JP4264160B2 - Optical pressure field measuring device - Google Patents

Optical pressure field measuring device Download PDF

Info

Publication number
JP4264160B2
JP4264160B2 JP16141199A JP16141199A JP4264160B2 JP 4264160 B2 JP4264160 B2 JP 4264160B2 JP 16141199 A JP16141199 A JP 16141199A JP 16141199 A JP16141199 A JP 16141199A JP 4264160 B2 JP4264160 B2 JP 4264160B2
Authority
JP
Japan
Prior art keywords
specimen
camera
pressure
angle
pressure field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16141199A
Other languages
Japanese (ja)
Other versions
JP2000346740A (en
Inventor
信義 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16141199A priority Critical patent/JP4264160B2/en
Publication of JP2000346740A publication Critical patent/JP2000346740A/en
Application granted granted Critical
Publication of JP4264160B2 publication Critical patent/JP4264160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、風洞内に設置され航空機等を模擬して製作された供試体にポルフィリン系、Lu錯体系、芳香族系等の感圧塗料或いは感温塗料を塗装し、風洞試験中の供試体に作用する圧力の大小によって、これらの塗料に生じる明るさを計測することにより、塗料が塗装された部分の供試体に作用している圧力を光学的に計測するようにした光学的圧力場計測装置の如く、特に風洞試験中に変化させる供試体の姿勢角変化によって変化する圧力場を計測するため、常に一定光量の光を正確に供試体に照射して計測装置の照度を一定に保持する必要のある光源と、圧力場を光学的に計測するために供試体の計測位置を撮影するカメラシステムとを同期作動させ、供試体の圧力場を同じ条件で計測して圧力場が正確に計測できるようにした光学的圧力場計測装置に関する。
【0002】
【従来の技術】
航空機の開発を行う場合、若しくは既存の航空機の改修を行う場合においては、予め目標とする飛行性能を達成できる機体形状を決定するために、プロトモデル又は改修モデルを設計し、コンピュータ計算等により機体まわりの空気流れを計算によって求め、機体に作用する空気力を算出することにより、これらの機体の空力性能を求め、目標とする飛行性能が達成できるようにするための種々のモデル形状の修正を行い開発機体又は改修機体の形状を決定するようにしている。
【0003】
しかしながら、機体形状がコンピュータ計算等により決定された後においても、実際の飛行を行うに当っては機体形状を縮尺して製作された実機を模擬する供試体を製作して、風洞試験を行い、その風洞試験結果にもとづいて、種々の飛行状態で実機が安全に飛行でき、しかも所期の飛行性能を達成できるか否かの確認を必ず行うとともに、所期の飛行性能を達成させることができる機体形状にするためのデータを取得するようにしている。
【0004】
このような風洞試験では、実機の飛行時に想定される種々の姿勢において、飛行時に実機に作用する空気力によって実機に生じる、揚力、抗力、横力、ピッチングモーメント、ヨーイングモーメント、およびローリングモーメントからなる6分力計測並びに実機の外面に沿って流れる空気流の流れ方向計測、あるいは実機の外表面に生じる圧力分布等の圧力場の計測、並びに実機の姿勢角を変えるためのフラップ、エルロン、およびラダー等の偏角操作に伴う姿勢角変化、いわゆる舵効き計測等を風洞中に設置された供試体で行い、そのデータを実機の製作設計に反映させるようにしている。
【0005】
このような風洞試験において行われる圧力場の計測のうち、実機の外表面に生じる圧力分布の計測は、実機の外表面にピトーレーキを設置して実際に飛行を行い計測することも行われているが、開発又は改修の初期段階では、供試体の外表面にピトーレーキを設置して、あるいは外表面に沿ってピトーレーキを移動させて、直接供試体外表面に生じている圧力を計測してデータを取得するようにしている。
【0006】
また、外表面に沿って流れる気流の流れ方向の計測は、供試体外表面に移動体としての粘度の高い油を塗布しておき、外表面に沿って流れる気流の方向に流がされる油の流れから流れの方向を計測し、又は供試体外表面に移動体としてのタフト(気流糸)の一端を貼着しておき、空気流の方向に沿って移動する気流糸の移動から計測するようにしている。
【0007】
また、外表面に沿って流れる空気流の流れ方向は、外表面の圧力分布が計測できれば、この圧力分布から求めることもできるので、特に流れ方向が飛行性能に大きな影響を及ぼす翼端又は複雑な構造のために複雑な空気の流れとなりピトーレーキによる圧力分布の計測が難しい部分を除いては、圧力分布から求めることもある。
【0008】
しかしながら、機体外表面の圧力分布の計測については、前述したピトーレーキによる計測では手間がかかり作業時間が長くなるとともに、複雑な構造部では計測が難しく、さらにはピトーレーキの設置により流れの状態が変り、これにより圧力分布が変化し正確なデータの取得が難しいため、近年では供試体に、ポルフィリン系、Lu錯体系、芳香族系等の感圧塗料或いは感温塗料を塗装しておき、風洞試験中の供試体に作用する圧力の大小によって、これらの塗料に生じる明るさを計測することにより、供試体に作用している圧力の大きさを光学的に計測するようにした、光学的圧力場計測装置を使用して供試体の外表面に生じている圧力分布、および圧力分布と密接な関係のある供試体の外表面に沿って流れる気流の方向を計測することが行なわれている。
【0009】
上述した感圧塗料で計測される圧力、すなわち圧力の大きさで変る感圧塗料の明るさは、感圧塗料塗布面に作用する気流の温度でも変化するために、感圧塗料と共に感温塗料も塗布しておき、主として感温塗料の明るさで計測される気流の温度を感圧塗料にフィードバックすることにより、感圧塗料の明るさを校正することにより、空気流の温度に影響されない、感圧塗料の明るさと感圧塗料の塗布面に作用する圧力の大きさとが正確に対応するものにするようにしている。
【0010】
さらに、上述した感圧塗料および感温塗料は、供試体に照射される光量(照度)により塗料の励起量が変化するため明るさが変る。
このため、供試体の塗料面を計測するCCDカメラ等によるカメラシステムによる撮影のために供試体の塗料面に照射する光は、常に一定光量の光を照射する必要がある。
【0011】
このために、一定明るさの光源からの光を塗料塗布面に照射して、塗料塗布面上の圧力と光学的に正確に計測するためには、供試体の種々の個所の塗料塗布面を撮影するため、又は風洞試験中に供試体の姿勢角を変化させ移動させる必要のあるCCDカメラの動きと同期させて光源の位置、および撮影個所に向けて光を照射する照射角度を変えて、塗料塗布面には常に一定照度にするための光が照射されるようにする必要がある。
【0012】
しかしながら、従来の光学的圧力場計測装置では、図3に示すように、塗料が塗布された供試体05の外表面を撮影するCCDカメラ02と、撮影のために撮影個所に向けて一定光量の光を照射する必要のある4個からなる光源03とは別々に設置され、しかもCCDカメラ02と光源03とは独立に操作するようにしているために、風洞01内に設置された供試体05の外表面に塗布された感圧塗料或いは感温塗料の所定位置を撮影して、当該位置の圧力を光学的に計測する場合には、まず、光源03の位置、光軸方向を調整して撮影を行う位置の塗料塗布面に一定強度の光が照射される照度が一定になるように調整をした後に、CCDカメラ03の画角内に撮影位置が納まるように、手動でCCDカメラ03の位置および撮影する角度を調整するようにしている。
【0013】
この画角内に撮影位置が納まるように行うCCDカメラ02の位置および撮影角度の調整においては、従来の光学的圧力場計測装置で使用されているCCDカメラ02には画角内の映像、すなわち撮影対象である計測位置の状況を確認するモニタ04が装備されてなく、別の場所、例えば図示するように風洞01外にモニタ04を設置するようにしているため、風洞01外で画角内の映像を確認した後、CCDカメラ02の設置位置まで移動して、撮影を行う塗料塗布面が画角内に納まるように、CCDカメラ02の位置、および向きを調整する必要があった。
【0014】
このように、モニタ04がCCDカメラ02に装備されてなく、CCDカメラの設置場所とは別の場所に設けるようにしてあるため、CCDカメラ02の設置位置向きを画角内に撮影位置が正対して納まるように確認し、調整するために圧力計測に時間がかかるという不具合があった。
【0015】
なお、CCDカメラ02および光源03は、図に示すように風洞01の上方に必ずしも設置されるものではなく、風洞01内に光を透過できる窓が設けてあれば、風洞01の側部又は風洞01の下方にも設置して、供試体04の圧力場の計測を必要とする個所の光学的計測を行うようにしている。
【0016】
また、CCDカメラ02、光源03が別々に設置されるため、CCDカメラ02の画角方向と光源03が計測個所を照らす光軸方向が一致せず、画角内を一定の光量で照射して所定の照度にするために試験準備に時間を要するという不具合もあった。
さらに、風洞01の起動、停止には、長時間必要とするために、風洞試験においては1−ブローの間に供試体05を多数の姿勢角に変化させて、各姿勢角におけるデータを取得する必要があるが、このためには供試体05の姿勢角を変更する毎に、再度CCDカメラ02等の移動、調整が必要となり、ある特定個所の外表面の圧力分布計測を行う場合においても、計測に時間を要する不具合もあった。
【0017】
さらに風洞試験において行われる圧力場の計測のうち、機体の外表面に沿って流れる気流Fの方向の計測においては、前述した圧力分布の計測のように計測位置の照度は計測結果に大きな影響を及ぼさないものの、気流Fの方向を示す移動体である油の流れ方向又は気流糸の方向は一定ではなく振動しているため、気流方向の計測データとして鮮明な映像を撮影して正確なデータを得るためには、上述した圧力分布の計測と同様にCCDカメラ02の設置位置、向きを画角内に撮影を行う位置が正しく納まることを確認し、調整するとともに、CCDカメラ02の画角方向と光源03が照らす方向とを一致させ、画角内が一定の光量で照射し、所定の照度になるようにする必要がある。
【0018】
さらには、風洞試験中に供試体の姿勢角を変更する度に、CCDカメラ02、および光源03の移動、方向調整が必要とするために試験準備および計測に長時間を要するという不具合があった。
なお、気流Fの方向の計測においては、カメラは圧力分布計測において使用するようにしたCCDカメラ02でなく通常のカメラでも良いが、本明細書では説明を簡単にするため、気流Fの方向の計測においてもCCDカメラ02が使用されるものとして説明し、以下の説明でも同様に行うこととする。
【0019】
【発明が解決しようとする課題】
本発明は、従来の光学的圧力場計測装置の上述した不具合を解消するために、CCDカメラの設置位置、向きを画角内に撮影位置が正しく納まっていることを確認し、調整するための時間がかからず、また、CCDカメラの画角方向と光源が照らす方向とを常に一致させるようにして、画角内を撮影に必要な一定の光量で照射するための試験準備に時間を要することなく、さらには供試体の姿勢角を変更する毎に再度必要となるCCDカメラ等の移動、調整を必要とせず、供試体を多数の姿勢角にして外表面の圧力場を計測する場合においても、計測に時間を必要とせず、従って、多数の画角内の多数の姿勢角において生じる供試体外表面の圧力場を短時間で計測することのできる光学的圧力場計測装置を提供することを課題とする。
【0020】
【課題を解決するための手段】
このため、第1番目の本発明の光学的圧力場計測装置は、次の手段とした。
【0021】
(1)風洞内に設置された供試体の外表面上に通気中に発生する圧力分布もしくは外表面上に沿って流れる気流の方向等の圧力場を光学的に計測するために、外表面上の所定の計測箇所を撮影するためのカメラのファインダー(画角)内に写しだされる撮影映像と同一映像をカメラの近傍で検知でき、計測個所の撮影に最適な位置、姿勢角にカメラを設定するための移動量、姿勢角量を検出する簡易モニタを設けた。
【0022】
(2)撮影する外表面上の計測箇所の変動、もしくは供試体の姿勢角の変動に伴い通気中に移動又は姿勢角変動を行わせる必要のある計測箇所を撮影するためのカメラの移動、姿勢角変動に追従させて、カメラで撮影される計測箇所を所定の照度にする光源の移動又は姿勢角を変動を行わせる同期装置を設けた。
【0023】
本発明の光学的圧力場計測装置によれば、上述(1)、(2)の手段により、
(a)カメラを設ける近傍にテレビモニタが設置できない場合でも、カメラのファインダー(画角)内に写しだされる計測箇所の映像、即ち圧力場の計測のためにカメラで撮影される計測箇所の状況、および計測箇所が撮影に必要な照度になっているかをカメラの近傍で確認しつつ、カメラ、及び光源の移動、姿勢角の調整が可能になり、試験準備効率を向上させることができる。
【0024】
また、カメラの画角方向と光源の光軸方向が同期装置の作動により同期して作動するために、画角方向と光軸方向とを短時間で一致させることができ、計測準備効率を向上させることができるとともに、精度の高い圧力場の光学的な計測ができる。
さらに、供試体の姿勢角に応じて最適なカメラおよび光源の設置、姿勢角ができるために、通風中に供試体の姿勢角を変化させての圧力場の光学的な計測ができるようになり、1−ブローの風洞試験中に取得できる計測ポイント数を増大させることができるとともに、試験効率を飛躍的に向上させ試験時間を短縮することができる。
【0025】
また、第2番目の本発明の光学的圧力場計測装置は、上記(1)、(2)の手段に加え、次の手段とした。
【0026】
(3)風洞中に設置され圧力場の光学的な計測がなされる供試体が、供試体の外表面上に発生する圧力の大きさに対応して、明るさが変動する感圧塗料を外表面上に塗布し、外表面上に発生する圧力分布を感圧塗料の明るさの変動をカメラで撮影することにより計測するものとした。
【0027】
なお、供試体の外表面上に作用する圧力の大きさで変動する感圧塗料の明るさは、感圧塗料に作用する通気中の気流の温度の変動で変わるために、感圧塗料とともに感温塗料を供試体の外表面上に塗布しておき、感温塗料の明るさで計測される気流の温度を感圧塗料で計測される圧力にフィドバックすることにより、感圧塗料で計測される圧力を真の圧力に修正するようにすることが望ましい。
また、感圧塗料、感温塗料ともにポルフィリン系、Lu錯体系、芳香族系の塗料にすることが好ましい。
さらに、このような塗料は、光源からの光量によって塗料を構成する分子が励起され明るさが変わるため、光源から圧力分布を計測する位置に照射される光は、計測位置を所定の一定照度ものにする光量のものにすることが好ましい。
【0028】
本発明の光学的圧力場計測装置によれば、上述(3)の手段により、上述(a)に加え、
(b)供試体の外表面上に作用する圧力分布の計測が、供試体まわりの設置、或いは供試体周辺を移動させて圧力を計測していたピトーレーキ等を使用することなく、計測できるようになる。
【0029】
これにより圧力分布の計測が容易になるとともに、これまで圧力分布の計測が困難であった、構造形状が複雑な箇所の計測および圧力分布が飛行性能に大きな影響を及ぼす箇所の計測が可能になるとともに、精度の高い外表面上の圧力分布の計測ができるようになる。
【0030】
また、第3番目の本発明の光学的圧力場計測装置は、上記(1)、(2)の手段に加え、次の手段とした。
【0031】
(4)供試体が、通気中に供試体の外表面上に沿って流れ気流の方向に移動する移動体を、外表面上に設け、外表面上に沿って流れる気流の方向をカメラで撮影し、撮影された映像から外表面上の気流の方向を計測できるものとした。
【0032】
なお、外表面上に設けられ、気流の方向を計測する移動体として、一端が外表面上に貼付され、他端が気流の方向に応じて変動する気流糸、又は外表面上に塗布され、気流の方向に流れるとともに、通気中においても外表面上に気流の流れの方向を残留させる程度の粘度を有する油等を使用することが望ましい。
【0033】
本発明の光学的圧力場計測装置によれば、上述(4)の手段により、上述(a)に加え、
(c)供試体の外表面上に沿って流れる気流の方向の計測が、外表面上に貼付され、他端が気流の方向に応じて変動する気流糸、または外表面上に塗布され、気流の方向に流れるとともに、通気中において外表面上から流出せず、気流の方向を表示できる程度の粘度を有する油等の移動体の撮影された映像により光学的に計測できるようになる。
【0034】
これにより気流の方向の計測が容易になるとともに、1−ブローの風洞試験中に取得できる計測ポイント数を増大させることができるとともに、試験効率を飛躍的に向上させ試験時間を短縮することができる。
さらに振動する気流の方向の計測がストロボ等の光学的な計測によって得られるので、構造形状が複雑な箇所、いわゆる気流の乱れが著しい部分の計測が可能になるとともに、精度の高い外表面上の気流の方向の計測ができるようになる。
【0035】
【発明の実施の形態】
以下、本発明の光学的圧力場計測装置の実施の一形態を図面にもとづき説明する。
なお、図において図3に示す部材と同一若しくは類似の部材については同一符号を付して説明は省略する。
図1は本発明の光学的圧力場計測装置の実施の第1形態を示す供試体外表面の圧力分布を計測するための光学的圧力場計測装置の透視斜視図である。
【0036】
本実施の形態の光学的圧力場計測装置においては、図3で示した従来の光学的圧力場計測装置に加えて、供試体05外表面の圧力分布を計測するためのCCDカメラ02の画角内に入る、いわゆるCCDカメラ02で撮影を行う供試体05の外表面位置の映像を、CCDカメラ02が設置されているその場で映像を確認できるように、CCDカメラ02に簡易モニタ6を設置した。
【0037】
また、CCDカメラ02の画角方向と光源03の光軸方向とを同期させて、画角方向と光源03の光軸方向の調整を同時に行えるようにする同期装置7を設置した。
【0038】
このように、CCDカメラ02に近接させて画角内の映像を確認できる簡易モニタ6を設置することにより、風洞01の上方等に画角内の映像を写し出すモニタ04を設置できない場合でも、画角内の映像およびCCDカメラ02で映写する光源03から照射される映像の光度をその場で確認しつつ調整することができ、従来の光学的圧力場計測装置のようにモニタ04がCCDカメラ02に装備されてなく別の場所に設けるようにしてあるため、CCDカメラ02の設置位置、向きを画角内に撮影位置が納まるように確認し、調整するために圧力計測に時間がかかるという不具合を解消することができる。
【0039】
また、電動モータ等のサーボ機構を用いて駆動させるようにしたリンク機構を採用して、CCDカメラ02の画角方向と光源03の光軸方向の向きの移動を同期させて駆動するようにした同期装置7を設置することにより、画角方向の移動に追従して光軸を画角方向に移動させることができ、従来の光学的圧力場計測装置のように、CCDカメラ02、光源03が別々に設置されるため、CCDカメラ02の画角方向と光源03が照らす方向が一致せず、画角内を一定の光量で照射するために試験準備に時間を要するという不具合を解消することができる。
【0040】
なお、光源03、CCDカメラ02の移動及び姿勢角の変化により画角内を照射する光源03、画角内の映像を撮影するCCDカメラ02のピントが変化するために、供試体に照射される光の照度が変動し、映像も不解明なものになるため、光源03、CCDカメラ02の移動及び姿勢角の変化に伴う光源03およびCCDカメラ02のピントの変化を、モニタ04に記憶させておくようにすることが好ましい。
【0041】
これにより、光源03、CCDカメラ02の移動及び姿勢角の変化に伴うピントのずれが、移動、姿勢角変化時モニタ04からの信号により自動的に修正され、画角内には一定の照度で照射された被写体の鮮明な映像が写し出されるために、ピントの修正に必要とする時間がさらに短縮され、試験準備に要する時間をさらに短縮することができる。
【0042】
さらに、通風中に供試体姿勢角を変化された場合の圧力分布の計測が必要な場合は、上記のデータを基にフィードバック機構により自動的に光源03およびCCDカメラ02の位置、姿勢角を調整することにより、光源03の調整後、カメラ画角を調整し、更に光源03を調整するといった手間が簡略化でき、通風中の姿勢角変化時において自動的に光源03、CCDカメラ02の調整ができ、従来の光学的圧力場計測装置のように、風洞01の起動、停止には、長時間必要とするために、風洞試験においては1−ブローの間に供試体05の姿勢角を変化させて、各姿勢角におけるデータを取得する必要があるために、供試体05の姿勢角を変更する毎に再度CCDカメラ02等の移動、調整が必要となり、ある特定個所の外表面の圧力分布計測においても、計測に時間を要していた不具合が解消できる。
【0043】
すなわち、本実施の形態の光学的圧力場計測装置によれば、上述の構成により、
(1)風洞01の上などCCDカメラ02、光源03を設ける位置近傍にテレビモニタ04を設置できない場合でもCCDカメラ02の画角内の映像、光源03による画角内の照度をその場で確認しつつ、CCDカメラ02、光源03の移動量又は姿勢角の調整が可能となり試験準備効率が向上する。
【0044】
(2)CCDカメラ02の画角方向および光源03の光軸方向が同期して移動するため、CCDカメラ02の画角方向と光源03が照らす方向が一致するため、試験準備効率の向上とともに、精度の高い圧力分布の計測ができる。
【0045】
(3)また、供試体04の姿勢角に応じて最適な光源03およびCCDカメラ02の向き等の設定ができるため、通風中に供試体04の姿勢角を変化させての圧力分布の計測が可能となり、試験取得ポイント数が増加し試験効率が向上する。
【0046】
図2は、本発明の光学的圧力場計測装置の実施の第2形態を示す、供試体外表面に沿って流れる空気流の方向を計測するための光学的圧力場計測装置の透視斜視図である。
【0047】
図に示すように、本実施の形態の光学的圧力場計測装置で空気流の方向を計測するため風洞01に設置される供試体5には、図1、図3に示す供試体05とは異り、ポルフィリン系、Lu錯体系、芳香族系等からなる感圧塗料或いは感温塗料は塗装されてなく、供試体5の空気流の方向を計測する必要のある外表面には、移動体としての毛糸等で形成された気流糸8の一端がセロファン製粘着テープで貼着されている。
【0048】
この気流糸8は、軽量であり気流Fの方向に沿って忠実に移動するため、気流糸8の方向から供試体5外表面に沿って流れる気流Fの方向を、正確に計測することができる。
【0049】
本実施の形態の光学的圧力場計測装置によれば、上述の構成により上述した実施の第1形態の光学的圧力場計測装置と同様に、
(1)CCDカメラ02、光源03を設ける位置近傍にテレビモニタ04を設置できない場合でも、画角内の映像、画角内の照度をその場で確認しつつ、CCDカメラ02、光源03の移動量又は姿勢角の調整が可能となり試験準備効率を向上させることができる。
【0050】
(2)CCDカメラ02の画角方向および光源03の光軸方向が同期して移動するため、CCDカメラ02の画角方向と光源03が照らす方向が一致するため、試験準備効率の向上とともに、精度の高い空気流の方向の計測ができる。
特に、光源03、CCDカメラ02の移動及び姿勢角の変化による光源03およびCCDカメラ02のピントの変化をモニタ04に記憶させておくようにすれば、光源03、CCDカメラ02の移動及び姿勢角の変化に伴うピントのずれが、モニタ04から信号により自動的に修正され、画角内には一定の光度で照射された被写体である気流糸8の鮮明な映像が写し出されるためにピントの修正に必要とする時間が短縮され、試験準備効率が向上するとともに、気流糸8による空気流の方向が正確に計測できる。
【0051】
(3)また、供試体05の姿勢角に応じて最適な光源03およびCCDカメラ02の向き等の設定ができるため、通風中に供試体05の姿勢角を変化させたときの気流Fの向きの計測が可能となり、試験取得ポイント数が増加し、機体外表面のきめの細い気流Fの方向の計測データが短時間に取得できる。
また、本発明の光学的圧力場計測装置では実施の第1形態における機体外表面の圧力分布計測若しくは実施の第2形態における気流方向計測の如き圧力分布計測以外にも、光源03とCCDカメラ02を用いた計測において利用できるものである。
【0052】
【発明の効果】
以上、説明したように本発明の光学的圧力場計測装置は、供試体の外表面上に風洞通気中に発生する圧力分布又は外表面上を流れる気流の方向等の圧力場を光学的に計測するため、計測箇所を撮影するカメラの画角内の映像と同一映像をカメラ近傍で検知する簡易モニタ、外表面上の計測箇所の変動、又は供試体の姿勢角の変動に合わせ画角を合わせるためのカメラの移動、姿勢角変動に追従させ、計測箇所を所定の照度にする光源の移動、又は姿勢角を変動させる同期装置を設けるものとした。
【0053】
これにより、カメラ近傍にテレビモニタが設置できない場合でも、画角内における計測箇所の状況、又は照度をカメラの近傍で確認しつつ、カメラ、及び光源の移動、姿勢角の調整が可能になり、試験準備効率が向上する。
また、画角方向と光軸方向が同期装置により同期して作動し、画角方向と光軸方向とを短時間で一致させて、計測準備効率の向上ができ、また、精度の高い光学的な圧力場の計測ができる。
さらに、供試体の姿勢角に応じ最適なカメラおよび光源の設置、姿勢角が実現でき、通風中に供試体の姿勢角を変化させた光学的な圧力場の計測ができ、1−ブローの試験中に取得できる計測ポイント数が増大させ、試験効率を向上させ試験時間を短縮できる。
【0054】
また、本発明の光学的圧力場計測装置は、圧力場の光学的な計測するため風洞中に設置される供試体が、外表面上に生じる圧力の大きさに対応し明るさが変動する感圧塗料を塗布し、圧力分布を感圧塗料の明るさの変動で計測でするものとした。
【0055】
これにより、供試体の外表面上に作用する圧力分布の計測が、供試体近傍に設け、圧力を計測するピトーレーキ等を使用せず計測でき、圧力分布の計測が容易になり、圧力分布の計測が困難な構造形状が複雑な箇所の計測が可能になり、またピトーレーキ等の影響を受けない精度の高い圧力分布の計測ができる。
【0056】
また、本発明き光学的圧力場計測装置は、外表面上に沿って流れ気流の方向に移動し、外表面上を流れる気流の方向を計測できる移動体を外表面上に設けた。
【0057】
これにより、外表面上に沿って流れる気流の方向の計測が、外表面上に貼付され、気流の方向に移動する気流糸、又は外表面上に塗布され、気流の方向に流れるとともに、通気中においても流出しない程度の粘度を有する油等の移動体の動きにより光学的に計測でき、気流の方向の計測が容易になり、1−ブローの風洞試験中の取得計測ポイント数を増大させることができ、試験効率を飛躍的に向上させ試験時間を短縮できる。
さらに振動する気流の方向の計測が、ストロボ等の光学的な計測によって得られるので、構造形状が複雑な箇所の計測が可能になるとともに、精度の高い外表面上の気流の方向の計測ができるようになる。
【図面の簡単な説明】
【図1】本発明の光学的圧力場計測装置の実施の第1形態を示す供試体外表面の圧力分布を計測するための光学的圧力場計測装置の透視斜視図、
【図2】本発明の光学的圧力場計測装置の実施の第2形態を示す供試体外表面に沿って流れる空気流の方向を計測するための光学的圧力場計測装置の透視斜視図、
【図3】従来の光学的圧力場計測装置としての供試体外表面の圧力分布を計測するための光学的圧力場計測装置である。
【符号の説明】
01 風洞
02 CCDカメラ
03 光源
04 モニタ
5,05 供試体
6 簡易モニタ
7 同期装置
8 気流糸
F 気流
[0001]
BACKGROUND OF THE INVENTION
The present invention is to apply a pressure-sensitive or temperature-sensitive paint such as porphyrin, Lu complex, or aromatic to a specimen installed in a wind tunnel and simulating an aircraft or the like. Optical pressure field measurement that optically measures the pressure acting on the specimen of the part coated with paint by measuring the brightness generated in these paints depending on the magnitude of the pressure acting on the paint In order to measure the pressure field that changes due to the change in the attitude angle of the specimen, especially during the wind tunnel test, as in the equipment, always irradiate the specimen with a certain amount of light accurately to keep the illuminance of the measuring equipment constant. Accurately measure the pressure field by measuring the pressure field of the specimen under the same conditions by synchronizing the required light source and the camera system that captures the measurement position of the specimen to optically measure the pressure field. Optical pressure made possible On the field measuring device.
[0002]
[Prior art]
When developing an aircraft or refurbishing an existing aircraft, design a proto model or refurbishment model in advance to determine the shape of the aircraft that can achieve the target flight performance, and perform computer calculations to determine the aircraft. By calculating the air flow around and calculating the aerodynamic force acting on the aircraft, we can obtain the aerodynamic performance of these aircraft and modify various model shapes to achieve the target flight performance. The shape of the development aircraft or refurbishment aircraft is determined.
[0003]
However, even after the fuselage shape is determined by computer calculation, etc., in performing actual flight, a test specimen that simulates the actual aircraft produced by reducing the size of the fuselage is manufactured, and a wind tunnel test is performed. Based on the results of the wind tunnel test, it is always possible to confirm whether the actual aircraft can fly safely in various flight conditions and achieve the desired flight performance, and the desired flight performance can be achieved. The data for making the airframe shape is acquired.
[0004]
In such a wind tunnel test, it consists of lift, drag, lateral force, pitching moment, yawing moment, and rolling moment generated in the actual aircraft by aerodynamic forces acting on the actual aircraft in various postures assumed during flight of the actual aircraft. 6-component force measurement and flow direction measurement of air flow along the outer surface of the actual machine, or measurement of pressure field such as pressure distribution generated on the outer surface of the actual machine, and flap, aileron, and ladder for changing the attitude angle of the actual machine A change in the attitude angle associated with a declination operation such as the so-called rudder effect measurement is performed with a specimen installed in the wind tunnel, and the data is reflected in the production design of the actual machine.
[0005]
Among the pressure field measurements performed in such a wind tunnel test, the measurement of the pressure distribution generated on the outer surface of the actual machine is also performed by installing a pitot rake on the outer surface of the actual machine and actually performing the flight. However, at the initial stage of development or refurbishment, a pitoro rake is installed on the outer surface of the specimen or moved along the outer surface, and the pressure generated on the outer surface of the specimen is directly measured to obtain data. Try to get.
[0006]
