JP4265136B2 - Method for producing semi-processed non-oriented electrical steel sheet - Google Patents

Method for producing semi-processed non-oriented electrical steel sheet Download PDF

Info

Publication number
JP4265136B2
JP4265136B2 JP2002018268A JP2002018268A JP4265136B2 JP 4265136 B2 JP4265136 B2 JP 4265136B2 JP 2002018268 A JP2002018268 A JP 2002018268A JP 2002018268 A JP2002018268 A JP 2002018268A JP 4265136 B2 JP4265136 B2 JP 4265136B2
Authority
JP
Japan
Prior art keywords
resin
steel sheet
mass
coating
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002018268A
Other languages
Japanese (ja)
Other versions
JP2003213334A (en
Inventor
ゆか 小森
明男 藤田
一道 佐志
正樹 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002018268A priority Critical patent/JP4265136B2/en
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to DE60336300T priority patent/DE60336300D1/en
Priority to CA002474009A priority patent/CA2474009C/en
Priority to US10/502,670 priority patent/US8709550B2/en
Priority to PCT/JP2003/000625 priority patent/WO2003064063A1/en
Priority to EP03703042A priority patent/EP1470869B1/en
Priority to CNB038073749A priority patent/CN100354050C/en
Priority to KR10-2004-7011606A priority patent/KR20040081151A/en
Priority to TW092101705A priority patent/TW200302139A/en
Publication of JP2003213334A publication Critical patent/JP2003213334A/en
Application granted granted Critical
Publication of JP4265136B2 publication Critical patent/JP4265136B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、磁気特性および被膜性能に優れるセミプロセス無方向性電磁鋼板の製造方法に関するものである。
【0002】
【従来の技術】
電磁鋼板は、基本特性である磁気特性に優れることは勿論であるが、モータやトランス等の製造過程では、その他にも種々の特性が要求される。かような製品の製造過程で必要な特性としては、例えば打抜性、溶接性(端面の溶接)、被膜密着性および耐食性等が挙げられる。
打抜性の向上のためには、絶縁被膜中への樹脂成分の添加が有効であることは公知の事実であるが、樹脂の添加は溶接時にブローホールの原因となるため、打抜性と溶接性を両立させることが課題であった。
【0003】
打抜性と溶接性を両立させる方法として、これまでにも、以下に述べるような種々の方法が提案されている。
(1) 鋼板や絶縁被膜に粗度を付ける方法(例えば特公昭60−190572号公報)。
(2) 絶縁被膜中にAlを含有させる方法(例えば特開平9−291368号公報)。
(3) 樹脂の耐熱性を向上させる方法(例えば特開平6−235070号公報)。
(4) 2層コートとする方法(上層に有機層、下層に無機層等)(例えば特公昭49−6743号公報)。
(5) 特殊な樹脂を使用して表層に樹脂を濃化させる方法(例えば特公平4-43715号公報)。
【0004】
このうち、(1) の方法は、高レベルで打抜性と溶接性の両立を図ることが可能であるが、占積率が低下するため磁気特性が損なわれるという問題がある。(2), (3)の方法は、無機コートの優れたTIG 溶接性および有機コートの優れた打抜性に匹敵させるためには、さらなる改善が必要である。(4) の方法は、2コート2ベークとなるため、コストがアップする問題がある。(5) の方法は、特殊な樹脂を使用しなければならず、やはりコストアップが避けられない。
【0005】
ところで、上記した電磁鋼板は、コア製造工程での焼鈍が必須ではないフルプロセス電磁鋼板とかかる焼鈍が必須のセミプロセス電磁鋼板に大別される。セミプロセス電磁鋼板は、焼鈍を行うことによって磁気特性が大きく向上する製品である。
また、かような電磁鋼板の製造に際しては、成分を調整したのち、熱間圧延を施し、ついで熱延板焼鈍を施しまたは施さずに、冷間圧延または温間圧延と焼鈍とを1回または数回行った後に、絶縁被膜処理を施して製造することが多いが、セミプロセス電磁鋼板では、さらに調質圧延等により歪みを与える場合がある。
【0006】
しかしながら、絶縁被膜処理後に調質圧延を行うと、被膜が破壊され、被膜性能が劣化する問題がある。
すなわち、連続焼鈍→調質圧延→絶縁被膜処理という設備構成になっている場合には問題はないものの、調質圧延が別ラインの場合、絶縁被膜処理が調質圧延前になることがあり、被膜性能の劣化が懸念されていた。この問題を避けるためには、連続焼鈍後、別ラインで調質圧延を施したのち、最初のラインに戻すか、またはさらに別ラインで絶縁被膜処理を施す必要が生じるが、このような場合にはいずれにしても、製造コストの上昇が避けられない。
【0007】
【発明が解決しようとする課題】
本発明は、上記の問題を有利に解決するもので、絶縁被膜形成後に調質圧延を行っても優れた被膜性能を維持することができ、従って占積率や溶接性を損なうことなしに、優れた打抜性および耐食性を有し、さらには磁気特性にも優れた、セミプロセス無方向性電磁鋼板の有利な製造方法を提案することを目的とする。
【0008】
【課題を解決するための手段】
さて、発明者らの知見によれば、連続焼鈍→ロールコーター塗布→熱風炉焼き付けの連続ラインで従来の有機無機混合絶縁被膜を形成したのち、圧下率:8%程度の調質圧延を行った場合、耐食性が劣化することが判明した。
そこで、耐食性の劣化が生じた鋼板の表面を顕微鏡観察したところ、表面にクラックが入っていた。従って、調質圧延時に絶縁被膜が鋼板の伸びについていけずに、クラックが入り、そのため耐食性の劣化が生じたものと考えられる。
【0009】
この点について、さらに調査したところ、無機絶縁被膜と有機絶縁被膜で同様の処理を行った場合、無機絶縁被膜では著しく耐食性が劣化したが、有機絶縁被膜では耐食性の劣化はほとんど見られなかった。鋼板表面の顕微鏡観察によれば、有機絶縁被膜では外観に変化が見られなかったのに対し、無機絶縁被膜では著しくクラックが入っていた。
以上の結果から、絶縁被膜を調質圧延に耐えさせるためには、樹脂比率を上げればよいと考えられるが、TIG溶接性の観点や、歪取焼鈍後の被膜性能の観点から、樹脂比率を上げることは好ましくない。
【0010】
そこで、発明者らは、上記の問題を解決すべく鋭意検討を重ねた結果、
(1) 1コート1ベークで溶接性を確保しつつ打抜性を確保するためには、被膜中に含有させた樹脂を表層付近に効果的に偏析させること、
(2) また含有する樹脂や、その他の成分によらず、各種の被膜に応用できることが必要と考え、これらの観点から各種の焼き付け方法について綿密な検討を重ねた。
【0011】
その結果、従来多用されてきたガス炉や電気炉のように被膜表面から焼き付けるのではなく、被膜の下層から、すなわち鋼板側から加熱すれば、表層に樹脂が偏析して、打抜性と耐食性が格段に向上することの知見を得た。
また、鋼板側から加熱すると、ブローホールの原因となる低沸点成分が塗膜中から効果的に除去されて、溶接性が向上することも併せて知見された。
さらに、このようにして形成した絶縁被膜付き電磁鋼板は、その後に圧下率:8%程度の調質圧延を施したとしても、表面にクラックが入らず、打抜性や耐食性が劣化しないことが確認された。
本発明は、上記の知見に立脚するものである。
【0012】
すなわち、本発明の要旨構成は次のとおりである。
1.電磁鋼板用素材に、圧延処理と到達板温:600〜1000℃の焼鈍処理を1回または複数回繰り返して板厚を 0.1〜0.9 mmとしたのち、鋼板温度を60℃以下に冷却し、ついで得られた電磁鋼板の表面に、全樹脂量の50mass%以上が、粒径:30nm以上1μ m 以下のエマルショ樹脂、ディスパーション樹脂および粉末樹脂の少なくともいずれかである樹脂と無機成分を含有する水系塗液を塗布し、鋼板側から加熱して焼き付けたのち、圧下率:10%以下の調質圧延を行うことを特徴とする、セミプロセス無方向性電磁鋼板の製造方法。
【0013】
2.上記1において、鋼板側からの加熱手段として、誘導加熱を用いることを特徴とする、セミプロセス無方向性電磁鋼板の製造方法。
【0015】
【発明の実施の形態】
以下、本発明を具体的に説明する。
本発明の素材である電磁鋼板については、特に制限はないが、所望特性に応じて適宜成分調整を行うことが好ましい。例えば鉄損の向上には、比抵抗を上昇させることが有効なので、比抵抗向上成分であるSi,Al,Mn,Cr,P ,Ni等を添加することが好ましい。これらの成分比率は、所望する磁気特性に応じて決定すればよい。また、その他の微量成分およびSb,Snなどの偏析元素なども規制するものではないが、C,Sは、溶接性に不利な元素であり、また磁気特性の点からも低下させる方が望ましいので、Cは0.01mass%以下、Sは0.01mass%以下とすることが好ましい。
【0016】
上記のように成分調整したスラブに対して、圧延処理と到達板温:600 〜1000℃の焼鈍処理を1回または複数回繰り返して板厚を 0.1〜0.9 mmとする。ここで、圧延処理とは、熱間圧延および冷間圧延(温間圧延を含む)のことを、また焼鈍処理とは、熱延板焼鈍や中間焼鈍、仕上焼鈍のことを意味する。
ここに、焼鈍処理における焼鈍温度すなわち到達板温が 600℃に満たないと、ほとんど粒成長をしないため意味がなく、一方1000℃超えると粒成長しすぎ、調質圧延後の粒成長による磁気特性の改善代が小さくなるので、到達板温は 600〜1000℃の範囲に限定した。
なお、この時の板厚は最終板厚ではないが、磁気特性の観点からの最終板厚と調質圧延での板厚減少分を考慮して、上記した 0.1〜0.9 mmの範囲の板厚に制御するものとした。
【0017】
ついで、上記のようにして得られた電磁鋼板の温度を、60℃以下まで冷却したのち、該電磁鋼板の表面に、後述するように、全樹脂量の50mass%以上が、粒径:30nm以上1μ m 以下のエマルショ樹脂、ディスパーション樹脂および粉末樹脂の少なくともいずれかである樹脂と無機成分を含有する水系塗液を塗布し、鋼板側から加熱して焼き付けたのち、圧下率:10%以下の調質圧延(以下、単に圧下率:10%以下の調質圧延という)を行う。
このように、樹脂と無機成分の水系塗液を鋼板側から加熱して焼き付けることにより、樹脂が表層付近に偏析して打抜性が向上し、その後の調質圧延後においても耐食性の劣化が抑制されるのである。
【0018】
ここに、60℃超の鋼板に水系塗液の塗布を行うと、コーターパン内で水系樹脂が凝集し易くなったり、ピンホールやはじきなどの外観上の問題が発生するため、絶縁被膜塗布前の鋼板温度は60℃以下とした。
また、粒成長性向上効果を付与する調質圧延の圧下率が、10%を超えても磁気特性のそれ以上の向上効果は見られず、また10%超の調質圧延を施した場合、絶縁被膜の焼き付けを鋼板側から行っても耐食性が劣化するおそれがあるため、調質圧延は10%以下に限定した。
【0019】
絶縁被膜用塗液としては、従来から開発されている種々のものが適用可能である。例えば、少なくともクロム酸塩と樹脂を含むコーティング処理液、少なくともリン酸塩と樹脂を含むコーティング処理液、少なくとも無機コロイドと樹脂を含むコーティング処理液など、あらゆる種類のコーティング処理液が適用可能であるが、少なくとも、樹脂と無機物を含み、かつ水に溶解または分散できる水系塗液であることが必要である。また、この水系塗液には、耐熱性や耐食性を向上させる目的で種々の成分を添加することも可能であるし、有機溶剤が添加されていてもよい。
【0020】
ここに、樹脂については、その種類が特に規制されることはなく、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、フェノール樹脂、スチレン樹脂、アミド樹脂、イミド樹脂、尿素樹脂、酢酸ビニル樹脂、アルキッド樹脂、ポリオレフィン樹脂およびポリエステル樹脂等の種々の樹脂が適用可能であり、またこれらは、単体でも、共重合体、混合物としても適用可能である。さらに、水系樹脂であれば、形態はどのようなものでもよく、エマルション樹脂、ディスパーション樹脂および粉末樹脂等、種々の形態が考えられる。
ただし、固形分が存在しない完全な水溶性樹脂のみでは、打抜性の改善効果が小さいので、全樹脂量の50mass%以上は固形分を持つ樹脂(エマルション樹脂、ディスパーション樹脂、粉末樹脂)とする必要がある。
【0021】
なお、上記した固形分の粒径があまりに小さいと打抜性改善効果が小さくなるので、樹脂固形分の粒径は30nm以上とすることが必要である。一方、樹脂粒径の上限は、占積率の観点から1μm 以下とする。
また、水系塗液中における樹脂の濃度特に規制されることはなく、目的とする目付量が得られる比重とすればよいが、0.5〜40mass%程度含有させることが好適である。
【0022】
上記した水系塗液の塗布方法としては、鋼板上に塗液を塗布することができればどのような方法でも良く、ロールコーター法、バーコーター法、エアーナイフ法およびスプレーコーター法等、各種方法を適用することができる。
【0023】
塗膜の焼き付け方法については、鋼板側(コーティング下層)から加熱する方式とすることが重要である。かような加熱方式としては、鋼板に電流を流したときに発生する渦電流を利用して加熱する誘導加熱方式が特に有利に適合する。この際、誘導加熱の周波数や昇温速度などが特に規制されることはなく、設備面から制約される加熱時間や効率、電磁鋼板の性質(板厚、透磁率等)等に応じて、適宜選択すればよい。
【0024】
ガス炉や電気炉など、従来から多用されてきたコーティング表面から加熱する方式では、昇温速度が速すぎると、最表層が先に乾燥してしまい、内部に低沸点物質(溶媒や反応生成物)が残留して膨れ等の外観不良の原因となっていたのに対し、本発明に従い鋼板側から加熱するとコーティング下層から焼き付けが進行するため、昇温速度が 150℃/s程度の超高速焼き付けでも外観不良は全く発生しない。
ここに、加熱温度すなわち最高到達板温は、 100〜350 ℃程度とするのが好適である。特に好ましくは 150〜300 ℃の範囲である。
【0025】
かくして、鋼板側(コーティング下層)から加熱することにより、コーティング表面から加熱した場合に比べて、打抜性や耐食性が格段に改善され、また溶接性も改善される。この理由は、明確ではないが、発明者らは次のように考えている。
1)コーティング下層から加熱した場合、未凝固の塗膜内で対流が起こり、粉末樹脂やエマルション樹脂、ディスパーション樹脂のように完全溶解ではなく粒子の形態をもっている樹脂が表層近傍に濃縮され、最表層樹脂量が多くなるために、打抜性が向上する。
2)コーティング表面から加熱した場合、表面が先に乾操し、コーティング内部に低沸点成分が残留し易いため、溶接時にガスとなってブローホールの原因となっていたのであるが、鋼板側(コーティング下層)から加熱した場合には、塗膜から低沸点成分が効果的に除去されるので、安定した溶接性が得られる。
3)鋼板面から加熱すると樹脂が表層に濃化するため、その後に10%以下の調質圧延を行っても、表面にクラックが入らず、従って耐食性の劣化は生じない。
【0026】
なお、上記のようにして形成する絶縁被膜の目付量が0.05g/m2未満の場合は、均一塗布が困難なため被膜性能が不安定となり、一方 7.0g/m2超になると被膜密着性が低下するので、絶縁被膜の目付量は乾燥重量で0.05〜7g/m2程度とするのが好ましい。
【0027】
【実施例】
以下、本発明の効果を実施例に基づいて具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
実施例1
Si:0.35mass%、Al:0.001 mass%およびMn:0.1 mass%を含有し、残部はFeおよび不可避的不純物の組成になるスラブを、熱間圧延により板厚:2.8 mmの熱延板としたのち、1回冷延法で0.5 mmの最終板厚に仕上げたのち、N2:70 vol%, H2:30 vol%の雰囲気中にて 700℃,15秒の仕上焼鈍を行った。
ついで、30℃に冷却後、得られた鋼板の表面に、固形分換算(エチレングリコールは固形分として計算)で、重クロム酸マグネシウム:50mass%、アクリル/スチレン樹脂エマルション:20mass%、ホウ酸:15mass%、エチレングリコール:15mass%の配合の水系塗液(質量比で水:前記固形分=95:5)を、ロールコーターで塗布し、誘導加熱方式および熱風炉加熱方式により、それぞれ到達板温:300 ℃まで加熱する焼き付け処理を施し、乾燥目付量で片面当たり:0.5 g/m2の絶縁被膜を被成した。
その後、鋼板の一部については、さらに圧下率:4%の調質圧延を行った。
なお、熱風炉加熱では、30秒間で 300℃(平均:9℃/s)まで昇温した。また、誘導加熱方式では、30 kHzの周波数とし、投入電流を変化させることによって昇温速度を種々に変化させ、最高到達板温:300 ℃まで昇温した。
かくして得られた絶縁被膜付き電磁鋼板の打抜性、溶接性および耐食性について調べた結果を、図1(a), (b), (c) にそれぞれ比較して示す。
また、仕上焼鈍後の冷却温度を30〜100 ℃まで変更した場合の外観について調査した結果を、図2に示す。
【0028】
なお、打抜性、溶接性および耐食性は次のようにして評価した。
溶接性
鋼板を厚さが3cmになるように積層し、下記の条件で TIG溶接を行い、ブローホールが発生しない最大溶接速度で評価した。
電極:Th−W 2.6 mmφ
加圧力:10 N/mm2
電流:120 A
シールドガス:Ar(6リットル/min)
打抜性
下記の条件で、初期かえり高さが10μm になるように金型を調整して連続打抜き試験を行い、かえり高さが50μm に達するまでの打抜き回数で評価した。
15mmφスチール鋼ダイス使用
クリアランス:5%
打抜油:使用
耐食性
塩水噴霧試験(JIS Z 2371)5時間後の赤錆発生面積率で評価した。
【0029】
図1(a), (b), (c) に示したとおり、発明例は比較例に比べ、溶接性を劣化させることなしに、打抜性および耐食性の向上を図ることができた。
また、図2に示したとおり、仕上焼鈍後、60℃超の鋼板温度で水系塗料を塗布した場合には、ピンホールなどの外観不良が発生したのに対し、60℃以下まで冷却したのち水系塗料を塗布した場合には、いずれも外観は良好であった。
【0030】
実施例2
Si:3.0 mass%、A1:0.3 mass%およびMn:0.2 mass%を含有し、残部はFeおよび不可避的不純物の組成になるスラブを、熱間圧延により板厚:2.2 mmの熱延板としたのち、1回冷延法で0.35mmの最終板厚に仕上げたのち、N2:70 vol%,H2:30 vol%の雰囲気中にて 900℃,10秒の仕上焼鈍を行った。
ついで、60℃に冷却後、得られた鋼板の表面に、固形分換算で、アルミナ複合シリカ:60mass%、エポキシ樹脂ディスパーション:40mass%の配合の水系塗液(質量比で水:前記固形分=95:5)を、ロールコーターで塗布し、誘導加熱方式および熱風炉加熱方式により、それぞれ到達板温:250 ℃まで加熱する焼き付け処理を施し、乾燥目付量で片面当たり:0.8 g/m2の絶縁被膜を被成した。
その後、鋼板の一部については、さらに圧下率:8%の調質圧延を行った。
なお、熱風炉加熱では、30秒間で 250℃(平均:7.7 ℃/s)まで昇温した。また、誘導加熱方式では、80 kHzの周波数とし、投入電流を変化させることによって昇温速度を種々に変化させ、最高到達板温:250 ℃まで昇温した。
かくして得られた絶縁被膜付き電磁鋼板の打抜性、溶接性および耐食性について調べた結果を、図3(a), (b), (c) にそれぞれ比較して示す。
【0031】
図3(a), (b), (c) に示したとおり、発明例は比較例に比べ、昇温速度に関係なしに、打抜性、溶接性および耐食性とも大幅に改善することができた。
【0032】
実施例3
Si:1.2 mass%、A1:0.2 mass%およびMn:0.1 mass%を含有し、残部はFeおよび不可避的不純物の組成になるスラブを、熱間圧延により板厚:1.6 mmの熱延板としたのち、1回冷延法で0.35mmの最終板厚に仕上げたのち、N2:70 vol%,H2:30 vol%の雰囲気中にて 800℃,10秒の仕上焼鈍を行った。
ついで、30℃に冷却後、得られた鋼板の表面に、固形分換算で、第1リン酸アルミニウム:50mass%、重クロム酸カリウム:15mass%、アクリル/酢酸ビニル樹脂エマルション:30mass%、ホウ酸:5mass%の配合の水系塗液(質量比で水:前記固形分=95:5)を、ロールコーターで塗布し、誘導加熱方式および電気炉加熱方式により、それぞれ到達板温:300 ℃まで加熱する焼き付け処理を施し、乾燥目付量で片面当たり:1.2 g/m2の絶縁被膜を被成した。
その後、鋼板の一部については、さらに圧下率:8%の調質圧延を行った。
なお、熱風炉加熱では、30秒間で 300℃(平均:9℃/s)まで昇温した。また、誘導加熱方式では、30 kHzの周波数とし、投入電流を変化させることによって昇温速度を種々に変化させ、最高到達板温:300 ℃まで昇温した。
かくして得られた絶縁被膜付き電磁鋼板の打抜性、溶接性および耐食性について調べた結果を、図4(a), (b), (c) にそれぞれ比較して示す。
【0033】
図4(a), (b), (c) に示したとおり、発明例は比較例に比べ、昇温速度に関係なしに、打抜性、溶接性および耐食性とも優れた特性値を得ることができた。
【0034】
実施例4
Si:0.1 mass%、A1:0.001 mass%およびMn:0.1 mass%を含有し、残部はFeおよび不可避的不純物の組成になるスラブを、熱間圧延により板厚:2.8 mmの熱延板としたのち、1回冷延法で0.70mmの最終板厚に仕上げたのち、N2:70 vol%, H2:30 vol%の雰囲気中にて 700℃,15秒の仕上焼鈍を行った。
ついで、30℃に冷却後、得られた鋼板の表面に、固形分換算で、重クロム酸アルミニウム:50mass%、ポリエチレン樹脂エマルション:15mass%、第1リン酸アルミニウム:20mass%、エチレングリコール:15mass%の配合の水系塗液(質量比で水:前記固形分=95:5)を、ロールコーターで塗布し、誘導加熱方式および熱風炉加熱方式により、それぞれ到達板温:200 ℃まで加熱する焼き付け処理を施し、乾燥目付量で片面当たり:1.5 g/m2の絶縁被膜を被成した。
その後、鋼板の一部については、さらに圧下率:3%の調質圧延を行った。
なお、熱風炉加熱では、30秒間で 200℃(平均:6℃/s)まで昇温した。また、誘導加熱方式では、10 kHzの周波数とし、投入電流を変化させることによって昇温速度を種々に変化させ、最高到達板温:200 ℃まで昇温した。
かくして得られた絶縁被膜付き電磁鋼板の打抜性、溶接性および耐食性について調べた結果を、図5(a), (b), (c) にそれぞれ比較して示す。
【0035】
図5(a), (b), (c) に示したとおり、発明例は比較例に比べ、溶接性を劣化させることなしに、打抜性および耐食性を向上させることができた。
【0036】
実施例5
Si:0.35mass%、A1:0.003 mass%およびMn:0.1 mass%を含有し、残部はFeおよび不可避的不純物の組成になるスラブを、熱間圧延により板厚:2.6 mmの熱延板としたのち、1回冷延法で0.50mmの最終板厚に仕上げたのち、N2:70 vol%, H2:30 vol%の雰囲気中にて 750℃,30秒の仕上焼鈍を行った。
ついで、30℃に冷却後、30℃に冷却後、得られた鋼板の表面に、固形分換算で、リン酸クロム:90mass%、樹脂:10mass%とし、樹脂組成については、アクリル酸樹脂(水溶性)/アクリルエマルション樹脂(粒径:100 nm)の混合比率を種々に変更し、また不揮発分:3mass%に調整した水系塗液を、ロールコーターで塗布し、誘導加熱方式および電気炉加熱方式により、それぞれ到達板温:300℃まで加熱する焼き付け処理を施し、乾燥目付量で片面当たり:1.0 g/m2の絶縁被膜を被成した。
その後、鋼板の一部については、さらに圧下率:2%の調質圧延を行った。
なお、熱風炉加熱では、30秒間で 300℃(平均:9℃/s)まで昇温した。また、誘導加熱方式では、30 kHzの周波数とし、100 ℃/sの速度で 300℃まで昇温した。
かくして得られた絶縁被膜付き電磁鋼板の打抜性、溶接性および耐食性について調べた結果を、全樹脂中のエマルション樹脂比率との関係で、図6(a), (b),(c) にそれぞれ比較して示す。
【0037】
図6(a), (b), (c) に示したとおり、本発明によれば、全樹脂中のエマルション樹脂比率を上げることにより、溶接性を劣化させることなしに、打抜性および耐食性を効果的に向上させることができた。
【0038】
実施例6
Si:0.2 mass%、A1:0.2 mass%およびMn:0.2 mass%を含有し、残部はFeおよび不可避的不純物の組成になるスラブを、熱間圧延により板厚:2.2 mmの熱延板としたのち、1回冷延法で0.50mmの最終板厚に仕上げたのち、N2:70 vol%,H2:30 vol%の雰囲気中にて 800℃,10秒の仕上焼鈍を行った。
