白と呈色標識抗MPB64蛋白抗体との結合物(以下、単に呈色結合物と記す)が得られる。この呈色結合物は、たとえば、第二抗MPB64蛋白抗体が固定化された帯状固相担体にチャージされてクロマト展開され、そのことごとくを該第二抗MPB64蛋白抗体に捕捉せしめて、使用された呈色標識物質固有の色を呈せしめ、これにより被検体中の結核菌が検出される。
【0023】
上記の第二抗MPB64蛋白抗体は抗原であるMPB64蛋白またはMPT64蛋白に対する抗原抗体反応の結合部位が、標識抗MPB64蛋白抗体に使用された抗MPB64蛋白抗体の該抗原に対する抗原抗体反応の結合部位とは異なるものでなければならない。
【0024】
なお、結核菌の既知の菌数と第二抗MPB64蛋白抗体で捕捉される呈色結合物の呈色濃度との関係から導いた判定基準を使用することにより、被検体中に含有されている結核菌の大凡の菌数を知ることが出来る。この場合に、被検体の検査条件のすべては、判定基準を作成する際のそれらと実質的に同一とされなければならない。
【0025】
呈色結合物の第二抗MPB64蛋白抗体による捕捉は、クロマト法テストストリップによることが好ましい。
クロマト法テストストリップとは、ケースの蓋体の試料注入口から、帯状の固相担体テストストリップの一端に検査試料を灌注することによりクロマト展開が開始されて浸潤して該テストストリップの呈色標識抗体含浸部材に到達し、該部材の呈色標識抗MPB64蛋白抗体と免疫反応して呈色結合物が形成され、さらに、該呈色結合物が捕捉部位まで浸潤して捕捉部位の第二抗MPB64蛋白抗体との免疫反応により捕捉されて、捕捉部位が呈色せしめられる方法である
【0026】
クロマト法テストストリップの調製に、たとえば、特公平7−13640号記載の方法が好適に適用される。
クロマト法テストストリップによる本発明の結核菌検出法において、被検体または被検体から得られた検査試料と呈色標識抗MPB64蛋白抗体とを予め混合した混合液をクロマト法テストストリップによりクロマト展開せしめてもよいし、また、クロマト法テストストリップに予め試料添加用部材および呈色標識抗体含浸部材をそれぞれ設け、該試料添加用部材に所定量の被検体または被検体から得られた検査試料を灌注してクロマト展開を行なう上記の方法によってもよい。
【0027】
(削除)
【0028】
本発明の結核菌検出方法において、MPT64蛋白またはMPB64蛋白と呈色標識抗MPB64蛋白抗体との間の免疫反応ならびにこの免疫反応で生成せしめられた呈色結合物と第二抗MPB64蛋白抗体との間の免疫反応はいずれも数分で完結せしめられるので、検査自体は長くても15分程度で終了する。
【0029】
本発明の結核菌検出法では、他の結核菌検出方法におけると同様に、被検体の処理に際して結核菌感染を防止するように充分な注意が必要とされる。しかしながら、本発明の検出法では、結核菌が含有されているかも知れない被検体または被検体から得られた検査試料は、その少量がクロマト法テストストリップに添加されるだけであり、かつ、検査自体に要する時間は長くとも15分程度であるため、結核菌に感染する危険性は、検査の操作が煩雑で検査に長時間を有する従来の結核菌検出方法に比して少ない。
【0030】
【実施例】
本発明を実施例によって、さらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0031】
1.MPB64蛋白の分離
(1) BCG菌東京株の培養
BCG菌東京株は結核予防会結核研究所から入手し、それを下記の組成を有するソートン培地500ml×20本に接種し、37℃で5週間培養して、培養液10lを得た。
【0032】
ソートン培地の組成
アスパラギン 0.4 %
くえん酸 0.2 %
くえん酸ナトリウム 0.28 %
りん酸カリウム 0.05 %
硫酸マグネシウム 0.05 %
くえん酸第1鉄アンモニウム 0.005%
グリセリン 6 %
(「%」は「重量/容量%」を示す。以下同様)
【0033】
(2) MPB64蛋白の分離・精製
1)上記(1)で得られた培養液に硫酸アンモニウム(以下、硫安 と記す)を加えて80%飽和溶液として、沈殿せしめられた蛋白質画分を遠心分離して得られたこの蛋白質画分を30mMトリス塩酸緩衝液(pH8.7)に溶解せしめ、10℃で30mMトリス塩酸緩衝液(pH8.7)に対して透析して蛋白質約9gを含有する透析液約30mlを得た。
2)この蛋白質約9gを含有する上記の溶液約30mlをDEAE・セファデックスA・50(ファルマシア バイオテク株式会社の商品)カラム(57cm×5.5cm)にチャージして、30mMトリス塩酸溶緩衝液(pH8.7)100mlを用いて上記のカラムを洗浄して溶出液を得た。
【0034】
次いで、30mMトリス塩酸緩衝・200mM塩化ナトリウム溶液(pH8.7)でクロマト展開した。このクロマト展開の溶出液に硫安を加えて70%飽和溶液として、沈殿せしめられた蛋白質画分を遠心分離して得た。この蛋白質画分を30mMトリス塩酸緩衝液(pH8.7)に溶解せしめ、10℃で30mMトリス塩酸緩衝液(pH8.7)に対して透析して蛋白質約3.5gを含有する透析液約35mlを得た。
【0035】
3)この蛋白質約3.5gを含有する上記の溶液約35mlをDEAE・セファロースCL−6B(ファルマシア バイオテク株式会社の商品)カラム(64cm×3.6cm)にチャージして、30mMトリス塩酸緩衝液(pH 8.7)約700mlを用いて上記のカラムを洗浄した。
次いで、30mMトリス塩酸緩衝液(pH 8.7)および30mMトリス塩酸緩衝・200mM塩化ナトリウム溶液(pH8.7)を用いて塩化ナトリウム濃度0から200mMまでの濃度勾配法によりクロマト展開し、その展開液を20mlずつのフラクションとして採取した。フラクション番号105番から121番までの展開液を集めた。この展開液に硫安を加えて70%飽和溶液として沈殿せしめられた蛋白質画分を遠心分離して得た。この蛋白質画分を30mMトリス塩酸緩衝液(pH8.7)に溶解せしめて、10℃で30mMトリス塩酸緩衝液(pH 8.7)に対して透析して蛋白質約0.7gを含有する透析液約7mlを得た。
【0036】
この展開液約360mlを、分画分子量が10,000のポアサイズを有する限外濾過膜を使用した吸引式限外濾過により、5℃で約6mlになるまで濃縮し、次いで、10℃で30mMトリス塩酸緩衝液(pH 8.7)に対して透析して透析液約7mlを得た。この溶液約7mlを常法により凍結乾燥を行ない、蛋白質約0.7gを含有する凍結乾燥品を得た。
【0037】
4)この蛋白質0.7gを含有する凍結乾燥品を精製水7mlに溶解せしめ、その全量をDEAE・セファロースCL−6B(ファルマシア バイオテク株式会社の商品)カラム(45cm×3.0cm)にチャージして、30mMトリス塩酸緩衝・3M尿素・40mM塩化ナトリウム溶液(pH 7.5)と30mMトリス塩酸緩衝・3M尿素・90mM塩化ナトリウム溶液(pH7.5)を用いて塩化ナトリウム濃度40mMから90mMまでの濃度勾配法によりクロマト展開し、その展開液5mlずつをフラクションとして採取した。
【0038】
それぞれのフラクションの少量をポリアクリルアミドゲルの固相担体にスポッティングして電気泳動した後に、クマシーブリリアントブルー染色によって得られた電気泳動像において分子量約23,000の蛋白質のバンドが認められた各フラクションを集めた。この溶液を分画分子量10,000のポアサイズを有する限外濾過膜を使用した吸引式限外濾過により、5℃で約2mlになるまで濃縮し、次いで10℃で30mMトリス塩酸緩衝液(pH 8.7)に対して透析して透析液約2.5mlを得た。この溶液約2.5mlを常法により凍結乾燥を行ない、蛋白質約60mgを含有する凍結乾燥品を得た。
【0039】
5)この蛋白質約60mgを含有する凍結乾燥品を精製水2mlに溶解せしめ、その全量をDEAE・セファロースCL−6B(ファルマシア バイオテク株式会社の商品)カラム(34cm×2.7cm)にチャージし、次いで、30mMトリス塩酸緩衝・60mM塩化ナトリウム溶液(pH8.7)を用いてカラムを洗浄した。
【0040】
次に、30mMトリス塩酸緩衝・60mM塩化ナトリウム溶液(pH8.7)と30mMトリス塩酸緩衝・110mM塩化ナトリウム溶液(pH 8.7)を用いて塩化ナトリウム濃度60mMから110mMまでの濃度勾配法によりクロマト展開し、その展開液1mlずつをフラクションとして採取した。それぞれのフラクションの少量をポリアクリルアミドゲルの固相担体にスポッティングして電気泳動した後に、クマシーブリリアントブルー染色によって得られた電気泳動像において分子量約23,000の蛋白質のバンドが認められた各フラクションを集めた。
【0041】
この溶液を、分画分子量10,000のポアサイズを有する限外濾過膜を使用した吸引式限外濾過により、5℃で約1mlになるまで濃縮した。次いで、10℃で30mMトリス塩酸緩衝液(pH8.7)に対して透析して透析液約1.3mlを得た。この溶液約1.3mlを常法により凍結乾燥を行ない、蛋白質約6mgを含有する凍結乾燥品を得た。
【0042】
6)最後に、この蛋白質約6mgを含有する凍結乾燥品を精製水1mlに溶解せしめ、その全量をセファクリルS−200(ファルマシア バイオテク株式会社の商品)カラム(30cm×2cm)にチャージし、次いで、30mMトリス塩酸緩衝・0.5mM塩化ナトリウム溶液(pH7.5)を用いてクロマト展開し、この展開液を0.5mlずつのフラクションとして採取した。それぞれのフラクションの少量をポリアクリルアミドゲルの固相担体にスポッティングして電気泳動した後に、クマシーブリリアントブルー染色によって得られた電気泳動像において分子量約2,3000の蛋白質のバンドが認められた各フラクションを集めた。この溶液を分画分子量10,000のポアサイズを有する限外濾過膜を使用した吸引式限外濾過により、5℃で約1mlになるまで濃縮し、次いで、10℃で30mMトリス塩酸緩衝液(pH8.7)に対して透析して透析液約1.3mlを得た。この溶液約1.3mlを常法により凍結乾燥を行ない、蛋白質約5mgを含有する凍結乾燥品を得た。 このようにして得られた分子量約23,000のこの蛋白質のデスク電気泳動(7.7%アクリルアミドゲル)では単一ピークの泳動像を示したので、このMPB64蛋白は純度が高いものと判断された。
【0043】
2.抗MPB64蛋白単クローン抗体(マウス)の作成
(1) MPB64蛋白投与マウス(BALB/C系)の脾臓細胞とマウスミエローマ細胞(P3U1)との細胞融合
1)上記1.で得られた精製MPB64蛋白を用いて、ケラー−ミルシュタインの方法(G.Kohker and C.Milstein;Eur. J. Immunol. 6:511-519,1976)にしたがって細胞融合を行ないハイブリドーマを調製した。
【0044】
すなわち、上記1.で得られた精製MPB64蛋白溶液(200μg/ml)500μlとフロイント不完全アジュバント500μlとを常法により乳化するまで混合し、この混合乳化液500μlをBALB/C系マウス(雌、4週齢)の腹腔内に投与して免疫を行なった。前回投与の2週間後に、上記と同様にして調製された混合乳化液40μlを上記のマウス腹腔内に、再度、投与した。
さらに、その2週間後に精製MPB64蛋白の生理食塩水溶液(200μg/ml)を上記のマウス腹腔内に投与して最終免疫を行なった。
【0045】
2)最終免疫から3日後にマウスを屠殺して、直ちにその脾臓を無菌的に取り出した。この脾臓を約10mlの無菌RPMI−1640培地が入れてある直径60mmのシャーレに入れ、脾臓の長軸に沿って鋏で切れ目を入れ、手早く脾臓をピンセットで圧迫しつつ細胞を遊離せしめた。この細胞をナイロンメッシュを通過せしめられて、新たな無菌RPMI−1640培地に浮遊せしめて脾臓細胞浮遊液を得た。
【0046】
3)上記の脾臓細胞浮遊液をRPMI−1640培地と混合し、フィコールペイクを用いる比重遠心法によって赤血球を除去して得られた脾臓細胞を、無菌RPMI−1640無血清培地中に浮遊せしめた。
【0047】
4)他方、マウス骨髄腫細胞P3U1(以下、P3U1細胞 と記す)をウシ胎児血清10容量%を含有されてなる無菌RPMI−1640培地で培養増殖させた後に、遠心分離(250×G)してP3U1細胞を分離し、この細胞を無菌RPMI−1640培地で2回洗浄して、無菌RPMI−1640培地に浮遊せしめP3U1細胞浮遊液を得た。
【0048】
5)上記2)の脾臓細胞浮遊液と上記4)のP3U1細胞浮遊液とを混合し、遠心分離(250×G)によってこの混合液から両者の細胞を分離した。分離されたこの両者の細胞を分子量4,000のポリエチレングリコールが40%含有されてなる無菌RPMI−1640培地(pH7.4)1mlに懸濁して37℃で6分間静置して、脾臓細胞とP3U1細胞とを融合せしめてハイブリドーマとした。
【0049】
次いで、これらの細胞に無菌RPMI−1640培地を加えて全量10mlとし、この細胞浮遊液を遠心分離(250×G)してこれらの細胞を分離した。これらの細胞にウシ胎児血清が10容量%含有されてなる無菌RPMI−1640培地10mlを加えて、これらの細胞を浮遊せしめた。この細胞浮遊液を遠心分離(250×G)して液分を除去し、細胞を得た。
【0050】
6)この細胞にHAT培地を加えて1×106個/mlの細胞浮遊液とし、この細胞浮遊液の100μlずつを96穴(ウエル)プラスチック マイクロタイタープレート(住友ベークライト株式会社の商品)の各ウエルに分注し、インキュベーター中で炭酸ガスが5容量%含有されてなる空気の存在下37℃で培養した。
【0051】
7)培養開始後1日目に、さらに、HAT培地を各ウエルに100μlずつ加え、以後 2日目、3日目、8日目および11日目のそれぞれには、培養液の半分である100μlを取り除き、その替りにHAT培地100μlを補充しつつ培養を続行した。培養後14日目には、ハイブリドーマが存在するウエルには1ウエルあたり平均2〜3個のハイブリドーマのコロニーが認められた。このウエルでは、培養開始から約2週間後にはハイブリドーマが充分増殖したので、この時点で培養上澄液の抗体力価を固相酵素免疫測定法(ELISA法)を用いて検定した。
【0052】
8)固相酵素免疫測定法は、予め抗原であるMPB64蛋白が固相化せしめられたELISA用プラスチック マイクロタイタープレートのウエルに、これらのハイブリドーマが培養された50μlの培養液を加えて37℃で1時間静置し、この培養液を除去した後、0.05%Tween20含有生理食塩水で洗浄する。次いで50μlのペルオキシダーゼ標識ヤギ抗マウス免疫グロブリン溶液を加えて、37℃で1時間静置して免疫反応せしめて、該ペルオキシダーゼ標識ヤギ抗マウス免疫グロブリン溶液を除去し、0.05%Tween20含有生理食塩水で洗浄する。さらに、このウエルに4−アミノアンチピリン、過酸化水素およびフェノールからなる通常のペルオキシダーゼ発色系の試薬を加えて発色せしめて常法にしたがって抗体の力価を求めた。
一方、抗体を産生しているウエル中のハイブリドーマについては、限界希釈法によるクローニング操作を3回繰り返し行なった。
その結果、抗MPB64蛋白抗体を安定に産生するクローン化細胞5株を得た。
【0053】
(2) 単クローン抗体の精製
1週間前に1匹あたり2,6,10,14−テトラメチルペンタンデカン0.5mlを腹腔内に注射されたBALB/C系マウスの腹腔内に上記のクローン化細胞株のうち抗MPB64蛋白抗体の生産量が特に多いクローン化細胞懸濁液(107個/ml)0.5mlを注射し、その1週間後に抗MPB64蛋白抗体を含む腹水を該マウス1匹あたり5〜10ml得た。
【0054】
この腹水を、50mMトリス塩酸緩衝・150mM塩化ナトリウム溶液(pH8.5)で平衡化されたプロテインA(ファルマシア バイオテック株式会社の商品)カラムにチャージした。次いで、50mMトリス塩酸緩衝・150mM塩化ナトリウム液(pH8.5)でカラムを洗浄した後、100mMくえん酸塩緩衝・150mM塩化ナトリウム溶液(pH5.0)で上記の抗MPB64蛋白抗体を溶出せしめた。
【0055】
上記の抗MPB64蛋白抗体溶出液を10℃で20mMりん酸塩緩衝・150mM塩化ナトリウム溶液(pH7.4)に対して透析した後、防腐剤として最終濃度が0.1%溶液となるようにアジ化ナトリウム(NaN3)を添加した。
【0056】
3.金コロイド標識抗体および青色ラテックス標識抗体の作成
(1) 金ゾルの調製
99mlの超純水を沸騰させ、この沸騰水に塩化金酸(片山化学工業株式会社の商品)溶液(塩化金酸濃度1%)1mlを加え、さらにその1分後に、くえん酸ナトリウム溶液(くえん酸ナトリウム濃度1%)1.5mlを加えて5分間沸騰させて後に、室温に放置して冷却した。次いで、この溶液を200mM炭酸カリウム溶液でpH9.0に調製し、これに超純水を加えて全量を100mlとして金ゾルを得た。
【0057】
(2) 金コロイド標識抗体の調製
上記2.で得られた抗MPB64蛋白マウス単クローン抗体の蛋白換算重量1μg(以下、抗体の蛋白換算重量を示すとき、単にその重量の数値のみを示す )と上記の金ゾル1mlとを混合し、室温で2分間静置して、この抗体のことごとくを金ゾルの分散粒子であるコロイド粒子と結合させた。これに最終濃度が1%となるように10%ウシ血清アルブミン(以下、BSA と記す)水溶液を加えて上記の抗体に結合せしめられた金コロイド粒子の表面をブロックした。この溶液を遠心分離(5,600×G、30分間)して抗MPB64蛋白マウス単クローン抗体を結合したコロイド粒子の表面がBSAでブロックされた金コロイド標識抗体を沈殿せしめて集めた。
この金コロイド標識抗体を、10%サッカロース・1%BSA・0.5%トリトン(Triton)−X100を含有する50mMトリス塩酸緩衝液(pH 7.4)に再懸濁して精製金コロイド標識抗体溶液を得た。
【0058】
(3) 青色ラテックス標識抗体の調製
上記2.で得られた抗MPB64蛋白マウス単クローン抗体0.25mgと10%青色ラテックス(粒径0.2μm、日本ペイント株式会社の商品)溶液を精製水で希釈して得られた1%青色ラテックス溶液1mlとを混合し、室温で30分間静置して抗MPB64蛋白マウス単クローン抗体を青色ラテックスに結合させた後、遠心分離(5,000×G、30分間)して青色ラテックスに結合せしめられた抗MPB64蛋白マウス単クローン抗体である粗青色ラテックス標識抗体を沈殿せしめて集めた。この粗青色ラテックス標識抗体を1%BSA溶液および0.85%塩化ナトリウム溶液を含有する10mMりん酸塩緩衝液(pH7.4)1mlに再分散し、遠心分離(5,000×G、30分間)するという操作を3回繰り返した。このように処理された青色ラテックス標識抗体を1%BSAおよび0.85%塩化ナトリウム溶液が含有されてなる10mMりん酸塩緩衝液(pH7.4 )20mlに分散せしめて、固形分約0.05%の精製青色ラテックス標識抗体溶液を得た。
【0059】
4.クロマト法テストストリップの作成
(1) 特公平7−13640号公報の記載に準拠してクロマト法テストストリップを作成した。
すなわち、幅5mm,長さ36mmの細長い帯状のニトロセルロース膜(メンブレンフィルター)をクロマトグラフ媒体のクロマト展開用膜担体とし、このクロマト展開始点とは逆方向末端から7.5mmの位置に、第二抗MPB64蛋白抗体3.0mg/mlが含有されてなる抗体溶液0.5μlをスポット状に塗布して、これを室温で乾燥して補足部位とした。なお、第二抗MPB64蛋白抗体とは免疫反応において、抗原であるMPT64蛋白またはMPB64蛋白に対する結合部位が、上記3.の金コロイド標識抗体または青色ラテックス標識抗体の調製に使用された抗体とは異なる結合特異性を有する抗体をいう。
【0060】
(2) また、5mm×15mmの帯状のガラス繊維不織布に上記の金コロイド標識抗体液37.5μlを含浸せしめ、これを室温で乾燥させて金コロイド標識抗体含浸部材とした。
(3) また、5mm×15mmの帯状のガラス繊維不織布に上記の青色金ラテックス標識抗体溶液37.5μlを含浸せしめ、これを室温で乾燥させて青色ラテックス標識抗体含浸部材とした。
【0061】
(4) 次に、試料添加用部材である綿布、上記の金コロイド標識抗体含浸部材または青色ラテックス標識抗体含浸部材、クロマト展開用膜担体であるニトロセルロース膜および吸収用部材である濾紙を、それぞれ粘着シートの粘着面の所定位置に貼着してクロマト法テストストリップを作成した。すなわち、粘着シートの粘着面上にクロマト展開用膜担体を貼着し、このクロマト展開用膜担体のクロマト展開の始点とは逆方向末端に、上記の金コロイド標識抗体溶液または青色ラテックス標識抗体溶液を含浸せしめて乾燥せしめられた標識抗体含浸部材のクロマト展開の始点とは逆方向末端を重ね合わせて配列せしめ、さらに、この金コロイド標識抗体含浸部または青色ラテックス標識抗体含浸部の重複部分からその全体を覆って試料添加部材を配列せしめた。
さらに、ニトロセルロース膜の他方の端には、吸収用部材の一部を重ねて配列せしめてクロマト法ストリップとした。
【0062】
5.被検体からの結核菌の検出
(1) 判定基準の作成
1)精製MPB64蛋白を生理食塩水で希釈し、MPB64蛋白の濃度がそれぞれ0.25ng/ml,0.5ng/ml,1.0ng/ml,2.0ng/ml,4.0ng/ml,8.0ng/mlおよび16.0ng/mlからなる溶液とし、これらのMPB64蛋白溶液を標準試料とした。これらの標準試料を用いて、上記のクロマト法テストストリップによる検定およびRPHA法による検定を行ない、得られた両者の結果からMPB64蛋白濃度に対する両者の方法の検出感度について比較した。
【0063】
2)抗体感作血球を特開平7−110332号公報記載の方法に準拠して調製した。
すなわち、グルタールアルデヒド固定ヒツジ赤血球の0.5%10mMりん酸塩緩衝懸濁液1容量部と、1mgのタンニン(米国NBC社)を生理食塩水100mlに溶解せしめた溶液1容量部とを混合し、室温で15分間放置した後、タンニン処理赤血球を遠心分離し、タンニン処理赤血球を生理食塩水で3回洗浄した後に、1容量部になるように生理食塩水に懸濁せしめて0.5%タンニン赤血球生理食塩水溶液を得た。
【0064】
常法にしたがってヤギを免疫して得られた抗体をアフィニティーカラムクロマト法により精製した精製抗MPB64蛋白多クローン抗体溶液(2μg/ml)1容量部と上記の0.5%タンニン赤血球生理食塩水溶液1容量部とを混合し、37℃で30分間放置した後、この液を遠心分離(1,500×G、10分間)して抗体感作赤血球を分離した。この抗体感作赤血球10mMりん酸塩緩衝液で3回洗浄した後、0.1%BSAを含有する10mMりん酸塩緩衝液に懸濁せしめて0.5%抗体感作赤血球生理食塩水溶液を調製した。
【0065】
3)金コロイド標識抗体含浸部材を用いたクロマト法テストストリップにおいて、各濃度の標準試料100μlをクロマト展開せしめ、15分後の該テストストリップにおける補足部位での赤紫色の着色の有無を肉眼で判定し、無着色を−とし、着色をその濃淡により±(疑陽性)から+++(濃厚着色)までの間を、±,+,++,+++の4段階に区分して判定基準とした。クロマト法テストストリップにおける肉眼による判定基準と標準試料の蛋白濃度との関係を表1に示した。
なお、捕捉部位における赤紫色の着色の有無および着色の濃淡は、被検体中の結核菌の有無および結核菌の大凡の菌数を表わしていることはいうまでもない。
【0066】
4)青色ラテックス標識抗体含浸部を用いて、上記同様の操作を行なったとき、上記と同様の結果が得られた。
【0067】
5)他方、RPHA法において、96ウエル プラスチック マイクロタイタープレート(住友ベークライト株式会社の製品)の各ウエルに、各濃度の標準試料5μlずつを入れ、次いで、各ウエルに上記の抗体感作赤血球生理食塩水溶液25μlを滴下し、室温で30分間静置して免疫反応を生ぜしめ、この反応後の各ウエルのおける赤血球凝集の程度を肉眼で判定して、−(無凝集)から+++(極めてよい凝集)までの間の−,±,+,++,+++の5段階に区分した。このRPHA法における肉眼判定の結果を、上記のクロマト法テストストリップでの標準試料の精製MPB64蛋白濃度に基づく判定基準と比較し、それを表1に示す。
表1に示されるように、本発明の結核菌検出法はRPHA法に比して感度が高く、しかも半定量性があることが判る。
【0068】
【表1】