In addition, the measurement of the flow direction of the airflow flowing along the outer surface is performed by applying oil having a high viscosity as a moving body to the outer surface of the specimen and flowing in the direction of the airflow flowing along the outer surface. The direction of flow is measured from the flow of the sample, or one end of a tuft (air stream yarn) as a moving body is attached to the outer surface of the specimen, and measurement is performed from the movement of the air stream yarn moving along the direction of air flow. I am doing so.
[0007]
The flow direction of the air flow along the outer surface can be obtained from this pressure distribution if the pressure distribution on the outer surface can be measured. It may be obtained from the pressure distribution except for the part where the air flow is complicated due to the structure and it is difficult to measure the pressure distribution by pit rake.
[0008]
However, for the measurement of the pressure distribution on the outer surface of the aircraft, the above-mentioned measurement using the Pitore rake takes time and work time, it is difficult to measure in a complicated structure, and the state of the flow changes due to the installation of the Pito Rake, Because of this, the pressure distribution changes and it is difficult to acquire accurate data. In recent years, pressure-sensitive paints or temperature-sensitive paints such as porphyrins, Lu complexes, and aromatics are applied to the specimens, and wind tunnel tests are in progress. Optical pressure field measurement, in which the magnitude of the pressure acting on the specimen is optically measured by measuring the brightness generated in these paints depending on the magnitude of the pressure acting on the specimen. The device is used to measure the pressure distribution generated on the outer surface of the specimen and the direction of the airflow flowing along the outer surface of the specimen, which is closely related to the pressure distribution. It has been carried out.
[0009]
The pressure measured with the pressure-sensitive paint described above, that is, the brightness of the pressure-sensitive paint that changes with the magnitude of the pressure also changes with the temperature of the airflow acting on the pressure-sensitive paint application surface. In addition, by feeding back the temperature of the airflow measured mainly by the brightness of the temperature-sensitive paint to the pressure-sensitive paint, by calibrating the brightness of the pressure-sensitive paint, it is not affected by the temperature of the airflow. The brightness of the pressure-sensitive paint and the magnitude of the pressure acting on the application surface of the pressure-sensitive paint are made to correspond accurately.
[0010]
Furthermore, the pressure-sensitive paint and the temperature-sensitive paint described above change in brightness because the excitation amount of the paint changes depending on the amount of light (illuminance) applied to the specimen.
For this reason, it is necessary to always irradiate a certain amount of light with respect to light applied to the paint surface of the specimen for photographing by a camera system such as a CCD camera that measures the paint surface of the specimen.
[0011]
Therefore, in order to irradiate the paint application surface with light from a light source with a constant brightness and accurately measure the pressure on the paint application surface and optically, the paint application surface at various locations on the specimen is measured. Change the position of the light source in sync with the movement of the CCD camera that needs to be moved by changing the attitude angle of the specimen during the shooting or wind tunnel test, and changing the irradiation angle to irradiate light toward the shooting location, It is necessary to always irradiate the paint application surface with light for making the illuminance constant.
[0012]
However, in the conventional optical pressure field measuring device, as shown in FIG. 3, a CCD camera 02 for photographing the outer surface of the specimen 05 coated with the paint, and a constant amount of light toward the photographing location for photographing. Because the CCD camera 02 and the light source 03 are operated separately from the four light sources 03 that need to irradiate light, the specimen 05 installed in the wind tunnel 01 is used. When photographing a predetermined position of the pressure-sensitive paint or temperature-sensitive paint applied to the outer surface of the lens and optically measuring the pressure at the position, first adjust the position of the light source 03 and the optical axis direction. After adjusting so that the illuminance at which light of a certain intensity is irradiated onto the paint application surface at the position where photographing is performed becomes constant, the position of the CCD camera 03 is manually adjusted so that the photographing position is within the angle of view of the CCD camera 03. The position and angle So that to an integer.
[0013]
In the adjustment of the position and the shooting angle of the CCD camera 02 performed so that the shooting position falls within this angle of view, the CCD camera 02 used in the conventional optical pressure field measuring device has an image within the angle of view, that is, an image within the angle of view. Since the monitor 04 for confirming the situation of the measurement position to be photographed is not equipped, and the monitor 04 is installed outside the wind tunnel 01 as shown in the figure, for example, outside the wind tunnel 01, the angle of view is outside the wind tunnel 01. After confirming this image, it was necessary to move to the installation position of the CCD camera 02 and adjust the position and orientation of the CCD camera 02 so that the coating surface to be photographed was within the angle of view.
[0014]
As described above, since the monitor 04 is not mounted on the CCD camera 02 and is provided at a location different from the installation location of the CCD camera, the orientation of the installation location of the CCD camera 02 is within the angle of view and the shooting position is correct. On the other hand, there was a problem that it took time to measure the pressure in order to confirm and adjust it so as to fit.
[0015]
As shown in the figure, the CCD camera 02 and the light source 03 are not necessarily installed above the wind tunnel 01. If a window capable of transmitting light is provided in the wind tunnel 01, the side of the wind tunnel 01 or the wind tunnel It is also installed below 01 so as to perform optical measurement of a part requiring measurement of the pressure field of the specimen 04.
[0016]
In addition, since the CCD camera 02 and the light source 03 are installed separately, the angle of view of the CCD camera 02 and the optical axis direction of the light source 03 that illuminates the measurement location do not coincide with each other. There was also a problem that it took time to prepare for the test in order to obtain a predetermined illuminance.
Further, since it takes a long time to start and stop the wind tunnel 01, in the wind tunnel test, the specimen 05 is changed into a number of posture angles during 1-blow, and data at each posture angle is acquired. For this purpose, every time the attitude angle of the specimen 05 is changed, it is necessary to move and adjust the CCD camera 02 again, and even when measuring the pressure distribution on the outer surface of a specific location, There was also a problem that took time to measure.
[0017]
Furthermore, in the measurement of the pressure field performed in the wind tunnel test, in the measurement of the direction of the airflow F flowing along the outer surface of the aircraft, the illuminance at the measurement position has a great influence on the measurement result as in the pressure distribution measurement described above. Although it does not affect, the flow direction of the oil that is the moving body that indicates the direction of the airflow F or the direction of the airflow yarn is not constant, so it vibrates. In order to obtain the same, the installation position and orientation of the CCD camera 02 is confirmed and adjusted to be within the angle of view in the same manner as the pressure distribution measurement described above, adjusted, and the angle of view of the CCD camera 02 is adjusted. And the direction in which the light source 03 illuminates are made coincident with each other, and the inside of the angle of view is irradiated with a constant amount of light so that a predetermined illuminance is obtained.
[0018]
Furthermore, every time the attitude angle of the specimen is changed during the wind tunnel test, there is a problem that it takes a long time for test preparation and measurement because the movement and direction adjustment of the CCD camera 02 and the light source 03 are required. .
In the measurement of the direction of the air flow F, the camera may be a normal camera instead of the CCD camera 02 used in the pressure distribution measurement. In the measurement, it is assumed that the CCD camera 02 is used, and the same will be applied in the following description.
[0019]
[Problems to be solved by the invention]
In order to eliminate the above-described problems of the conventional optical pressure field measuring device, the present invention is for confirming and adjusting the installation position and orientation of the CCD camera within the angle of view so that the photographing position is properly set. It takes less time, and it takes time to prepare for the test to irradiate the inside of the angle of view with a certain amount of light required for photographing so that the angle of view of the CCD camera and the direction of the light source are always matched. Without any further movement or adjustment of the CCD camera, etc., which is necessary again every time the posture angle of the specimen is changed, when measuring the pressure field on the outer surface with the specimen being in many posture angles Therefore, it is possible to provide an optical pressure field measuring apparatus that does not require time for measurement, and can therefore measure in a short time the pressure field on the outer surface of the specimen generated at a number of posture angles within a number of angles of view. Is an issue.
[0020]
[Means for Solving the Problems]
For this reason, the optical pressure field measuring apparatus according to the first aspect of the present invention is the following means.
[0021]
(1) In order to optically measure the pressure field such as the pressure distribution generated during ventilation on the outer surface of the specimen installed in the wind tunnel or the direction of the airflow flowing along the outer surface, It is possible to detect the same video as the video shot in the camera finder (view angle) for shooting a predetermined measurement location in the vicinity of the camera, and to set the camera at the optimal position and posture angle for shooting at the measurement location. A simple monitor that detects the amount of movement and the amount of posture angle for setting was provided.
[0022]
(2) Movement and posture of the camera for photographing measurement points that need to be moved or changed in posture angle during ventilation due to fluctuations in measurement points on the outer surface to be photographed or posture angles of the specimen A synchronization device is provided that causes the movement of the light source or the attitude angle to vary so that the measurement location photographed by the camera has a predetermined illuminance, following the angular variation.
[0023]
According to the optical pressure field measuring device of the present invention, the above-mentioned means (1) and (2)
(A) Even when a TV monitor cannot be installed in the vicinity of the camera, an image of the measurement location that is captured in the camera finder (view angle), that is, a measurement location that is captured by the camera for measuring the pressure field. It is possible to move the camera and the light source and adjust the posture angle while confirming the situation and whether the measurement location has the illuminance necessary for photographing in the vicinity of the camera, and the test preparation efficiency can be improved.
[0024]
In addition, since the camera's angle of view and the optical axis direction of the light source operate in synchronization with the operation of the synchronizer, the angle of view and the optical axis direction can be matched in a short time, improving measurement preparation efficiency. In addition, it is possible to measure the pressure field with high accuracy.
In addition, the optimal camera and light source installation and posture angle can be set according to the posture angle of the specimen, so that the pressure field can be optically measured by changing the posture angle of the specimen during ventilation. The number of measurement points that can be acquired during the 1-blow wind tunnel test can be increased, the test efficiency can be dramatically improved, and the test time can be shortened.
[0025]
The second optical pressure field measuring apparatus of the present invention is the following means in addition to the means (1) and (2).
[0026]
(3) A specimen that is installed in a wind tunnel and optically measures the pressure field is exposed to pressure sensitive paint whose brightness varies according to the pressure generated on the outer surface of the specimen. It was applied on the surface, and the pressure distribution generated on the outer surface was measured by photographing the brightness fluctuation of the pressure-sensitive paint with a camera.
[0027]
Note that the brightness of the pressure-sensitive paint, which varies depending on the pressure acting on the outer surface of the specimen, varies depending on the temperature of the airflow that is acting on the pressure-sensitive paint. Measured with pressure-sensitive paint by applying warm paint on the outer surface of the specimen and feeding back the temperature of the airflow measured by the brightness of the temperature-sensitive paint to the pressure measured by the pressure-sensitive paint. It is desirable to correct the pressure to true pressure.
Moreover, it is preferable to use a porphyrin-based, Lu complex-based, or aromatic-based coating for both the pressure-sensitive coating and the temperature-sensitive coating.
Furthermore, in such paints, the molecules that make up the paint are excited by the amount of light from the light source and the brightness changes, so the light emitted from the light source to the position where the pressure distribution is measured has a predetermined illuminance at the measurement position. It is preferable that the amount of light is as follows.
[0028]
According to the optical pressure field measuring device of the present invention, in addition to the above-mentioned (a) by means of the above-mentioned (3),
(B) The pressure distribution acting on the outer surface of the specimen can be measured without using a pitot rake or the like that was installed around the specimen or moved around the specimen to measure the pressure. Become.
[0029]
This makes it easy to measure the pressure distribution, and enables measurement of places where the structure of the structure has been difficult and where the pressure distribution has a significant effect on flight performance, which has been difficult to measure. At the same time, the pressure distribution on the outer surface can be measured with high accuracy.
[0030]
The third optical pressure field measuring apparatus of the present invention is the following means in addition to the means (1) and (2).
[0031]
(4) A moving body that moves in the direction of flowing airflow along the outer surface of the specimen during ventilation is provided on the outer surface, and the direction of the airflow flowing along the outer surface is photographed with a camera. The direction of the airflow on the outer surface can be measured from the captured image.
[0032]
In addition, as a moving body that is provided on the outer surface and measures the direction of the airflow, one end is affixed on the outer surface, and the other end is applied on the airflow yarn that varies according to the direction of the airflow, or applied on the outer surface, It is desirable to use oil or the like having a viscosity sufficient to flow in the direction of the airflow and to leave the direction of the airflow on the outer surface even during ventilation.
[0033]
According to the optical pressure field measuring device of the present invention, in addition to the above-mentioned (a) by means of the above-mentioned (4),
(C) Measurement of the direction of the airflow flowing along the outer surface of the specimen is affixed on the outer surface, and the other end is applied to the airflow yarn that varies depending on the direction of the airflow or the outer surface, and the airflow In addition, it can be optically measured by a captured image of a moving body such as oil having a viscosity that can display the direction of the airflow without flowing out from the outer surface during ventilation.
[0034]
This makes it easy to measure the direction of the airflow, increases the number of measurement points that can be acquired during a 1-blow wind tunnel test, and dramatically improves test efficiency and shortens test time. .
Furthermore, measurement of the direction of the oscillating airflow can be obtained by optical measurement such as a strobe, so it is possible to measure parts with complicated structural shapes, so-called airflow turbulence, and high precision on the outer surface. The direction of the airflow can be measured.
[0035]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of an optical pressure field measuring device of the present invention will be described with reference to the drawings.
In the figure, members that are the same as or similar to the members shown in FIG.
FIG. 1 is a transparent perspective view of an optical pressure field measuring apparatus for measuring the pressure distribution on the outer surface of a specimen showing a first embodiment of the optical pressure field measuring apparatus of the present invention.
[0036]
In the optical pressure field measuring device of the present embodiment, the angle of view of the CCD camera 02 for measuring the pressure distribution on the outer surface of the specimen 05 in addition to the conventional optical pressure field measuring device shown in FIG. A simple monitor 6 is installed in the CCD camera 02 so that the image of the outer surface position of the specimen 05 taken by the so-called CCD camera 02 can be confirmed on the spot where the CCD camera 02 is installed. did.
[0037]
In addition, a synchronization device 7 is installed so that the angle of view of the CCD camera 02 and the optical axis direction of the light source 03 are synchronized so that the angle of view and the optical axis direction of the light source 03 can be adjusted simultaneously.
[0038]
In this way, by installing the simple monitor 6 that can check the image within the angle of view in the vicinity of the CCD camera 02, even if the monitor 04 that projects the image within the angle of view cannot be installed above the wind tunnel 01, the image is displayed. The brightness of the image in the corner and the image emitted from the light source 03 projected by the CCD camera 02 can be adjusted while confirming on the spot, and the monitor 04 can be adjusted like the conventional optical pressure field measuring device. Since it is installed in a different place without being mounted on the camera, it takes time to measure the pressure to check and adjust the installation position and orientation of the CCD camera 02 so that the shooting position is within the angle of view. Can be eliminated.
[0039]
In addition, a link mechanism that is driven using a servo mechanism such as an electric motor is employed so that the movement of the CCD camera 02 in the field angle direction and the direction of the light source 03 in the optical axis direction are driven in synchronization. By installing the synchronizer 7, the optical axis can be moved in the field angle direction following the movement in the field angle direction, and the CCD camera 02 and the light source 03 are provided as in a conventional optical pressure field measuring device. Since it is installed separately, the field angle direction of the CCD camera 02 and the direction illuminated by the light source 03 do not coincide with each other, and it is possible to eliminate the problem that it takes time to prepare for the test in order to irradiate the field angle with a constant light amount. it can.
[0040]
Note that because the focus of the light source 03 that irradiates the angle of view and the CCD camera 02 that captures the image within the angle of view changes due to the movement of the light source 03 and the CCD camera 02 and the change in the attitude angle, the specimen is irradiated. Since the illuminance of the light fluctuates and the image becomes unclear, the change in the focus of the light source 03 and the CCD camera 02 due to the movement of the light source 03 and the CCD camera 02 and the change in the attitude angle is stored in the monitor 04. It is preferable to keep them.
[0041]
As a result, the focus shift caused by the movement of the light source 03 and the CCD camera 02 and the change of the posture angle is automatically corrected by the signal from the monitor 04 at the time of the movement and posture angle change. Since a clear image of the irradiated subject is projected, the time required for focus correction can be further reduced, and the time required for test preparation can be further reduced.
[0042]
In addition, if it is necessary to measure the pressure distribution when the specimen posture angle is changed during ventilation, the positions and posture angles of the light source 03 and the CCD camera 02 are automatically adjusted by the feedback mechanism based on the above data. Thus, after adjusting the light source 03, the trouble of adjusting the camera angle of view and adjusting the light source 03 can be simplified, and the light source 03 and the CCD camera 02 can be automatically adjusted when the posture angle changes during ventilation. In the wind tunnel test, the attitude angle of the specimen 05 is changed during 1-blowing because it takes a long time to start and stop the wind tunnel 01 as in the conventional optical pressure field measuring device. Since it is necessary to acquire data at each posture angle, it is necessary to move and adjust the CCD camera 02 again every time the posture angle of the specimen 05 is changed, and the pressure distribution on the outer surface at a certain specific location. In the measurement also a problem that it takes time to measurement can be solved.
[0043]
That is, according to the optical pressure field measurement device of the present embodiment, with the above-described configuration,
(1) Even if the TV monitor 04 cannot be installed near the position where the CCD camera 02 and the light source 03 are provided, such as on the wind tunnel 01, the image within the angle of view of the CCD camera 02 and the illuminance within the angle of view of the light source 03 are confirmed on the spot. However, the movement amount or posture angle of the CCD camera 02 and the light source 03 can be adjusted, and the test preparation efficiency is improved.
[0044]
(2) Since the angle of view direction of the CCD camera 02 and the optical axis direction of the light source 03 move synchronously, the angle of view direction of the CCD camera 02 and the direction illuminated by the light source 03 coincide with each other. Accurate pressure distribution can be measured.
[0045]
(3) Since the optimal orientation of the light source 03 and the CCD camera 02 can be set according to the posture angle of the specimen 04, the pressure distribution can be measured by changing the posture angle of the specimen 04 during ventilation. This increases the number of test acquisition points and improves test efficiency.
[0046]
FIG. 2 is a perspective view of the optical pressure field measuring device for measuring the direction of the air flow flowing along the outer surface of the specimen, showing a second embodiment of the optical pressure field measuring device of the present invention. is there.
[0047]
As shown in the figure, the specimen 5 installed in the wind tunnel 01 for measuring the direction of the air flow with the optical pressure field measuring apparatus of the present embodiment is the specimen 05 shown in FIGS. Differently, no pressure-sensitive paint or temperature-sensitive paint made of porphyrin, Lu complex, aromatic, etc. is applied, and the outer surface of the specimen 5 where the direction of air flow needs to be measured is movable. One end of the airflow yarn 8 formed of wool yarn or the like is attached with a cellophane adhesive tape.
[0048]
Since the airflow yarn 8 is light and moves faithfully along the direction of the airflow F, the direction of the airflow F flowing along the outer surface of the specimen 5 from the direction of the airflow yarn 8 can be accurately measured. .
[0049]
According to the optical pressure field measurement device of the present embodiment, similarly to the optical pressure field measurement device of the first embodiment described above with the above-described configuration,
(1) Even when the television monitor 04 cannot be installed in the vicinity of the position where the CCD camera 02 and the light source 03 are provided, the movement of the CCD camera 02 and the light source 03 is confirmed on the spot while checking the image within the angle of view and the illuminance within the angle of view. It is possible to adjust the amount or posture angle and improve the test preparation efficiency.
[0050]
(2) Since the angle of view direction of the CCD camera 02 and the optical axis direction of the light source 03 move synchronously, the angle of view direction of the CCD camera 02 and the direction illuminated by the light source 03 coincide with each other. It can measure the direction of air flow with high accuracy.
In particular, if changes in focus of the light source 03 and the CCD camera 02 due to movement of the light source 03 and the CCD camera 02 and changes in posture angle are stored in the monitor 04, the movement and posture angle of the light source 03 and CCD camera 02 are stored. The focus shift due to the change of the image is automatically corrected by a signal from the monitor 04, and the sharp image of the air stream 8 as the subject irradiated with a constant light intensity is projected within the angle of view, so that the focus is corrected. The test preparation efficiency is improved and the direction of the air flow by the airflow yarn 8 can be measured accurately.
[0051]
(3) Since the optimal orientation of the light source 03 and the CCD camera 02 can be set according to the posture angle of the specimen 05, the direction of the air flow F when the posture angle of the specimen 05 is changed during ventilation. Measurement is possible, the number of test acquisition points is increased, and measurement data in the direction of the fine airflow F on the outer surface of the machine body can be acquired in a short time.
Further, in the optical pressure field measuring apparatus of the present invention, the light source 03 and the CCD camera 02 can be used in addition to the pressure distribution measurement such as the pressure distribution measurement on the outer surface of the airframe in the first embodiment or the air flow direction measurement in the second embodiment. It can be used in the measurement using.
[0052]
【The invention's effect】
As described above, the optical pressure field measuring apparatus of the present invention optically measures the pressure field such as the pressure distribution generated during wind tunnel ventilation or the direction of the airflow flowing on the outer surface on the outer surface of the specimen. Therefore, the angle of view is adjusted according to the change in the measurement position on the outer surface or the change in the posture angle of the specimen. For this purpose, a synchronization device is provided that follows the movement of the camera and the fluctuation of the posture angle, moves the light source that changes the measurement location to a predetermined illuminance, or changes the posture angle.
[0053]
Thereby, even when a TV monitor cannot be installed in the vicinity of the camera, it is possible to move the camera and the light source and adjust the posture angle while checking the situation of the measurement location within the angle of view or the illuminance in the vicinity of the camera. Test preparation efficiency is improved.
In addition, the angle of view and the optical axis direction are operated in synchronization by the synchronizer, and the angle of view and the optical axis direction can be matched in a short time to improve the measurement preparation efficiency. Can measure the pressure field.
Furthermore, the optimal camera and light source installation and posture angle can be realized according to the posture angle of the specimen, and the optical pressure field can be measured by changing the posture angle of the specimen during ventilation. This increases the number of measurement points that can be acquired, improves test efficiency, and shortens test time.
[0054]
In addition, the optical pressure field measuring device of the present invention has a feeling that the specimen installed in the wind tunnel for optical measurement of the pressure field fluctuates in brightness according to the magnitude of the pressure generated on the outer surface. Pressure paint was applied, and the pressure distribution was measured by the change in brightness of the pressure-sensitive paint.
[0055]
This makes it possible to measure the pressure distribution acting on the outer surface of the specimen without using a pitot rake that measures pressure, making it easy to measure the pressure distribution. This makes it possible to measure a portion having a complicated structural shape that is difficult to measure, and to measure a pressure distribution with high accuracy without being affected by pitot rake.
[0056]
Moreover, the optical pressure field measuring device according to the present invention is provided with a moving body on the outer surface that moves in the direction of the flowing airflow along the outer surface and can measure the direction of the airflow flowing on the outer surface.
[0057]
As a result, the measurement of the direction of the airflow flowing along the outer surface is affixed on the outer surface and applied to the airflow yarn that moves in the direction of the airflow, or applied to the outer surface, flows in the direction of the airflow, and is ventilated. Can be measured optically by the movement of a moving body such as oil having a viscosity that does not flow out, and the direction of the airflow can be easily measured, and the number of acquired measurement points during the 1-blow wind tunnel test can be increased. The test efficiency can be dramatically improved and the test time can be shortened.
In addition, measurement of the direction of the oscillating airflow can be obtained by optical measurement such as a strobe, so that it is possible to measure the location of a complicated structure and to measure the direction of the airflow on the outer surface with high accuracy. It becomes like this.
[Brief description of the drawings]
FIG. 1 is a perspective view of an optical pressure field measuring device for measuring a pressure distribution on an outer surface of a specimen showing a first embodiment of an optical pressure field measuring device according to the present invention;
FIG. 2 is a perspective view of the optical pressure field measuring device for measuring the direction of the air flow flowing along the outer surface of the specimen showing the second embodiment of the optical pressure field measuring device of the present invention;
FIG. 3 is an optical pressure field measuring device for measuring the pressure distribution on the outer surface of a specimen as a conventional optical pressure field measuring device.
[Explanation of symbols]
01 Wind tunnel
02 CCD camera
03 Light source
04 monitor
5,05 Specimen
6 Simple monitor
7 Synchronizer
8 Airflow yarn
F Airflow

Claims (3)

風洞内に設置された供試体の外表面上に発生する圧力分布もしくは前記外表面上に沿って流れる気流の方向からなる圧力場を光学的に計測するために、前記外表面上の計測箇所を撮影するカメラおよび前記計測箇所を所定の照度にする光源を装備した光学的圧力場計測装置において、前記カメラで撮影される画角内の映像を前記カメラの近傍で検知し、前記計測個所の撮影のための前記カメラの移動量、姿勢変動量を検出する簡易モニタと、前記カメラの移動、姿勢角変動に追従して前記光源の移動、姿勢角変動をさせる同期装置とを設けたことを特徴とする光学的圧力場計測装置。In order to optically measure the pressure field generated from the pressure distribution generated on the outer surface of the specimen installed in the wind tunnel or the direction of the airflow flowing along the outer surface, the measurement points on the outer surface are In an optical pressure field measuring apparatus equipped with a camera to be photographed and a light source for setting the measurement location to a predetermined illuminance, an image within an angle of view photographed by the camera is detected in the vicinity of the camera, and the measurement location is photographed. A simple monitor for detecting the amount of movement and posture fluctuation of the camera for the purpose, and a synchronization device for moving the light source and moving the posture angle following the movement and posture angle fluctuation of the camera. Optical pressure field measuring device. 前記供試体が、作用する圧力の大きさで明るさが変動する感圧塗料を前記外表面上に塗布し、前記外表面上に発生する圧力分布を前記カメラで撮影された前記感圧塗料の明るさの変動で計測できるものであることを特徴とする請求項1の光学的圧力場計測装置。A pressure-sensitive paint whose brightness varies with the magnitude of the pressure applied by the specimen is applied to the outer surface, and the pressure distribution generated on the outer surface is measured with the camera. 2. The optical pressure field measuring apparatus according to claim 1, wherein the optical pressure field measuring apparatus can be measured by a variation in brightness. 前記供試体が、前記外表面上に沿って流れる気流の方向に移動する移動体を前記外表面上に設け、前記外表面上に沿って流れる気流の方向を前記カメラで撮影された移動体の移動方向で計測できるものであることを特徴とする請求項1の光学的圧力場計測装置。A moving body in which the specimen moves in the direction of the airflow flowing along the outer surface is provided on the outer surface, and the direction of the airflow flowing along the outer surface is captured by the camera. 2. The optical pressure field measuring device according to claim 1, wherein the optical pressure field measuring device can be measured in a moving direction.
JP16141199A 1999-06-08 1999-06-08 Optical pressure field measuring device Expired - Fee Related JP4264160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16141199A JP4264160B2 (en) 1999-06-08 1999-06-08 Optical pressure field measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16141199A JP4264160B2 (en) 1999-06-08 1999-06-08 Optical pressure field measuring device

Publications (2)

Publication Number Publication Date
JP2000346740A JP2000346740A (en) 2000-12-15
JP4264160B2 true JP4264160B2 (en) 2009-05-13

Family

ID=15734594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16141199A Expired - Fee Related JP4264160B2 (en) 1999-06-08 1999-06-08 Optical pressure field measuring device

Country Status (1)

Country Link
JP (1) JP4264160B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103983419A (en) * 2014-05-27 2014-08-13 大连理工大学 Motion model vision measurement image acquisition method for wind tunnel
CN104316290A (en) * 2014-11-15 2015-01-28 西北工业大学 Combined type propeller thrust torque measurement device
CN110702366A (en) * 2019-11-01 2020-01-17 中国空气动力研究与发展中心超高速空气动力研究所 Embedded optical pressure measurement method for shielding position of hypersonic wind tunnel model

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4972830B2 (en) * 2001-06-29 2012-07-11 株式会社豊田中央研究所 Oxygen-sensitive film forming composition and oxygen-sensitive film
KR100418803B1 (en) * 2002-04-12 2004-02-18 현대자동차주식회사 A calibration device of pressure sensitive paint
JP4192244B2 (en) * 2004-03-29 2008-12-10 独立行政法人産業技術総合研究所 Sensor using pressure sensitive material and method for manufacturing the same
JP4107501B2 (en) * 2004-08-27 2008-06-25 独立行政法人 宇宙航空研究開発機構 A-priori / In-situ Hybrid pressure-sensitive paint data processing technique
DE102005017515A1 (en) 2005-04-15 2006-10-19 Airbus Deutschland Gmbh Wind tunnel reading analyzing device, for determining aerodynamic characteristics of aircraft, has processor performing automatic identification of flow unit in recorded image during wind tunnel reading, where image of flow unit is recorded
JP4942083B2 (en) * 2006-03-13 2012-05-30 公益財団法人鉄道総合技術研究所 Pressure distribution measurement system and calibration probe
JP5231898B2 (en) * 2008-08-27 2013-07-10 株式会社ミツバ Pressure measuring device, pressure measuring method, and program for executing the same
JP5476707B2 (en) * 2008-12-04 2014-04-23 トヨタ自動車株式会社 Peel detection device
CN114018537A (en) * 2021-10-21 2022-02-08 南京航空航天大学 Wind tunnel internal flow field state detection device and method based on spatial three-dimensional silk thread array
CN114894428A (en) * 2022-04-15 2022-08-12 西华大学 Fluid flow measuring method based on deflection angle of fluorescent microwire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103983419A (en) * 2014-05-27 2014-08-13 大连理工大学 Motion model vision measurement image acquisition method for wind tunnel
CN104316290A (en) * 2014-11-15 2015-01-28 西北工业大学 Combined type propeller thrust torque measurement device
CN110702366A (en) * 2019-11-01 2020-01-17 中国空气动力研究与发展中心超高速空气动力研究所 Embedded optical pressure measurement method for shielding position of hypersonic wind tunnel model
CN110702366B (en) * 2019-11-01 2021-01-08 中国空气动力研究与发展中心超高速空气动力研究所 Embedded optical pressure measurement method for shielding position of hypersonic wind tunnel model

Also Published As

Publication number Publication date
JP2000346740A (en) 2000-12-15

Similar Documents

Publication Publication Date Title
JP4264160B2 (en) Optical pressure field measuring device
US7268893B2 (en) Optical projection system
US9881383B2 (en) Laser projection system with motion compensation and method
CN107121093A (en) A kind of gear measurement device and measuring method based on active vision
CN104965387B (en) A kind of time for exposure, frame per second and smear test device and its method of testing
US8171770B2 (en) Calibration tool for air data measurement devices
CN106644410A (en) Camera module optical center position measuring method and system
CN112197713B (en) Device and method for synchronously measuring deformation and surface pressure of helicopter rotor blade
US10851657B2 (en) Non-intrusive measurement of the pitch of a blade
CN107192343A (en) A kind of suspension performance test wheel six-degree of freedom displacement measuring device and method
US20180172435A1 (en) A measuring apparatus for measuring properties of a surface
JPH10281927A (en) Measuring device for position and attitude angle of wind tunnel test model
CN112093075A (en) Synchronous measurement platform for average lift force and wing motion of flapping wing micro aircraft
CN103606155B (en) Camera field of view scaling method and device
CN106094562A (en) Membrane structure deformation measurement and Control release system
CN111288933B (en) Automatic centering method for spherical or rotationally symmetric aspheric optical element
CN109596053B (en) A method of measurement high-speed rail bridge vertically moves degree of disturbing
JPH1038531A (en) Method and device for automatically measuring pipe shape
CN106441356B (en) A kind of device and method for correcting airborne platform and carrier aircraft relative angular displacement
CN109813231B (en) Method for measuring vertical dynamic disturbance of high-speed railway bridge
CN209486405U (en) The assembling & adjusting system of optical plate in a kind of optics module
CN207976139U (en) Variable is away from optical detection apparatus
Quix et al. Model deformation measurement capabilities at ETW
CN206362355U (en) A kind of pose calculates optical instrument
CN111896772A (en) Particle imaging speed measurement system applied to wind tunnel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees