JP4268704B2 - Method for detecting the number of FRP layers in reinforced fiber fabrics and concrete structures - Google Patents

Method for detecting the number of FRP layers in reinforced fiber fabrics and concrete structures Download PDF

Info

Publication number
JP4268704B2
JP4268704B2 JP24947598A JP24947598A JP4268704B2 JP 4268704 B2 JP4268704 B2 JP 4268704B2 JP 24947598 A JP24947598 A JP 24947598A JP 24947598 A JP24947598 A JP 24947598A JP 4268704 B2 JP4268704 B2 JP 4268704B2
Authority
JP
Japan
Prior art keywords
reinforcing fiber
metal wire
detecting
fabric
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24947598A
Other languages
Japanese (ja)
Other versions
JP2000080535A5 (en
JP2000080535A (en
Inventor
明 西村
卓 小林
郁夫 堀部
達郎 吉永
和雄 江口
孝志 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Sho Bond Corp
Original Assignee
Toray Industries Inc
Sho Bond Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc, Sho Bond Corp filed Critical Toray Industries Inc
Priority to JP24947598A priority Critical patent/JP4268704B2/en
Publication of JP2000080535A publication Critical patent/JP2000080535A/en
Publication of JP2000080535A5 publication Critical patent/JP2000080535A5/ja
Application granted granted Critical
Publication of JP4268704B2 publication Critical patent/JP4268704B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、コンクリート構造物の補修、補強に用いられた繊維強化プラスチック(以後FRPと呼称する)板を構成する強化繊維織物およびその強化繊維織物の積層数を検出する方法に関する。
【0002】
【従来の技術】
土木、建築の分野におけるコンクリート構造物、すなわち橋の橋脚、桁、床版および建築物の柱、壁や桁などの地震対策や劣化対策として、施工が容易であることなどからFRPで補修、補強されるケースが多くなってきている。
【0003】
FRP板による補強は、設定した機械的特性となるように、強化繊維が所定の方向に、所定の量が配列するように織物などの強化繊維からなるシート基材を積層し、樹脂含浸、樹脂を硬化することによって行われる。これら作業は人間が行うため、基材の積層方向や積層数を人的ミスによって誤ることがある。FRPは強化繊維の方向には引張強度や引張弾性率の機械的性質に優れるが、繊維の方向とずれると急激に機械的性質が低下する、異方性の大きな材料である。また、補強によるコンクリート構造物の機械的特性の補強効果は繊維量によって支配されるから、補強工事後の強化繊維の方向、つまり基材の方向や、とくに基材の積層枚数が規定通りになっているか確認することが信頼性の観点から重要なことである。
【0004】
現在、強化繊維の配列の方向や積層数の確認は、1層の積層、含浸作業が完了した後に写真撮影して確認する方法などによって行われているが、補強箇所の全体を網羅するには膨大な数の写真を取る必要があり、厄介である。また、補強した箇所のFRP板のサンプルを切り出し、FRP板の断面を観察したり、樹脂部分を焼き飛ばして強化繊維の基材を取り出し、層数や繊維の配列方向を調査、確認する方法もあるが、折角補強した箇所を破壊して調査しなければならず非効率であり、また、サンプル採集にあって補強箇所の強度や剛性が低下するという問題もある。
【0005】
【発明が解決しようとする課題】
本発明の目的は、従来の技術における上述した問題点を解決し、FRPに成形した後の基材の積層状態が簡単に検出可能な強化繊維織物およびコンクリート構造物をFRP板で補修・補強工事した後の、基材の強化繊維の配列方向や積層数や検出する方法を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明の強化繊維織物は応力が集中するような屈曲を有しない強化繊維マルチフィラメント糸を、一方向に互いに並行かつシート状に引き揃えてなる糸条群のシート両面側によこ方向補助糸群が位置し、それらよこ方向補助糸群と、該強化繊維マルチフィラメント糸と並行するたて方向補助糸群とが織組織をなして糸条群を一体に保持し、隣接する強化繊維糸間には0.3〜2mmの間隙があり、かつ金属線が30〜100cmの間隔を有して織物面内に挿入されていることを特徴とする。
【0007】
また、本発明の強化繊維織物の積層数検出方法は、上記強化繊維織物の積層数を検出する方法であって、コンクリート構造物面に樹脂を塗布し、ついでシート状の強化繊維織物を貼付けながら同時に該強化繊維織物に樹脂を含浸させ、常温硬化させてFRPとなすことで該コンクリート構造物を補強した後、該強化繊維織物の積層数を検出する方法において、本発明に係る上記強化繊維織物を、複数枚、金属線の挿入箇所が互いに異なるように積層し、樹脂含浸後、樹脂硬化してコンクリート構造物を補強した後、前記金属線の挿入箇所を感知することによって該強化繊維織物の積層数を検出することを特徴とする方法からなる。
【0008】
本発明に係わる金属線の感知は、
(1)金属線を交流磁界内に導入し、磁界を乱すことにより感知する、
(2)金属線を電磁誘導によって発熱し、該発熱部分を赤外線放射温度計で感知する、
のいずれかを特徴とする方法からなる。
【0009】
【発明の実施の形態】
以下、本発明について詳細に説明する。
【0010】
本発明の強化繊維織物の積層数検出方法を説明するに、まず、コンクリート面に付着している油などの不純物をアセトンなどの有機溶剤や石鹸水で除去し、コンクリートのひび割れ部や欠けた箇所に樹脂やモルタルを充填し、また、コンクリートの凸部を削り接着面を平滑にする。コンクリート面とFRP板の接着性を向上させるため、粘度の低いエポキシ樹脂系プライマーを塗布し、1〜2日間程度プライマー樹脂が硬化するまで放置する。つぎに、プライマーの上にFRPのマトリックスとなる樹脂を塗布ローラで塗布し、長さ方向に強化繊維が並行配列している強化繊維織物を所定の方向に積層し、含浸ローラ掛けし、強化繊維織物への樹脂含浸と同時に脱泡を行い、常温で硬化させる。同様に、さらに強化繊維織物を所定の方向に積層し、樹脂を塗布した後ローラがけし、樹脂含浸および脱泡を行って常温で硬化させて、コンクリート面にFRP層を形成し、コンクリート構造物の補強を行う。補強の度合いによって、これら積層作業を繰り返し、積層枚数、すなわち強化繊維量を増やす。
【0011】
以上は、通常行われている、FRPによるコンクリート構造物の補修、補強方法であり、本発明においてなんら変わることはないが、本発明では、上記において金属線が挿入された強化繊維織物を、金属線の挿入箇所が各層で異なるように積層する。
【0012】
図1に本発明の、金属線が挿入された強化繊維織物1の一例を示す概略図を示した。図1に基づいて本発明の織物を説明するに、応力が集中するような屈曲を有しない強化繊維マルチフイラメント糸2を一方向に互いに並行にシート状に引き揃えてなる、強化繊維マルチフイラメント糸の糸条群イと、強化繊維マルチフイラメント糸間に強化繊維マルチフイラメント糸と並行するたて方向補助糸3群ロと、よこ方向はシート面の両側に位置するよこ方向補助糸4群ハと金属線5とからなり、金属線5は織物の表面と裏面に2本ずつ配列し、たて方向補助糸群ロとよこ方向補助糸群ハおよび金属線とが織り組織をなして糸条群イが一体に保持されている。また、隣接する強化繊維マルチフイラメント糸間には間隙Aを有し、また、たて糸とよこ糸の交点は、樹脂含浸ローラ等による糸のずれ、すなわち目ずれを防ぐため低融点ポリマー6が接着されている。
【0013】
このような一方向織物は、強化繊維マルチフイラメント糸1が、屈曲することなく真直ぐに配列して、いわゆるノンクリンプ構造となっているので、樹脂で固めても、応力集中が発生することなく、FRPの引張強度、引張弾性率が大きくなる。
【0014】
なお、上記において、金属線が1箇所で2本引き揃えてあり、これを2回、つまり4本挿入しているが、金属線は1箇所で1本であってもよい。
【0015】
図2は本発明の強化繊維織物1の長さ方向に間隔をあけてよこ方向に上記金属線5が配列している様子を示しているが、織物の長さ方向にピッチBの間隔で配列されている。
【0016】
本発明の織物に使用する強化繊維は、炭素繊維、ポリアラミド繊維、ガラス繊維などであるが、なかでも炭素繊維は耐アカリ性に優れ、引張強度、引張弾性率に優れるのでコンクリート構造物の補修、補強には好ましく用いられる。なお、安価に織物を製造することが出来ることから強化繊維マルチフイラメント糸の繊度は3,000デニール〜30,000デニール程度が好ましい。
いる。
【0017】
たて方向およびよこ方向の補助糸は、加熱によって共重合ナイロンなどの低融点ポリマー糸を溶融する際、加熱収縮しないようにするため、ガラス繊維やポリアラミド繊維が好ましい。また、補助糸は本質的には強化繊維として作用させるものではなく、織物形成のために使用するものであるから、繊度は100デニール〜1,300デニール程度であることが好ましい。
【0018】
また、強化繊維マルチフイラメント糸間の間隙Aは0.3mm〜2mmが好ましい。補修、補強で用いられる樹脂は、樹脂の垂れ落ちや織物の滑り落ちを防ぐ観点から、常温硬化型の25℃における粘度が30ポイズから200ポイズとハンドレイアップ成形としては粘度の高いエポキシ樹脂が使われている。このような樹脂を、たとえばコンクリート面に下塗り樹脂を塗布し、織物を貼り付けて上塗り樹脂を塗布した後、へら掛けやローラ掛けしても、下塗り樹脂が織物を通過して上塗り樹脂側に移動しない。したがって、下塗り樹脂はコンクリート面と織物の間に残り、余分な樹脂によってへら掛けやローラ掛けの跡が残り、硬化後のFRPの表面が凸凹し、見栄えが悪くなってしまう。このようなことから間隙は0.3mm以上あることが好ましい。また、間隙が大きいと、逆に相対的に強化繊維糸が配列可能な間隔が小さくなるので、強化繊維の目付が小さな織物しか得られなくなる。また、通常の炭素繊維目付が300g/m2 〜400g/m2 程度の織物にすると、狭い間隔の中に強化繊維糸が配列させられることになるから、強化繊維のフイラメントの配列密度が大きくなり、強化繊維糸への樹脂の含浸を阻害されるので、2mm以下が好ましい。
【0019】
金属線の配列方向は、図1ではよこ方向に配列した例について記載したが、たて方向に配列していてもよい。ただ、FRPにした後、層数検出するには金属線の位置をずらしながら積層することが必要となるので、たて方向に配列させておくと、挿入位置の異なる織物を多種類準備しなければならず、織物製造やロット管理も厄介でとなる。一方、よこ方向に一定間隔に金属線が配列した織物であると、1種類の織物で、積層の際、金属挿入箇所が所定の間隔づつずれるように裁断すればよい、また、このような織物はドビーの操作によって自動的に製造することが可能であるので、織物製造の製造は簡単であり、またロット管理の必要も無くなる。
【0020】
図3は本発明の強化繊維織物1がコンクリート構造物7の表面8に積層され、FRPになった状態で、金属線の検出法の一例を説明する部分破断概略図である。
【0021】
図3において、コンクリート表面8に本発明の強化繊維織物1が4層、強化繊維の方向が同じになるように積層され、マトリック樹脂が含浸されてFRPの状態となっている。FRPにおいて1層目の織物11 、2層目の織物12 、3層目の織物13 および4層目の織物14 の金属線51 、52 、53 および54 は等間隔でCづつずれるように積層されている。この間隔Cはあまり小さいと、金属線を検出する際、各層の金属線を判別できなくなるので、2cm以上とする。また、FRPにおける各層の金属線のずれ間隔Cは必ずしも等間隔である必要はないが、等間隔であると検出の際、検出本数を間違えることはないので好ましい。
【0022】
本発明の織物における金属線挿入箇所のピッチPは、積層枚数や積層するのずらし間隔Bによっても異なるが、30〜100cmのピッチPとされ、金属線が30〜100cmの間隔を有して織物面内に挿入されている。金属線検出で、金属線配列のピッチPのなかに全ての層の金属線が1箇所づつ入るように積層すると、このピッチP内で検出される金属線挿入箇所の数を積層数とすることが出来る。
【0023】
FRPの上部で検出装置のセンサー9を金属線の存在する箇所を移動させ、または検出装置のセンサー9を設置し、FRPに埋め込まれた金属線の挿入箇所を把握することによって、強化繊維織物の積層数を非破壊で検出することができる。
【0024】
本発明の金属線の感知は、
A法;金属線を交流磁界内に導入し、磁界を乱すことで行う方法、
B法;金属線を電磁誘導によって発熱させ、該発熱部分を赤外線放射温度計で検出する方法、
のいずれかで行うことが好ましい。
【0025】
つぎに、本発明の検出方法について説明する。
【0026】
図4および図5は検出手段がA法の原理の一例を説明する概略図である。図4に示すように発振器10及び励磁コイル11によって平衡な1次磁界12が形成されているなかに、図5に示すように、FRPの金属線5が入ると定常交流磁界が乱れて金属線5に誘導電流が流れる。この誘導電流によって金属線の周りに2次磁界15が発生し、平衡な磁界を乱す。この乱れによって受磁コイル13に微小電圧が誘起され、この電圧を検出器14が検知し、金属線の存在を感知することが出来るのである。
【0027】
織物の積層数検出は、FRP表面に検出装置を置き、これを基材への金属線挿入箇所のピッチP、つまり1周期の距離だけ、検出装置を金属線の配列方向に対して垂直方向に移動しながら、その間に検出装置が金属線挿入箇所を感知する回数を数える。金属線挿入箇所を感知した回数がFRPの積層数となる。
【0028】
この方法に用いられる検出装置としては、金属探知器や近接スイッチが挙げられる。これらの装置は、小型で軽量なので取扱いが簡単で高所や狭い部分など、検出が困難な所でも使用できるのでよい。
【0029】
B法の検出手段、すなわち検出手段は赤外線カメラであり、金属線を電磁誘導によって発熱させ、該発熱部分を赤外線放射温度計で検出する方法について説明する。
【0030】
この方法は、誘導発熱装置のコイルを流れる電流によって発生する磁界のなかに、FRPの金属線を入れ、金属線に渦電流を流し、この渦電流によって金属線にジュール熱を発生させ、金属線を加熱する。この発熱部分を赤外線放射温度計で検出して、金属線の位置を検知することができるのである。なお、時間が経過すると熱がFRP中に伝わって拡散して金属線の温度が下がるので、赤外線放射温度計による検出作業を温度が下がる前にすみやかに行うことが好ましい。
【0031】
この方法では発熱させた部分が赤外線放射温度計を用いて観察すると、発熱部分が線状に現れるので、シート材への金属線配列の1周期の間隔内にある発熱部分の総数から、積層数を検出することが出来るのである。
【0032】
B法の検出手段である赤外線放射温度計は、測定対象物から自己放射される赤外放射エネルギーを検出し、最終的にカラーまたは白黒の熱画像として表示するものであり、サーモトレーサ、サーモグラフィ、赤外線カメラなどがあるが、このような機能を有しているものであれば、特に指定はしない。
【0033】
なお、B法は金属線を線状に検出することが出来るので、積層数のみならず積層方向も容易に検出することができる。
【0034】
本発明に用いる金属線は、磁界によって容易に磁化されるので、検知が容易となる鉄、ニッケル、及び、これらの合金、並びに酸化クロムIV(CrO2 )などの強磁性体からなる線材がよく、なかでも鉄線が安価であり好ましい。
【0035】
但し、挿入箇所での金属線の断面積が小さいと感知が困難となり、また太過ぎると金属線の剛性が高くなってシート材と一体にしにくくなってしまうし、挿入箇所が凸状に盛り上がるので好ましくない。従って、金属線は、断面積が0.005〜0.07mm2 以下の単線を2〜4本シート材と並行になるように挿入するとよい。
【0036】
本発明において強化繊維に炭素繊維を使用し、金属線と炭素繊維の電位が異なるので電流が流れ、金属線が電蝕で錆びてしまい、炭素繊維強化プラスチックの変色や物性へ悪影響する。従って、金属線の周囲に絶縁被覆をすることが好ましく、特に、被覆率100%とすると電蝕防止が確実となるのでよい。
【0037】
絶縁性被覆材としては、樹脂を透過する繊維状物がよく、これを金属線周囲に捲回するのがよい。たとえば、被覆材としてはポリエステル、ナイロン、ガラス、ビニロンなどの繊維フィラメント糸があり、これらを、芯材とする金属線の周囲にカバーリング法や製紐法で捲回することにより被覆ができる。
【0038】
ポリエステル、ナイロン、ガラス、ビニロン、ポリプロピレン、ポリアラミドなどの繊維が挙げられるが、上記材料の役割は絶縁性の確保なので、特に限定しない。但し、マトリックス樹脂との接着性の良さや電蝕防止から吸水率の低いものを選択するのがよい。また、被覆材に赤や緑などの色を着けていると、シート材の積層における金属線のずれ量を目視しながら設定しやすく、積層作業が効率よく行える。
【0039】
【実施例】
(実施例1)
金属線として線径が0.11mmの鉄線を使用し、この鉄線に75デニールのポリエステルフィラメント糸をS方向に、ついで100デニールの低融点ナイロン糸をZ方向にともに1,000回/m捲回して被覆し、被覆率が100%の絶縁被覆した鉄線を準備した。
【0040】
ついで、本発明の強化繊維織物は次のように作製した。
【0041】
たて方向に炭素繊維マルチフイラメント糸(単糸数:24,000本、繊度:14,400デニール、引張強度4,900MPa、引張弾性率230GPa)とたて方向の補助糸としてガラス繊維糸(405デニール)を1本交互に各々を1.88本/cmの密度で配列させ、よこ方向には203デニールのガラス繊維に50デニールの低融点ナイロン糸を被覆したカバーリング糸をよこ方向の補助糸として5本/cmの密度で打ち込み、50cmの間隔で2ピック分補助糸の打込みを止めて、前記の被覆鉄線2本引き揃えて合計4本の鉄線を打込み(1箇所の金属線の挿入長さは2mm)、その後補助糸を打込み、これを繰り返すことによって、よこ方向に50cmの間隔で被覆鉄線を挿入しながら、織機上に取りつけたヒータで鉄線に絶縁被覆に使用した低融点ナイロン糸および補助糸の低融点ナイロン糸を溶融することによって、よこの補助糸とたての補助糸および炭素繊維糸と接着することによって、目どめした。50cmの間隔、つまり配列周期が50cmで鉄線が配列した炭素繊維目付が300g/m2 の25cm幅の、炭素繊維マルチフイラメント糸が真直ぐに配列し、炭素繊維糸間の隙間が0.5mmの本発明の一方向性炭素繊維織物を作製した。
【0042】
ついで、積層に備えて、織物のよこ方向が揃えられた状態で金属線挿入箇所の位置が5cmづつずれるように4枚裁断した。
【0043】
ついで、プライマーが塗布し1昼夜放置された橋脚のコンクリート表面に下塗りとして25℃における粘度が55ポイズの常温硬化型のエポキシ樹脂を400g/m2 塗布し、まず1層目の織物を橋脚の周方向に貼り付け、さらに織物の上に上塗りとしてエポキシ樹脂を200g/m2 塗布した後、含浸ローラで樹脂を織物に含浸し、ついで200g/m2 の樹脂を塗布した後2層目の織物を1層目の上に、織物のよこ方向を揃えて橋脚の周方向に貼り付けて1層目と同じように樹脂を塗布し、含浸ローラで樹脂を織物に含浸した。同様に3層目、4層目の積層、樹脂の塗布、樹脂の含浸を行い、常温で硬化させて、コンクリート表面を積層体、すなわち炭素繊維織物のFRPで補強した。
【0044】
織物の炭素繊維糸間に隙間があるので、各層の織物への樹脂含浸ローラ掛けの際、余分の樹脂が部分的に偏在することなく、下塗りの樹脂が織物の炭素繊維糸間に隙間から抜けて上塗り樹脂側の方に抜けて、硬化したFRPの表面は平滑であった。
【0045】
金属線の検出には金属探知器として、センサ外径φ30の近接スイッチを使用した。この装置は、金属を感知するとランプが点灯するもので、これをFRPの表面に置いた。次に、スイッチを2m/minのスピードで、金属線の長手方向に対して垂直な向き動かし、50cm移動させた所でスイッチを止めた。この移動の間のランプ点灯回数を測定したところ4回であり、積層数が4枚であることが確かめられた。
【0046】
炭素繊維は黒いため、積層体も黒くなり、外観から金属線の存在を視認することが出来ないが、近接スイッチで非破壊で積層数の検出が可能であった。
【0047】
(実施例2)
実施例1と同じコンクリートに貼り付けられたFRPを、100V、1400Wの電磁誘導装置で1分間金属線を加熱したのち電磁誘導装置を取り外し、FRPから1mの距離に設置した赤外線放射温度計で測定した。なお、赤外線放射温度計として、HgCdTe検出器で、30℃での最小検知温度差が0.08℃、温度測定範囲が−50〜2000℃のものを使用した。
【0048】
温度分布をカラーの熱画像として表示させた所、橋脚の長さ方向に細長く続く高温部分が4ヶ所観察され、積層数が4枚であることが検出できた。
【0049】
【発明の効果】
本発明の強化繊維織物は、通常の非破壊検査方法では検出することができないFRP積層数、積層方向を容易に検出することが出来る。また本発明の積層数検出方法によれば、コンクリート構造物におけるFRPの積層数、積層方向を非破壊で、簡単に検出することができる。
【図面の簡単な説明】
【図1】本発明の一実施態様に係わる、金属線が織物の幅方向と並行に配列した一方向強化繊維織物を説明する図である。
【図2】本発明の一実施態様に係わる、織物の長さ方向に挿入されている状態を説明する図である。
【図3】本発明の一実施態様に係わる、積層体における金属線配列状態と積層数検出の様子を説明する図である。
【図4】本発明の一実施態様に係わる、金属線の感知の原理を説明する図で、磁界が平衡状態にあることを説明する図である。
【図5】本発明の一実施態様に係わる、金属線の感知の原理を説明する図で、磁界の中に金属線が入り不平衡状態にあることを説明する図である。
【符号の説明】
1:強化繊維織物
2:強化繊維マルチフイラメント糸
3:たて方向補助糸
4:よこ方向補助糸
5:金属線
6:低融点ポリマー
7:コンクリート構造体
8:構造体表面
9:センサー
10:発振器
11:励磁コイル
12:1次磁界
13:受磁コイル
14:検出器
15:2次磁界
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reinforcing fiber fabric constituting a fiber reinforced plastic (hereinafter referred to as FRP) plate used for repairing and reinforcing a concrete structure, and a method for detecting the number of layers of the reinforcing fiber fabric.
[0002]
[Prior art]
Repair and reinforcement with FRP because it is easy to install as a countermeasure against earthquakes and deterioration of concrete structures in the field of civil engineering and architecture, ie bridge piers, girders, floor slabs and pillars of buildings, walls and girders. More and more cases are being made.
[0003]
Reinforcement with FRP plate is performed by laminating a sheet base material made of reinforced fibers such as woven fabric so that the reinforced fibers are arranged in a predetermined direction and in a predetermined amount so that the set mechanical characteristics are obtained. This is done by curing. Since these operations are performed by humans, the substrate stacking direction and the number of layers may be mistaken due to human error. FRP is a material with large anisotropy that is excellent in mechanical properties such as tensile strength and tensile modulus in the direction of reinforcing fibers, but suddenly decreases in mechanical properties when deviated from the direction of fibers. In addition, since the reinforcement effect of the mechanical properties of concrete structures due to reinforcement is governed by the amount of fibers, the direction of reinforcing fibers after reinforcement work, that is, the direction of the base material, especially the number of laminated base materials, is as specified. It is important from the viewpoint of reliability to check whether
[0004]
At present, the direction of the reinforcing fibers and the number of laminated layers are confirmed by a method of confirming by taking a photograph after completing the lamination of one layer and the impregnation work. There is a need to take a huge number of photos and it is cumbersome. In addition, a method of cutting out a sample of the FRP plate at a reinforced location and observing the cross section of the FRP plate, or removing the reinforcing fiber base material by burning the resin portion, and investigating and confirming the number of layers and the fiber arrangement direction However, there is an inefficiency in that the corner reinforced portion must be destroyed and investigated, and there is also a problem that the strength and rigidity of the reinforced portion are lowered during sample collection.
[0005]
[Problems to be solved by the invention]
The object of the present invention is to solve the above-mentioned problems in the prior art and repair and reinforce a reinforced fiber fabric and a concrete structure that can easily detect the laminated state of the base material after being formed into FRP with an FRP plate. It is to provide a method for detecting the arrangement direction, the number of stacked layers, and the number of laminated reinforcing fibers of the base material.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the reinforcing fiber woven fabric of the present invention is a sheet of a yarn group in which reinforcing fiber multifilament yarns that do not have a bending in which stress is concentrated are drawn in parallel in one direction and in a sheet shape. Weft-direction auxiliary yarn groups are located on both sides, and the weft-direction auxiliary yarn groups and the warp-direction auxiliary yarn groups parallel to the reinforcing fiber multifilament yarns form a woven structure to hold the yarn groups together and are adjacent to each other. There is a gap of 0.3 to 2 mm between the reinforcing fiber yarns, and metal wires are inserted into the fabric surface with a spacing of 30 to 100 cm .
[0007]
The method for detecting the number of laminated reinforcing fiber fabrics according to the present invention is a method for detecting the number of laminated reinforcing fiber fabrics, wherein a resin is applied to the concrete structure surface, and then a sheet-like reinforcing fiber fabric is applied. At the same time, the reinforcing fiber fabric is impregnated with a resin and cured at room temperature to form FRP, thereby reinforcing the concrete structure, and then detecting the number of layers of the reinforcing fiber fabric, the reinforcing fiber fabric according to the present invention. A plurality of metal wires are inserted so that the insertion positions of the metal wires are different from each other , and after impregnation with the resin , the resin is cured to reinforce the concrete structure, and then the reinforcing fiber fabric is detected by sensing the insertion location of the metal wires. The method comprises detecting the number of stacked layers.
[0008]
Metal wire sensing according to the present invention is
(1) Sense by introducing a metal wire into an alternating magnetic field and disturbing the magnetic field,
(2) A metal wire generates heat by electromagnetic induction, and the heat generation part is detected by an infrared radiation thermometer.
It consists of the method characterized by either.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0010]
In explaining the method for detecting the number of laminated reinforcing fiber fabrics according to the present invention, first, impurities such as oil adhering to the concrete surface are removed with an organic solvent such as acetone or soapy water, and cracked or chipped portions of the concrete. Resin and mortar are filled in, and the convex part of the concrete is shaved to smooth the adhesion surface. In order to improve the adhesion between the concrete surface and the FRP plate, an epoxy resin primer having a low viscosity is applied and left for about 1-2 days until the primer resin is cured. Next, a resin serving as an FRP matrix is applied onto the primer with an application roller, and a reinforcing fiber fabric in which reinforcing fibers are arranged in parallel in the length direction is laminated in a predetermined direction. The foam is defoamed simultaneously with the resin impregnation into the fabric and cured at room temperature. Similarly, reinforcing fiber fabrics are further laminated in a predetermined direction, and after applying resin, rolling with a roller, impregnating and defoaming the resin, and curing at room temperature, forming an FRP layer on the concrete surface, a concrete structure Reinforce. Depending on the degree of reinforcement, these laminating operations are repeated to increase the number of laminated layers, that is, the amount of reinforcing fibers.
[0011]
The above is a method for repairing and reinforcing a concrete structure by FRP which is usually performed, and there is no change in the present invention. However, in the present invention, the reinforcing fiber woven fabric in which the metal wire is inserted in the above is used as a metal. Lamination is performed so that the insertion point of the line is different in each layer.
[0012]
FIG. 1 is a schematic view showing an example of a reinforced fiber fabric 1 having a metal wire inserted therein according to the present invention. The woven fabric of the present invention will be described with reference to FIG. 1. A reinforced fiber multifilament yarn obtained by aligning reinforced fiber multifilament yarns 2 having no bending at which stress is concentrated in a sheet shape in parallel in one direction. A group of warp direction auxiliary yarns 3 in parallel with the reinforcing fiber multifilament yarn, and a weft direction of the weft direction auxiliary yarns 4 group C located on both sides of the sheet surface. Two metal wires 5 are arranged on the front and back surfaces of the woven fabric, and the warp direction auxiliary yarn group B, the weft direction auxiliary yarn group C and the metal wire form a woven structure, and the yarn group A is integrated. Is held in. Further, there is a gap A between adjacent reinforcing fiber multifilament yarns, and the intersection of the warp yarn and the weft yarn is bonded to the low melting point polymer 6 to prevent yarn misalignment by the resin impregnated roller or the like, that is, misalignment. Yes.
[0013]
Such a unidirectional woven fabric has a so-called non-crimp structure in which the reinforcing fiber multifilament yarns 1 are arranged straight without bending, so that stress concentration does not occur even if it is hardened with resin. The tensile strength and tensile modulus of
[0014]
In the above, two metal wires are aligned at one place and inserted twice, that is, four wires are inserted, but one metal wire may be provided at one place.
[0015]
FIG. 2 shows a state in which the metal wires 5 are arranged in the transverse direction at intervals in the length direction of the reinforcing fiber fabric 1 of the present invention, but arranged at intervals of pitch B in the length direction of the fabric. Has been.
[0016]
Reinforcing fibers used in the fabrics of the present invention, carbon fibers, polyaramid fibers, although glass fiber, among others carbon fibers excellent in耐A Le potash resistance, tensile strength, of the concrete structure is excellent in tensile modulus It is preferably used for repair and reinforcement. In addition, since the woven fabric can be manufactured at low cost, the fineness of the reinforcing fiber multifilament yarn is preferably about 3,000 denier to 30,000 denier.
Yes.
[0017]
The auxiliary yarns in the warp direction and the weft direction are preferably glass fibers or polyaramid fibers in order to prevent heat shrinkage when melting a low melting point polymer yarn such as copolymer nylon by heating. Moreover, since the auxiliary yarn is not essentially used as a reinforcing fiber but is used for forming a woven fabric, the fineness is preferably about 100 to 1,300 denier.
[0018]
The gap A between the reinforcing fiber multifilament yarns is preferably 0.3 mm to 2 mm. The resin used for repair and reinforcement is an epoxy resin with a high viscosity for hand lay-up molding with a room temperature curing type viscosity at 25 ° C. of 30 to 200 poise from the viewpoint of preventing dripping of the resin and sliding of the fabric. It is used. For example, after applying an undercoat resin to a concrete surface, applying a woven fabric and applying an overcoat resin, the undercoat resin passes through the woven fabric and moves to the overcoat resin side even if it is hung or rolled. do not do. Therefore, the undercoat resin remains between the concrete surface and the woven fabric, and traces of slap and roller hang remain due to the excess resin, and the surface of the FRP after curing becomes uneven, resulting in poor appearance. For this reason, the gap is preferably 0.3 mm or more. On the other hand, when the gap is large, the interval at which the reinforcing fiber yarns can be arranged relatively becomes small, so that only a woven fabric having a small basis weight of the reinforcing fibers can be obtained. Further, when the conventional carbon fiber basis weight to 300g / m 2 ~400g / m 2 about fabric, since would be caused to the reinforcing fiber yarns are arranged in a closely spaced, larger array density of filaments of reinforcing fibers Since the impregnation of the resin into the reinforcing fiber yarn is hindered, 2 mm or less is preferable.
[0019]
The arrangement direction of the metal wires is described in FIG. 1 as an example in which the metal wires are arranged in the transverse direction, but may be arranged in the vertical direction. However, since it is necessary to stack the metal wires while shifting the position to detect the number of layers after making the FRP, if you arrange them in the vertical direction, you must prepare many types of fabrics with different insertion positions. In addition, textile manufacturing and lot management become troublesome. On the other hand, in the case of a woven fabric in which metal wires are arranged at regular intervals in the weft direction, it is only necessary to cut the metal wire insertion points so as to be shifted by a predetermined interval when laminating with one type of woven fabric. Since the fabric can be automatically manufactured by the operation of the dobby, the manufacture of the fabric is simple, and there is no need for lot management.
[0020]
FIG. 3 is a partially broken schematic diagram for explaining an example of a metal wire detection method in a state where the reinforcing fiber fabric 1 of the present invention is laminated on the surface 8 of the concrete structure 7 and becomes FRP.
[0021]
In FIG. 3, four layers of the reinforcing fiber fabric 1 of the present invention are laminated on the concrete surface 8 so that the directions of the reinforcing fibers are the same, and impregnated with a matrix resin to be in an FRP state. Fabric 1 1 of the first layer in the FRP, 2-layer fabric 1 2, 3-layer fabric 1 3 and fourth layer of fabric 1 4 of the metal wire 5 1, 5 2, 5 3 and 5 4 are equally spaced Are stacked so as to be shifted by C. If this distance C is too small, the metal lines in each layer cannot be discriminated when detecting the metal lines . Further, the gap C between the metal lines of each layer in the FRP does not necessarily have to be equal, but it is preferable that the gap is equal because the number of detection lines is not mistaken at the time of detection.
[0022]
The pitch P of the metal wire insertion location in the woven fabric of the present invention varies depending on the number of stacked layers and the shift interval B when the layers are stacked, but the pitch P is 30 to 100 cm, and the metal wires have an interval of 30 to 100 cm. Inserted into the fabric surface . In metal line detection, if the metal lines of all the layers are stacked so that the metal lines of the metal lines are arranged one by one in the pitch P of the metal line arrangement, the number of metal line insertion positions detected in the pitch P is the number of layers. I can do it.
[0023]
By moving the sensor 9 of the detection device in the upper part of the FRP where the metal wire is present or installing the sensor 9 of the detection device and grasping the insertion position of the metal wire embedded in the FRP, The number of stacked layers can be detected nondestructively.
[0024]
The metal wire sensing of the present invention
Method A: A method in which a metal wire is introduced into an alternating magnetic field and the magnetic field is disturbed,
Method B: A method in which a metal wire generates heat by electromagnetic induction, and the heat generation part is detected by an infrared radiation thermometer.
It is preferable to carry out either of these.
[0025]
Next, the detection method of the present invention will be described.
[0026]
FIG. 4 and FIG. 5 are schematic diagrams for explaining an example of the principle of the method A used by the detecting means. As shown in FIG. 5, when an FRP metal wire 5 enters while the balanced primary magnetic field 12 is formed by the oscillator 10 and the excitation coil 11 as shown in FIG. An induced current flows through 5. Due to this induced current, a secondary magnetic field 15 is generated around the metal wire, disturbing the balanced magnetic field. Due to this disturbance, a minute voltage is induced in the magnetic receiving coil 13, and the detector 14 detects this voltage and can detect the presence of the metal wire.
[0027]
For the detection of the number of laminated fabrics, a detector is placed on the surface of the FRP, and the detector is placed in a direction perpendicular to the arrangement direction of the metal wires by the pitch P of the metal wire insertion position on the substrate, that is, by a distance of one cycle. While moving, the number of times during which the detection device senses the insertion point of the metal wire is counted. The number of times the metal wire insertion point is detected is the number of FRP layers.
[0028]
Examples of the detection device used in this method include a metal detector and a proximity switch. Since these devices are small and light, they are easy to handle and can be used even in places where detection is difficult, such as high places and narrow parts.
[0029]
The detection means of the B method, that is, the detection means is an infrared camera, and a method of heating a metal wire by electromagnetic induction and detecting the heat generation portion with an infrared radiation thermometer will be described.
[0030]
In this method, a metal wire of FRP is put in a magnetic field generated by a current flowing through a coil of an induction heating device, an eddy current is caused to flow through the metal wire, and Joule heat is generated in the metal wire by this eddy current. Heat. This heat generation portion can be detected by an infrared radiation thermometer, and the position of the metal wire can be detected. Note that, as time passes, heat is transferred into the FRP and diffuses to lower the temperature of the metal wire. Therefore, it is preferable to perform the detection operation with the infrared radiation thermometer immediately before the temperature decreases.
[0031]
In this method, when the heated portion is observed using an infrared radiation thermometer, the heated portion appears in a linear shape. Therefore, from the total number of the heated portions within one cycle interval of the metal wire arrangement on the sheet material, Can be detected.
[0032]
The infrared radiation thermometer, which is a detection means of the method B, detects infrared radiant energy self-radiated from a measurement object, and finally displays it as a color or black-and-white thermal image. There is an infrared camera or the like, but if it has such a function, it is not specified.
[0033]
Note that the B method can detect a metal wire in a linear form, and therefore can easily detect not only the number of layers but also the direction of lamination.
[0034]
Metal wire for use in the present invention, since it is easily magnetized by the magnetic field, iron detection becomes easy, nickel, and their alloys, as well as chromium oxide IV (CrO 2) wire ing a ferromagnetic material such as Among them, iron wire is preferable because it is inexpensive.
[0035]
However, if the cross-sectional area of the metal wire at the insertion point is small, it is difficult to detect, and if it is too thick, the rigidity of the metal wire will be high and it will be difficult to unite with the sheet material, and the insertion point will rise to a convex shape. It is not preferable. Therefore, the metal wire is preferably inserted so that 2 to 4 sheet materials are in parallel with a single wire having a cross-sectional area of 0.005 to 0.07 mm 2 or less.
[0036]
In the present invention, carbon fiber is used as the reinforcing fiber, and the electric current flows because the electric potential of the metal wire and the carbon fiber is different, and the metal wire is rusted by electric corrosion, which adversely affects the discoloration and physical properties of the carbon fiber reinforced plastic. Therefore, it is preferable to provide an insulating coating around the metal wire. In particular, when the coverage is 100%, the prevention of electrolytic corrosion may be ensured.
[0037]
As the insulating coating material, a fibrous material that permeates the resin is preferable, and this is preferably wound around the metal wire. For example, as the covering material, there are fiber filament yarns such as polyester, nylon, glass, vinylon, etc., which can be covered by winding them around a metal wire as a core material by a covering method or a string manufacturing method.
[0038]
Examples thereof include fibers such as polyester, nylon, glass, vinylon, polypropylene, and polyaramid. However, the role of the material is not particularly limited because the role of the material is to ensure insulation. However, it is preferable to select one having a low water absorption rate because of its good adhesion to the matrix resin and prevention of electric corrosion. In addition, when the covering material is colored red or green, it is easy to set the amount of deviation of the metal wire in the lamination of the sheet material while visually observing, and the lamination work can be performed efficiently.
[0039]
【Example】
Example 1
An iron wire having a diameter of 0.11 mm is used as the metal wire, and a 75 denier polyester filament yarn is wound in the S direction on this iron wire, and then a 100 denier low melting point nylon yarn is wound 1,000 times / m in both the Z direction. An iron wire with an insulation coating having a coverage of 100% was prepared.
[0040]
Subsequently, the reinforcing fiber fabric of the present invention was produced as follows.
[0041]
Carbon fiber multifilament yarn in the warp direction (number of single yarn: 24,000, fineness: 14,400 denier, tensile strength 4,900 MPa, tensile elastic modulus 230 GPa) and glass fiber yarn (405 denier) as the auxiliary yarn in the warp direction ) Are alternately arranged at a density of 1.88 / cm, and in the weft direction, covering yarn in which 203 denier glass fiber is coated with 50 denier low melting point nylon yarn is used as auxiliary yarn in the weft direction. Driving at a density of 5 wires / cm, stopping the driving of auxiliary yarns for 2 picks at an interval of 50 cm, aligning the two covered iron wires and driving a total of 4 iron wires (insertion length of one metal wire) 2mm), and then, after inserting the auxiliary yarn and repeating this, while inserting the coated iron wire at intervals of 50 cm in the weft direction, the heater wire attached to the loom was used to cut off the iron wire. By melting the low-melting nylon thread and a low-melting nylon thread of auxiliary yarn used for the coating, by adhering the auxiliary yarn and vertical auxiliary yarns and carbon fibers in the transverse, eyes etc. rice. A carbon fiber multifilament yarn having an interval of 50 cm, that is, an arrangement period of 50 cm and a carbon fiber basis weight of 300 g / m 2 and a carbon fiber basis weight of 300 g / m 2 is arranged straight, and a gap between the carbon fiber yarns is 0.5 mm. An inventive unidirectional carbon fiber fabric was prepared.
[0042]
Next, in preparation for lamination, four sheets were cut so that the positions of the metal wire insertion positions were shifted by 5 cm with the weft direction of the fabric aligned.
[0043]
Next, 400 g / m 2 of room temperature curing epoxy resin having a viscosity of 55 poise at 25 ° C. was applied as an undercoat to the concrete surface of the pier that had been coated with a primer and left for a day and night. Then, 200 g / m 2 of epoxy resin is applied as an overcoat on the fabric, and then the fabric is impregnated with an impregnation roller, and then 200 g / m 2 of resin is applied, and then the second layer fabric is formed. On the first layer, the weft direction of the fabric was aligned and adhered in the circumferential direction of the pier, and the resin was applied in the same manner as the first layer, and the fabric was impregnated with the impregnation roller. Similarly, the third and fourth layers were laminated, the resin was applied, and the resin was impregnated and cured at room temperature, and the concrete surface was reinforced with a laminate, that is, a carbon fiber woven FRP.
[0044]
Since there is a gap between the carbon fiber yarns of the woven fabric, when the resin impregnation roller is applied to the woven fabric of each layer, the resin of the undercoat is released from the gap between the carbon fiber yarns of the woven fabric without the extra resin being partially unevenly distributed. As a result, the surface of the cured FRP was smooth.
[0045]
For detection of the metal wire, a proximity switch having a sensor outer diameter of φ30 was used as a metal detector. In this device, when a metal was detected, the lamp was turned on, and this was placed on the surface of the FRP. Next, the switch was moved at a speed of 2 m / min in a direction perpendicular to the longitudinal direction of the metal wire, and the switch was stopped when moved by 50 cm. When the number of times the lamp was turned on during this movement was measured, it was 4 times, and it was confirmed that the number of stacked layers was 4.
[0046]
Since the carbon fiber is black, the laminated body also becomes black, and the presence of the metal wire cannot be visually recognized from the appearance, but the proximity switch can detect the number of laminated layers without destruction.
[0047]
(Example 2)
FRP affixed to the same concrete as Example 1 was heated with a 100V, 1400W electromagnetic induction device for 1 minute, then the electromagnetic induction device was removed and measured with an infrared radiation thermometer installed at a distance of 1 m from FRP. did. As the infrared radiation thermometer, an HgCdTe detector having a minimum detection temperature difference at 30 ° C. of 0.08 ° C. and a temperature measurement range of −50 to 2000 ° C. was used.
[0048]
When the temperature distribution was displayed as a color thermal image, four high temperature portions that were elongated in the length direction of the pier were observed, and it was detected that the number of layers was four.
[0049]
【The invention's effect】
The reinforced fiber fabric of the present invention can easily detect the number of FRP laminations and the lamination direction that cannot be detected by a normal nondestructive inspection method. Further, according to the method for detecting the number of layers of the present invention, the number of FRP layers in the concrete structure and the direction in which the layers are stacked can be easily detected in a nondestructive manner.
[Brief description of the drawings]
FIG. 1 is a view illustrating a unidirectional reinforcing fiber woven fabric in which metal wires are arranged in parallel with the width direction of the woven fabric according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating a state in which the fabric is inserted in the length direction according to an embodiment of the present invention.
FIG. 3 is a diagram for explaining a metal line arrangement state and a state of detection of the number of stacks in a stacked body according to an embodiment of the present invention.
FIG. 4 is a diagram for explaining the principle of sensing a metal wire according to one embodiment of the present invention, and for explaining that a magnetic field is in an equilibrium state.
FIG. 5 is a diagram for explaining the principle of metal wire sensing according to one embodiment of the present invention, and is a diagram for explaining that a metal wire enters a magnetic field and is in an unbalanced state.
[Explanation of symbols]
1: Reinforcing fiber fabric 2: Reinforcing fiber multifilament yarn 3: Warp direction auxiliary yarn 4: Weft direction auxiliary yarn 5: Metal wire 6: Low melting point polymer 7: Concrete structure 8: Structure surface 9: Sensor 10: Oscillator 11: Excitation coil 12: Primary magnetic field 13: Receiving coil 14: Detector 15: Secondary magnetic field

Claims (5)

下記(A)〜(C)の要件を満足することを特徴とする強化繊維織物。
(A)応力が集中するような屈曲を有しない強化繊維マルチフィラメント糸を、一方向に互いに並行かつシート状に引き揃えてなる糸条群のシート両面側によこ方向補助糸群が位置し、それらよこ方向補助糸群と、前記強化繊維マルチフィラメント糸と並行するたて方向補助糸群とが織組織をなして糸条群を一体に保持し、
(B)前記隣接する強化繊維マルチフィラメント糸間には0.3〜2mmの間隙を有し、
(C)かつ金属線が30〜100cmの間隔を有して織物面内に挿入されている。
A reinforcing fiber fabric satisfying the following requirements (A) to (C):
(A) There is a lateral direction auxiliary yarn group located on the sheet both sides of the yarn group in which reinforcing fiber multifilament yarns that do not have a bend in which stress is concentrated are aligned in one direction and parallel to each other in a sheet shape. The weft direction auxiliary yarn group and the warp direction auxiliary yarn group parallel to the reinforcing fiber multifilament yarn form a woven structure to hold the yarn group integrally,
(B) Between the adjacent reinforcing fiber multifilament yarn has a gap of 0.3-2 mm,
(C) And the metal wire is inserted in the fabric surface with an interval of 30 to 100 cm .
前記強化繊維マルチフィラメント糸が炭素繊維であり、前記金属線には絶縁被覆がなされていることを特徴とする請求項1に記載の強化繊維織物。The reinforcing fiber fabric according to claim 1, wherein the reinforcing fiber multifilament yarn is a carbon fiber, and the metal wire is covered with an insulating coating. 下記(a)および(b)の要件を満足することを特徴とするコンクリート構造物における請求項1または2に記載の強化繊維織物の積層数検出する方法。
(a)請求項1または2に記載の強化繊維織物を、複数枚、金属線の挿入箇所が2cm以上互いに異なるように積層し、樹脂含浸後、樹脂を硬化してコンクリート構造物を補強した後、
(b)前記金属線を感知することによって前記強化繊維織物の積層数を検出する。
The method for detecting the number of laminated reinforcing fiber fabrics according to claim 1 or 2 in a concrete structure satisfying the following requirements (a) and (b).
(A) After laminating a plurality of the reinforcing fiber fabrics according to claim 1 or 2 so that the insertion positions of the metal wires are different from each other by 2 cm or more , after impregnating the resin, curing the resin and reinforcing the concrete structure ,
(B) The number of layers of the reinforcing fiber fabric is detected by sensing the metal wire.
前記金属線を交流磁界内に導入し、該磁界を乱すことで前記金属線を検出することを特徴とする請求項に記載のコンクリート構造物における請求項1または2に記載の強化繊維織物の積層数検出する方法。Introducing the metal wire in the AC magnetic field, the reinforcing fiber woven fabric according to claim 1 or 2 in the concrete structure according to claim 3, characterized by detecting the metal wire by disturbing the magnetic field A method for detecting the number of stacks. 前記金属線を電磁誘導によって発熱させ、該発熱部分を赤外線カメラで検出することで前記金属線を検出することを特徴とする請求項に記載のコンクリート構造物における請求項1または2に記載の強化繊維織物の積層数検出する方法。The metal wire is heated by electromagnetic induction, according to claim 1 or 2 in the concrete structure according to the heat generating portion to claim 3, characterized by detecting the metal wire by detecting the infrared camera A method for detecting the number of laminated reinforcing fiber fabrics.
JP24947598A 1998-09-03 1998-09-03 Method for detecting the number of FRP layers in reinforced fiber fabrics and concrete structures Expired - Lifetime JP4268704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24947598A JP4268704B2 (en) 1998-09-03 1998-09-03 Method for detecting the number of FRP layers in reinforced fiber fabrics and concrete structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24947598A JP4268704B2 (en) 1998-09-03 1998-09-03 Method for detecting the number of FRP layers in reinforced fiber fabrics and concrete structures

Publications (3)

Publication Number Publication Date
JP2000080535A JP2000080535A (en) 2000-03-21
JP2000080535A5 JP2000080535A5 (en) 2005-10-06
JP4268704B2 true JP4268704B2 (en) 2009-05-27

Family

ID=17193524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24947598A Expired - Lifetime JP4268704B2 (en) 1998-09-03 1998-09-03 Method for detecting the number of FRP layers in reinforced fiber fabrics and concrete structures

Country Status (1)

Country Link
JP (1) JP4268704B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013513A (en) * 2001-07-02 2003-01-15 Fudo Constr Co Ltd Manufacturing method for external heat insulating member and manufacturing method for external heat insulating pc concrete
JP3843343B2 (en) 2003-07-22 2006-11-08 国立大学法人金沢大学 Eddy current sensor for nondestructive inspection
JP3812559B2 (en) 2003-09-18 2006-08-23 Tdk株式会社 Eddy current probe
US7078895B1 (en) 2003-09-18 2006-07-18 Tdk Corporation Eddy-current probe
JP4635674B2 (en) * 2005-03-24 2011-02-23 東レ株式会社 Conductive fabric and method for producing the same
CN103808765B (en) * 2014-02-14 2016-03-16 盐城工学院 A kind of from monitoring intelligent fabric Concrete Structure and preparation method thereof

Also Published As

Publication number Publication date
JP2000080535A (en) 2000-03-21

Similar Documents

Publication Publication Date Title
KR100563130B1 (en) Reinforcing carbon fiber base material, laminate and detection method
US6874543B2 (en) Woven preform for structural joints
US4772092A (en) Crack detection arrangement utilizing optical fibres as reinforcement fibres
KR0163628B1 (en) Method for reinforced concrete structure reinforcing
JP4268704B2 (en) Method for detecting the number of FRP layers in reinforced fiber fabrics and concrete structures
US11422046B2 (en) Sensing textile
FI89189B (en) LAMINATING FOER ANVAENDNING SOM STOEDSKIKT FOER TAECK OCH ISOLERINGSMATERIAL FOER TAK
US20070010147A1 (en) Flexible glass fiber weave
DK2981655T3 (en) STRUCTURE FOR REINFORCING ROADS
BR112017005616B1 (en) Masonry reinforcing structure, method of manufacturing a masonry reinforcing structure, roll of a masonry reinforcing structure, method of installing a masonry reinforcing structure, and masonry reinforced with at least one masonry reinforcing structure
JP2002348749A (en) Woven fabric of reinforcing fiber, and concrete structure reinforced with the same
EP0994223B1 (en) Fabric suitable to the application as reinforcement of building works
JP4186262B2 (en) LAMINATE AND METHOD FOR DETECTING LAYER NUMBER OF LAMINATE
WO2006088184A1 (en) Reinforcement for building structure, reinforced building structure, and method of reinforcing building structure
JP4300597B2 (en) Fiber substrate for reinforcement and method for detecting strain in structure
JP2000080535A5 (en)
WO2016100297A1 (en) Composite reinforcement
JP2003119717A (en) Pavement diagnosing sheet and pavement nondestruction diagnosing method
JP2006347111A (en) Method for reinforcing cement structure and cement structure reinforced by its method
JPH094049A (en) Reinforcing fiber sheet and concrete structural body
JP2003119710A (en) Pavement reinforcing sheet
JP2009162018A (en) Carbon fiber tape material for repairing and reinforcing concrete
JP2000085044A (en) Multilayer reinforcing fiber sheet and method for repairing/reinforcing structure
JP3852085B2 (en) Reinforcing fiber sheet
US20070072504A1 (en) Surface veil of oxidized PAN fiber

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050524

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term