Figure 0004269006
【0069】
(2) 被検体からの結核菌検出例1
1)ヒトの喀痰を結核症被検体(8例)とし、該被検体からの結核菌の検出を検討した。
すなわち、被検体5mlと、5mlの2%水酸化ナトリウム水溶液とを混合し、この混合液を室温で30分間静置した後、遠心分離(1,500×G、30分間)して生じた沈渣を回収し、この沈渣と生理食塩水とを混合し、この混合液を遠心分離(1,500×G、30分間)して生じた沈渣を再び回収し、この沈渣と生理食塩水200μlとを混合して、これを検査試料とした。
【0070】
2)この検査試料100μlを滅菌試験管にとり、この試験管にデュボス液体培地(ベクトン・デッキンソン株式会社の商品)5mlを加え、37℃で培養し、培養開始3日目の培養液について上記の本発明のクロマト法テストストリップによる結核菌の検出法およびRPHA法による結核菌の検出を行なった。
なお、培養開始7日目の培養液については、RPHA法のみによる結核菌の検出を行なった。
【0071】
対照として、上記の被検体8例の喀痰各5mlと、5mlの2%水酸化ナトリウム水溶液とを混合し、この混合液を室温で30分間静置した後、この溶液100μlを、試験管工藤PD固形斜面培地(協和薬品工業株式会社の商品)の表面に均一に接種して、37℃で56日間培養し、増殖した結核菌についてナイアシン産生試験を行なった。
【0072】
すなわち、上記の試験管工藤PD固形斜面培地の表面に1ml沸騰蒸留水を加え、該表面をほぼ水平にし5分間静置して結核菌体からナイアシンを抽出した。
この抽出液から200μlを採取し、これと4容量%アニリン・エタノール溶液100μlおよび10容量%ブロムシアン溶液とを混合した。混合してから5分後に、この混合液に結核菌に由来したナイアシンが存在すれば、混合液は黄色に発色するので、肉眼で判定して黄色に発色すれば、その被検体を陽性(+)とした。
表2にこれらの検査結果を示す。
【0073】
【表2】
Figure 0004269006
【0074】
表2から、ナイアシン産生試験では試験管工藤PD固形斜面培地での培養に56日間という長期間を要するが、他方、本発明の検出法では、デュボス液体培地での培養で3日間という短期間ですみ、また、本発明の検出法ではその感度もRPHA法に比して格段と高い。
【0075】
(3) 被検体からの結核菌検出例2
1) レントゲン診断による結核症疑罹患患者8名のそれぞれの喀痰における結核菌についての検査を行なった。
すなわち、上記の各喀痰と、これと等量の2%水酸化ナトリウム水溶液とを混合し、この混合液を室温で30分間静置し、これを培養試料とした。
【0076】
2)上記培養試料100μlを試験管工藤PD固形斜面培地の表面に均一に接種して、37℃で培養し、培養開始7日目、14日目、21日目、28日目および56日目に、各試験管工藤PD固形斜面培地の表面に蒸留水500μlをそれぞれ加えて振盪し、該試験管中の液を菌体抽出試料とした。この菌体抽出試料100μlをクロマト法テストストリップにチャージしてクロマト展開せしめ、15分後の捕捉部位における赤紫色の呈色の有無および呈色の濃淡を肉眼で観察し、上記の判定基準に従って判定した。
なお、比較のために上記の各試料について、培養期間を56日間とした以外は上記と同様に培養して増殖せしめた結核菌に関して上記と同様にしてナイアシン産生試験を行なった。
これらの結果を表3に示す。
【0077】
【表3】
Figure 0004269006
【0078】
なお、表3において(−)および(+)のそれぞれは、上記の試験管工藤PD固形斜面培地の表面においてコロニーが「形成されていない」および「形成された」をそれぞれ示す。
【0079】
表3では、試料の培養に試験管工藤PD固形斜面培地を使用した場合には、ナイアシン産生試験では検査結果が判明するまでに56日の長期間を要するに対して、本発明の検出方法ではナイアシン産生試験の半分の日数である培養開始28目で被検体における結核菌の存在が判定でき、しかも、極めて高感度であることを示している。
【0080】
次に、本発明の結核菌検出法において好適に使用されるクロマト法テストストリップの代表例を図面を使用してさらに具体的に説明する。
すなわち、図1はクロマト法テストストリップを示し、aは平面図、bはaで示されたクロマト法テストストリップの縦断部端面図である。
しかして、図2は図1で示されたクロマト法テストストリップを収納するためのケースを示し、aは平面図、bはaで示されたケースの縦断部端面図である。
なお、図面は原理を示すためのものであり、寸法などは正確には示されていない。
【0081】
このクロマト法テストストリップは、粘着シート 1の粘着面に、上流側(以下、図面の向かって左側を上流側、また、図面の向かって右側を下流側と記す)から順次、試料添加用部材 5、呈色標識抗体含浸部材 2、クロマト展開用膜担体 3および吸収用部材 4が貼着されている。しかして、呈色標識抗体含浸部材 2にはその全面に呈色標識抗MPB64蛋白抗体液が、また、クロマト展開用膜担体 3には第二抗MPB64蛋白抗体液がスポット状に含浸せしめられている(クロマト展開用膜担体 3においてスポット状に第二抗MPB64蛋白が含浸せしめられた箇所を以下、捕捉部31 と記す)。なお、試料添加用部材 5は該呈色標識抗体含浸部材 2に積層せしめられている。該クロマト展開用膜担体 3はその上流側端部が上記の呈色標識抗体含浸部材 2によって被覆され、かつ該呈色標識抗体含浸部材 2に連接せしめられている。
【0082】
該吸収用部材 4はその上流側端部が該クロマト展開用膜担体 3の下流側端部に積層せしめられている。
これらの粘着シート 1、呈色標識抗体含浸部材 2、クロマト展開用膜担体 3、吸収用部材 4および試料添加用部材5はいずれも細長い長方形で帯状とされている。クロマト展開用膜担体 3はクロマト展開に際してそれ自体の毛細管作用により、試料添加用部材 5にスポット状にチャージされた被検体およびその他の各種試料をクロマト展開方向である下流側に自動的に移動せしめ得る材質を有するものであればよい。
【0083】
しかして、呈色標識抗体含浸部材 2としてガラス繊維不織布が、クロマト展開用膜担体 3としてニトロセルロース膜が、吸収用部材 4として濾紙が、試料添加用部材 5として、その材質は問わないが、多孔質ポリエチレンおよび多孔質ポリプロピレンなどのような多孔質合成樹脂のシートまたはフィルム、ならびに、濾紙および綿布などのようなセルロース製の紙または織布もしくは不織布が最適である。
【0084】
捕捉部31を有するクロマト展開用膜担体 3は、捕捉部31に補足される呈色結合物の色が明確に目視できるものを使用することが好ましい。たとえば、呈色標識物質が金コロイド粒子である場合には、この金コロイド粒子は赤紫色を呈するため、その呈色結合物も赤紫色を呈するので、クロマト展開用膜担体 3の色は淡色が好ましく、白が特に好ましい。
【0085】
上記のクロマト法テストストリップは、ケース 6に収納されている。ケース 6は、通常は、合成樹脂製である。
ケース 6は、容器本体61と蓋体62とからなっている。
蓋体62の上面には上記のクロマト法テストストリップの試料添加用部材 5およびクロマト展開用膜担体 3の捕捉部31のそれぞれに対応する位置に、それぞれ、試料注入口621および判定孔622が穿設されている。
【0086】
蓋体62の試料注入口621から被検体、被検体の培養物、これらからの各種抽出液などの試料が試料添加用部材 5に灌注される。灌注された該試料は試料添加用部材 5を下流側に向かって浸潤すると同時に下方の呈色標識抗体含浸部材 2へ移行せしめられるとともに呈色標識抗体含浸部材 2の下流側方向に向かって展開せしめられる。各種の試料中に結核菌から産出されたMPT64蛋白またはMPB64蛋白が含有されていた場合には、この間にMPT64蛋白またはMPB64蛋白と呈色標識抗MPB64蛋白抗体との免疫反応によってMPT64蛋白またはMPB64蛋白と呈色標識抗MPB64蛋白抗体との呈色結合物が生成せしめられる。
【0087】
試料はさらにクロマト展開用膜担体 3を下流側に向かって展開せしめられる。この呈色結合物は展開の途次に該クロマト展開用膜担体 3の捕捉部31で捕捉されて集積せしめられ呈色する。この呈色は判定孔622から肉眼で観察される。
【0088】
【発明の効果】
本発明は簡便な方法で、かつ、短時間で、しかも、安全に、高い精度で結核菌の存否を判定することができ、さらに、試料中に存在する結核菌の菌数をも半定量することが可能となる。
【図面の簡単な説明】
【図1】クロマト法テストストリップを示し、aは平面図、bはaで示されたクロマト法テストストリップの縦断部端面図である。
【図2】図1で示されたクロマト法テストストリップを収納するためのケースを示し、aは平面図、bはaで示されたケースの縦断部端面図である。
【符号の説明】
1 粘着シート
2 呈色標識抗体含浸部材
3 クロマト展開用膜担体
31 捕捉部
4 吸収用部材
5 試料添加用部材
6 ケース
61 容器本体
62 蓋体
621 試料注入口
622 判定孔【Technical field】
[0001]
The present invention relates to a method for detecting Mycobacterium tuberculosis, and more particularly, to a detection method for examining the presence or absence of human or Mycobacterium tuberculosis in a subject such as sputum.
[Background]
[0002]
Mycobacterium tuberculosis taxonomically belongs to the group of acid-fast bacteria. Mycobacterium tuberculosis (Mycobacterium tuberculosis), bovine Mycobacterium bovis (Mycobacterium bovis), Mycobacterium tuberculosis (Mycobacterium microti), Mycobacterium tuberculosis (Mycobacterium avium) and Mycobacterium tuberculosis are known. Of these, almost all of the types of tuberculosis involved in human tuberculosis are M. tuberculosis, but rarely there are infections caused by M. tuberculosis. Microorganisms belonging to the genus Mycobacterium other than Mycobacterium tuberculosis and Bovine tuberculosis are called atypical mycobacteria.
[0003]
On the other hand, a so-called “niacin production test” has been widely performed as a conventional diagnostic method for human tuberculosis.
This niacin production test is performed on patients with suspected tuberculosis, such as sputum, sputum that is inhaled deeply with a neplyzer as a warm 1% by weight sterile saline solution, cough, cough, stool and urine. This is a method of knowing the presence or absence of M. tuberculosis in the subject by extracting with boiling distilled water from tuberculosis that has been grown in a culture medium of the subject with boiling distilled water and knowing the presence or absence of niacin in the extract.
[0004]
However, in the niacin production test, more than 93% of Mycobacterium tuberculosis are positive. However, some bacteria of other acid-fast bacteria or rarely atypical mycobacteria are also positive. Even if the production test is positive, it cannot always be determined that the bacterial species is M. tuberculosis. Therefore, in general, in addition to the niacin production test, the growth rate of the fungus, pigment generation, colony properties, and the like are examined simultaneously to distinguish between Mycobacterium tuberculosis and other acid-fast bacteria.
[0005]
Although niacin of Mycobacterium tuberculosis grown by subject culture is detected by qualitative chemical analysis means, this qualitative chemical analysis has low sensitivity, and a large amount of niacin is required to obtain accurate test results. The In addition, in this qualitative chemical analysis, analytical operations over several steps are performed, but such analytical operations have a high risk of infection with M. tuberculosis due to scattering of bacterial cells. Therefore, these analytical operations must be performed in a very safe environment, using a highly safe apparatus, and with great care. Therefore, in order to carry out the niacin production test, not only does the qualitative chemical analysis itself take some time, but also the culture of the specimen is required and this culture takes a long time. A long time will be spent.
[0006]
On the other hand, the niacin production test may be performed in a liquid culture or a solid culture.
The former is performed, for example, in the United States and the like, and the culture period of the subject is shortened. However, there is a high risk of M. tuberculosis infection during work, and highly safe facilities and devices are required.
In Japan, the latter is carried out, and the risk of infection with M. tuberculosis is reduced, but a long period of about two months is required before the analysis results are revealed.
In the latter case, however, the risk of M. tuberculosis infection during work is reduced, but it is still possible to use a highly safe device in a safe environment and pay close attention. It is said that it must be broken.
[0007]
Protein MPT64 (hereinafter referred to as MPT64 protein) is a mycobacterial protein that is specifically produced by Mycobacterium tuberculosis and secreted outside the cell. It is known to be the same substance as MPB64 (hereinafter referred to as MPB64 protein).
On the other hand, the MPB64 protein is a mycobacterial protein that is produced by the BCG strain Mycobacterium bovis BCG (hereinafter referred to as BCG) and secreted outside the cell.
M. Harvoe has isolated and purified this MPB64 protein from BCG bacteria, and researched and reported on its properties (Infection and Inmmunity 1986, Vol.52, No.1, 293-302). .
[0008]
Also in Japanese Patent Laid-Open No. 1-247094, MPB64 protein is not produced by an atypical mycobacteria that infects humans and exhibits symptoms very similar to tuberculosis, but is produced by BCG of bovine tuberculosis. And it is said that it is a protein peculiar to each of BCG bacteria and human type tuberculosis bacteria which are the same substances as MPT64 protein.
[0009]
Therefore, this means that the anti-MPB64 protein antibody is an antibody whose antigen is MPB64 protein, but is also an antibody of MPT64 protein.
Therefore, pathogenically harmless BCG bacteria are cultured, MPB64 protein produced by BCG is extracted and purified from the culture solution, anti-MPB64 protein antibody is prepared using the MPB64 protein as an antigen, and the antibody is used. It is possible to establish a simple diagnostic method for tuberculosis that can clearly and quickly identify tuberculosis in humans by detecting tuberculosis bacteria in a subject by an antigen-antibody reaction (immune reaction) Become.
[0010]
As a test agent and detection method for Mycobacterium tuberculosis using an anti-MPB64 protein antibody, for example, a method described in JP-A-7-110332 is known. As immunological methods in this method, reverse passive hemagglutination (RPHA), reverse passive latex agglutination (RPLA), solid-phase enzyme immunoassay (ELISA) and the like are described.
In the former two cases, there are disadvantageous problems that the aggregation time is as long as about 3 hours, the sensitivity is low, and there is no quantitative property.
The latter has disadvantages such that the test operation is more complicated than the former two, and the implementation in a safety cabinet is not easy due to the use of a special machine.
[Problems to be solved by the invention]
[0011]
The present inventors have solved the drawbacks in the prior art as described above, and have a short period from sample collection to examination result identification, high sensitivity, semi-quantitativeness, and high safety of tuberculosis. As a result of diligent efforts to develop a method for detecting bacteria, for example, a colored labeling anti-MPB64 protein antibody combined with a colored labeling substance such as gold colloidal particles that are dispersed particles of gold sol. The inventors have obtained a new finding that an MPB64 protein antibody can be prepared and used to solve the above-mentioned drawbacks of the prior art, and the present invention has been reached based on this finding.
[Means for Solving the Problems]
[0012]
That is, the present invention relates to a capture formed by mixing a culture solution obtained by solid-cultivating a specimen and a color-labeled anti-MPB64 protein antibody and then impregnating the second anti-MPB64 protein antibody. The mixture is chromatographed on a membrane carrier for chromatographic development provided with a site, and the presence or absence of coloration due to the capture at the capture site of the conjugate of MPT64 protein or MPB64 protein and color-labeled anti-MPB64 protein antibody. A method for detecting Mycobacterium tuberculosis, comprising determining the presence or absence of Mycobacterium tuberculosis or Mycobacterium tuberculosis, wherein the antibody of the color-labeled anti-MPB64 protein antibody is a monoclonal antibody.
[0013]
According to a preferred embodiment of the present invention, the present invention includes at least a sample addition member 5, a color-labeled antibody-impregnated member 2, a chromatographic development membrane carrier 3 and an absorption member 4, and the member 2 and the carrier. 3 is impregnated with the color-labeled anti-MPB64 protein antibody and the second anti-MPB64 protein antibody, respectively, the member 5 is laminated on the member 2, and the carrier 3 covers the member 2 at its upstream end. The member 4 is obtained by performing the solid culture using a chromatographic test strip having an upstream end thereof laminated on the carrier 3 and connected to the carrier 3. The culturing solution is irrigated on the sample addition member.
[0014]
In the color-labeled anti-MPB64 protein antibody, the color-labeled substance bonded to the anti-MPB64 protein antibody is preferably a colloidal metal or colored latex.
The second anti-MPB64 protein antibody preferably reacts with an antigen-antibody at a site different from the color-labeled anti-MPB64 protein antibody.
The chromatographic test strip may be housed in a case.
BEST MODE FOR CARRYING OUT THE INVENTION
[0015]
The subjects are mainly sputum of patients suspected of having tuberculosis and test patients. For example, sputum produced by inhaling sterile saline aerosol and coughed together with cough, gastric lavage fluid, feces and urine Can also be used.
The subject is subjected to solid culture or liquid culture by a conventional method.
[0016]
In the case of solid culture, for example, the culture is performed at 37 ° C. using a test tube Kudo PD solid slope medium (a product of Kyowa Pharmaceutical Co., Ltd.). Distilled water is added to M. tuberculosis cultured on this slope to extract the culture secreted outside the cells during the culture period, and this M. tuberculosis mixed solution is used as a sample for inspection.
In the case of liquid culture, for example, a sample liquid and a sodium hydroxide aqueous solution are mixed, and bacterial cells are separated from the mixture by centrifugation. The separated bacterial cells are separated from, for example, Dubos liquid medium (Becton).・ A culture solution cultured at 37 ° C. by Decktonson's product) is used as a sample.
[0017]
MPB64 protein is, for example, the above-mentioned M.M. It is prepared by a method known per se such as a herbo separation and purification method.
That is, from a culture solution obtained by culturing a strain having MPB64 protein production ability such as BCG Tokyo strain belonging to Mycobacterium bovis in a liquid medium such as sorton medium, salting out, dialysis, column Purified MPB64 protein is obtained through sequential identification of proteins by chromatography, electrophoresis, and the like.
[0018]
The anti-MPB64 protein antibody may be either a monoclonal antibody or a polyclonal antibody obtained by a conventional method using the purified MPB64 protein thus obtained as an antigen.
The monoclonal antibody can be obtained, for example, by the method of Keller Milstein. The polyclonal antibody is preferably obtained by immunizing a goat.
[0019]
The anti-MPB64 protein antibody thus obtained is combined with a color labeling substance to give a color labeled anti-MPB64 protein antibody.
Examples of the color labeling substance include colloidal metal and colored latex.
Representative examples of colloidal metals include metal colloid particles that are dispersed particles of gold sol, silver sol, selenium sol, tellurium sol, platinum sol, and the like.
[0020]
The size of the colloidal metal particles is usually about 3 to 60 nm in diameter.
Moreover, as a representative example of colored latex, synthetic latex such as polystyrene latex colored with respective pigments such as red and blue can be mentioned. Natural latex such as natural rubber latex can be used as the latex. The size of the colored latex can be selected from a diameter of several nanometers to several hundred nanometers.
Commercially available products can be used as they are for these color labeling substances, but they can be further processed in some cases or can be produced by a method known per se.
[0021]
The binding between the anti-MPB64 protein antibody and the color labeling substance is performed by a conventional method. That is, for example, in the case of colloidal gold particles in which the color labeling substance is a dispersed particle of gold sol, usually, the anti-MPB64 protein antibody and the gold sol are mixed at room temperature to room temperature for several minutes, at most 10 minutes, It is possible to physically bond both by mixing.
[0022]
The MPB64 protein, which is the antigen, or the MPT64 protein, which is the same substance as the protein (hereinafter, MPT64 protein is referred to as an antigen in the same manner as the MPB64 protein) and the color-labeled anti-MPB64 protein antibody are combined by a normal antigen-antibody reaction . That is, for example, at room temperature to room temperature in a buffer solution in which a test sample that may contain MPB64 protein or MPT64 protein, which is an antigen produced by Mycobacterium tuberculosis, and a color-labeled anti-MPB64 protein antibody are mixed. Thus, an antigen-antibody reaction is performed, and a conjugate of the MPB64 protein or MPT64 protein, which is an antigen, and a color-labeled anti-MPB64 protein antibody (hereinafter simply referred to as a colored conjugate) is obtained. This colored conjugate was used, for example, by charging the band-shaped solid phase carrier on which the second anti-MPB64 protein antibody was immobilized and developing the chromatophore, and capturing the same on the second anti-MPB64 protein antibody. A color unique to the colored labeling substance is exhibited, whereby tubercle bacilli in the subject are detected.
[0023]
In the second anti-MPB64 protein antibody, the binding site of the antigen-antibody reaction to the antigen MPB64 protein or MPT64 protein is the binding site of the antigen-antibody reaction to the antigen of the anti-MPB64 protein antibody used for the labeled anti-MPB64 protein antibody. Must be different.
[0024]
In addition, it is contained in the subject by using a criterion derived from the relationship between the known number of Mycobacterium tuberculosis and the color concentration of the colored conjugate captured by the second anti-MPB64 protein antibody. You can know the approximate number of Mycobacterium tuberculosis. In this case, all of the examination conditions of the subject must be substantially the same as those in creating the determination standard.
[0025]
Capture of the colored conjugate by the second anti-MPB64 protein antibody is preferably by a chromatographic test strip.
The chromatographic test strip refers to the coloration mark of the test strip that is infiltrated by infiltration when the test sample is irrigated from the sample inlet of the case lid to one end of the strip-shaped solid phase carrier test strip. The antibody-impregnated member is reached and immunoreacts with the color-labeled anti-MPB64 protein antibody of the member to form a colored conjugate, and further, the colored conjugate infiltrates into the capture site and the second anti-capture site It is a method in which the capture site is colored by being captured by an immune reaction with the MPB64 protein antibody..
[0026]
For the preparation of a chromatographic test strip, for example, the method described in Japanese Patent Publication No. 7-13640 is suitably applied.
In the method for detecting Mycobacterium tuberculosis according to the present invention using a chromatographic test strip, a test mixture obtained by mixing a test sample obtained from a test sample or a test sample with a color-labeled anti-MPB64 protein antibody is chromatographed on a chromatographic test strip. Alternatively, a sample addition member and a colored labeled antibody impregnated member are provided in advance on the chromatographic test strip, and a predetermined amount of the test sample or a test sample obtained from the subject is irrigated to the sample addition member. Alternatively, the above-described method for performing chromatographic development may be used.
[0027]
(Delete)
[0028]
In the method for detecting Mycobacterium tuberculosis of the present invention, an immune reaction between MPT64 protein or MPB64 protein and a color-labeled anti-MPB64 protein antibody, and a colored conjugate produced by this immune reaction and a second anti-MPB64 protein antibody Since all the immune reactions in the meantime can be completed in a few minutes, the test itself is completed in about 15 minutes at the longest.
[0029]
In the method for detecting Mycobacterium tuberculosis according to the present invention, as in the other methods for detecting Mycobacterium tuberculosis, sufficient caution is required to prevent infection with Mycobacterium tuberculosis during the treatment of the specimen. However, in the detection method of the present invention, only a small amount of a test sample obtained from a test sample or a test sample that may contain tuberculosis bacteria is added to the chromatographic test strip, and the test is performed. Since the time required for itself is about 15 minutes at the longest, the risk of infection with M. tuberculosis is less than that of the conventional M. tuberculosis detection method in which the operation of the inspection is complicated and the inspection takes a long time.
[0030]
【Example】
EXAMPLES The present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
[0031]
1. Separation of MPB64 protein
(1) Culture of BCG bacteria Tokyo strain
BCG bacteria Tokyo strain was obtained from the Tuberculosis Prevention Society Tuberculosis Research Institute, inoculated into 500 ml × 20 sorton media having the following composition, and cultured at 37 ° C. for 5 weeks to obtain 10 l of a culture solution.
[0032]
Sorton medium composition
Asparagine 0.4%
Citric acid 0.2%
Sodium citrate 0.28%
Potassium phosphate 0.05%
Magnesium sulfate 0.05%
Ferrous ammonium citrate 0.005%
Glycerin 6%
("%" Indicates "weight / volume%". The same applies hereinafter)
[0033]
(2) Separation and purification of MPB64 protein
1) Add ammonium sulfate (hereinafter referred to as ammonium sulfate) to the culture solution obtained in (1) above to obtain a 80% saturated solution, and centrifuge the precipitated protein fraction to obtain the protein fraction. It was dissolved in 30 mM Tris-HCl buffer (pH 8.7) and dialyzed against 30 mM Tris-HCl buffer (pH 8.7) at 10 ° C. to obtain about 30 ml of dialysate containing about 9 g of protein.
2) About 30 ml of the above solution containing about 9 g of this protein was charged into a DEAE Sephadex A.50 (Pharmacia Biotech Co., Ltd.) column (57 cm × 5.5 cm), and a 30 mM Tris-HCl buffer solution ( The column was washed with 100 ml of pH 8.7) to obtain an eluate.
[0034]
Subsequently, it was chromatographed with 30 mM Tris-HCl buffer / 200 mM sodium chloride solution (pH 8.7). An ammonium sulfate was added to the chromatographic eluate to obtain a 70% saturated solution, and the precipitated protein fraction was obtained by centrifugation. This protein fraction was dissolved in 30 mM Tris-HCl buffer (pH 8.7), dialyzed against 30 mM Tris-HCl buffer (pH 8.7) at 10 ° C., and about 35 ml of dialysis solution containing about 3.5 g of protein. Got.
[0035]
3) About 35 ml of the above solution containing about 3.5 g of this protein was charged to a DEAE Sepharose CL-6B (Pharmacia Biotech Co., Ltd.) column (64 cm × 3.6 cm), and 30 mM Tris-HCl buffer ( pH 8.7) The above column was washed with about 700 ml.
Next, chromatographic development was performed by a concentration gradient method from 0 to 200 mM sodium chloride using 30 mM Tris-HCl buffer (pH 8.7) and 30 mM Tris-HCl buffer / 200 mM sodium chloride solution (pH 8.7). Was collected as 20 ml fractions. The developing solutions from fraction numbers 105 to 121 were collected. A protein fraction precipitated as a 70% saturated solution by adding ammonium sulfate to this developing solution was obtained by centrifugation. This protein fraction is dissolved in 30 mM Tris-HCl buffer (pH 8.7), dialyzed against 30 mM Tris-HCl buffer (pH 8.7) at 10 ° C., and dialysate containing about 0.7 g of protein. About 7 ml was obtained.
[0036]
About 360 ml of this developing solution is concentrated to about 6 ml at 5 ° C. by suction type ultrafiltration using an ultrafiltration membrane having a pore size of 10,000 molecular weight cut off, and then 30 mM Tris at 10 ° C. Dialysis was carried out against a hydrochloric acid buffer (pH 8.7) to obtain about 7 ml of dialysate. About 7 ml of this solution was freeze-dried by a conventional method to obtain a freeze-dried product containing about 0.7 g of protein.
[0037]
4) Dissolve the lyophilized product containing 0.7 g of this protein in 7 ml of purified water, and charge the entire amount to a DEAE Sepharose CL-6B (Pharmacia Biotech Co., Ltd.) column (45 cm x 3.0 cm). Concentration gradient from 40 mM to 90 mM sodium chloride using 30 mM Tris-HCl buffer, 3 M urea, 40 mM sodium chloride solution (pH 7.5) and 30 mM Tris-HCl buffer, 3 M urea, 90 mM sodium chloride solution (pH 7.5) Chromatographic development was performed by the method, and 5 ml of the developing solution was collected as a fraction.
[0038]
After spotting a small amount of each fraction on a solid phase support of polyacrylamide gel and performing electrophoresis, each fraction in which a protein band having a molecular weight of about 23,000 was observed in an electrophoretic image obtained by Coomassie brilliant blue staining. collected. This solution was concentrated to about 2 ml at 5 ° C. by suction ultrafiltration using an ultrafiltration membrane having a pore size of 10,000 molecular weight cut off, and then 30 mM Tris-HCl buffer (pH 8) at 10 ° C. And dialyzed against 7) to obtain about 2.5 ml of dialysate. About 2.5 ml of this solution was freeze-dried by a conventional method to obtain a freeze-dried product containing about 60 mg of protein.
[0039]
5) Dissolve the freeze-dried product containing about 60 mg of the protein in 2 ml of purified water, and charge the whole amount to a DEAE Sepharose CL-6B (Pharmacia Biotech Co., Ltd.) column (34 cm × 2.7 cm). The column was washed with 30 mM Tris-HCl buffer / 60 mM sodium chloride solution (pH 8.7).
[0040]
Next, using 30 mM Tris-HCl buffer / 60 mM sodium chloride solution (pH 8.7) and 30 mM Tris-HCl buffer / 110 mM sodium chloride solution (pH 8.7), chromatographic development is performed by a concentration gradient method from sodium chloride concentration 60 mM to 110 mM. 1 ml of the developing solution was collected as a fraction. After spotting a small amount of each fraction on a solid phase support of polyacrylamide gel and performing electrophoresis, each fraction in which a protein band having a molecular weight of about 23,000 was observed in an electrophoretic image obtained by Coomassie brilliant blue staining. collected.
[0041]
This solution was concentrated to about 1 ml at 5 ° C. by suction ultrafiltration using an ultrafiltration membrane having a pore size of 10,000 molecular weight cut off. Subsequently, the mixture was dialyzed against 30 mM Tris-HCl buffer (pH 8.7) at 10 ° C. to obtain about 1.3 ml of dialysate. About 1.3 ml of this solution was freeze-dried by a conventional method to obtain a freeze-dried product containing about 6 mg of protein.
[0042]
6) Finally, the freeze-dried product containing about 6 mg of the protein was dissolved in 1 ml of purified water, and the entire amount was charged to a Sephacryl S-200 (Pharmacia Biotech Co., Ltd.) column (30 cm × 2 cm), Chromatographic development was performed using 30 mM Tris-HCl buffer / 0.5 mM sodium chloride solution (pH 7.5), and this developing liquid was collected as 0.5 ml fractions. After spotting a small amount of each fraction on a solid phase support of polyacrylamide gel and performing electrophoresis, each fraction in which a protein band having a molecular weight of about 3,000 was observed in an electrophoretic image obtained by Coomassie brilliant blue staining. collected. This solution was concentrated to about 1 ml at 5 ° C. by suction ultrafiltration using an ultrafiltration membrane having a pore size of 10,000 molecular weight cut off, and then 30 mM Tris-HCl buffer (pH 8) at 10 ° C. And dialyzed against 0.7) to obtain about 1.3 ml of dialysate. About 1.3 ml of this solution was lyophilized by a conventional method to obtain a lyophilized product containing about 5 mg of protein. Since the electrophoresis of this protein having a molecular weight of about 23,000 thus obtained showed a single peak electrophoretic image (7.7% acrylamide gel), this MPB64 protein was judged to have high purity. It was.
[0043]
2. Preparation of anti-MPB64 protein monoclonal antibody (mouse)
(1) Cell fusion between spleen cells of mice treated with MPB64 protein (BALB / C system) and mouse myeloma cells (P3U1)
1) Above 1. Using the purified MPB64 protein obtained in Step 1, the Keller-Milstein method (G. Kohker and C. Milstein; Eur. J. Immunol.6: 511-519, 1976), cell fusion was performed to prepare a hybridoma.
[0044]
That is, the above 1. 500 μl of the purified MPB64 protein solution (200 μg / ml) obtained in the above and 500 μl of Freund's incomplete adjuvant were mixed until emulsified by a conventional method. Immunization was performed intraperitoneally. Two weeks after the previous administration, 40 μl of the mixed emulsion prepared in the same manner as described above was administered again into the abdominal cavity of the mouse.
Further, two weeks later, a physiological saline solution of purified MPB64 protein (200 μg / ml) was administered into the abdominal cavity of the mouse for final immunization.
[0045]
2) Three days after the final immunization, the mice were sacrificed and their spleens were immediately removed aseptically. The spleen was placed in a petri dish having a diameter of 60 mm containing about 10 ml of sterile RPMI-1640 medium, cut with a scissors along the long axis of the spleen, and the cells were released while quickly pressing the spleen with tweezers. The cells were passed through a nylon mesh and suspended in a new sterile RPMI-1640 medium to obtain a spleen cell suspension.
[0046]
3) The above spleen cell suspension was mixed with RPMI-1640 medium, and spleen cells obtained by removing red blood cells by specific gravity centrifugation using Ficoll-paque were suspended in a sterile RPMI-1640 serum-free medium. .
[0047]
4) On the other hand, mouse myeloma cells P3U1 (hereinafter referred to as P3U1 cells) were cultured in a sterile RPMI-1640 medium containing 10% by volume of fetal bovine serum, and then centrifuged (250 × G). P3U1 cells were separated, and the cells were washed twice with sterile RPMI-1640 medium and suspended in sterile RPMI-1640 medium to obtain a P3U1 cell suspension.
[0048]
5) The spleen cell suspension of 2) and the P3U1 cell suspension of 4) were mixed, and both cells were separated from the mixture by centrifugation (250 × G). Both the separated cells were suspended in 1 ml of a sterile RPMI-1640 medium (pH 7.4) containing 40% of polyethylene glycol having a molecular weight of 4,000 and allowed to stand at 37 ° C. for 6 minutes to obtain spleen cells. A hybridoma was prepared by fusing P3U1 cells.
[0049]
Then, sterile RPMI-1640 medium was added to these cells to make a total volume of 10 ml, and the cell suspension was centrifuged (250 × G) to separate these cells. To these cells, 10 ml of sterile RPMI-1640 medium containing 10% by volume of fetal bovine serum was added to suspend these cells. The cell suspension was centrifuged (250 × G) to remove the liquid, and cells were obtained.
[0050]
6) Add HAT medium to the cells and add 1 × 106Dispense 100 μl of each cell suspension into each well of a 96-well plastic microtiter plate (product of Sumitomo Bakelite Co., Ltd.), and store 5 volumes of carbon dioxide in the incubator. The cells were cultured at 37 ° C. in the presence of air.
[0051]
7) On the first day after the start of the culture, 100 μl of HAT medium was further added to each well. Thereafter, on the second day, the third day, the eighth day, and the eleventh day, 100 μl, which is half of the culture solution. The culture was continued while supplementing with 100 μl of HAT medium instead. On the 14th day after the culture, an average of 2-3 hybridoma colonies per well was observed in the wells where the hybridomas were present. In this well, since the hybridoma sufficiently proliferated after about 2 weeks from the start of the culture, the antibody titer of the culture supernatant was assayed at this point using a solid phase enzyme immunoassay (ELISA method).
[0052]
8) The solid-phase enzyme immunoassay method was carried out by adding 50 μl of the culture medium in which these hybridomas were cultured to the well of an ELISA plastic microtiter plate on which the antigen MPB64 protein had been immobilized. After leaving still for 1 hour and removing this culture solution, it wash | cleans with the physiological saline containing 0.05% Tween20. Next, 50 μl of a peroxidase-labeled goat anti-mouse immunoglobulin solution was added, and allowed to stand at 37 ° C. for 1 hour to cause an immune reaction. Wash with water. Further, a normal peroxidase coloring reagent consisting of 4-aminoantipyrine, hydrogen peroxide and phenol was added to the well for color development, and the antibody titer was determined according to a conventional method.
On the other hand, for the hybridoma in the well producing the antibody, cloning by the limiting dilution method was repeated three times.
As a result, 5 cloned cells that stably produced the anti-MPB64 protein antibody were obtained.
[0053]
(2) Purification of monoclonal antibody
Anti-MPB64 protein antibody of the above-mentioned cloned cell lines was intraperitoneally injected into BALB / C mice intraperitoneally injected with 0.5 ml of 2,6,10,14-tetramethylpentanedecane per mouse one week ago. Of the cloned cell suspension (1070.5 ml of mice / ml) was injected, and 1 week later, ascites containing anti-MPB64 protein antibody was obtained from 5 to 10 ml per mouse.
[0054]
This ascites was charged onto a protein A (product of Pharmacia Biotech) column equilibrated with 50 mM Tris-HCl buffer / 150 mM sodium chloride solution (pH 8.5). Next, the column was washed with 50 mM Tris-HCl buffer / 150 mM sodium chloride solution (pH 8.5), and then the anti-MPB64 protein antibody was eluted with 100 mM citrate buffer / 150 mM sodium chloride solution (pH 5.0).
[0055]
The anti-MPB64 protein antibody eluate is dialyzed at 10 ° C. against 20 mM phosphate buffer / 150 mM sodium chloride solution (pH 7.4), and then added as a preservative so that the final concentration is 0.1%. Sodium fluoride (NaNThree) Was added.
[0056]
3. Preparation of colloidal gold labeled antibody and blue latex labeled antibody
(1) Preparation of gold sol
99 ml of ultrapure water is boiled, and 1 ml of chloroauric acid (product of Katayama Chemical Co., Ltd.) solution (1% chloroauric acid concentration) is added to the boiling water. After 1 minute, sodium citrate solution (citrate) 1.5 ml of sodium acid concentration 1%) was added and boiled for 5 minutes, then allowed to cool to room temperature. Next, this solution was adjusted to pH 9.0 with a 200 mM potassium carbonate solution, and ultrapure water was added thereto to make a total amount of 100 ml to obtain a gold sol.
[0057]
(2) Preparation of colloidal gold labeled antibody
2. 1 μg of protein-converted weight of the anti-MPB64 protein mouse monoclonal antibody obtained in step 1 (hereinafter, when the protein-converted weight of the antibody is simply indicated), 1 ml of the above gold sol is mixed at room temperature. The antibody was allowed to stand for 2 minutes to bind to colloidal particles, which are gold sol dispersed particles. To this, an aqueous solution of 10% bovine serum albumin (hereinafter referred to as BSA) was added so that the final concentration was 1% to block the surface of the colloidal gold particles bound to the antibody. This solution was centrifuged (5,600 × G, 30 minutes), and colloidal particles bound with the anti-MPB64 protein mouse monoclonal antibody were precipitated and collected with colloidal gold-labeled antibody blocked with BSA.
This gold colloid-labeled antibody was resuspended in 50 mM Tris-HCl buffer (pH 7.4) containing 10% saccharose, 1% BSA, and 0.5% Triton-X100, and purified gold colloid-labeled antibody solution Got.
[0058]
(3) Preparation of blue latex labeled antibody
2. 1 ml of a 1% blue latex solution obtained by diluting 0.25 mg of the anti-MPB64 protein mouse monoclonal antibody obtained in 1) and 10% blue latex (particle size 0.2 μm, product of Nippon Paint Co., Ltd.) with purified water. The mixture was allowed to stand at room temperature for 30 minutes to bind the anti-MPB64 protein mouse monoclonal antibody to the blue latex, and then centrifuged (5,000 × G, 30 minutes) to bind to the blue latex. The crude blue latex labeled antibody, which is an anti-MPB64 protein mouse monoclonal antibody, was collected by precipitation. This crude blue latex-labeled antibody is redispersed in 1 ml of 10 mM phosphate buffer (pH 7.4) containing 1% BSA solution and 0.85% sodium chloride solution, and centrifuged (5,000 × G, 30 minutes) ) Was repeated three times. The blue latex-labeled antibody thus treated is dispersed in 20 ml of 10 mM phosphate buffer (pH 7.4) containing 1% BSA and 0.85% sodium chloride solution to obtain a solid content of about 0.05. % Purified blue latex labeled antibody solution.
[0059]
4). Creating a chromatographic test strip
(1) A chromatographic test strip was prepared in accordance with the description in Japanese Patent Publication No. 7-13640.
That is, a strip-like nitrocellulose membrane (membrane filter) having a width of 5 mm and a length of 36 mm is used as a membrane carrier for chromatographic development of a chromatographic medium, and the second end is located at a position 7.5 mm from the end opposite to the chromatographic start point. 0.5 μl of an antibody solution containing 3.0 mg / ml of anti-MPB64 protein antibody was applied in a spot shape and dried at room temperature to obtain a supplemental site. In the immune reaction with the second anti-MPB64 protein antibody, the binding site to the antigen MPT64 protein or MPB64 protein is the above-mentioned 3. An antibody having a binding specificity different from that of the antibody used in the preparation of the colloidal gold labeled antibody or the blue latex labeled antibody.
[0060]
(2) Further, 37.5 μl of the above gold colloid-labeled antibody solution was impregnated into a 5 mm × 15 mm belt-shaped glass fiber nonwoven fabric, which was dried at room temperature to obtain a gold colloid-labeled antibody-impregnated member.
(3) Further, 37.5 μl of the above blue gold latex labeled antibody solution was impregnated into a 5 mm × 15 mm strip-shaped glass fiber nonwoven fabric, which was dried at room temperature to obtain a blue latex labeled antibody impregnated member.
[0061]
(4) Next, a cotton cloth that is a sample addition member, a gold colloid-labeled antibody-impregnated member or a blue latex-labeled antibody-impregnated member, a nitrocellulose membrane that is a membrane carrier for chromatographic development, and a filter paper that is an absorption member, respectively. A chromatographic test strip was prepared by sticking to a predetermined position on the adhesive surface of the adhesive sheet. That is, a membrane carrier for chromatographic development is stuck on the adhesive surface of the pressure-sensitive adhesive sheet, and the gold colloid-labeled antibody solution or blue latex-labeled antibody solution is placed at the end opposite to the chromatographic development start of the chromatographic development membrane carrier The labeled antibody-impregnated member impregnated and dried is arranged so as to overlap the end opposite to the starting point of chromatographic development, and further, from the overlapping part of the gold colloid-labeled antibody-impregnated part or blue latex-labeled antibody-impregnated part. The sample addition member was arranged covering the whole.
Further, a part of the absorbing member was overlapped and arranged on the other end of the nitrocellulose film to obtain a chromatographic strip.
[0062]
5). Detection of Mycobacterium tuberculosis from subjects
(1) Preparation of judgment criteria
1) The purified MPB64 protein was diluted with physiological saline, and the MPB64 protein concentrations were 0.25 ng / ml, 0.5 ng / ml, 1.0 ng / ml, 2.0 ng / ml, 4.0 ng / ml, 8 A solution consisting of 0.0 ng / ml and 16.0 ng / ml was used, and these MPB64 protein solutions were used as standard samples. Using these standard samples, the above-described chromatographic test strip assay and RPHA assay were performed, and the detection sensitivity of both methods with respect to the MPB64 protein concentration was compared from the obtained results.
[0063]
2) Antibody-sensitized blood cells were prepared according to the method described in JP-A-7-110332.
That is, 1 part by volume of 0.5% 10 mM phosphate buffered suspension of glutaraldehyde-fixed sheep erythrocytes and 1 part by volume of a solution prepared by dissolving 1 mg of tannin (NBC, USA) in 100 ml of physiological saline were mixed. After standing at room temperature for 15 minutes, the tannin-treated red blood cells are centrifuged, and the tannin-treated red blood cells are washed three times with physiological saline and then suspended in physiological saline so as to be 1 part by volume. % Tannin erythrocyte physiological saline solution was obtained.
[0064]
One volume part of a purified anti-MPB64 protein polyclonal antibody solution (2 μg / ml) obtained by immunizing goats according to a conventional method and purified by affinity column chromatography and the above 0.5% tannin erythrocyte physiological saline solution 1 The volume part was mixed and allowed to stand at 37 ° C. for 30 minutes, and then this solution was centrifuged (1,500 × G, 10 minutes) to separate antibody-sensitized red blood cells. This antibody-sensitized erythrocyte was washed 3 times with 10 mM phosphate buffer and then suspended in 10 mM phosphate buffer containing 0.1% BSA to prepare a 0.5% antibody-sensitized erythrocyte physiological saline solution. did.
[0065]
3) In a chromatographic test strip using a colloidal gold-labeled antibody-impregnated member, 100 μl of a standard sample of each concentration was chromatographed, and the presence or absence of reddish purple coloring at the supplemental site in the test strip after 15 minutes was determined with the naked eye. Then, no coloring was defined as “−”, and coloring was classified into four stages of ±, +, ++, and +++ from ± (false positive) to +++ (dense coloring) according to the density, and used as a criterion. Table 1 shows the relationship between the determination standard by the naked eye and the protein concentration of the standard sample in the chromatographic test strip.
Needless to say, the presence or absence of reddish purple coloration and the color density at the capture site represent the presence or absence of Mycobacterium tuberculosis in the subject and the approximate number of Mycobacterium tuberculosis.
[0066]
4) When the same operation as described above was performed using the blue latex labeled antibody impregnated part, the same result as above was obtained.
[0067]
5) On the other hand, in the RPHA method, 5 μl of a standard sample of each concentration is placed in each well of a 96-well plastic microtiter plate (product of Sumitomo Bakelite Co., Ltd.), and then the above antibody-sensitized erythrocyte physiological saline is placed in each well. 25 μl of an aqueous solution was dropped and left at room temperature for 30 minutes to cause an immune reaction. The degree of erythrocyte aggregation in each well after this reaction was judged with the naked eye, and from − (no aggregation) to +++ (very good aggregation) ), And was divided into 5 levels:-, ±, +, ++, and +++. The result of the naked eye judgment in this RPHA method is compared with the judgment standard based on the purified MPB64 protein concentration of the standard sample in the above chromatographic test strip, and it is shown in Table 1.
As shown in Table 1, it can be seen that the method for detecting Mycobacterium tuberculosis of the present invention is higher in sensitivity than the RPHA method and has semi-quantitative properties.
[0068]
[Table 1]
Figure 0004269006
[0069]
(2) Mycobacterium tuberculosis detection example 1
1) Human sputum was used as tuberculosis subjects (8 cases), and detection of tuberculosis bacteria from the subjects was examined.
That is, 5 ml of a specimen and 5 ml of a 2% aqueous sodium hydroxide solution are mixed, and this mixture is allowed to stand at room temperature for 30 minutes and then centrifuged (1,500 × G, 30 minutes) to form a sediment. The precipitate and the physiological saline are mixed, the mixture is centrifuged (1,500 × G, 30 minutes), the resulting precipitate is recovered again, and the precipitate and 200 μl of physiological saline are added. This was mixed and used as a test sample.
[0070]
2) Take 100 μl of this test sample in a sterilized test tube, add 5 ml of Dubos liquid medium (Becton Dickinson Co., Ltd.) to this test tube, incubate at 37 ° C. The detection method of Mycobacterium tuberculosis by the chromatographic test strip of the invention and the detection of Mycobacterium tuberculosis by the RPHA method were performed.
In addition, about the culture solution of the culture | cultivation start 7th day, the tubercle bacillus was detected only by RPHA method.
[0071]
As a control, 5 ml of each of the 8 specimens described above and 5 ml of 2% aqueous sodium hydroxide solution were mixed, and the mixture was allowed to stand at room temperature for 30 minutes, and then 100 μl of this solution was added to Test Tube Kudo PD. A niacin production test was conducted on Mycobacterium tuberculosis that was uniformly inoculated on the surface of a solid slope medium (a product of Kyowa Pharmaceutical Co., Ltd.), cultured at 37 ° C. for 56 days, and grown.
[0072]
That is, 1 ml boiling distilled water was added to the surface of the above-mentioned test tube Kudo PD solid slope medium, and the surface was left almost horizontal for 5 minutes to extract niacin from Mycobacterium tuberculosis.
200 μl was collected from this extract and mixed with 100 μl of 4% by volume aniline / ethanol solution and 10% by volume bromcyan solution. Five minutes after mixing, if niacin derived from Mycobacterium tuberculosis is present in this mixed solution, the mixed solution will develop a yellow color. ).
Table 2 shows the results of these tests.
[0073]
[Table 2]
Figure 0004269006
[0074]
From Table 2, the niacin production test requires a long period of 56 days for culture on the test tube Kudo PD solid slant medium, while the detection method of the present invention requires a short period of 3 days for culture on the Dubos liquid medium. In addition, the sensitivity of the detection method of the present invention is much higher than that of the RPHA method.
[0075]
(3) Mycobacterium tuberculosis detection example 2 from a subject
1) An examination of tuberculosis was performed in each of the 8 patients with suspected tuberculosis by X-ray diagnosis.
That is, each of the above cocoons and an equal amount of a 2% aqueous sodium hydroxide solution were mixed, and this mixed solution was allowed to stand at room temperature for 30 minutes, which was used as a culture sample.
[0076]
2) 100 μl of the above culture sample was uniformly inoculated on the surface of the test tube Kudo PD solid slant medium, cultured at 37 ° C., and cultured on the 7th, 14th, 21st, 28th and 56th days In addition, 500 μl of distilled water was added to the surface of each test tube Kudo PD solid slant medium and shaken, and the liquid in the test tube was used as a cell extract sample. 100 μl of this bacterial cell extract sample is charged on a chromatographic test strip and chromatographed. After 15 minutes, the presence or absence of reddish purple coloration and the intensity of coloration are observed with the naked eye and determined according to the above criteria. did.
For comparison, a niacin production test was performed in the same manner as described above for Mycobacterium tuberculosis cultured and grown in the same manner as above except that the culture period was 56 days.
These results are shown in Table 3.
[0077]
[Table 3]
Figure 0004269006
[0078]
In Table 3, (−) and (+) respectively indicate “not formed” and “formed” colonies on the surface of the test tube Kudo PD solid slope medium.
[0079]
In Table 3, when the test tube Kudo PD solid slant medium is used for culturing the sample, it takes 56 days for the niacin production test to reveal the test result, whereas the detection method of the present invention uses niacin. The presence of M. tuberculosis in the subject can be determined at the 28th day of culture, which is half the number of days in the production test, and it is shown that the sensitivity is extremely high.
[0080]
Next, a representative example of a chromatographic test strip suitably used in the method for detecting Mycobacterium tuberculosis of the present invention will be described more specifically with reference to the drawings.
That is, FIG. 1 shows a chromatographic test strip, a is a plan view, and b is an end view of a longitudinal section of the chromatographic test strip indicated by a.
2 shows a case for accommodating the chromatographic test strip shown in FIG. 1, wherein a is a plan view and b is an end view of a longitudinal section of the case shown by a.
Note that the drawings are for illustrating the principle, and the dimensions and the like are not accurately shown.
[0081]
This chromatographic test strip is formed on the adhesive surface of the adhesive sheet 1 in order from the upstream side (hereinafter, the left side in the drawing is referred to as the upstream side, and the right side in the drawing is referred to as the downstream side). The color-labeled antibody-impregnated member 2, the chromatographic development membrane carrier 3 and the absorbing member 4 are attached. Thus, the color-labeled antibody-impregnated member 2 is spot-impregnated with the color-labeled anti-MPB64 protein antibody solution on the entire surface, and the chromatographic development membrane carrier 3 is impregnated with the second anti-MPB64 protein antibody solution. (The spot where the second anti-MPB64 protein is impregnated in the form of a spot on the chromatographic development membrane carrier 3 is hereinafter referred to as a capture part 31). The sample addition member 5 is laminated on the color-labeled antibody-impregnated member 2. The upstream end of the membrane carrier 3 for chromatographic development is covered with the color-labeled antibody-impregnated member 2 and is connected to the color-labeled antibody-impregnated member 2.
[0082]
The absorption member 4 has its upstream end laminated on the downstream end of the chromatographic development membrane carrier 3.
The pressure-sensitive adhesive sheet 1, the color-labeled antibody-impregnated member 2, the chromatographic development membrane carrier 3, the absorption member 4 and the sample addition member 5 are all elongated and shaped like a band. The chromatographic development membrane carrier 3 automatically moves the analyte charged in the spot shape on the sample addition member 5 and other various samples to the downstream side in the chromatographic development direction by its own capillary action during chromatographic development. Any material having a material to be obtained may be used.
[0083]
Thus, the glass fiber nonwoven fabric is used as the colored label antibody-impregnated member 2, the nitrocellulose membrane is used as the chromatographic development membrane carrier 3, the filter paper is used as the absorbing member 4, and the material as the sample adding member 5 is not limited. Most suitable are sheets or films of porous synthetic resin such as porous polyethylene and porous polypropylene, and paper or woven or non-woven fabric made of cellulose such as filter paper and cotton cloth.
[0084]
As the membrane carrier 3 for developing a chromatograph having the capturing part 31, it is preferable to use one that can clearly see the color of the colored binding substance captured by the capturing part 31. For example, when the colored labeling substance is gold colloidal particles, the colloidal gold particles exhibit a reddish purple color, and the colored binding material also exhibits a reddish purple color. Therefore, the color of the membrane carrier 3 for chromatographic development is light. White is particularly preferred.
[0085]
The above chromatographic test strip is housed in Case 6. Case 6 is usually made of synthetic resin.
The case 6 includes a container body 61 and a lid 62.
On the upper surface of the lid 62, a sample inlet 621 and a determination hole 622 are formed at positions corresponding to the sample addition member 5 of the chromatographic test strip and the capture part 31 of the membrane carrier 3 for chromatographic development, respectively. It is installed.
[0086]
Samples such as a subject, a culture of the subject, and various extracts from these are irrigated from the sample inlet 621 of the lid 62 to the sample addition member 5. The irrigated sample infiltrates the sample addition member 5 toward the downstream side, and at the same time, is transferred to the lower color-labeled antibody-impregnated member 2 and developed toward the downstream side of the color-labeled antibody-impregnated member 2. It is done. When MPT64 protein or MPB64 protein produced from Mycobacterium tuberculosis is contained in various samples, MPT64 protein or MPB64 protein is obtained by an immunoreaction between MPT64 protein or MPB64 protein and a color-labeled anti-MPB64 protein antibody during this period. And a color-labeled anti-MPB64 protein antibody are produced.
[0087]
The sample is further developed toward the downstream side of the membrane carrier 3 for chromatographic development. This colored binding substance is captured by the capturing part 31 of the membrane carrier 3 for chromatographic development in the course of development, accumulated, and colored. This coloration is observed with the naked eye through the determination hole 622.
[0088]
【The invention's effect】
The present invention can determine the presence or absence of Mycobacterium tuberculosis in a simple method, in a short time, and with high accuracy, and also semi-quantifies the number of Mycobacterium tuberculosis present in a sample. It becomes possible.
[Brief description of the drawings]
FIG. 1 shows a chromatographic test strip, wherein a is a plan view and b is a longitudinal end view of the chromatographic test strip indicated by a.
2 shows a case for housing the chromatographic test strip shown in FIG. 1, wherein a is a plan view and b is an end view of a longitudinal section of the case shown by a. FIG.
[Explanation of symbols]
1 Adhesive sheet
2 Colored antibody-impregnated material
3 Membrane carrier for chromatographic development
31 Trapping part
4 Absorbing material
5 Sample addition material
6 cases
61 Container body
62 Lid
621 Sample inlet
622 judgment hole

Claims (9)

被検体を固形培養して得られた培養物の溶液と、呈色標識抗MPB64蛋白抗体とを混合し、次いで、第二抗MPB64蛋白抗体を含浸させて形成された捕捉部位を備えてなるクロマト展開用膜担体に、この混合液をクロマト展開せしめ、MPT64蛋白またはMPB64蛋白と呈色標識抗MPB64蛋白抗体との結合物の前記捕捉部位での捕捉による呈色の有無により、ヒト型結核菌またはウシ型結核菌の有無を判断することからなり、前記呈色標識抗MPB64蛋白抗体の抗体がモノクローナル抗体であることを特徴とする結核菌検出方法。A chromatograph comprising a capture site formed by mixing a culture solution obtained by solid-cultivating a specimen and a color-labeled anti-MPB64 protein antibody and then impregnating the second anti-MPB64 protein antibody. the deployment membrane carrier, the mixture was allowed to chromatographic development, the presence or absence of coloration with captured at the capture site of binding of the color labeling anti-MPB64 protein antibody and MPT64 protein or MPB64 protein, or Mycobacterium tuberculosis A method for detecting Mycobacterium tuberculosis , comprising determining the presence or absence of Mycobacterium bovis , wherein the antibody of the color-labeled anti-MPB64 protein antibody is a monoclonal antibody . 前記呈色標識抗MPB64蛋白抗体において、抗MPB64蛋白抗体に結合せしめられる呈色標識物質がコロイド状金属である請求項1記載の結核菌検出法。 The method for detecting Mycobacterium tuberculosis according to claim 1, wherein in the color-labeled anti-MPB64 protein antibody, the color-labeled substance bound to the anti-MPB64 protein antibody is a colloidal metal. 前記呈色標識抗MPB64蛋白抗体において、抗MPB64蛋白抗体に結合せしめられる呈色標識物質が着色ラテックスである請求項1記載の結核菌検出法。 The method for detecting Mycobacterium tuberculosis according to claim 1, wherein in the color-labeled anti-MPB64 protein antibody, the color-labeled substance bound to the anti-MPB64 protein antibody is a colored latex. 前記第二抗MPB64蛋白抗体は前記呈色標識抗MPB64蛋白抗体と異なる部位で抗原抗体反応するものである請求項1〜3の何れか1項に記載の結核菌検出法。Tuberculosis detection method according to any one of Der Ru claims 1-3 which antigen-antibody reaction in the second anti-MPB64 protein antibody site different from the color labeling anti-MPB64 protein antibody. 少なくとも、試料添加用部材5、呈色標識抗体含浸部材2、クロマト展開用膜担体3および吸収用部材4を有し、上記部材2および担体3には前記呈色標識抗MPB64蛋白抗体および第二抗MPB64蛋白抗体がそれぞれ含浸されており、上記部材5は部材2に積層され、上記担体3はその上流側端部が上記部材2に被覆されるとともに該部材2に連接され、上記部材4はその上流側端部が上記担体3に積層されるとともに該担体3と連接してなるクロマト法テストストリップを用い、前記固形培養して得られた培養物の溶液を前記試料添加用部材に灌注することによって行うことを特徴とする請求項1に記載の方法At least, the sample receiving member 5, color-labeled antibody-impregnated member 2, has a membrane carrier 3 for chromatographic development and the absorbent member 4, the said member 2 and a carrier 3 the color labeling anti-MPB64 protein antibody and the second and anti-MPB64 protein antibody are impregnated respectively, the member 5 are laminated on the member 2, the carrier 3 is its upstream end is connected to the member 2 while being coated on the member 2, the member 4 is Using the chromatographic test strip having its upstream end laminated on the carrier 3 and connected to the carrier 3, the solution of the culture obtained by solid culture is irrigated to the sample addition member. The method according to claim 1, wherein: 前記呈色標識抗MPB64蛋白抗体において、抗MPB64蛋白抗体に結合せしめられる呈色標識物質がコロイド状金属である請求項5記載の方法 6. The method according to claim 5, wherein in the color-labeled anti-MPB64 protein antibody, the color-labeled substance to be bound to the anti-MPB64 protein antibody is a colloidal metal. 前記呈色標識抗MPB64蛋白抗体において、抗MPB64蛋白抗体に結合せしめられる呈色標識物質が着色ラテックスである請求項5記載の方法 6. The method according to claim 5, wherein in the color-labeled anti-MPB64 protein antibody, the color-labeled substance bonded to the anti-MPB64 protein antibody is a colored latex. 前記第二抗MPB64蛋白抗体は前記呈色標識抗MPB64蛋白抗体と異なる部位で抗原抗体反応するものである請求項5〜7の何れか1項に記載の方法 It said second anti-MPB64 protein antibody method according to any one of Der Ru claim 5-7 which reacts antigen-antibody at a site different from the color labeling anti-MPB64 protein antibody. 前記クロマト法テストストリップがケースに収容されてなる請求項5〜8の何れか1項に記載の方法 The method according to claim 5, wherein the chromatographic test strip is accommodated in a case.
JP28260497A 1997-09-30 1997-09-30 Mycobacterium tuberculosis detection method Expired - Lifetime JP4269006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28260497A JP4269006B2 (en) 1997-09-30 1997-09-30 Mycobacterium tuberculosis detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28260497A JP4269006B2 (en) 1997-09-30 1997-09-30 Mycobacterium tuberculosis detection method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2006097204A Division JP4478658B2 (en) 2006-03-31 2006-03-31 Mycobacterium tuberculosis detection kit
JP2007184162A Division JP4406656B2 (en) 2007-07-13 2007-07-13 Mycobacterium tuberculosis detection method

Publications (2)

Publication Number Publication Date
JPH11108931A JPH11108931A (en) 1999-04-23
JP4269006B2 true JP4269006B2 (en) 2009-05-27

Family

ID=17654676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28260497A Expired - Lifetime JP4269006B2 (en) 1997-09-30 1997-09-30 Mycobacterium tuberculosis detection method

Country Status (1)

Country Link
JP (1) JP4269006B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002372539A (en) * 2001-06-13 2002-12-26 Towns:Kk Detection method and device of antibody against nonprotein substance
JP4943515B2 (en) 2007-12-28 2012-05-30 株式会社ビーエル Immunodetection method for Mycobacterium tuberculosis group
JP5150456B2 (en) * 2008-11-06 2013-02-20 有限会社アルノテック Drug susceptibility testing method and kit for Mycobacterium tuberculosis group
EP2835646B1 (en) 2012-04-05 2019-07-17 Tauns Co., Ltd. Method for immunological detection of mycobacterium tuberculosis complex
CN110940805B (en) * 2020-02-14 2022-11-29 北京纳百生物科技有限公司 Immune colloidal gold homogeneous phase labeling method

Also Published As

Publication number Publication date
JPH11108931A (en) 1999-04-23

Similar Documents

Publication Publication Date Title
JP4943515B2 (en) Immunodetection method for Mycobacterium tuberculosis group
EP1478395B1 (en) Rapid lateral flow assay for determining exposure to mycobacterium tuberculosis and other mycobacteria
US7687278B2 (en) Pretreatment kit for saliva and pretreatment method for saliva
JPH05264553A (en) Antigen prepared for detecting helicobacter pyroly
JP4406656B2 (en) Mycobacterium tuberculosis detection method
JP4269006B2 (en) Mycobacterium tuberculosis detection method
JP4536588B2 (en) Diagnostic instrument for adult T-cell leukemia
JP4268358B2 (en) Antibody and immunological assay
JP2000502452A (en) Fecal test methods and equipment
JP4478658B2 (en) Mycobacterium tuberculosis detection kit
JP5150456B2 (en) Drug susceptibility testing method and kit for Mycobacterium tuberculosis group
EP1278065A1 (en) Method of detecting streptococcus sobrinus and antibody therefor
CN102980997A (en) EB virus capsid antigen IgM antibody colloidal gold method detection reagent and preparation method thereof
JP7144039B2 (en) Severe Fever Thrombocytopenia Syndrome Virus Antibody Detection Kit and Severe Fever Thrombocytopenia Syndrome Virus Antibody Detection Method
Fernandez et al. Separation of T lymphocytes from normal individuals and patients with B lymphocyte chronic lymphocytic leukaemia.
JP2021012197A (en) Method for detecting causative bacteria of respiratory tract infection
CN105585634B (en) The immune chromatography reagent kit of anti-human streptococcus pneumonia fam2 family PspA protein antibodies and the application antibody
Deodhar et al. Standardization of a dot blot immunoassay for antigen detection in cases of pulmonary tuberculosis & its evaluation with respect to the conventional techniques
JP4443117B2 (en) Immunochromatographic specimen and diagnostic kit
JP2004271341A (en) Immuno-chromatography detection method for adenovirus and immuno-chromatography test strip
WO2024117982A1 (en) Strip test kit for tuberculosis diagnosis
Sumi et al. A dot-immunobinding assay (Dot-Iba) for rapid diagnosis of pulmonary tuberculosis
JP2001302697A (en) Polyclonal antibody and method for producing the same
Biswas et al. Antigen ES-31: observations from use of antigen, antibody and immune complexed antigen in sero-diagnosis of tuberculosis
KR19990047385A (en) Diagnostic kit for detecting Mycobacterium tuberculosis antigens, including anti-tuberculosis antibodies and antiserum against bacillus antigens

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040618

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20040810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070515

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070830

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070830

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071003

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150306

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term