ついで、30℃に冷却後、得られた鋼板の表面に、固形分換算で、アルミナ複合シリカ:60mass%、エポキシ樹脂ディスパーション:40mass%の配合の水系塗液(質量比で水:前記固形分=95:5)を、ロールコーターで塗布し、誘導加熱方式および熱風炉加熱方式により、それぞれ到達板温:250 ℃まで加熱する焼き付け処理を施し、乾燥目付量で片面当たり:0.8 g/m2の絶縁被膜を被成した。
その後、鋼板に対して種々の圧下率で調質圧延を施した。
なお、熱風炉加熱では、30秒間で 250℃(平均:7.7 ℃/s)まで昇温した。また、誘導加熱方式では、80 kHzの周波数とし、投入電流を変化させることによって昇温速度を種々に変化させ、最高到達板温:250 ℃まで昇温した。
かくして得られた絶縁被膜付き電磁鋼板の打抜性、溶接性および耐食性について調べた結果を、図7(a), (b), (c) にそれぞれ比較して示す。
また、窒素雰囲気中にて 750℃,2hの歪取り焼鈍を施したのちの鉄損特性について調べた結果を、図8に示す。
【0039】
図7(a), (b), (c) に示したとおり、発明例は比較例に比べ、昇温速度に関係なしに、打抜性、溶接性および耐食性とも優れた特性値を得ることができた。
また、図8から明らかなように、発明例では比較例に比べて鉄損特性の劣化は生じなかった。
【0040】
【発明の効果】
かくして、本発明によれば、絶縁被膜処理を施した後に調質圧延を行うことが可能となり、しかも打抜性、耐食性および溶接性に優れた電磁鋼板を安定して得ることができ、モーターおよびトランス等の用途に供して極めて有用である。
【図面の簡単な説明】
【図1】 実施例1の、焼き付け時における昇温速度と、かえり高さ50μm までの打抜き回数、限界溶接速度および赤錆発生面積率との関係を示したグラフである。
【図2】 実施例1の、仕上焼鈍後、塗布前の板温と、絶縁被膜の外観との関係を示したグラフである。
【図3】 実施例2の、焼き付け時における昇温速度と、かえり高さ50μm までの打抜き回数、限界溶接速度および赤錆発生面積率との関係を示したグラフである。
【図4】 実施例3の、焼き付け時における昇温速度と、かえり高さ50μm までの打抜き回数、限界溶接速度および赤錆発生面積率との関係を示したグラフである。
【図5】 実施例4の、焼き付け時における昇温速度と、かえり高さ50μm までの打抜き回数、限界溶接速度および赤錆発生面積率との関係を示したグラフである。
【図6】 実施例5の、全樹脂中のエマルション樹脂比率と、かえり高さ50μmまでの打抜き回数、限界溶接速度および赤錆発生面積率との関係を示したグラフである。
【図7】 実施例6の、調質圧延における伸び率と、かえり高さ50μm までの打抜き回数、限界溶接速度および赤錆発生面積率との関係を示したグラフである。
【図8】 実施例6の、調質圧延における伸び率と歪取り焼鈍後の鉄損との関係を示したグラフである。
[0001]
[Industrial application fields]
The present invention relates to a method for producing a semi-processed non-oriented electrical steel sheet having excellent magnetic properties and coating performance.
[0002]
[Prior art]
An electromagnetic steel sheet is naturally excellent in magnetic characteristics, which are basic characteristics, but various other characteristics are required in the manufacturing process of motors and transformers. Examples of characteristics required in the manufacturing process of such products include punchability, weldability (end surface welding), film adhesion, and corrosion resistance.
In order to improve the punchability, it is a known fact that the addition of the resin component to the insulating coating is effective, but since the addition of the resin causes blowholes during welding, The problem was to achieve both weldability.
[0003]
Various methods as described below have been proposed as methods for achieving both punchability and weldability.
(1) A method of imparting roughness to a steel plate or an insulating coating (for example, Japanese Patent Publication No. 60-190572).
(2) A method of containing Al in the insulating coating (for example, JP-A-9-291368).
(3) A method for improving the heat resistance of the resin (for example, JP-A-6-235070).
(4) A method of forming a two-layer coating (an organic layer as an upper layer, an inorganic layer as a lower layer, etc.) (for example, Japanese Patent Publication No. 49-6743).
(5) A method of concentrating the resin on the surface layer using a special resin (for example, Japanese Patent Publication No. 4-43715).
[0004]
Among these methods, the method (1) can achieve both punchability and weldability at a high level, but has a problem that the magnetic properties are impaired because the space factor decreases. The methods (2) and (3) require further improvement in order to match the excellent TIG weldability of the inorganic coat and the excellent punchability of the organic coat. Since the method (4) is 2 coats and 2 bake, there is a problem that costs increase. In the method (5), a special resin must be used, and cost increases cannot be avoided.
[0005]
By the way, the above-mentioned electrical steel sheet is roughly classified into a full-process electrical steel sheet that does not require annealing in the core manufacturing process and a semi-process electrical steel sheet that requires such annealing. Semi-process electrical steel sheets are products whose magnetic properties are greatly improved by annealing.
Further, in the production of such an electrical steel sheet, after adjusting the components, hot rolling is performed, and then cold rolling or warm rolling and annealing are performed once or not with or without hot rolling sheet annealing. Although it is often manufactured by performing an insulating coating after several times, the semi-process electromagnetic steel sheet may be further distorted by temper rolling or the like.
[0006]
However, when temper rolling is performed after the insulating coating treatment, there is a problem that the coating is destroyed and the coating performance deteriorates.
In other words, there is no problem if the equipment configuration is continuous annealing → temper rolling → insulating coating treatment, but if the temper rolling is a separate line, the insulating coating treatment may be before temper rolling, There was concern about deterioration of the coating performance. In order to avoid this problem, after continuous annealing, after temper rolling on another line, it is necessary to return to the first line, or further to apply an insulation coating treatment on another line. In any case, an increase in manufacturing cost is inevitable.
[0007]
[Problems to be solved by the invention]
The present invention advantageously solves the above problems, and can maintain excellent film performance even if temper rolling is performed after the formation of the insulating film, and thus without losing the space factor and weldability. An object of the present invention is to propose an advantageous method for producing a semi-processed non-oriented electrical steel sheet having excellent punchability and corrosion resistance, and also excellent magnetic properties.
[0008]
[Means for Solving the Problems]
Now, according to the knowledge of the inventors, after forming a conventional organic-inorganic mixed insulating coating in a continuous line of continuous annealing → roll coater application → hot stove baking, temper rolling was performed at a reduction ratio of about 8%. In this case, it was found that the corrosion resistance deteriorates.
Then, when the surface of the steel plate in which the corrosion resistance deteriorated was observed with a microscope, the surface was cracked. Therefore, it is considered that the insulating coating does not follow the elongation of the steel sheet during temper rolling, and cracks occur, which causes deterioration of corrosion resistance.
[0009]
Further investigation on this point revealed that, when the same treatment was performed on the inorganic insulating film and the organic insulating film, the corrosion resistance was remarkably deteriorated in the inorganic insulating film, but the corrosion resistance was hardly deteriorated in the organic insulating film. According to the microscopic observation of the steel sheet surface, the organic insulating film showed no change in appearance, whereas the inorganic insulating film was markedly cracked.
From the above results, it is considered that the resin ratio should be increased in order to withstand the temper rolling of the insulating coating, but from the viewpoint of TIG weldability and the coating performance after strain relief annealing, the resin ratio is It is not preferable to raise it.
[0010]
Therefore, the inventors have conducted intensive studies to solve the above problems,
(1) In order to ensure punchability while ensuring weldability with one coat and one bake, the resin contained in the coating is effectively segregated in the vicinity of the surface layer.
(2) We thought that it was necessary to be able to be applied to various coatings regardless of the resin and other components contained, and from these points of view, we thoroughly studied various baking methods.
[0011]
As a result, the resin segregates on the surface layer when punched from the lower layer of the coating, that is, from the steel plate side, rather than being baked from the surface of the coating as in conventional gas furnaces and electric furnaces. Has been found to improve dramatically.
It was also found that when heated from the steel sheet side, low-boiling components that cause blowholes were effectively removed from the coating film, resulting in improved weldability.
Furthermore, even if the magnetic steel sheet with an insulating coating formed in this way is subjected to temper rolling with a reduction ratio of about 8% thereafter, the surface does not crack, and the punchability and corrosion resistance may not deteriorate. confirmed.
The present invention is based on the above findings.
[0012]
That is, the gist configuration of the present invention is as follows.
1. After rolling the steel sheet material and annealing at 600 to 1000 ° C one or more times to reduce the sheet thickness to 0.1 to 0.9 mm, cool the steel plate temperature to 60 ° C or lower, the surface of the obtained electrical steel sheet, or 50 mass% of the total resin amount, particle size: 30 nm or more 1 [mu] m or less of Emarusho down resin, at least a resin and an inorganic component is either a dispersion resins Contact and powder resin After applying an aqueous coating liquid containing, baked by heating a steel plate side, pressure under constant: and performing more than 10% of temper rolling method for producing a semi-process non-oriented electrical steel sheet.
[0013]
2. In the above 1, as the heating means from the steel sheet side, characterized by using an induction heating method of cell Mi process non-oriented electrical steel sheet.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described.
Although there is no restriction | limiting in particular about the electrical steel sheet which is a raw material of this invention, It is preferable to adjust a component suitably according to a desired characteristic. For example, since it is effective to increase the specific resistance in order to improve the iron loss, it is preferable to add Si, Al, Mn, Cr, P, Ni, etc., which are specific resistance improving components. These component ratios may be determined according to the desired magnetic characteristics. Although other trace components and segregation elements such as Sb and Sn are not regulated, C and S are elements that are disadvantageous to weldability, and it is desirable to reduce them in terms of magnetic characteristics. , C is preferably 0.01 mass% or less, and S is preferably 0.01 mass% or less.
[0016]
The slab whose components are adjusted as described above is subjected to rolling treatment and annealing treatment at an ultimate plate temperature of 600 to 1000 ° C. once or a plurality of times to make the plate thickness 0.1 to 0.9 mm. Here, the rolling process means hot rolling and cold rolling (including warm rolling), and the annealing process means hot-rolled sheet annealing, intermediate annealing, and finish annealing.
Here, if the annealing temperature in the annealing treatment, that is, the ultimate plate temperature is less than 600 ° C, it is meaningless because almost no grain growth occurs. Since the cost of improvement is small, the ultimate temperature is limited to the range of 600 to 1000 ° C.
Note that the plate thickness at this time is not the final plate thickness, but considering the final plate thickness from the viewpoint of magnetic properties and the reduction in plate thickness in temper rolling, the plate thickness in the range of 0.1 to 0.9 mm described above To be controlled.
[0017]
Next, after cooling the temperature of the electrical steel sheet obtained as described above to 60 ° C. or less, the surface of the electrical steel sheet, as will be described later, 50 mass% or more of the total resin amount, particle size: 30 nm or more 1 [mu] m following Emarusho down resin, an aqueous coating solution containing a resin and an inorganic component at least either of the dispersion resins Contact and powder resin coating, after baking by heating a steel plate side, pressure under constant: Temper rolling at 10% or less (hereinafter simply referred to as temper rolling at a reduction ratio of 10% or less).
Thus, by heating and baking the aqueous coating liquid of resin and inorganic components from the steel sheet side, the resin segregates near the surface layer and the punchability is improved, and the corrosion resistance is deteriorated even after the subsequent temper rolling. It is suppressed.
[0018]
If an aqueous coating solution is applied to a steel plate above 60 ° C, the aqueous resin tends to agglomerate in the coater pan, or problems in appearance such as pinholes and repellency will occur. The steel plate temperature was set to 60 ° C. or lower.
Moreover, even if the rolling reduction ratio of the temper rolling that gives the grain growth improvement effect exceeds 10%, no further improvement effect of the magnetic properties is seen, and when temper rolling exceeding 10% is performed, The temper rolling is limited to 10% or less because the corrosion resistance may deteriorate even if the insulating coating is baked from the steel plate side.
[0019]
Various conventionally developed coating solutions can be applied as the coating solution for the insulating coating. For example, all kinds of coating treatment liquids such as coating treatment liquid containing at least chromate and resin, coating treatment liquid containing at least phosphate and resin, and coating treatment liquid containing at least inorganic colloid and resin are applicable. It is necessary that the aqueous coating liquid contains at least a resin and an inorganic substance and can be dissolved or dispersed in water. In addition, various components can be added to the aqueous coating liquid for the purpose of improving heat resistance and corrosion resistance, and an organic solvent may be added.
[0020]
Here, the type of resin is not particularly restricted, and acrylic resin, epoxy resin, urethane resin, phenol resin, styrene resin, amide resin, imide resin, urea resin, vinyl acetate resin, alkyd resin, polyolefin Various resins such as a resin and a polyester resin are applicable, and these can be applied as a single substance, a copolymer, or a mixture. Furthermore, if water-based resin, the form may be of any type, emulsion resin, dispersion resins Contact and powder resins, various forms are conceivable.
However, with only the complete water-soluble resin solids is not present, since the effect of improving punching property is small, the total resin amount of 50 mass% or more resins with solids (emulsion resin, dispersion resin, flour powder resin) It is necessary to.
[0021]
If the particle size of the solid content is too small, the effect of improving punchability is reduced. Therefore, the particle size of the resin solid content needs to be 30 nm or more. On the other hand, the upper limit of the particle size of the resin shall be the 1μm or less in terms of space factor.
The concentration of the resin in the aqueous coating solution is not in particular is restricted, but may be the specific gravity of the weight per unit area of interest is obtained, it is preferable be contained about 0.5~40mass%.
[0022]
As the application method of the aqueous coating solution, any method may be used as long as the coating solution can be applied onto the steel sheet, and various methods such as a roll coater method, a bar coater method, an air knife method and a spray coater method are applied. can do.
[0023]
About the baking method of a coating film, it is important to set it as the system heated from the steel plate side (coating lower layer). As such a heating method, an induction heating method in which heating is performed using an eddy current generated when a current is passed through the steel sheet is particularly advantageously adapted. At this time, the induction heating frequency, the heating rate, etc. are not particularly restricted, and are appropriately determined according to the heating time and efficiency restricted from the equipment aspect, the properties of the magnetic steel sheet (plate thickness, magnetic permeability, etc.), etc. Just choose.
[0024]
In the method of heating from the coating surface that has been frequently used in the past, such as gas furnaces and electric furnaces, if the rate of temperature rise is too fast, the outermost layer is dried first, and low-boiling substances (solvents and reaction products) are contained inside. ) Remains, causing blistering and other appearance defects, but when heated from the steel sheet side according to the present invention, baking proceeds from the lower layer of the coating, so the heating rate is about 150 ° C / s. But no appearance defects occur at all.
Here, it is preferable that the heating temperature, that is, the maximum plate temperature is about 100 to 350 ° C. Especially preferably, it is the range of 150-300 degreeC.
[0025]
Thus, by heating from the steel sheet side (coating lower layer), punchability and corrosion resistance are remarkably improved and weldability is improved as compared with the case of heating from the coating surface. The reason for this is not clear, but the inventors consider as follows.
1) When heated from the lower layer of the coating, convection occurs in the unsolidified coating, and the resin that is not completely dissolved but in the form of particles such as powder resin, emulsion resin, and dispersion resin is concentrated near the surface layer. Since the amount of the surface layer resin is increased, the punchability is improved.
2) When heated from the coating surface, the surface is dried first, and low-boiling components are likely to remain inside the coating, causing gas during welding and causing blowholes. When heated from the lower coating layer), low boiling point components are effectively removed from the coating film, so that stable weldability is obtained.
3) Since the resin concentrates on the surface layer when heated from the steel sheet surface, cracking does not occur on the surface even if temper rolling of 10% or less is performed thereafter, and therefore corrosion resistance does not deteriorate.
[0026]
In the case the basis weight of the insulating film formed as described above is less than 0.05 g / m 2, uniform application becomes unstable difficult for film performance, whereas becomes 7.0 g / m 2 than the coating adhesion Therefore, the basis weight of the insulating coating is preferably about 0.05 to 7 g / m 2 in terms of dry weight.
[0027]
【Example】
Hereinafter, although the effect of the present invention is explained concretely based on an example, the present invention is not limited by these examples.
Example 1
A slab containing Si: 0.35 mass%, Al: 0.001 mass% and Mn: 0.1 mass%, with the balance being Fe and unavoidable impurities, was hot rolled into a hot rolled sheet with a thickness of 2.8 mm. Then, after finishing to a final thickness of 0.5 mm by a single cold rolling method, finish annealing was performed at 700 ° C. for 15 seconds in an atmosphere of N 2 : 70 vol% and H 2 : 30 vol%.
Next, after cooling to 30 ° C., on the surface of the obtained steel sheet, in terms of solid content (ethylene glycol is calculated as solid content), magnesium dichromate: 50 mass%, acrylic / styrene resin emulsion: 20 mass%, boric acid: 15mass%, ethylene glycol: 15mass% of water-based coating liquid (mass ratio of water: solid content = 95: 5) is applied with a roll coater, and the ultimate plate temperature is achieved by induction heating and hot stove heating respectively. : A baking treatment of heating to 300 ° C. was performed, and an insulating coating of 0.5 g / m 2 per side was formed in a dry basis weight.
Thereafter, a part of the steel sheet was further subjected to temper rolling at a reduction ratio of 4%.
In the hot stove heating, the temperature was raised to 300 ° C. (average: 9 ° C./s) in 30 seconds. In the induction heating method, the frequency was set to 30 kHz, and the heating rate was changed in various ways by changing the input current, so that the temperature reached the maximum plate temperature: 300 ° C.
The results of examining the punchability, weldability, and corrosion resistance of the electrical steel sheet with an insulating coating thus obtained are shown in comparison with FIGS. 1 (a), (b), and (c), respectively.
Moreover, the result of having investigated about the external appearance at the time of changing the cooling temperature after finish annealing to 30-100 degreeC is shown in FIG.
[0028]
The punchability, weldability and corrosion resistance were evaluated as follows.
Welded steel plates were laminated to a thickness of 3 cm, TIG welding was performed under the following conditions, and evaluation was performed at the maximum welding speed at which blowholes do not occur.
Electrode: Th-W 2.6 mmφ
Applied pressure: 10 N / mm 2
Current: 120 A
Shielding gas: Ar (6 liter / min)
Punchability Under the following conditions, the die was adjusted so that the initial burr height would be 10 μm, and a continuous blanking test was performed, and the number of punches until the burr height reached 50 μm was evaluated.
Clearance using 15mmφ steel steel dies: 5%
Punching oil: The corrosion rust salt spray test (JIS Z 2371) was used and evaluated by the area ratio of red rust generated after 5 hours.
[0029]
As shown in FIGS. 1 (a), (b), and (c), the inventive example was able to improve punchability and corrosion resistance without degrading the weldability as compared with the comparative example.
In addition, as shown in Fig. 2, after finish annealing, when water-based paint was applied at a steel plate temperature of more than 60 ° C, poor appearance such as pinholes occurred, but after cooling to 60 ° C or less, water-based When the paint was applied, the appearance was good in all cases.
[0030]
Example 2
A slab containing Si: 3.0 mass%, A1: 0.3 mass%, and Mn: 0.2 mass%, with the balance being Fe and inevitable impurities, was hot rolled into a hot rolled sheet with a thickness of 2.2 mm. Then, after finishing to a final thickness of 0.35 mm by a single cold rolling method, finish annealing was performed at 900 ° C. for 10 seconds in an atmosphere of N 2 : 70 vol% and H 2 : 30 vol%.
Then, after cooling to 60 ° C., on the surface of the obtained steel sheet, in terms of solid content, an aqueous coating liquid containing alumina composite silica: 60 mass% and epoxy resin dispersion: 40 mass% (water by mass ratio: the solid content) = 95: 5) is applied with a roll coater, and subjected to baking treatment to reach the ultimate plate temperature: 250 ° C by induction heating method and hot-air furnace heating method, respectively, with a dry basis weight per side: 0.8 g / m 2 An insulating coating was applied.
Thereafter, a part of the steel sheet was further subjected to temper rolling at a reduction ratio of 8%.
In the hot stove heating, the temperature was raised to 250 ° C. (average: 7.7 ° C./s) in 30 seconds. In the induction heating method, the frequency was set to 80 kHz, and the heating rate was changed variously by changing the input current, so that the temperature was reached to the maximum plate temperature: 250 ° C.
The results of examining the punchability, weldability, and corrosion resistance of the magnetic steel sheet with an insulating coating thus obtained are shown in comparison in FIGS. 3 (a), (b), and (c), respectively.
[0031]
As shown in FIGS. 3 (a), (b), and (c), the inventive example can significantly improve the punchability, weldability and corrosion resistance, compared with the comparative example, irrespective of the heating rate. It was.
[0032]
Example 3
A slab containing Si: 1.2 mass%, A1: 0.2 mass%, and Mn: 0.1 mass% with the balance being Fe and inevitable impurities was hot rolled into a hot rolled sheet with a thickness of 1.6 mm. Then, after finishing to a final thickness of 0.35 mm by a single cold rolling method, finish annealing was performed at 800 ° C. for 10 seconds in an atmosphere of N 2 : 70 vol% and H 2 : 30 vol%.
Next, after cooling to 30 ° C., on the surface of the obtained steel sheet, in terms of solid content, primary aluminum phosphate: 50 mass%, potassium dichromate: 15 mass%, acrylic / vinyl acetate resin emulsion: 30 mass%, boric acid : Water-based coating liquid (mass ratio of water: solid content = 95: 5) is applied with a roll coater and heated to an ultimate plate temperature of 300 ° C by induction heating and electric furnace heating, respectively. An insulating coating of 1.2 g / m 2 per side with a dry basis weight was applied.
Thereafter, a part of the steel sheet was further subjected to temper rolling at a reduction ratio of 8%.
In the hot stove heating, the temperature was raised to 300 ° C. (average: 9 ° C./s) in 30 seconds. In the induction heating method, the frequency was set to 30 kHz, and the heating rate was changed in various ways by changing the input current, so that the temperature reached the maximum plate temperature: 300 ° C.
The results of examining the punchability, weldability, and corrosion resistance of the electrical steel sheet with an insulating coating thus obtained are shown in comparison in FIGS. 4 (a), (b), and (c), respectively.
[0033]
As shown in FIGS. 4 (a), (b), and (c), the inventive example has excellent punching characteristics, weldability and corrosion resistance, as compared with the comparative example, irrespective of the heating rate. I was able to.
[0034]
Example 4
A slab containing Si: 0.1 mass%, A1: 0.001 mass%, and Mn: 0.1 mass%, with the balance being Fe and inevitable impurities, was hot rolled into a hot rolled sheet with a thickness of 2.8 mm. Then, after finishing to a final thickness of 0.70 mm by a single cold rolling method, finish annealing was performed at 700 ° C. for 15 seconds in an atmosphere of N 2 : 70 vol% and H 2 : 30 vol%.
Next, after cooling to 30 ° C., on the surface of the obtained steel sheet, in terms of solid content, aluminum dichromate: 50 mass%, polyethylene resin emulsion: 15 mass%, primary aluminum phosphate: 20 mass%, ethylene glycol: 15 mass% A water-based coating liquid (mass ratio: water: solid content = 95: 5) is applied with a roll coater, and heated to an ultimate plate temperature of 200 ° C. by an induction heating method and a hot air furnace heating method, respectively. An insulating coating of 1.5 g / m 2 per side with a dry basis weight was applied.
Thereafter, a part of the steel sheet was further subjected to temper rolling at a reduction ratio of 3%.
In the hot stove heating, the temperature was raised to 200 ° C. (average: 6 ° C./s) in 30 seconds. In the induction heating method, the frequency was set to 10 kHz, and the heating rate was changed variously by changing the input current, so that the temperature was reached to the maximum plate temperature: 200 ° C.
The results of examining the punchability, weldability and corrosion resistance of the electrical steel sheet with an insulating coating thus obtained are shown in comparison in FIGS. 5 (a), (b) and (c), respectively.
[0035]
As shown in FIGS. 5A, 5B, and 5C, the inventive example was able to improve the punchability and the corrosion resistance without degrading the weldability as compared with the comparative example.
[0036]
Example 5
A slab containing Si: 0.35 mass%, A1: 0.003 mass% and Mn: 0.1 mass%, with the balance being Fe and inevitable impurities, was hot rolled into a hot rolled sheet with a thickness of 2.6 mm. Then, after finishing to a final thickness of 0.50 mm by a single cold rolling method, finish annealing was performed at 750 ° C. for 30 seconds in an atmosphere of N 2 : 70 vol% and H 2 : 30 vol%.
Next, after cooling to 30 ° C. and cooling to 30 ° C., the surface of the obtained steel sheet is converted to solid content with chromium phosphate: 90 mass%, resin: 10 mass%, and the resin composition is acrylic resin (water-soluble). ) / Acrylic emulsion resin (particle size: 100 nm) with various mixing ratios, and water-based coating liquid adjusted to non-volatile content: 3 mass%, applied with a roll coater, induction heating method and electric furnace heating method Then, a baking treatment for heating to a final plate temperature of 300 ° C. was performed, and an insulating coating of 1.0 g / m 2 per side was formed with a dry basis weight.
Thereafter, a part of the steel sheet was further subjected to temper rolling at a reduction ratio of 2%.
In the hot stove heating, the temperature was raised to 300 ° C. (average: 9 ° C./s) in 30 seconds. In the induction heating method, the frequency was set to 30 kHz and the temperature was increased to 300 ° C at a rate of 100 ° C / s.
6 (a), (b), and (c) show the results of investigating the punchability, weldability, and corrosion resistance of the electrical steel sheet with insulating coating obtained in this way in relation to the emulsion resin ratio in the total resin. Each is shown in comparison.
[0037]
As shown in FIGS. 6 (a), (b), and (c), according to the present invention, punching and corrosion resistance can be improved without increasing weldability by increasing the emulsion resin ratio in the total resin. Could be improved effectively.
[0038]
Example 6
A slab containing Si: 0.2 mass%, A1: 0.2 mass%, and Mn: 0.2 mass%, with the balance being Fe and inevitable impurities, was hot rolled into a hot rolled sheet with a thickness of 2.2 mm. Then, after finishing to a final thickness of 0.50 mm by a single cold rolling method, finish annealing was performed at 800 ° C. for 10 seconds in an atmosphere of N 2 : 70 vol% and H 2 : 30 vol%.
Next, after cooling to 30 ° C., on the surface of the obtained steel sheet, in terms of solid content, an aqueous coating liquid containing alumina composite silica: 60 mass%, epoxy resin dispersion: 40 mass% (water by mass ratio: the solid content) = 95: 5) is applied with a roll coater, and subjected to baking treatment to reach the ultimate plate temperature: 250 ° C by induction heating method and hot-air furnace heating method, respectively, with a dry basis weight per side: 0.8 g / m 2 An insulating coating was applied.
Thereafter, the steel sheet was subjected to temper rolling at various rolling reductions.
In the hot stove heating, the temperature was raised to 250 ° C. (average: 7.7 ° C./s) in 30 seconds. In the induction heating method, the frequency was set to 80 kHz, and the heating rate was changed variously by changing the input current, so that the temperature was reached to the maximum plate temperature: 250 ° C.
The results of examining the punchability, weldability, and corrosion resistance of the electrical steel sheet with an insulating coating thus obtained are shown in comparison with FIGS. 7 (a), (b), and (c), respectively.
In addition, FIG. 8 shows the results of examining the iron loss characteristics after performing strain relief annealing at 750 ° C. for 2 hours in a nitrogen atmosphere.
[0039]
As shown in FIGS. 7 (a), (b), and (c), the inventive example has excellent punching characteristics, weldability and corrosion resistance, as compared with the comparative example, irrespective of the heating rate. I was able to.
Further, as is clear from FIG. 8, the iron loss characteristics of the invention example did not deteriorate compared to the comparative example.
[0040]
【The invention's effect】
Thus, according to the present invention, it is possible to perform temper rolling after performing the insulating coating treatment, and it is possible to stably obtain an electrical steel sheet having excellent punchability, corrosion resistance and weldability, and a motor and It is extremely useful for applications such as transformers.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the temperature increase rate during baking, the number of punches up to a burr height of 50 μm, the limit welding speed, and the red rust occurrence area ratio in Example 1. FIG.
2 is a graph showing the relationship between the plate temperature after finish annealing and before coating and the appearance of an insulating coating in Example 1. FIG.
3 is a graph showing the relationship between the heating rate during baking, the number of punches up to a burr height of 50 μm, the limit welding speed, and the red rust occurrence area ratio in Example 2. FIG.
FIG. 4 is a graph showing the relationship between the temperature rise rate during baking, the number of punches up to a burr height of 50 μm, the limit welding speed, and the red rust occurrence area ratio in Example 3.
FIG. 5 is a graph showing the relationship between the temperature rise rate during baking, the number of punches up to a burr height of 50 μm, the limit welding speed, and the red rust occurrence area ratio in Example 4.
6 is a graph showing the relationship between the emulsion resin ratio in the total resin, the number of punches up to a burr height of 50 μm, the limit welding speed, and the red rust occurrence area ratio in Example 5. FIG.
FIG. 7 is a graph showing the relationship between the elongation ratio in temper rolling, the number of punching up to a burr height of 50 μm, the limit welding speed, and the red rust occurrence area ratio in Example 6.
8 is a graph showing the relationship between the elongation percentage in temper rolling and the iron loss after strain relief annealing in Example 6. FIG.

Claims (2)

電磁鋼板用素材に、圧延処理と到達板温:600〜1000℃の焼鈍処理を1回または複数回繰り返して板厚を 0.1〜0.9 mmとしたのち、鋼板温度を60℃以下に冷却し、ついで得られた電磁鋼板の表面に、全樹脂量の50mass%以上が、粒径:30nm以上1μ m 以下のエマルショ樹脂、ディスパーション樹脂および粉末樹脂の少なくともいずれかである樹脂と無機成分を含有する水系塗液を塗布し、鋼板側から加熱して焼き付けたのち、圧下率:10%以下の調質圧延を行うことを特徴とする、セミプロセス無方向性電磁鋼板の製造方法。After rolling the steel sheet material and annealing at 600 to 1000 ° C one or more times to reduce the sheet thickness to 0.1 to 0.9 mm, cool the steel plate temperature to 60 ° C or lower, the surface of the obtained electrical steel sheet, or 50 mass% of the total resin amount, particle size: 30 nm or more 1 [mu] m or less of Emarusho down resin, at least a resin and an inorganic component is either a dispersion resins Contact and powder resin After applying an aqueous coating liquid containing, baked by heating a steel plate side, pressure under constant: and performing more than 10% of temper rolling method for producing a semi-process non-oriented electrical steel sheet. 請求項1において、鋼板側からの加熱手段として、誘導加熱を用いることを特徴とする、セミプロセス無方向性電磁鋼板の製造方法。  2. The method of manufacturing a semi-processed non-oriented electrical steel sheet according to claim 1, wherein induction heating is used as a heating means from the steel sheet side.
JP2002018268A 2002-01-28 2002-01-28 Method for producing semi-processed non-oriented electrical steel sheet Expired - Fee Related JP4265136B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2002018268A JP4265136B2 (en) 2002-01-28 2002-01-28 Method for producing semi-processed non-oriented electrical steel sheet
CA002474009A CA2474009C (en) 2002-01-28 2003-01-24 Method for producing coated steel sheet
US10/502,670 US8709550B2 (en) 2002-01-28 2003-01-24 Method for producing coated steel sheet
PCT/JP2003/000625 WO2003064063A1 (en) 2002-01-28 2003-01-24 Method for producing coated steel sheet
DE60336300T DE60336300D1 (en) 2002-01-28 2003-01-24 METHOD FOR PRODUCING A COATED STEEL PLATE
EP03703042A EP1470869B1 (en) 2002-01-28 2003-01-24 Method for producing coated steel sheet
CNB038073749A CN100354050C (en) 2002-01-28 2003-01-24 Method for producing coated steel sheet
KR10-2004-7011606A KR20040081151A (en) 2002-01-28 2003-01-24 Method for producing coated steel sheet
TW092101705A TW200302139A (en) 2002-01-28 2003-01-27 Method for producing a coated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002018268A JP4265136B2 (en) 2002-01-28 2002-01-28 Method for producing semi-processed non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2003213334A JP2003213334A (en) 2003-07-30
JP4265136B2 true JP4265136B2 (en) 2009-05-20

Family

ID=27653683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002018268A Expired - Fee Related JP4265136B2 (en) 2002-01-28 2002-01-28 Method for producing semi-processed non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4265136B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7283423B2 (en) * 2020-03-12 2023-05-30 Jfeスチール株式会社 Electrical steel sheet with insulating coating and method for manufacturing the same
CN116940709A (en) * 2021-03-31 2023-10-24 日本制铁株式会社 Non-oriented electromagnetic steel sheet and method for producing same

Also Published As

Publication number Publication date
JP2003213334A (en) 2003-07-30

Similar Documents

Publication Publication Date Title
JP4883240B1 (en) Steel sheet for hot press and method for producing hot press member using the same
WO2009020134A1 (en) Insulating coating treatment liquid for grain oriented electromagnetic steel sheet and process for manufacturing grain oriented electromagnetic steel sheet with insulating coating
JP5884151B2 (en) Steel sheet for hot press and method for producing hot press member using the same
RU2584105C2 (en) Clad steel plate for hot pressing and method for hot pressing clad steel plate
WO2009025389A1 (en) Insulating film treating liquid for grain oriented electromagnetic steel plate, and process for producing grain oriented electromagnetic steel plate with insulating film
EP1967612A1 (en) Electromagnetic steel sheet having insulating coating film and method for producing same
EP1470869B1 (en) Method for producing coated steel sheet
CA2631550C (en) Electrical steel sheet having insulation coating and method for manufacturing same
TWI623649B (en) Hot-pressed aluminized steel sheet and manufacturing method of hot-pressed aluminized steel sheet
CN115380130A (en) Non-oriented electromagnetic steel sheet and method for producing same
JPH11152579A (en) Surface treating agent for nonoriented silicon steel and formation of coating using it
WO2013129295A1 (en) Si-containing high strength cold rolled steel sheet, production method therefor, and vehicle member
JP4265136B2 (en) Method for producing semi-processed non-oriented electrical steel sheet
JP6028843B2 (en) Steel sheet for hot press and method for producing hot press member using the same
JP4221933B2 (en) Method for producing electrical steel sheet with insulating coating excellent in weldability and punchability
CN114829666B (en) Aluminum-based alloy-plated steel sheet excellent in workability and corrosion resistance, and method for producing same
JP3782273B2 (en) Electrical steel sheet
JP2011157576A (en) Method of producing hot-pressed steel
RU2819830C1 (en) Aluminum-coated steel sheet, thermoformed part and methods of manufacturing
WO2024135441A1 (en) Method for manufacturing electromagnetic steel sheet with insulating film
JP2005120424A (en) Nonoriented silicon steel sheet excellent in corrosion resistance after heat treated, and high strength nonoriented silicon steel sheet excellent in corrosion resistance and magnetic property
JP4283652B2 (en) Aqueous surface treatment liquid for electrical steel sheet, method for producing electrical steel sheet with insulation film using the same, and electrical steel sheet with insulation film
JP2569860B2 (en) Method of forming insulating film on electrical steel sheet
JP2005187941A (en) Annealing-separation agent for grain-oriented electromagnetic steel sheet, method for annealing grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet
WO2024002261A1 (en) Paint, oriented silicon steel sheet having coating formed from paint, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080918

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090209

R150 Certificate of patent or registration of utility model

Ref document number: 4265136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees