JP4264745B2 - Enzyme and biotin modified anisotropic polymer microparticle, microtubule and microparticle complex using this, and ATP self-supply nanobiomachine - Google Patents

Enzyme and biotin modified anisotropic polymer microparticle, microtubule and microparticle complex using this, and ATP self-supply nanobiomachine Download PDF

Info

Publication number
JP4264745B2
JP4264745B2 JP2004361995A JP2004361995A JP4264745B2 JP 4264745 B2 JP4264745 B2 JP 4264745B2 JP 2004361995 A JP2004361995 A JP 2004361995A JP 2004361995 A JP2004361995 A JP 2004361995A JP 4264745 B2 JP4264745 B2 JP 4264745B2
Authority
JP
Japan
Prior art keywords
enzyme
anisotropic
atp
microtubules
latex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004361995A
Other languages
Japanese (ja)
Other versions
JP2006166760A (en
Inventor
正人 小高
永忠 杜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004361995A priority Critical patent/JP4264745B2/en
Publication of JP2006166760A publication Critical patent/JP2006166760A/en
Application granted granted Critical
Publication of JP4264745B2 publication Critical patent/JP4264745B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、モータータンパク質による機能性高分子微粒子の輸送、または、非ATP存在下でのモータータンパク質の移動、より詳しくは、該当微粒子上に固定化したATP生成酵素と基質が反応することで、ATPを自己供給し、微小管がキネシン固定化基板上に移動する酵素とビオチン修飾異方性高分子微粒子、これを用いた微小管と微粒子のコンプレックス作成とATP自己供給型モータータンパク質ナノバイオマシン及びATP自己供給移動方法に関する。   The present invention relates to the transport of functional polymer microparticles by motor proteins, or the movement of motor proteins in the presence of non-ATP, more specifically, by the reaction between the ATP-producing enzyme immobilized on the microparticles and the substrate, ATP self-supplied, microtubules move on a kinesin-immobilized substrate, biotin-modified anisotropic polymer microparticles, microtubule and microparticle complexes using this, and ATP self-supply motor protein nanobiomachine and ATP It relates to a self-supplied transfer method.

(発明の背景)
細胞内の輸送機構は、分子の運動を誘導する経路として働く線維状のポリマーである微小管を利用する。分子の輸送は、微小管系モータータンパク質であるキネシン及びダイニンによって行われる。これらのタンパク質は、ATP加水分解によるエネルギーを利用して、微小管に沿って一方向に運動して特定の目的地に分子を輸送する。
直径24 nmの細胞骨格線維である微小管は細胞内で複数の役割を果たしている。例えば、微小管は神経細胞軸索の中を通っており、細胞体と神経末端の間で物質や膜小胞の双方向の輸送を可能にしている。微小管はGTP結合チューブリンタンパク質サブユニットからなる高分子である。各々のサブユニットは、α−チューブリンおよびβ−チューブリンのヘテロ二量体で、それぞれ複数のイソ型が存在する。チューブリンは2つのGTP分子に2つの異なる部位で結合し、3つのチューブリンの全ては、不変のグリシンリッチ領域を共有し、その領域はヌクレオチド結合部位の1つへのアクセスの制御に関与していると考えられる。
(Background of the Invention)
The intracellular transport mechanism utilizes microtubules, which are fibrous polymers that act as pathways that induce molecular motion. Molecular transport is performed by the microtubule motor proteins kinesin and dynein. These proteins use the energy from ATP hydrolysis to move in one direction along microtubules and transport molecules to specific destinations.
Microtubules, 24 nm diameter cytoskeletal fibers, play multiple roles within the cell. For example, microtubules pass through nerve cell axons, allowing bidirectional transport of substances and membrane vesicles between the cell body and nerve endings. Microtubules are macromolecules composed of GTP-bound tubulin protein subunits. Each subunit is a heterodimer of α-tubulin and β-tubulin, each having multiple isoforms. Tubulin binds to two GTP molecules at two different sites, and all three tubulins share an invariant glycine-rich region that is involved in controlling access to one of the nucleotide binding sites. It is thought that.

上記のキネシン-微小管系を用いて、目的物質を輸送させる研究が盛んに行われている。近年は、微小管を基板上に固定化し、キネシンの運動を観察する方法もあるが、微小管を固定化するのが難しい。そのため多くは、キネシンをガラス基板上に物理的に固定化させ、微小管を運動させるin vitro motility assay(非特許文献1)が一般的に使用されている。   Research on transporting target substances using the above kinesin-microtubule system has been actively conducted. In recent years, there is a method of fixing the microtubule on the substrate and observing the motion of kinesin, but it is difficult to fix the microtubule. For this reason, in vitro motility assay (Non-patent Document 1) is generally used in which kinesin is physically immobilized on a glass substrate and microtubules are moved.

Hessらは、高さ1μmの凹凸のある基板を作製し、その基板上で微小管を移動させた。微小管は凸部上を移動せずにその周囲を移動した。これにより、微小管−キネシン系による表面の凹凸イメージングが可能になっている(非特許文献2)。   Hess et al. Fabricated a 1 μm-high uneven substrate and moved the microtubules on the substrate. The microtubule moved around the convex part without moving. Thereby, surface unevenness imaging by a microtubule-kinesin system is possible (Non-Patent Document 2).

Bachandらは、ビオチン化微小管を用いて、アビジン化された量子ドットを微小管上に固定化し、輸送することに成功した。(非特許文献3)   Bachand et al. Successfully immobilized and transported avidinized quantum dots on microtubules using biotinylated microtubules. (Non Patent Literature 3)

微細加工技術を用いて、単一方向に微小管を運動させる報告もなされており、人工的に離れた別の場所に目的物質を輸送することは可能である。(非特許文献4)
また、これまで量子ドットの様な粒子を微小管が輸送した例(非特許文献5)はあるが、更なる物を量子ドットに乗せることはできない。機能のある物質(酵素)を微粒子上に載せ、輸送を行った例は報告されていない。
一方、本発明者は、エポキシ環と水酸基をそれぞれ微粒子の異なるドメインに持たせた異方性ラテックス微粒子を用いて、水酸基側を活性エステル型ビオチン誘導体と反応させ、微粒子の片側のみをビオチン化した異方性ビチオン化ラテックス微粒子を調製し、さらに微粒子上のエポキシを通じてピルビン酸キナーゼ(pyruvate kinase)をビオチン化微粒子に固定化することにより、酵素とビオチンを担持した異方性高分子微粒子を開発して、既に特許出願している(特許文献1参照)。
また、ヒドロキシエチルメタクリレートモノマーとメチルメタクリレートモノマーとエチレンジメタクリレートモノマーを重合開始剤の存在下でソープフリー乳化重合させ、シードポリマー粒子を合成し、次いで、スチレンモノマーとグリシジルメタクリレートモノマーとジビニルベンゼンモノマー及び溶媒を加えて、水中でソープフリーシード乳化重合を行い、官能基として水酸基とエポキシ環をそれぞれ微粒子の異なる大きさのドメインに持たせた異方性異方性ラテックス微粒子。エポキシ基をアミノ基に変換し、ビオチンを結合させた異方性ビチオン化ラテックス微粒子。さらに、異方性ビチオン化ラテックス微粒子の水酸基をエピクロルヒドリン等と反応させて、エポキシ基に変え、酵素を固定した異方性ビチオン化ラテックス微粒子。また、酵素が、ピルビン酸キナーゼ(pyruvate kinase)である異方性ビチオン化ラテックス微粒子等を開発し、すでに特許出願している(特許文献2参照)。
しかし、このような異方性ビチオン化ラテックス微粒子はリンカーが短すぎるため、効率的にストレプトアビジンを介して、ビオチン化微小管に結合させることが出来なかった。
It has been reported that a microtubule is moved in a single direction using a microfabrication technique, and it is possible to transport a target substance to another place artificially separated. (Non-Patent Document 4)
In addition, there is an example (Non-Patent Document 5) in which particles such as quantum dots have been transported so far, but it is not possible to place further objects on the quantum dots. There has been no report of a case where a functional substance (enzyme) is placed on a fine particle and transported.
On the other hand, the present inventors used anisotropic latex fine particles each having an epoxy ring and a hydroxyl group in different domains of the fine particles, reacted the hydroxyl side with an active ester biotin derivative, and biotinylated only one side of the fine particles. Development of anisotropic polymer microparticles carrying enzyme and biotin by preparing anisotropic bithionized latex microparticles and further immobilizing pyruvate kinase on biotinylated microparticles through epoxy on the microparticles A patent application has already been filed (see Patent Document 1).
In addition, hydroxyethyl methacrylate monomer, methyl methacrylate monomer and ethylene dimethacrylate monomer are soap-free emulsion polymerized in the presence of a polymerization initiator to synthesize seed polymer particles, then styrene monomer, glycidyl methacrylate monomer, divinylbenzene monomer and solvent In addition, anisotropic anisotropic latex fine particles in which soap-free seed emulsion polymerization is carried out in water and the functional groups have hydroxyl groups and epoxy rings in domains of different sizes. Anisotropic bitionated latex fine particles in which epoxy group is converted to amino group and biotin is bound. Furthermore, anisotropic bithionized latex fine particles in which hydroxyl groups of anisotropic bithionized latex fine particles are reacted with epichlorohydrin or the like to convert them into epoxy groups and to fix enzymes. In addition, anisotropic bithionized latex microparticles whose enzyme is pyruvate kinase have been developed, and a patent application has already been filed (see Patent Document 2).
However, since such anisotropic bithionized latex fine particles have too short a linker, they cannot be efficiently bound to biotinylated microtubules via streptavidin.

特開2005−58101号公報JP 2005-58101 A 特開2005−113034号公報Japanese Patent Laid-Open No. 2005-113034 Vale, R. D.; Reese, T. S.; Sheetz, M. P. Cell. 1985, 42: 39-50.Vale, R. D .; Reese, T. S .; Sheetz, M. P. Cell. 1985, 42: 39-50. Surface Imaging by Self-Propelled Nanoscale Probes Hess, H.; Clemmens, J.; Howard, J.; Vogel, V.; Nano Lett.; (Communication); 2002; 2(2); 113-116.)Surface Imaging by Self-Propelled Nanoscale Probes Hess, H .; Clemmens, J .; Howard, J .; Vogel, V .; Nano Lett .; (Communication); 2002; 2 (2); 113-116.) Assembly and Transport of Nanocrystal CdSe Quantum Dot Nanocomposites Using Microtubules and Kinesin Motor Proteins Bachand, G. D.; Rivera, S. B.; Boal, A. K.; Gaudioso, J.; Liu, J.; Bunker, B. C.; Nano Lett.; (Communication); 2004; 4(5); 817-821.Assembly and Transport of Nanocrystal CdSe Quantum Dot Nanocomposites Using Microtubules and Kinesin Motor Proteins Bachand, GD; Rivera, SB; Boal, AK; Gaudioso, J .; Liu, J .; Bunker, BC; Nano Lett .; (Communication); 2004 ; 4 (5); 817-821. Hiratsuka, Y.; Tada, T.; Oiwa, K.; Kanayama, T.; Uyeda, T. Q. Controlling the direction of kinesin-driven microtubule movement along microlithographic tracks. Biophys. J. 81, 1555-1561 (2001).Hiratsuka, Y .; Tada, T .; Oiwa, K .; Kanayama, T .; Uyeda, T. Q. Controlling the direction of kinesin-driven microtubule movement along microlithographic tracks. Biophys. J. 81, 1555-1561 (2001). Bachand, G. D. et al. Assembly and transport of nanocrystal CdSe quantum dot nanocomposites using microtubules and kinesin motor proteins. Nano Lett. 4, 817-821 (2004).Bachand, G. D. et al. Assembly and transport of nanocrystal CdSe quantum dot nanocomposites using microtubules and kinesin motor proteins.Nano Lett. 4, 817-821 (2004).

本発明者は、微小管に結合させることが出来る酵素修飾異方性ビチオン化ラテックス微粒子、これを用いた微小管と微粒子のコンプレックス及びATP自己供給するナノバイオマシンを提供するべく研究を続けた。
モータータンパク質の輸送能力の有用性はこれまでにも示唆されてきたが、微小管に直接、輸送したい物質、特に高分子量の物質を修飾することは困難であり、また修飾効率も低い。
このように、機能性高分子微粒子を微小管に固定化し、輸送した例はない。また、この微粒子上のエポキシ官能基を通じて様々な化学、生体物質を微粒子上に固定化でき、分子モーターによる運輸が実現できる。
キネシンが分子モーターとして駆動するには、ATPの存在が不可欠である。従来、キネシンを用いて微小管を移動させる場合、使用するバッファー中にはATPを添加する必要があった。このATPは生体内では多量に存在するので問題はないが、人工的に合成したものは高価という問題点がある。そこで、微小管自体にATPを合成するような機能を付与すれば非ATP存在下でキネシンを駆動し移動が行える。今回、微小管に、ATP生成酵素であるピルビン酸キナーゼ(PK)を修飾した微粒子を固定化することで、高価なATPを必要とせずに、モータータンパク質ナノバイオマシン自身がATPを合成することで、その運動を実現できる。
The present inventor continued research to provide enzyme-modified anisotropic bithionized latex microparticles that can be bound to microtubules, a microtubule-microparticle complex using this, and an ATP self-feeding nanobiomachine.
The usefulness of motor protein transport ability has been suggested so far, but it is difficult to modify a substance to be transported directly to a microtubule, particularly a high molecular weight substance, and the modification efficiency is low.
Thus, there is no example in which functional polymer fine particles are immobilized on a microtubule and transported. Moreover, various chemical and biological substances can be immobilized on the fine particles through the epoxy functional groups on the fine particles, and transport by molecular motor can be realized.
The presence of ATP is essential for kinesin to drive as a molecular motor. Conventionally, when moving microtubules using kinesin, it was necessary to add ATP to the buffer used. This ATP is not a problem because it exists in a large amount in the living body, but the artificially synthesized one has a problem that it is expensive. Therefore, if a function for synthesizing ATP is added to the microtubule itself, kinesin can be driven and moved in the presence of non-ATP. This time, by immobilizing microparticles modified with pyruvate kinase (PK), an ATP-generating enzyme, in the microtubule, the motor protein nanobiomachine itself synthesizes ATP without requiring expensive ATP, That movement can be realized.

上記目的を達成するために本発明は、異方性高分子微粒子に共有結合的に、ピルビン酸キナーゼ(PK)を固定化し、片側にだけ酵素、もう片方に、化学構造式1に示されるリンカーであるポリエチレングリコール(式中、n=3〜100)含有するビオチンを位置特異的に固定化することに成功した。
すなわち、本発明は、広い領域のドメインAにあるエポキシ基と狭い領域のドメインBにある水酸基を、それぞれ微粒子に持たせた異方性ラテックス微粒子であり、エポキシ側を酵素と反応させ、水酸基側を化学構造式1
(式中、n=3〜100)
で示されるビオチン誘導体に結合させた酵素修飾異方性ビチオン化ラテックス微粒子である。
また、本発明は、酵素がピルビン酸キナーゼとすることが望ましい。
さらに、本発明は、広い領域のドメインAにあるエポキシ基と狭い領域のドメインBにある水酸基を、それぞれ微粒子に持たせた異方性ラテックス微粒子であり、エポキシ側を酵素と反応させ、水酸基側を化学構造式1に示されるポリエチレングリコール(式中、n=3〜100)含有するビオチンに結合させた酵素修飾異方性ビチオン化ラテックス微粒子に、さらにストレプトアビジンを結合させ、ビオチン化微小管に結合させた微小管と微粒子のコンプレックスである。
また、本発明は、酵素がピルビン酸キナーゼとすることが望ましく、このようにすることにより、微小管と微粒子のコンプレックスをキネシン固定化基板上移動させることができるATP自己供給型モータータンパク質ナノバイオマシンとすることができる。
さらに、本発明は、広い領域のドメインAにあるエポキシ基と狭い領域のドメインBにある水酸基を、それぞれ微粒子に持たせた異方性ラテックス微粒子であり、エポキシ側を酵素と反応させ、水酸基側を化学構造式1に示されるビオチン誘導体に結合させ、さらにストレプトアビジン、及びビオチン化微小管に結合させた微小管と微粒子のコンプレックス体を用いて、ATP自己供給しながら、キネシン固定化基板上移動させるナノバイオマシンである。
In order to achieve the above-mentioned object, the present invention is directed to immobilizing pyruvate kinase (PK) covalently on anisotropic polymer fine particles, with an enzyme only on one side, and a linker represented by chemical structural formula 1 on the other side. Succeeded in regiospecifically immobilizing biotin containing polyethylene glycol (where n = 3 to 100).
That is, the present invention is anisotropic latex fine particles in which an epoxy group in a wide domain A and a hydroxyl group in a narrow domain B are provided in fine particles, respectively, and the epoxy side is reacted with an enzyme so that the hydroxyl side The chemical structural formula 1
(Where n = 3 to 100)
It is the enzyme modification anisotropic bitionated latex fine particle couple | bonded with the biotin derivative shown by these.
In the present invention, the enzyme is preferably pyruvate kinase.
Furthermore, the present invention is an anisotropic latex fine particle in which an epoxy group in a wide area domain A and a hydroxyl group in a narrow area domain B are provided in fine particles, respectively, and the epoxy side is reacted with an enzyme, and the hydroxyl side Is further bound to biotinylated microtubules by further binding streptavidin to enzyme-modified anisotropic biotinylated latex microparticles bound to biotin containing polyethylene glycol represented by the chemical structural formula 1 (where n = 3 to 100). It is a complex of bound microtubules and fine particles.
Further, the present invention is preferably an ATP self-feeding motor protein nanobiomachine capable of moving a complex of microtubules and microparticles on a kinesin-immobilized substrate by using pyruvate kinase as an enzyme. can do.
Furthermore, the present invention is an anisotropic latex fine particle in which an epoxy group in a wide area domain A and a hydroxyl group in a narrow area domain B are provided in fine particles, respectively, and the epoxy side is reacted with an enzyme, and the hydroxyl side Is transferred to a kinesin-immobilized substrate while self-supplied with ATP using a complex of microtubules and microparticles bound to a biotin derivative represented by the chemical structural formula 1, and further bound to streptavidin and biotinylated microtubules It is a nano bio machine.

本発明の酵素修飾異方性高分子微粒子は、容易にビオチン化微小管とビオチン−アビジン相互作用を介し結合することができる。酵素修飾異方性高分子微粒子固定化微小管を開発した結果、本微小管は、微粒子を搭載後、(1)ATP存在下で、キネシン固定化基板上を移動した。(2)非ATP存在下でも、溶液中の(ホスホエノ−ルピルビン酸(PEP)、アデノシン二リン酸(ADP)を基質として、微粒子上のピルビン酸キナーゼ(酵素)がATPを自己供給することでキネシンの駆動による微小管の運動を可能にした。
The enzyme-modified anisotropic polymer fine particles of the present invention can be easily bound to biotinylated microtubules via biotin-avidin interaction. As a result of developing enzyme-modified anisotropic polymer microparticle-immobilized microtubules, the microtubules moved on the kinesin-immobilized substrate in the presence of ATP after loading the microparticles. (2) Even in the presence of non-ATP, kinesin is produced by self-supply of ATP by pyruvate kinase (enzyme) on the microparticles using phosphoenolpyruvate (PEP) and adenosine diphosphate (ADP) as substrates in solution. The microtubules can be moved by driving.

本発明においては、酵素としては、PGAキナーゼ、アデニル酸キナーゼ、ATP合成酵素等がありとくにピルビン酸キナーゼが好ましく用いられる。
アビジンとしては、純度の高いストレプトアビジンンが好ましく用いられる。
本発明の酵素とビオチン修飾異方性高分子微粒子結合微小管は、微小管上に、生体分子である酵素が微粒子を介して導入した形になる(図−1)。本微小管は、微粒子を固定化後もその運動性能が低下しないことから、物質輸送可能なナノバイオマシンを構築できる。また、固定化した酵素の種類はタンパク質表面のアミノ基と、微粒子上のエポキシ基との反応による物なので特に限定されるものではない。今回は、ATP生成酵素であることから、基質存在下でATPを自己供給できる。溶液中に高価なATPを添加するのに対し、非ATP存在下で微小管の移動を実現することは、非常に経済的で、有用である。
本発明の酵素修飾異方性高分子微粒子結合微小管を製造するに際して、用いられる微小管は、蛍光物質であるローダミン、もしくはビオチン化チューブリンを用いて調製された物が良い。
本発明で用いることができる蛍光物質としては、何でも良いが、身近にあるものとしては、ローダミン、FITC、BODIPY FL-X [6-((4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-propionyl)amino)hexanoic acid succinimidyl ester]、OregonGreen514、Cye dyeシリーズを挙げることができる。とくにローダミンが好ましく用いられる。
本発明において、微小管を構成するチューブリンモノマーのビオチン化に際して、ビオチン化試薬のリンカーの長さは特に限定されるものではないが、身近にあるものとしては、Pierce社製の、Biotin-(Long Arm)-NHS、EZ-link NHS-LC-LC-Biotinを挙げることができる。とくにBiotin-(Long Arm)-NHSが好ましく用いられる。
In the present invention, examples of the enzyme include PGA kinase, adenylate kinase, ATP synthase, and pyruvate kinase is particularly preferably used.
As avidin, streptavidin with high purity is preferably used.
The enzyme and biotin-modified anisotropic polymer microparticle-coupled microtubule of the present invention is in a form in which an enzyme, which is a biomolecule, is introduced onto the microtubule through the microparticle (FIG. 1). This microtubule does not deteriorate its motility even after the microparticles are immobilized, so that a nanobiomachine capable of transporting substances can be constructed. In addition, the type of immobilized enzyme is not particularly limited because it is a product of a reaction between an amino group on the protein surface and an epoxy group on the fine particle. Since it is an ATP-producing enzyme this time, ATP can be self-supplied in the presence of a substrate. It is very economical and useful to achieve microtubule migration in the presence of non-ATP while adding expensive ATP in solution.
When producing the enzyme-modified anisotropic polymer fine particle-bound microtubule of the present invention, the microtubule used may be one prepared using rhodamine or biotinylated tubulin, which is a fluorescent substance.
As the fluorescent substance that can be used in the present invention, anything may be used, but examples of familiar substances include rhodamine, FITC, BODIPY FL-X [6-((4,4-difluoro-5,7-dimethyl-4- bora-3a, 4a-diaza-s-indacene-3-propionyl) amino) hexanoic acid succinimidyl ester], OregonGreen514, Cye dye series. In particular, rhodamine is preferably used.
In the present invention, the length of the linker of the biotinylation reagent is not particularly limited when biotinylating the tubulin monomer constituting the microtubule, but as a familiar one, Biotin- (Pierce, Biotin- ( Long Arm) -NHS and EZ-link NHS-LC-LC-Biotin. In particular, Biotin- (Long Arm) -NHS is preferably used.

(酵素とビオチン修飾異方性高分子微粒子の調製)
<異方性高分子微粒子の調製>
特許文献1と同じ方法で、異方性ラテックス微粒子を調製した。
まずグリシジルメタクリレート(GMA)とジビニルベンゼンのソープフリー乳化重合により親水的なポリ(グリシジルメタクリレート-ジビニルベンゼン)シード粒子[P(GMA-DVB)]の調製と調製した。
GMA 14 g/DVB 1 g/重合開始剤V-50 0.45 g/水約285gを用い、200 rpmの回転速度、70 ℃で15時間重合を行った。モノマー変化率、粒子径はそれぞれ100wt%、約180 nmである。開始剤V-50の使用は重合中に反応液のpHを中性に保ち、GMAのエポキシド基の開環反応を防ぐために有効である。一方、過硫酸系の開始剤を用いると、重合反応に連れて反応液が酸性となり、70℃でエポキシドが開環してしまう。
その後、上記で調製した親水性のポリ(グリシジルメタクリレート-ジビニルベンゼン)[P(GMA-DVB)]をシード粒子(seed particle)とし、スチレンモノマー、2-メルカプトエタノール、重合開始剤V-50及び水を添加し、ソープフリーシード乳化重合により異方性のポリ(グリシジルメタクリレート-ジビニルベンゼン)とポリ(スチレン)複合微粒子[P(GMA-DVB)/P(St)]の調製を行った。P(GMA-DVB)シードは、使用する前にセルロース膜を用いて水道水及び純水でそれぞれ24時間の透析を行い、未反応のモノマーと開始剤、オリゴマーなどを除去した。
P(GMA-DVB)シード粒子(seed particle)に、スチレンモノマー2 g/2-メルカプトエタノール0.02 g/重合開始剤(V-50) 0.04g/トルエン2 g/純水 約130 gを添加し、70 ℃、200 rpmで24時間重合を行うことにより、目的とする微粒子が得られた。得られた複合微粒子の形態は透過型電子顕微鏡により観察された。

<異方性高分子微粒子の水酸基側のビオチン化>
水酸基の反応性が低いため、ジメチルアミノピリジン(DMAP)の存在下、活性エステル型ビオチン、biotin-PEG-CO2-NHS (Shearwater Polymers, Inc.; 重量平均分子量約3400のものを用いた(約69個エチレングリコール繰り返しユニットを持つ)、構造は化学構造式1に示す)を用いた。10 g のラテックスを脱水アセトニトリルで三回洗浄した後、20 gのアセトニトリルに分散した。その後、biotin-PEG-CO2-NHS (10 mg)と DMAP(0.05 g)を含むアセトニトリル溶液 (10 g)を混合した。反応は 65 ℃、アルゴンガス下で24時間行った。

<ピルビン酸キナーゼの異方性高分子微粒子の固定化>
ピルビン酸キナーゼは微粒子表面上のエポキシ基を介して直接微粒子に固定化した。1 g のラテックスをpH 7.4のリン酸バッファーで二回洗浄後、2 ml のpH 7.4のリン酸バッファーに分散した。その後、約790 mgのピルビン酸キナーゼを添加した。酵素固定化反応は、室温(約25℃)で回転しながら16時間を行った。固定化後、微粒子を遠心分離し、1 M の塩化カリウム(KCl)溶液を用いて、物理的に吸着している酵素の洗浄を四回行った。遠心分離後の上澄みと洗浄後分離した塩化カリウム溶液を収集し、その溶液中のタンパク質を280nmにおけるUV吸収により計測し、微粒子への酵素固定化量を算出した。微粒子へ固定化量は1gのラテックス微粒子あたり約75mgであった。
(Preparation of enzyme and biotin-modified anisotropic polymer particles)
<Preparation of anisotropic polymer fine particles>
By the same method as Patent Document 1, anisotropic latex fine particles were prepared.
First, hydrophilic poly (glycidyl methacrylate-divinylbenzene) seed particles [P (GMA-DVB)] were prepared and prepared by soap-free emulsion polymerization of glycidyl methacrylate (GMA) and divinylbenzene.
Polymerization was carried out at a rotation speed of 200 rpm at 70 ° C. for 15 hours using 14 g of GMA / DVB 1 g / polymerization initiator V-50 0.45 g / about 285 g of water. The monomer change rate and particle size are 100 wt% and about 180 nm, respectively. The use of initiator V-50 is effective for keeping the pH of the reaction solution neutral during polymerization and preventing ring-opening reaction of the epoxide group of GMA. On the other hand, when a persulfuric acid-based initiator is used, the reaction solution becomes acidic with the polymerization reaction, and the epoxide is ring-opened at 70 ° C.
Thereafter, the hydrophilic poly (glycidyl methacrylate-divinylbenzene) [P (GMA-DVB)] prepared above was used as seed particles, and styrene monomer, 2-mercaptoethanol, polymerization initiator V-50 and water. And anisotropic poly (glycidyl methacrylate-divinylbenzene) and poly (styrene) composite fine particles [P (GMA-DVB) / P (St)] were prepared by soap-free seed emulsion polymerization. Before use, P (GMA-DVB) seeds were dialyzed for 24 hours with tap water and pure water using a cellulose membrane to remove unreacted monomers, initiators, oligomers, and the like.
To P (GMA-DVB) seed particles, add 2 g styrene monomer 0.02 g / 0.02 g polymerization initiator (V-50) 0.04 g / toluene 2 g / pure water about 130 g, Polymerization was performed at 70 ° C. and 200 rpm for 24 hours to obtain the desired fine particles. The morphology of the obtained composite fine particles was observed with a transmission electron microscope.

<Biotinylation on the hydroxyl side of anisotropic polymer particles>
Due to the low reactivity of the hydroxyl group, active ester biotin, biotin-PEG-CO 2 -NHS (Shearwater Polymers, Inc .; weight average molecular weight of about 3400 was used in the presence of dimethylaminopyridine (DMAP) (about 69 ethylene glycol repeating units), and the structure is shown in chemical structural formula 1. 10 g of latex was washed three times with dehydrated acetonitrile and then dispersed in 20 g of acetonitrile. Thereafter, an acetonitrile solution (10 g) containing biotin-PEG-CO 2 —NHS (10 mg) and DMAP (0.05 g) was mixed. The reaction was carried out at 65 ° C. under argon gas for 24 hours.

<Immobilization of anisotropic polymer particles of pyruvate kinase>
Pyruvate kinase was directly immobilized on the microparticles via an epoxy group on the surface of the microparticles. 1 g of latex was washed twice with a pH 7.4 phosphate buffer and then dispersed in 2 ml of a pH 7.4 phosphate buffer. Then about 790 mg of pyruvate kinase was added. The enzyme immobilization reaction was performed for 16 hours while rotating at room temperature (about 25 ° C.). After immobilization, the microparticles were centrifuged, and the physically adsorbed enzyme was washed four times with a 1 M potassium chloride (KCl) solution. The supernatant after centrifugation and the potassium chloride solution separated after washing were collected, the protein in the solution was measured by UV absorption at 280 nm, and the amount of enzyme immobilized on the microparticles was calculated. The amount immobilized on fine particles was about 75 mg per 1 g of latex fine particles.

(酵素とビオチン修飾異方性高分子微粒子と微小管のコンプレックス(MTs-Particle)の調製)
<微小管の調製>
本発明に用いた微小管は、ローダミン修飾/ビオチン化 (以下RB)チューブリン (仕込み比 1:1)を BRP80 (80 mM PIPES, pH 6.8, 1 mM MgCl2, 1mM EGTA, 10 % glycerol, 5 mM GTP) 緩衝液に懸濁し 37 °C で40分間 インキュベートさせ、最後にタキソールで微小管を安定させることでRB-微小管を調製した。
得られたRB-微小管の、ビオチン化とローダミン化の分布を調べる目的でAlexa Fluor 488修飾したアビジンを用いた。アビジンは微小管に分布しているビオチンと特異的に結合できる。蛍光観察の結果、ビオチン化チューブリンとローダミンラベルチューブリンは、ランダムに重合し微小管を形成していることが確認された(図−2)。
<酵素とビオチン修飾異方性高分子微粒子の修飾>
上記実施例1に示した酵素とビオチン修飾した異方性高分子微粒子を微小管と結合するために、更なる修飾を行った。まず、微粒子を蛍光可視化するため、固定化酵素(ピルビン酸キナーゼ)に蛍光剤であるBODIPY FL-Xで標識した。0.1 g の酵素固定化した微粒子のpH7.4のリン酸バッファーに2mlのBODIPY FL-X溶液(1mg/ml)を加え、2時間反応を行った。遠心分離で洗浄後、この微粒子に、2mlストレプトアビジン溶液(1mg/ml)を加え反応を行った。反応後、遠心分離により未反応のストレプトアビジンと微粒子を分離した。
<酵素とビオチン修飾異方性高分子微粒子と微小管の結合>
上記に調製された、0.5ml微小管を200mlアッセイバッファー(10 mM Tris-acetate (pH 7.5), 50 mM potassium acetate, 2.5 mM EGTA, 4 mM magnesium sulfate, 20mM taxol)で希釈し、その中、上記に修飾した微粒子溶液を50ml加え、2−10分間反応を行って、微粒子と微小管のコンプレックスを調製した。溶液中に微粒子と微小管の結合を図―3に示す。
(Preparation of enzyme, biotin-modified anisotropic polymer particles and microtubule complex (MTs-Particle))
<Preparation of microtubules>
The microtubules used in the present invention consist of rhodamine-modified / biotinylated (hereinafter referred to as RB) tubulin (feeding ratio 1: 1) with BRP80 (80 mM PIPES, pH 6.8, 1 mM MgCl 2 , 1 mM EGTA, 10% glycerol, 5 RB-microtubules were prepared by suspending in mM GTP) buffer and incubating at 37 ° C for 40 minutes, and finally stabilizing the microtubules with taxol.
Avidin modified with Alexa Fluor 488 was used for the purpose of examining the distribution of biotinylation and rhodamineation in the obtained RB-microtubules. Avidin can specifically bind to biotin distributed in microtubules. As a result of fluorescence observation, it was confirmed that biotinylated tubulin and rhodamine labeled tubulin were randomly polymerized to form microtubules (FIG. 2).
<Modification of enzyme and biotin-modified anisotropic polymer particles>
In order to bind the enzyme shown in Example 1 above and biotin-modified anisotropic polymer fine particles to the microtubule, further modification was performed. First, in order to visualize the fluorescence of the microparticles, the immobilized enzyme (pyruvate kinase) was labeled with BODIPY FL-X as a fluorescent agent. 2 ml of BODIPY FL-X solution (1 mg / ml) was added to 0.1 g of enzyme-immobilized fine particle pH 7.4 phosphate buffer and reacted for 2 hours. After washing by centrifugation, a reaction was performed by adding 2 ml of a streptavidin solution (1 mg / ml) to the fine particles. After the reaction, unreacted streptavidin and fine particles were separated by centrifugation.
<Binding of enzyme, biotin-modified anisotropic polymer fine particle and microtubule>
The 0.5 ml microtubule prepared above was diluted with 200 ml assay buffer (10 mM Tris-acetate (pH 7.5), 50 mM potassium acetate, 2.5 mM EGTA, 4 mM magnesium sulfate, 20 mM taxol), 50 ml of the fine particle solution modified as described above was added and reacted for 2 to 10 minutes to prepare a complex of fine particles and microtubules. Figure 3 shows the binding between microparticles and microtubules in the solution.

(ATPを自己供給するキネシンモーターナノバイオマシンの作製)
スライドガラス、カバーガラスを用いて作製した図―4 のような フローチャンバーを用いてATPを自己供給するキネシンモーターナノバイオマシンの作製を行った。
フローチャンバー内にアッセイバッファー(10 mM Tris-acetate (pH 7.5), 50 mM potassium acetate, 2.5 mM EGTA, 4 mM magnesium sulfate) 中に溶解したキネシン溶液を挿入し物理的に基板にキネシンを2分間固定化した。キネシン(K 560)は、大腸菌であるEscherichia coliより発現させたものを用いた。アッセイバッファー (10 mM Tris-acetate (pH7.5), 50 mM potassium acetate, 2.5 mM EGTA, 4 mM magnesium sulfate)で洗浄後、上記に調製した微小管アッセイバッファー溶液(10mM Tris-acetate (pH 7.5), 50 mM potassium acetate, 2.5 mM EGTA, 4 mM magnesium sulfate)を同様にフローチャンバー内に挿入し微小管を基板上のキネシンに2分間固定化を行った。アッセイバッファー(10 mM Tris-acetate (pH 7.5), 50 mM potassium acetate, 2.5 mM EGTA, 4 mM magnesium sulfate)で洗浄後、上記に調製した蛍光ラベル化およびストレプトアビジンを結合した酵素修飾異方性高分子微粒子の溶液20mlをさらにフローチャンバーに添加し、酵素修飾異方性高分子微粒子を微小管に結合させた。アッセイバッファー(10 mM Tris-acetate (pH 7.5), 50 mM potassium acetate, 2.5 mM EGTA, 4 mM magnesium sulfate)で洗浄後、蛍光顕微鏡にて微小管の微粒子搭載能力と、運動を評価した。
まず、MTs-Particleの運動特性を明確するために、1mM ATPバッファー溶液をフローチャンバー内に添加した。MTs-Particleは、2本MTs-Particleが重なっても架橋しあうこともなく、滑らかに移動した。また、MTs-Particleが基板上のフリーな酵素固定化微粒子、また溶液中の微粒子を移動しながら搭載していく様子も確認された。
つぎに、1mM ATPバッファー溶液の代わりにADPとPEPバッファー溶液をフローチャンバー内に添加した。MTs-Particleは、ADPとPEP濃度が1mMの時にキネシン固定化基板上動くことを確認できた。図―5A-5Cから分かるようにMTs-Particleは、1方向にのみ移動している。つまり、この動きは熱によるランダム歩行ではない。逆に、観察される一つ一つのMTs-Particle速度には差がある。この理由として、MTの長さ、微粒子密度、キネシン固定化密度によるものと推察できる。図―5Bに示されるMTs-Particleでは、緑の蛍光で表される点が、微粒子で、90%の微粒子がMTs上に観察された。
速度の径時変化を調べた(図―6A)。MTs-Particleは、基質(ADP、PEP)を挿入してから15分後に動き始めた。その後、急速に速度は増加し始め、最大で3-4.5nm/secになり、ゆっくり速度は落ちた。PEP濃度(1mM)は大過剰であることから、この速度の減少はPEP濃度の減少によるものではない(PEPのMichealis constant; Km=256 μM)。図―6BにMTs-Particle長の存在頻度を示す。平均MTs-Particle長は11μmであり、50%以上が10μm以下であった。
30μM ATP溶液を加えた、MTsは滑らかにキネシンの上に動き出し、時間変化ともに指数関数的にその速度は減少していった(図―6C)。この図から、微小管の運動速度とATP濃度関係を割り出して、図―6Aに示されたMTs-Particleの運動速度の定常状態ところのATP濃度は約4.4mMであることを分かった。
これまで、ストレプトアビジンコートされた微粒子や、量子ドット(Qdot)(非特許文献5)などがビオチン−アビジン結合を通してMTsに搭載した例はあるが、今回の発明者のように機能性生体分子(酵素)を異方性微粒子に固定化し、それをMTsに搭載したナノバイオマシンへの応用例はない。つまり、これまでにもナノバイオマシンの構築に関しては報告例があったものの、複数の場所で微粒子と、MTsが凝集し、キネシンによるMTsの輸送を妨げてしまう。我々の用いた異方性微粒子であれば、酵素(目的物質固定化部位)と、ビオチン(MTsへの修飾部位)とを容易に分けてそれぞれ固定化できる。微粒子上にビオチン部位面積の制御により、MTsとの凝集が起こらない。また、化学構造式1に示したポリエチレングリコール(式中、n=3〜100)含有するビオチンの応用により、微粒子を微小管の結合効率を大幅に向上した。
(Production of kinesin motor nanobiomachine that self-supplied ATP)
A kinesin motor nanobiomachine that self-supplied ATP was prepared using a flow chamber as shown in Fig. 4 that was prepared using a slide glass and a cover glass.
A kinesin solution dissolved in assay buffer (10 mM Tris-acetate (pH 7.5), 50 mM potassium acetate, 2.5 mM EGTA, 4 mM magnesium sulfate) is inserted into the flow chamber, and the kinesin is physically fixed to the substrate for 2 minutes. Turned into. Kinesin (K 560) used was expressed from Escherichia coli, which is Escherichia coli. After washing with assay buffer (10 mM Tris-acetate (pH 7.5), 50 mM potassium acetate, 2.5 mM EGTA, 4 mM magnesium sulfate), microtubule assay buffer solution (10 mM Tris-acetate (pH 7.5) prepared above) , 50 mM potassium acetate, 2.5 mM EGTA, 4 mM magnesium sulfate) were similarly inserted into the flow chamber, and the microtubules were immobilized on kinesin on the substrate for 2 minutes. After washing with assay buffer (10 mM Tris-acetate (pH 7.5), 50 mM potassium acetate, 2.5 mM EGTA, 4 mM magnesium sulfate), enzyme-modified anisotropy with high fluorescence labeling and streptavidin prepared above was bound. 20 ml of the solution of molecular fine particles was further added to the flow chamber, and the enzyme-modified anisotropic polymer fine particles were bound to the microtubules. After washing with assay buffer (10 mM Tris-acetate (pH 7.5), 50 mM potassium acetate, 2.5 mM EGTA, 4 mM magnesium sulfate), the microtubule loading capacity and movement were evaluated with a fluorescence microscope.
First, in order to clarify the motion characteristics of MTs-Particles, a 1 mM ATP buffer solution was added to the flow chamber. MTs-Particles moved smoothly without cross-linking even when two MTs-Particles overlapped. It was also confirmed that MTs-Particles were loaded with free enzyme-immobilized fine particles on the substrate and fine particles in the solution while moving.
Next, ADP and PEP buffer solution were added into the flow chamber instead of 1 mM ATP buffer solution. It was confirmed that MTs-Particle moved on the kinesin-immobilized substrate when the ADP and PEP concentrations were 1 mM. As can be seen from FIGS. 5A-5C, MTs-Particles move only in one direction. In other words, this movement is not random walking due to heat. Conversely, there is a difference in each observed MTs-Particle velocity. It can be inferred that this is due to the MT length, fine particle density, and kinesin immobilization density. In the MTs-Particle shown in FIG. 5B, the points represented by green fluorescence were fine particles, and 90% of the fine particles were observed on the MTs.
The change of speed with time was examined (Fig. 6A). MTs-Particles started to move 15 minutes after inserting the substrates (ADP, PEP). After that, the speed began to increase rapidly, reaching a maximum of 3-4.5 nm / sec, and slowly decreased. Since the PEP concentration (1 mM) is in great excess, this decrease in rate is not due to a decrease in PEP concentration (PEP Michelis constant; Km = 256 μM). Fig. 6B shows the existence frequency of MTs-Particle length. The average MTs-Particle length was 11 μm, and 50% or more was 10 μm or less.
MTs added with 30μM ATP solution moved smoothly onto kinesin, and the rate decreased exponentially with time (Fig. 6C). From this figure, the relationship between the microtubule movement speed and the ATP concentration was determined, and it was found that the ATP concentration at the steady state of the MTs-Particle movement speed shown in Fig. 6A was about 4.4 mM.
Until now, there are examples where streptavidin-coated microparticles or quantum dots (Qdot) (Non-patent Document 5) are mounted on MTs through biotin-avidin bonds, but functional biomolecules (such as the present inventors) There is no application example to nanobiomachines in which (enzyme) is immobilized on anisotropic fine particles and mounted on MTs. In other words, although there have been reports on the construction of nanobiomachines so far, microparticles and MTs aggregate at multiple locations, hindering the transport of MTs by kinesin. With the anisotropic fine particles we used, the enzyme (target substance immobilization site) and biotin (modification site for MTs) can be easily separated and immobilized respectively. Aggregation with MTs does not occur by controlling the biotin site area on the microparticles. In addition, the application of biotin containing polyethylene glycol (wherein n = 3 to 100) represented by chemical structural formula 1 significantly improved the binding efficiency of microparticles to microtubules.

本発明の酵素とビオチン修飾異方性高分子微粒子、これを用いた微小管と微粒子のコンプレックス及びATP自己供給するナノバイオマシンは、画期的なものであり、微粒子上のビオチンはアビジンを介して種々の物質と結合可能であるため、「固定化酵素カセット」あるいは「固定化酵素デバイス」など、また、微小管と微粒子のコンプレックス及びATP自己供給するナノバイオマシンは微小空間での物質輸送、センシングなど広い分野での種々の応用が考えられ、産業上極めて利用可能性が高いものである。
The enzyme and biotin-modified anisotropic polymer microparticles of the present invention, the microtubule-microparticle complex using this, and the nanobiomachine that self-supplies ATP are epoch-making, and biotin on the microparticles is mediated by avidin. Because it can be combined with various substances, "immobilized enzyme cassette" or "immobilized enzyme device", etc. Also, microtubule and microparticle complex and ATP self-supplying nanobiomachine are mass transport and sensing in micro space Various applications in a wide range of fields are conceivable and the industrial applicability is extremely high.

本発明の酵素修飾異方性高分子微粒子結合微小管の概念図Conceptual diagram of enzyme-modified anisotropic polymer fine particle-bound microtubule of the present invention ストレプトアビジン修飾微小管の蛍光像(a) ローダミン:微小管の蛍光、 (b) BODIPI:ストプトアビジンの蛍光Fluorescence image of streptavidin-modified microtubules (a) Rhodamine: Microtubule fluorescence, (b) BODIPI: Streptavidin fluorescence 酵素とビオチン修飾異方性高分子微粒子と微小管のコンプレックスの蛍光写真Fluorescence picture of a complex of enzyme, biotin-modified anisotropic polymer particles and microtubules フローチャンバーの概念図Conceptual diagram of flow chamber ATP自己供給後の微小管の運動(a)31、(b)45、(c)61分後の画像Microtubule movement after ATP self-supply (a) 31, (b) 45, (c) Image after 61 minutes 酵素修飾異方性高分子微粒子と、それを搭載した微小管の蛍光像Enzyme-modified anisotropic polymer microparticles and fluorescent images of microtubules with them 酵素修飾異方性高分子微粒子結合微小管の速度の経時変化Time course of enzyme-modified anisotropic polymer microparticle-coupled microtubules 酵素修飾異方性高分子微粒子結合微小管の長さの分布Length distribution of enzyme-modified anisotropic polymer microparticle-bound microtubules 30μM ATP濃度の時の微小管運動速度の経時変化Time course of microtubule movement speed at 30μM ATP concentration

Claims (5)

広い領域のドメインAにあるエポキシ基と狭い領域のドメインBにある水酸基を、それぞれ微粒子に持たせた異方性ラテックス微粒子であり、エポキシ基側を酵素と反応させ、水酸側を化学構造式1
(式中、n=3〜100)
で示されるビオチン誘導体に結合させた酵素修飾異方性ビチオン化ラテックス微粒子。
An anisotropic latex fine particle in which the epoxy group in the wide domain A and the hydroxyl group in the domain B in the narrow region are respectively provided in the fine particle, the epoxy group side is reacted with an enzyme, and the hydroxyl side is represented by a chemical structural formula 1
(Where n = 3 to 100)
Enzyme-modified anisotropic bithionized latex fine particles bound to a biotin derivative represented by
酵素がピルビン酸キナーゼである請求項1に記載した酵素修飾異方性ビチオン化ラテックス微粒子。 The enzyme-modified anisotropic bithionized latex microparticle according to claim 1, wherein the enzyme is pyruvate kinase. 広い領域のドメインAにあるエポキシ基と狭い領域のドメインBにある水酸基を、それぞれ微粒子に持たせた異方性ラテックス微粒子であり、エポキシ基側を酵素と反応させ、水酸基側を化学構造式1
(式中、n=3〜100)
で示されるビオチン誘導体に結合させた酵素修飾異方性ビチオン化ラテックス微粒子に、さらにアビジンを介して、ビオチン化微小管に結合させた微小管と酵素修飾異方性ビチオン化ラテックス微粒子のコンプレックス。
An anisotropic latex fine particle in which a fine particle has an epoxy group in a wide domain A and a hydroxyl group in a narrow domain B, the epoxy group side is reacted with an enzyme, and the hydroxyl side is represented by the chemical structural formula 1
(Where n = 3 to 100)
A complex of enzyme-modified anisotropic bithiolated latex microparticles bound to biotinylated microtubules further bound to biotinylated microtubules via avidin with enzyme-modified anisotropic bithionized latex microparticles bound to the biotin derivative shown in FIG.
酵素がピルビン酸キナーゼであり、アビジンがストレプトアビジンンである請求項3に記載した微小管と微粒子のコンプレックスをキネシン固定化基板上に移動させることができるATP自己供給型モータータンパク質ナノバイオマシン。 The ATP self-supplying motor protein nanobiomachine capable of moving the microtubule and microparticle complex according to claim 3 onto a kinesin-immobilized substrate, wherein the enzyme is pyruvate kinase and avidin is streptavidin. 広い領域のドメインAにあるエポキシ基と狭い領域のドメインBにある水酸基を、それぞれ微粒子に持たせた異方性ラテックス微粒子であり、エポキシ側をピルビン酸キナーゼと反応させ、水酸基側を化学構造式1
(式中、n=3〜100)
で示されるビオチン誘導体に結合させ、さらにアビジンを介して、ビオチン化微小管に結合させたモータータンパク質ナノバイオマシンを用いて、ATP自己供給しながら、微小管と微粒子のコンプレックス体をキネシン固定化基板上に移動させるATP自己供給移動方法。
An anisotropic latex fine particle in which the epoxy group in the wide domain A and the hydroxyl group in the narrow domain B are respectively attached to the fine particles, the epoxy side is reacted with pyruvate kinase, and the hydroxyl side is represented by the chemical structural formula 1
(Where n = 3 to 100)
Using a motor protein nanobiomachine that is bound to the biotin derivative shown in Fig. 1 and then bound to biotinylated microtubules via avidin, the complex of microtubules and microparticles on the kinesin-immobilized substrate while self-supplying ATP ATP self-supply moving method to move to.
JP2004361995A 2004-12-14 2004-12-14 Enzyme and biotin modified anisotropic polymer microparticle, microtubule and microparticle complex using this, and ATP self-supply nanobiomachine Expired - Fee Related JP4264745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004361995A JP4264745B2 (en) 2004-12-14 2004-12-14 Enzyme and biotin modified anisotropic polymer microparticle, microtubule and microparticle complex using this, and ATP self-supply nanobiomachine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004361995A JP4264745B2 (en) 2004-12-14 2004-12-14 Enzyme and biotin modified anisotropic polymer microparticle, microtubule and microparticle complex using this, and ATP self-supply nanobiomachine

Publications (2)

Publication Number Publication Date
JP2006166760A JP2006166760A (en) 2006-06-29
JP4264745B2 true JP4264745B2 (en) 2009-05-20

Family

ID=36668126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004361995A Expired - Fee Related JP4264745B2 (en) 2004-12-14 2004-12-14 Enzyme and biotin modified anisotropic polymer microparticle, microtubule and microparticle complex using this, and ATP self-supply nanobiomachine

Country Status (1)

Country Link
JP (1) JP4264745B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7674635B2 (en) 2001-03-19 2010-03-09 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104020298A (en) * 2014-06-12 2014-09-03 中国科学院化学研究所 Self-powered microtubule-kinesin transport system and preparation method thereof
CN104152433B (en) * 2014-08-01 2016-06-08 中国科学院化学研究所 A kind of micro-pipe-kinesin transportation system of glucose responding and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7674635B2 (en) 2001-03-19 2010-03-09 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device

Also Published As

Publication number Publication date
JP2006166760A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
O'Reilly et al. Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility
Simmchen et al. Asymmetric hybrid silica nanomotors for capture and cargo transport: towards a novel motion‐based DNA sensor
CN101019027B (en) Biomaterial construct, producing method and application thereof
JP4464132B2 (en) Randomly arranged array group, and method for producing and using the same
Zhang et al. Bioconjugated Janus particles prepared by in situ click chemistry
RU2636460C2 (en) Systems and methods for application of transcription sequencing dependent on rotation
Generalova et al. Submicron polymer particles containing fluorescent semiconductor nanocrystals CdSe/ZnS for bioassays
Kim et al. Dual-mode fluorophore-doped nickel nitrilotriacetic acid-modified silica nanoparticles combine histidine-tagged protein purification with site-specific fluorophore labeling
Andrea et al. Adsorption of oligo-DNA on magnesium aluminum-layered double-hydroxide nanoparticle surfaces: Mechanistic implication in gene delivery
Wang et al. Rolling circle transcription-amplified hierarchically structured organic–inorganic hybrid RNA flowers for enzyme immobilization
Sedighi et al. Rapid immobilization of oligonucleotides at high density on semiconductor quantum dots and gold nanoparticles
JP4107873B2 (en) Luminescent fine particles
JP4264745B2 (en) Enzyme and biotin modified anisotropic polymer microparticle, microtubule and microparticle complex using this, and ATP self-supply nanobiomachine
Balcioglu et al. Smart-polymer-functionalized graphene nanodevices for thermo-switch-controlled biodetection
Chen et al. Fluorescent “turn off-on” small-molecule-monitoring nanoplatform based on dendrimer-like peptides as competitors
Liu et al. Development of highly fluorescent silica nanoparticles chemically doped with organic dye for sensitive DNA microarray detection
Taira et al. Loading and unloading of molecular cargo by DNA‐conjugated microtubule
JP4264746B2 (en) Molecular motor system and its applications
US11851592B2 (en) Quantum dot-containing nanoparticle and method for manufacturing same
Sekula-Neuner et al. Phospholipid arrays on porous polymer coatings generated by micro-contact spotting
Rogowski et al. Flagellated Janus particles for multimodal actuation and transport
US20230151407A1 (en) A method for multiplexed detection of a plurality of target biomolecules
JP4113950B2 (en) Anisotropic bitionated latex fine particles in which only one side of the fine particles is biotinylated
Safi Samghabadi et al. Dynamics of Filamentous Viruses in Polyelectrolyte Solutions
JP4543163B2 (en) Latex microparticles carrying an enzyme and biotin anisotropically

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees