JP4262782B2 - LAMINATE MANUFACTURING METHOD AND LAMINATE OBTAINED BY THE METHOD - Google Patents

LAMINATE MANUFACTURING METHOD AND LAMINATE OBTAINED BY THE METHOD Download PDF

Info

Publication number
JP4262782B2
JP4262782B2 JP50024999A JP50024999A JP4262782B2 JP 4262782 B2 JP4262782 B2 JP 4262782B2 JP 50024999 A JP50024999 A JP 50024999A JP 50024999 A JP50024999 A JP 50024999A JP 4262782 B2 JP4262782 B2 JP 4262782B2
Authority
JP
Japan
Prior art keywords
metal sheet
laminate
metal
adhesive layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP50024999A
Other languages
Japanese (ja)
Other versions
JP2001526601A (en
Inventor
ルーブルークス,ヘラルドウス・ヒユーベルトウス・ヨアネス・ヨセフ
Original Assignee
ストラクチユアル・ラミネイツ・カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ストラクチユアル・ラミネイツ・カンパニー filed Critical ストラクチユアル・ラミネイツ・カンパニー
Publication of JP2001526601A publication Critical patent/JP2001526601A/en
Application granted granted Critical
Publication of JP4262782B2 publication Critical patent/JP4262782B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/04Layered products comprising a layer of synthetic resin as impregnant, bonding, or embedding substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/44Number of layers variable across the laminate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1007Running or continuous length work
    • Y10T156/1008Longitudinal bending
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1007Running or continuous length work
    • Y10T156/1008Longitudinal bending
    • Y10T156/101Prior to or during assembly with additional lamina
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1007Running or continuous length work
    • Y10T156/1008Longitudinal bending
    • Y10T156/1011Overedge bending or overedge folding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1007Running or continuous length work
    • Y10T156/1023Surface deformation only [e.g., embossing]

Abstract

The invention pertains to a method for making a laminate comprising at least the following steps: placing a metal sheet on a form tool or a substrate, placing an adhesive layer on top of the first metal sheet, placing a second metal sheet on top of the adhesive layer such that at least one of the metal sheets overlaps at least one edge of the other metal sheet, applying heat and pressure to the thus obtained stack, where during the application of pressure at least one of the metal sheets is bent towards the plane of the other metal sheet. Thus, complicated structures can be optimized for a certain application and, besides, manufactured in one go using comparatively inexpensive tools.

Description

本発明は、少なくとも下記段階:
第一金属シートを成形型(form tool)または基材上に配置し;
接着層を第一金属シート上に配置し;
少なくとも1つの金属シートが、他の金属シートの少なくとも1つの縁においてオーバーラップするように、第二金属シートを接着層上に配置し;
そのようにして得られる積層物に(即ち、主にまたは専ら、成形型または基材に向き合っていない積層物の面に)、熱および圧力を適用する;
ことを含んで成る、ラミネートまたは積層板の製造方法に関する。
そのような方法は、例えば、航空機用途における積層胴体パネルを開示している米国特許第5429326号から既知である。該パネルは、それらの間に接着層を有する少なくとも2つの金属層を有して成る。該金属層は、ほぼ同一平面であり、いわゆるスプライスまたはスプライスラインによって分離された2つまたはそれ以上のシートまたは部分(sections)から成る。該特許には、第一金属層におけるスプライスが、第二隣接金属層におけるスプライスに対して、平行にされ、側面においてそれから距離をあける方法が記載されている。この食い違い交差積層を使用することによって、ラミネートの最大幅が、現在の製造技術において約165cmに制限されている金属シートまたは部分の幅にもはや制限されない。
他の利点は、米国特許第5429326号の添え継ぎされたラミネートが、意外なことに、添え継ぎされていないラミネートと比較した場合に、スプライスに平行の負荷に対して、増加した残留強度(即ち、例えば衝撃によってラミネートが損傷された後の強度)を有することである。
しかし、環境条件へのスプライスの暴露を防止し、金属層中のスプライスにおいておよびその近くにおいてラミネートの引張強度(スプライスラインに横方向の負荷に対する)を増加させるために、いわゆるダブラーによってスプライス(スプライスの一部)を被覆するのが望ましい(多くの場合、安全規則によって規定されている)。
図1は、3つのアルミニウム層(12)、およびアルミニウム層(12)の間の2つの繊維強化接着層(13;これらの層の各々は、2つの一方向プレプレグ、即ち他方に対して90°回転した垂直および平行フィラメントを含有するプレプレグ、から成る)から成る、添え継ぎされた金属ポリマーラミネート(図1における11)の断面模式図である。アルミニウム層(12)はそれぞれ、スプライス(15)によって分離された2つまたはそれ以上のアルミニウムシート(14)から成る。金属ポリマーラミネートであるダブラー(16)が、添え継ぎされたラミネート(11)の上部アルミニウム層(12)中のスプライス(15)に架橋し、硬化性接着剤(17)によってそれに付着される。
図1の構造の製造は、いくつかの工程段階(スプライスされたラミネート(11)、およびダブラー(16)の製造、次に、それら2つの結合)を含み、および、例えば、スプライスされたラミネート(11)の両面にダブラー(16)を結合しなければならない場合に、成形型と接触するダブラーに適合するように機械加工された非常に高価な型または結合成形型を必要とする。さらに、ラミネートが航空機のスキン(skin)に使用される場合に、ダブラー(16)は、外観および空気力学的特性を損なう突起を形成する。
本発明の目的は、特に、ダブラーおよび他の不規則物(irregularities)をラミネートに使用することによって生じる問題を解決することによって、米国特許第5429326号に開示されている添え継ぎの概念をさらに拡大し向上させることである。この目的および下記の目的が、本明細書の最初のパラグラフに記載されている方法を適用することによって達成される。圧力を適用する間に、金属シートの少なくとも1つが他の金属シートの平面に向かって曲がり(即ち、それ自体の平面から出る)、金属シートの形態が固定される。
この方法は、熱および圧力の適用、ならびに、例えば、硬化、接着剤に含有される溶剤の蒸発、または接着剤のTg未満の温度への冷却による、ラミネートにおける歪みの固定または凍結の前の、未硬化ラミネート、即ち金属および接着層の積層物の、低い曲げ剛性を有効に利用する。本発明によって、各金属層が、それの直ぐ下において、積層物の形態をとるようにされる。
好ましくは、金属シートは、接着層の厚み、または接着層および金属シートの厚みと少なくともほぼ同じ程度の距離において、変位される(displaced)。
図2は、通常の圧力および熱レベル、即ち、5バールおよび120℃において、単一オートクレーブサイクル(時間:約1時間)を用いて、本発明の方法によって得られる構造を示す。第一アルミニウムダブラー(21;0.3mmの厚みを有し、アルカリ脱脂処理、次に、エッチングまたは陽極酸化、およびプライマーの適用、にかけた2024−T3)を、平板な平滑面を有する成形型(図示せず)に配置する。3つのアルミニウム層(22;0.3mmの厚みを有し、ダブラー(21)と同様に処理された2024−T3)、およびアルミニウム層(22)の間の2つの接着層(23;各層は、F185 exHexcel中の一方向S2−ガラス繊維の3つの層(0°−9°−0°)から成る)を、ダブラー(21)上に重ね、ダブラー(21)に最も近いアルミニウム層(22)のスプライス(24)を、ダブラー(21)の幅に沿って中間に配置する。第二ダブラー(25)を、第一ダブラー(21)から最も遠いアルミニウム層のスプライス上に配置する。接着剤(26;AF163−2K ex 3M)がダブラー(21、25)とアルミニウム層(22)の間に存在する。次に、熱および圧力を適用する(「胴体構造の内面」として示されている面に)。この間に、添え継ぎされたラミネートがダブラー(21)の周囲に曲がり、接着層(23)および接着剤(26)が硬化する。ダブラー(21)の位置において、スプライスされたラミネートの層が湾曲して、ダブラー(21)を有する充分に(空気力学的に)平らな面を形成する。
当然のことであるが、本発明は、ダブラーなどに限定されるものではない。図3は、本発明の方法によって得られるいわゆるプライ−ドロップ−オフ(ply−drop−off)示す。下部金属層(31)および接着層(32)が基材としての役目をし、これがラミネートと一体部分になり、その基材の上に、第一金属層(33)、接着層(34)、および、この場合においては上部層である第二金属層(35)が、後に積層される。圧力の適用時に、緩やかに第二金属層がプレプレグの末端の形態をとる。接着層(34)の末端近くに、追加接着剤(36)を使用するのが好ましい。接着層(34)が2つまたはそれ以上のプレプレグを有する場合、第二金属シート(35)の末端から段階的にプレプレグの数を増加させるのが好ましい。従って、厚みの変化がよりいっそう漸進的になる。
本発明の方法によって得られるプライ−ドロップ−オフはより強く、離層を受けにくく、厚みの変化が従来のものよりかなり漸進的である。
前記説明から明らかなように、本発明はラミネートの設計者に大きい自由を与える。図4および図5は、本発明の有利な実施態様の他の例を示す。
図4は、前記の分離ダブラーの使用に対する代替物を示す。オーバーラップとして形成されたスプライス(41)を使用することによって、金属層(42)の一部がダブラーとして有効に機能する。
ある航空会社または他の飛行機所有者は、いわゆる「光沢スキン航空機」(bright−skin aircraft)と称されるものを望んでいる。この目的のために、スキンに使用されるアルミニウムシートの外面に、クラッド(一般にアルミニウムの、薄い金属層)が与えられる。ポリマー−金属ラミネートに関しては、これは、外層アルミニウムシート(42、44)が一方の面(「胴体構造の外面」と示される)においてクラッド層を有することを意味し、および、クラッド層が、オーバーラップ(41)として形成されたスプライスにも存在することを意味する。航空機産業において、クラッドゾーンにおいて金属を結合しないのが好ましく、その理由は、これらの結合が飛行機の主構造の保全性にとって重大であり、腐蝕環境におけるクラッドと接着剤との相互作用が好ましくない挙動を生じる場合があるからである。さらに、一般に6〜10mmの幅を有する接着フィレット(図2および図4においてそれぞれ26および43)が、未塗装胴体スキンの外面において肉眼で見えるものとして残る。
前記の理由から、図2および図4に示す形状は、前記「光沢スキン航空機」においてあまり望ましくない。しかし、両方の問題(結合ゾーンにおけるクラッド、および広い可視フィレット)が、図5に示す本発明の他のより好ましい実施態様によって解決される。成形型に直接的にダブラー(51)を配置する代わりに、それを基材(成形型に載せられている)上に重ね、この場合に金属層(53)は、スプライス(52)によって分離された少なくとも2つの金属シートまたは部分から成る。金属層(53)を構成する金属シートは、成形型と接触する面においてだけクラッディングされ、ラミネートの一体部分になる。圧力および熱の適用の間に、ダブラー(51)および金属層(53)が変形せず、一方、添え継ぎされたラミネートの他の部分(金属層およびプレプレグ)が、ダブラー(51)の周囲において曲がる。
事実上の結合ゾーンがラミネートに埋め込まれ、クラッドを有さない。さらに、非常に薄い(0.1〜0.6mm)のスプライス(52)が、胴体構造のスキンの外面において見えるに過ぎない。
この形状の他の利点は、艶出胴体スキンが必要とされる場合の(接着剤と接触する金属シートの部分を、陽極酸化し、下塗りしなければならない)、アルミニウム金属シートの外面の小縁(即ち、図4におけるオーバーラップ)のみの陽極酸化および下塗りの必要性の排除、ならびに、塗装航空機においては、(定期的)塗料除去の間の結合ゾーンへの損傷の回避である。
それの上に金属層および接着層が積層される成形型および基材は、平板である必要はない。例えば、航空機に関してはシングルまたはダブル湾曲胴体パネルまたは他の所望の形状の、ネガティブ(negative)として付形することができる。このような方法により、初めに積層および硬化によって平板ラミネートを作り、次にそのラミネートを付形するのではなく、パネルまたは他の所望の形状が1回で製造される。胴体に使用されるシングル湾曲胴体パネルの半径は、1〜7mの範囲であるのが好ましい。ちなみに、最終製品の要求(少なくとも要求のいくらかを)を満たすように付形された成形型を使用して、工程段階を減少させること、即ち、本発明の目的である多くの局部歪みを存在させないことは、それ自体非常に有用である。
本発明のラミネートは2〜約20の金属層、および約1〜約19の接着層を有するのが好ましい。金属層は、好ましくは約1.5mm未満、より好ましくは約0.1〜0.9mm、最も好ましくは約0.2〜0.5mmの厚さである。好ましい実施態様においては、金属層が約0.3mm(0.012インチ)の厚さである。
金属シートは、0.20GPaより以上の引張強度を有する金属から製造するのが好ましい。好適な金属の例は、アルミニウム合金、鋼合金、チタン合金、銅合金、マグネシウム合金、およびアルミニウムマトリックス複合材料である。AA2000シリーズのアルミニウム−銅合金、AA3000シリーズのアルミニウム−マンガン合金、AA5000シリーズのアルミニウム−マグネシウム合金、AA7000シリーズのアルミニウム−亜鉛合金、およびAA6000シリーズのアルミニウム−マグネシウム−シリコン合金が好ましい。いくつかの特に好ましい合金は、AA2024アルミニウム−銅、AA7075アルミニウム−亜鉛、およびAA6013アルミニウム−マグネシウム−シリコンである。2つの好ましい合金は、AA2X24−T3およびAA7X75−T6である。優れた耐蝕性が望まれている場合は、AA5052合金のシートがラミネートに含まれる。さらに、それぞれが異なる合金のシートである少なくとも2つの金属シートを含んで成る米国特許第5547735号に開示されているラミネートも、本発明に使用するのに非常に適している。
金属シートにおける曲がりは、弾性および塑性歪み成分の両方を含むと理解される。どちらの成分が優勢であるかは、主として、材料の種類、寸法、および製造条件に依存する。
接着層は、(ガラス)繊維で強化するのが好ましい。スプライスがラミネート中に存在する場合は、(ガラス)繊維の一部がスプライスに架橋するのが好ましく、一般にスプライスラインに近接に連続にされる。構造の負荷条件に依存して、繊維は、個々にまたはグループにおいて、一方向にまたはいくつかの異なる方向に、配向される。繊維の少なくとも約半分が、近接する金属層のスプライスに垂直に伸長するのが好ましい。特に好ましい実施態様においては、繊維の約半分が0°方向(縦方向)に配向され、一方、他の半分が90°方向(横方向)に配向される。あるいは、繊維の約3分の1が0°に配向され、および約3分の2が90°に配向されるか、または約3分の2が0°に配向され、および約3分の1が90°に配向される。
接着層は、合成ポリマーを含んで成るのが好ましい。好適な非熱可塑性ポリマーの例は、エポキシ樹脂、不飽和ポリエステル、ビニルエステル、フェノール樹脂、および熱可塑性樹脂である。好適な熱可塑性ポリマーは、例えば、ポリアリレート(PAR)、ポリスルホン(PSO)、ポリエーテルスルホン(PES)、ポリエーテルイミド(PEI)、またはポリフェニレンエーテル(PEE)、ポリフェニレンスルフィド(PPS)、ポリアミド−4,6、ポリケトンスルフィド(PKS)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、およびポリエーテルケトンケトン(PEKK)である。前記のように、接着層の一部である接着剤の他に、接着剤(例えば、番号17、26、36、43、54で示されている接着剤)が、ラミネートの他の部分に局部的に使用される。原則として、接着層に使用するのに好適な全ての接着剤が、「局部」接着剤としての使用にも適している。
接着層は、金属層と同様の厚みを有する。接着層は、好ましくは約1.5mm未満、より好ましくは約0.1〜0.9mm、最も好ましくは約0.2〜0.5mmの厚さである。約0.3mm(0.012インチ)の厚みの接着層が、好ましい実施態様に使用される。
接着層を強化するのに好ましい繊維は、ガラス、芳香族ポリアミド(アラミド)、および炭素のような材料の、連続繊維またはフィラメントである。好ましいガラス繊維は、S−2ガラス繊維またはR−ガラス繊維であり、それぞれ、約58〜69重量%SiO2、18〜29重量%Al23、および7〜19重量%mGoを含有する。約55重量%SiO2、15重量%Al23、19重量%CaO、7重量%B23、および3重量%MgOを含有する低価格のE−ガラス繊維も適している。1つの好適なアラミド繊維は、ポリ−パラ−フェニレンテレフタルアミドから製造される。繊維は、約60〜650GPaの弾性率、および約0.2〜8%の破断点伸びを有する。繊維は、それぞれが約3〜30ミクロンの直径を有する連続フィラメントであるのが好ましい。
好ましいラミネートは、接着層においてS−2ガラス繊維で強化される。S−2ガラス繊維は、約8〜12ミクロンの直径を有するのが好ましく、それらは、強化接着層の接着剤および繊維の合計容量の約35〜75%、好ましくは約57〜63%を構成する。
前記の材料および形状の他に、特に、EP 056288、EP 056289、EP 312150、およびEP 312151を参考にすることができ、それらは全て、本発明に使用するのに好適な金属を含有する非添継金属ポリマーラミネートに関する。
本発明はさらに、少なくとも第一金属シートおよび第二金属シート、ならびに金属シートの間に付与され、金属シートに結合される少なくとも1つの接着層を有して成るラミネート(前記方法によって得られる)であって、金属シートの少なくとも1つが(上面図)他の金属シートの少なくとも1つの縁においてオーバーラップし、および少なくとも1つの金属シートが他の金属シートの平面に向かって曲がり、好ましくはさらに該平面に実質的に伸長しているラミネートに関する。追加の接着剤を、金属シートが重なる領域に適用するのが好ましい。
これらのラミネートは、ダブラーのような「不規則物」の存在にもかかわらず、平らな表面を有することができ、比較的安価な成形型を使用して1つの製造サイクルにおいて製造することができる故に比較的安価であり、重量が減少した添え継ぎパネルの製造を可能にし、および高強度のプライ−ドロップ−オフ形状を有することができる。さらに、これらのラミネートに関する試験は、それらが従来の金属−ポリマーラミネートと実質的に同様の機械的性質(即ち、優れた耐疲労性、高残留強度、耐火性、耐蝕性など)を有することを示した。
他の利点は、航空機設計の構造部品(例えば、ストリンガーの位置、シェアクリード(shear cleads)、窓枠、ドア)に関するスプライス部品(例えば、スプライスライン、ダブラー)の干渉を、最少限に維持できることであり、その理由は、新たな概念における最少厚みステップが、従来の製造方法におけるより小さく(図1と図3を比較)、実際にはストリンガーによってさらに架橋される最大厚みステップである0.5〜0.6mmより小さいからである。
本発明はさらに、本発明のラミネートを有して成る、乗物、宇宙航空機または航空機の構造部材、および該ラミネートを有して成る航空機に関する。
EP 502620は、追加強度が必要とされる領域、または成形の間に過度の伸びが生じ、そうしなければその領域が局部的に薄くなるかまたは弱くなる領域において、超可塑的に成形可能な材料の追加シートまたはダブラーを、材料の主シート上に重ねる(超可塑成形の前)ことを開示している(例えば、該特許出願の要約および図7を参照)。金属−ポリマーラミネートは開示されておらず、実際上、開示されている超可塑成形法が、そのようなラミネートの製造に充分に適しているわけではない。
本発明の範囲において、「頂面図」という用語は、金属シートの表面の法線に平行として理解されるものとする。「金属シートの平面」は、変位または変形していない金属シートの部分における平面である。当然のことであるが、この平面は湾曲している場合もある。
The present invention comprises at least the following steps:
Placing a first metal sheet on a form tool or substrate;
Placing an adhesive layer on the first metal sheet;
Placing the second metal sheet on the adhesive layer such that at least one metal sheet overlaps at least one edge of the other metal sheet;
Heat and pressure are applied to the laminate so obtained (ie, mainly or exclusively on the side of the laminate not facing the mold or substrate);
The present invention relates to a method for producing a laminate or laminate.
Such a method is known, for example, from US Pat. No. 5,429,326 which discloses laminated fuselage panels in aircraft applications. The panel comprises at least two metal layers with an adhesive layer between them. The metal layer is substantially coplanar and consists of two or more sheets or sections separated by so-called splices or splice lines. The patent describes a method in which the splice in the first metal layer is parallel to the splice in the second adjacent metal layer and spaced from it on the sides. By using this staggered cross-lamination, the maximum width of the laminate is no longer limited to the width of the metal sheet or portion, which is limited to about 165 cm in current manufacturing techniques.
Another advantage is that the spliced laminate of U.S. Pat. No. 5,429,326 surprisingly has an increased residual strength (i.e., a load parallel to the splice) when compared to a non-spliced laminate. For example, strength after the laminate is damaged by impact).
However, to prevent exposure of the splice to environmental conditions and to increase the tensile strength of the laminate at and near the splice in the metal layer (with respect to lateral loading on the splice line), the so-called doubler splice It is desirable to cover some) (in many cases, as defined by safety regulations).
FIG. 1 shows three aluminum layers (12) and two fiber-reinforced adhesive layers between aluminum layers (12) (13; each of these layers is two unidirectional prepregs, ie 90 ° relative to the other. FIG. 2 is a schematic cross-sectional view of a spliced metal polymer laminate (11 in FIG. 1) consisting of a prepreg containing rotated vertical and parallel filaments. Each aluminum layer (12) consists of two or more aluminum sheets (14) separated by a splice (15). A doubler (16), which is a metal polymer laminate, cross-links to the splice (15) in the upper aluminum layer (12) of the spliced laminate (11) and is attached thereto by a curable adhesive (17).
The manufacture of the structure of FIG. 1 includes several process steps (spliced laminate (11) and doubler (16) manufacture, then bonding the two) and, for example, a spliced laminate ( If the doubler (16) has to be bonded to both sides of 11), it requires a very expensive or bonded mold that is machined to fit the doubler in contact with the mold. Furthermore, when the laminate is used in aircraft skins, the doubler (16) forms protrusions that impair the appearance and aerodynamic properties.
The object of the present invention further extends the splicing concept disclosed in US Pat. No. 5,429,326, in particular by solving the problems caused by the use of doublers and other irregularities in the laminate. And improve it. This and the following objectives are achieved by applying the method described in the first paragraph of this specification. During the application of pressure, at least one of the metal sheets bends (i.e., exits from its own plane) toward the plane of the other metal sheet, and the form of the metal sheet is fixed.
This method involves the application of heat and pressure and prior to fixing or freezing the strain in the laminate, for example by curing, evaporation of the solvent contained in the adhesive, or cooling the adhesive to a temperature below Tg, It effectively utilizes the low bending stiffness of uncured laminates, i.e., metal and adhesive layer laminates. The present invention allows each metal layer to take the form of a laminate just below it.
Preferably, the metal sheet is displaced at a distance that is at least about the same as the thickness of the adhesive layer or the thickness of the adhesive layer and the metal sheet.
FIG. 2 shows the structure obtained by the method of the invention using a single autoclave cycle (time: about 1 hour) at normal pressure and heat levels, ie 5 bar and 120 ° C. A mold (2024-T3 having a thickness of 21 mm, having a thickness of 21 mm and subjected to an alkaline degreasing treatment, then etching or anodizing, and applying a primer) having a flat smooth surface ( (Not shown). Three aluminum layers (22; 2024-T3 having a thickness of 0.3 mm and treated in the same way as the doubler (21)), and two adhesive layers (23; each layer between the aluminum layers (22) Three layers of unidirectional S2-glass fibers (0 ° -9 ° -0 °) in F185 exHexcel are layered over the doubler (21) and the aluminum layer (22) closest to the doubler (21) A splice (24) is placed in the middle along the width of the doubler (21). A second doubler (25) is placed on the aluminum layer splice farthest from the first doubler (21). Adhesive (26; AF163-2K ex 3M) is present between the doubler (21, 25) and the aluminum layer (22). Next, heat and pressure are applied (to the surface shown as “the inner surface of the fuselage structure”). During this time, the spliced laminate is bent around the doubler (21), and the adhesive layer (23) and the adhesive (26) are cured. At the position of the doubler (21), the layer of the spliced laminate is curved to form a sufficiently (aerodynamic) flat surface with the doubler (21).
Of course, the present invention is not limited to a doubler or the like. FIG. 3 shows the so-called ply-drop-off obtained by the method of the invention. The lower metal layer (31) and the adhesive layer (32) serve as a substrate, which becomes an integral part of the laminate, and on the substrate, the first metal layer (33), the adhesive layer (34), In this case, the second metal layer (35) which is the upper layer is laminated later. Upon application of pressure, the second metal layer slowly takes the form of the end of the prepreg. It is preferred to use an additional adhesive (36) near the end of the adhesive layer (34). When the adhesive layer (34) has two or more prepregs, it is preferable to increase the number of prepregs stepwise from the end of the second metal sheet (35). Therefore, the change in thickness becomes more gradual.
The ply-drop-off obtained by the method of the present invention is stronger, less susceptible to delamination, and the change in thickness is much more gradual than the prior art.
As is apparent from the foregoing description, the present invention provides great freedom to the laminate designer. 4 and 5 show other examples of advantageous embodiments of the invention.
FIG. 4 shows an alternative to the use of the separation doubler described above. By using the splice (41) formed as an overlap, a part of the metal layer (42) functions effectively as a doubler.
One airline or other airplane owner wants what is called a so-called “bright-skin aircraft”. For this purpose, the outer surface of the aluminum sheet used for the skin is provided with a cladding (generally a thin metal layer of aluminum). For polymer-metal laminates, this means that the outer aluminum sheet (42, 44) has a cladding layer on one side (denoted "outer surface of fuselage structure") and the cladding layer is over Means also present in the splice formed as a wrap (41). In the aircraft industry, it is preferable not to bond metals in the cladding zone because these bonds are critical to the integrity of the aircraft's main structure and the interaction between the cladding and adhesive in a corrosive environment is undesirable. This is because it may cause In addition, adhesive fillets (26 and 43 in FIGS. 2 and 4, respectively), typically having a width of 6-10 mm, remain visible to the naked eye on the outer surface of the unpainted fuselage skin.
For the above reasons, the shapes shown in FIGS. 2 and 4 are less desirable in the “gloss skin aircraft”. However, both problems (cladding in the coupling zone and wide visible fillet) are solved by another more preferred embodiment of the invention shown in FIG. Instead of placing the doubler (51) directly on the mold, it is overlaid on the substrate (mounted on the mold), in which case the metal layer (53) is separated by the splice (52). Consisting of at least two metal sheets or parts. The metal sheet constituting the metal layer (53) is clad only on the surface in contact with the mold and becomes an integral part of the laminate. During the application of pressure and heat, the doubler (51) and the metal layer (53) are not deformed, while other parts of the spliced laminate (metal layer and prepreg) are around the doubler (51). Bend.
The virtual bonding zone is embedded in the laminate and has no cladding. Furthermore, a very thin (0.1-0.6 mm) splice (52) is only visible on the outer surface of the skin of the fuselage structure.
Another advantage of this shape is the small edge of the outer surface of the aluminum metal sheet when a polished fuselage skin is required (the part of the metal sheet that contacts the adhesive must be anodized and primed) The elimination of the need for only anodization and priming (ie, the overlap in FIG. 4) and, in the painting aircraft, avoiding damage to the bonding zone during (periodic) paint removal.
The mold and substrate on which the metal layer and the adhesive layer are laminated need not be a flat plate. For example, for an aircraft, it can be shaped as a negative of a single or double curved fuselage panel or other desired shape. In this way, rather than first making a flat laminate by lamination and curing and then shaping the laminate, a panel or other desired shape is produced in one go. The radius of the single curved fuselage panel used for the fuselage is preferably in the range of 1-7 m. By the way, using a mold shaped to meet the requirements of the final product (at least some of the requirements), reducing the process steps, i.e. not having many local distortions that are the object of the present invention. That is very useful in itself.
The laminate of the present invention preferably has from 2 to about 20 metal layers and from about 1 to about 19 adhesive layers. The metal layer is preferably less than about 1.5 mm, more preferably about 0.1 to 0.9 mm, and most preferably about 0.2 to 0.5 mm. In a preferred embodiment, the metal layer is about 0.3 mm (0.012 inches) thick.
The metal sheet is preferably manufactured from a metal having a tensile strength of 0.20 GPa or more. Examples of suitable metals are aluminum alloys, steel alloys, titanium alloys, copper alloys, magnesium alloys, and aluminum matrix composites. AA2000 series aluminum-copper alloys, AA3000 series aluminum-manganese alloys, AA5000 series aluminum-magnesium alloys, AA7000 series aluminum-zinc alloys, and AA6000 series aluminum-magnesium-silicon alloys are preferred. Some particularly preferred alloys are AA2024 aluminum-copper, AA7075 aluminum-zinc, and AA6013 aluminum-magnesium-silicon. Two preferred alloys are AA2X24-T3 and AA7X75-T6. If superior corrosion resistance is desired, a sheet of AA5052 alloy is included in the laminate. Furthermore, the laminate disclosed in US Pat. No. 5,547,735 comprising at least two metal sheets, each of which is a sheet of a different alloy, is also very suitable for use in the present invention.
It is understood that bending in a metal sheet includes both elastic and plastic strain components. Which component dominates depends primarily on the type of material, dimensions, and manufacturing conditions.
The adhesive layer is preferably reinforced with (glass) fibers. If a splice is present in the laminate, it is preferred that a portion of the (glass) fiber is cross-linked to the splice and is generally continuous in close proximity to the splice line. Depending on the loading conditions of the structure, the fibers are oriented individually or in groups, in one direction or in several different directions. It is preferred that at least about half of the fibers extend perpendicular to the adjacent metal layer splice. In a particularly preferred embodiment, about half of the fibers are oriented in the 0 ° direction (longitudinal direction), while the other half is oriented in the 90 ° direction (lateral direction). Alternatively, about one third of the fibers are oriented at 0 ° and about two thirds are oriented at 90 °, or about two thirds are oriented at 0 ° and about one third. Are oriented at 90 °.
The adhesive layer preferably comprises a synthetic polymer. Examples of suitable non-thermoplastic polymers are epoxy resins, unsaturated polyesters, vinyl esters, phenolic resins, and thermoplastic resins. Suitable thermoplastic polymers are, for example, polyarylate (PAR), polysulfone (PSO), polyethersulfone (PES), polyetherimide (PEI), or polyphenylene ether (PEE), polyphenylene sulfide (PPS), polyamide-4 , 6, polyketone sulfide (PKS), polyetherketone (PEK), polyetheretherketone (PEEK), and polyetherketoneketone (PEKK). As noted above, in addition to the adhesive that is part of the adhesive layer, an adhesive (eg, the adhesive indicated by the numbers 17, 26, 36, 43, 54) is locally applied to other parts of the laminate. Used. In principle, all adhesives suitable for use in the adhesive layer are also suitable for use as “local” adhesives.
The adhesive layer has the same thickness as the metal layer. The adhesive layer is preferably less than about 1.5 mm, more preferably about 0.1 to 0.9 mm, and most preferably about 0.2 to 0.5 mm thick. An adhesive layer with a thickness of about 0.3 mm (0.012 inches) is used in the preferred embodiment.
Preferred fibers for reinforcing the adhesive layer are continuous fibers or filaments of materials such as glass, aromatic polyamide (aramid), and carbon. Preferred glass fibers are S-2 glass fibers or R-glass fibers, containing about 58-69 wt% SiO 2 , 18-29 wt% Al 2 O 3 , and 7-19 wt% mGo, respectively. Low cost of E- glass fibers containing from about 55 wt% SiO 2, 15 wt% Al 2 O 3, 19 wt% CaO, 7 wt% B 2 O 3, and 3 wt% MgO, are also suitable. One suitable aramid fiber is made from poly-para-phenylene terephthalamide. The fiber has a modulus of about 60-650 GPa and an elongation at break of about 0.2-8%. The fibers are preferably continuous filaments each having a diameter of about 3 to 30 microns.
Preferred laminates are reinforced with S-2 glass fibers in the adhesive layer. The S-2 glass fibers preferably have a diameter of about 8-12 microns, which constitutes about 35-75%, preferably about 57-63% of the total volume of adhesive and fiber of the reinforced adhesive layer. To do.
In addition to the materials and shapes described above, reference may be made in particular to EP 056288, EP 056289, EP 312150, and EP 312151, all of which are non-added containing metals suitable for use in the present invention. The present invention relates to a joint metal polymer laminate.
The invention further comprises a laminate (obtained by said method) comprising at least a first metal sheet and a second metal sheet, and at least one adhesive layer applied between and bonded to the metal sheet. And at least one of the metal sheets (top view) overlaps at least one edge of the other metal sheet, and the at least one metal sheet bends toward the plane of the other metal sheet, preferably further in the plane Relates to a substantially elongated laminate. Preferably, additional adhesive is applied to the area where the metal sheets overlap.
These laminates can have a flat surface, despite the presence of "irregular" such as doublers, and can be manufactured in a single manufacturing cycle using relatively inexpensive molds. It is therefore relatively inexpensive, allows for the production of spliced panels with reduced weight and can have a high strength ply-drop-off shape. In addition, tests on these laminates have shown that they have substantially similar mechanical properties (ie, excellent fatigue resistance, high residual strength, fire resistance, corrosion resistance, etc.) as conventional metal-polymer laminates. Indicated.
Another advantage is that the interference of splice components (eg splice lines, doublers) with respect to aircraft-designed structural components (eg stringer positions, shear clades, window frames, doors) can be kept to a minimum. Yes, the reason is that the minimum thickness step in the new concept is smaller than in the conventional manufacturing method (compare FIGS. 1 and 3) and is actually the maximum thickness step that is further cross-linked by the stringer from 0.5 to This is because it is smaller than 0.6 mm.
The invention further relates to a vehicle, a spacecraft or aircraft structural member comprising the laminate of the invention, and an aircraft comprising the laminate.
EP 502620 is superplastically moldable in areas where additional strength is required, or in areas where excessive elongation occurs during molding, otherwise the area is locally thinned or weakened. An additional sheet or doubler of material is disclosed to be superimposed on the main sheet of material (before superplastic forming) (see, for example, the summary of the patent application and FIG. 7). Metal-polymer laminates are not disclosed, and in practice the disclosed superplastic forming process is not well suited for the production of such laminates.
Within the scope of the present invention, the term “top view” shall be understood as being parallel to the normal of the surface of the metal sheet. The “plane of the metal sheet” is a plane in the portion of the metal sheet that is not displaced or deformed. Of course, this plane may be curved.

Claims (14)

少なくとも
第一金属シートを成形型または基材上に配置し;
接着層を第一金属シート上に配置し;
少なくとも1つの金属シートが、他の金属シートの少なくとも1つの縁においてオーバーラップするように、第二金属シートを接着層上に配置し;
そのようにして得られる積層物に、熱および圧力を適用する段階を含むラミネートの製造方法であって、
圧力を適用する間に少なくとも1つの金属シートが他の金属シートの平面に向かって曲げられ、その後、金属シートの形態が固定されることを特徴とする、ラミネートの製造方法。
Placing at least a first metal sheet on a mold or substrate;
Placing an adhesive layer on the first metal sheet;
Placing the second metal sheet on the adhesive layer such that at least one metal sheet overlaps at least one edge of the other metal sheet;
A method for producing a laminate comprising the steps of applying heat and pressure to the laminate thus obtained,
A process for producing a laminate, characterized in that at least one metal sheet is bent towards the plane of another metal sheet during the application of pressure, after which the form of the metal sheet is fixed.
第二金属シートが、第一金属シートの平面に向かって曲げられることを特徴とする、請求項1に記載の方法。The method according to claim 1, wherein the second metal sheet is bent toward the plane of the first metal sheet. 積層物に面する成形型または基材の表面が、実質的に平滑であり、および/または、湾曲していることを特徴とする請求項1または2に記載の方法。The method according to claim 1 or 2, characterized in that the surface of the mold or substrate facing the laminate is substantially smooth and / or curved. 接着層が少なくとも1つのプレプレグを有して成ることを特徴とする請求項1〜3のいずれか一項に記載の方法。The method according to claim 1, wherein the adhesive layer comprises at least one prepreg. 第一金属層がダブラーであり、第二金属層が、第一金属層の中央または中央近くに配置されるスプライスを有して成ることを特徴とする請求項1〜4のいずれか一項に記載の方法。The first metal layer is a doubler, and the second metal layer has a splice disposed at or near the center of the first metal layer. The method described. 基材が、少なくとも1つの金属層および少なくとも1つの接着層を有して成ることを特徴とする請求項1〜4のいずれか一項に記載の方法。The method according to claim 1, wherein the substrate comprises at least one metal layer and at least one adhesive layer. 第一金属シートおよび第二金属シートの間の接着層が、少なくとも2つのプレプレグを有して成り、およびプレプレグの数が、オーバーラップされた縁の末端から段階的に増加することを特徴とする請求項1〜4のいずれか一項に記載の方法。The adhesive layer between the first metal sheet and the second metal sheet comprises at least two prepregs, and the number of prepregs increases stepwise from the ends of the overlapped edges The method as described in any one of Claims 1-4. 基材が金属層であることを特徴とする請求項1〜4のいずれか一項に記載の方法。The method according to claim 1, wherein the substrate is a metal layer. 少なくとも第一金属シートおよび第二金属シート、ならびに金属シートの間に付与され、金属シートに結合される少なくとも1つの接着層を有して成り、少なくとも1つの金属シートが他の金属シートの少なくとも1つの縁においてオーバーラップするラミネートであって、少なくとも1つの金属シートが、他の金属シートの平面に向かって曲がり、および/または、該平面に実質的に伸長することを特徴とするラミネート。At least a first metal sheet and a second metal sheet, and at least one adhesive layer applied between and bonded to the metal sheet, wherein at least one metal sheet is at least one of the other metal sheets Laminate overlapping at one edge, characterized in that at least one metal sheet bends and / or substantially extends into the plane of the other metal sheet. ダブラーを有することを特徴とする請求項9に記載のラミネート。10. Laminate according to claim 9, characterized in that it has a doubler. 接着層が強化繊維を含有することを特徴とする請求項9または10に記載のラミネート。The laminate according to claim 9 or 10, wherein the adhesive layer contains reinforcing fibers. 第一金属シートおよび第二金属シートの間の接着層が、少なくとも2つのプレプレグを有して成り、プレプレグの数が、オーバーラップされた縁の末端から段階的に増加することを特徴とする請求項9〜11のいずれか一項に記載のラミネート。The adhesive layer between the first metal sheet and the second metal sheet comprises at least two prepregs, and the number of prepregs increases stepwise from the ends of the overlapped edges. The laminate according to any one of Items 9 to 11. 請求項9〜12のいずれか一項に記載のラミネートを有して成る、乗物、宇宙航空機または航空機の構造部材。A vehicle, spacecraft or aircraft structural member comprising the laminate according to any one of claims 9-12. 請求項9〜12のいずれか一項に記載のラミネートを有して成る航空機。An aircraft comprising the laminate according to any one of claims 9-12.
JP50024999A 1997-05-28 1998-05-22 LAMINATE MANUFACTURING METHOD AND LAMINATE OBTAINED BY THE METHOD Expired - Fee Related JP4262782B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP97201565.5 1997-05-28
EP97201565 1997-05-28
PCT/EP1998/003173 WO1998053989A1 (en) 1997-05-28 1998-05-22 Method for making a laminate and laminate obtainable by said method

Publications (2)

Publication Number Publication Date
JP2001526601A JP2001526601A (en) 2001-12-18
JP4262782B2 true JP4262782B2 (en) 2009-05-13

Family

ID=8228358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50024999A Expired - Fee Related JP4262782B2 (en) 1997-05-28 1998-05-22 LAMINATE MANUFACTURING METHOD AND LAMINATE OBTAINED BY THE METHOD

Country Status (8)

Country Link
US (1) US6736919B1 (en)
EP (1) EP0983141B1 (en)
JP (1) JP4262782B2 (en)
AT (1) ATE226512T1 (en)
AU (1) AU8435298A (en)
DE (1) DE69808903T2 (en)
ES (1) ES2186184T3 (en)
WO (1) WO1998053989A1 (en)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050154567A1 (en) * 1999-06-18 2005-07-14 President And Fellows Of Harvard College Three-dimensional microstructures
US6706165B2 (en) 2000-01-07 2004-03-16 President And Fellows Of Harvard College Fabrication of metallic microstructures via exposure of photosensitive composition
NL1015141C2 (en) 2000-05-09 2001-11-13 Fokker Aerostructures Bv Connecting construction in a laminate of metal and plastic layers.
NL1018120C2 (en) * 2001-05-21 2002-12-03 Fokker Aerostructures Bv Method for manufacturing a molded laminate.
NL1019574C2 (en) * 2001-12-14 2003-06-17 Stichting Fmlc Metal fiber laminate assembly adapted to withstand a local impact distorting the assembly.
NL1019957C2 (en) 2002-02-13 2003-10-03 Stork Fokker Aesp Bv Laminated panel with discontinuous inner layer.
DE10238460B3 (en) 2002-08-22 2004-03-11 Airbus Deutschland Gmbh Lightweight structure made of thin sheet metal layers
FR2844742B1 (en) * 2002-09-25 2005-04-29 Pechiney Rhenalu ALUMINUM-GLASS FIBER LAMINATED COMPOSITE SHEETS
NL1023811C2 (en) 2003-07-03 2005-01-04 Stork Fokker Aesp Bv Laminate with local reinforcement.
EP1495858B1 (en) * 2003-07-08 2019-08-07 Airbus Operations GmbH Lightweight material structure made of metal composite material
EP1495859B1 (en) 2003-07-08 2008-09-03 Airbus Deutschland GmbH Lightweight material structure
NL1023854C2 (en) 2003-07-08 2005-01-11 Stork Fokker Aesp Bv Laminate with filling layer.
NL1024077C2 (en) 2003-08-08 2005-02-10 Stork Fokker Aesp Bv Method for manufacturing a laminate with mutually offset layers.
NL1024076C2 (en) * 2003-08-08 2005-02-10 Stork Fokker Aesp Bv Method for forming a laminate with a recess.
NL1024479C2 (en) * 2003-10-07 2005-04-08 Stork Fokker Aesp Bv Connection construction in a laminate with a local reinforcement.
US20050175813A1 (en) * 2004-02-10 2005-08-11 Wingert A. L. Aluminum-fiber laminate
DK200401225A (en) * 2004-08-13 2006-02-14 Lm Glasfiber As Method for cutting laminate layers, for example a fiberglass or carbon fiber laminate layer in a wind turbine blade
NL1029088C2 (en) * 2005-05-20 2006-11-21 Netherlands Inst For Metals Re Fiber-metal laminates and constructions with these.
NL2000100C2 (en) 2006-06-13 2007-12-14 Gtm Consulting B V Laminate from metal sheets and plastic.
DE102006031436B4 (en) * 2006-07-07 2012-12-06 Airbus Operations Gmbh Structural element, method for producing such a structural element and aircraft with such a structural element
NL2000232C2 (en) * 2006-09-12 2008-03-13 Gtm Consulting B V Skin panel for an aircraft fuselage.
DE102007018753B4 (en) * 2007-04-20 2012-11-08 Airbus Operations Gmbh Fire protection room for aircraft passengers with the help of fuselage made of fiber-metal laminates
DE102007019716A1 (en) * 2007-04-26 2008-10-30 Airbus Deutschland Gmbh Fiber metal laminate panel
DE102007063608B4 (en) * 2007-05-23 2011-04-21 Airbus Operations Gmbh Composite and fuselage cell section with such a composite
DE102007046478B4 (en) * 2007-05-23 2012-08-02 Airbus Operations Gmbh Sheet metal laminate, in particular for fuselage skin panels for aircraft
DE102007025818A1 (en) * 2007-06-02 2008-12-04 Voith Patent Gmbh Sheet metal forming unit, in particular housing or lining for machines and installations, method for producing such sheet metal forming units and use in housings or panels of paper machines
DE102008010228A1 (en) * 2008-02-21 2009-09-03 Airbus Deutschland Gmbh Method and device for producing fiber-reinforced plastic profile parts
GB0805268D0 (en) * 2008-03-25 2008-04-30 Airbus Uk Ltd Composite joint protection
FR2932106B1 (en) * 2008-06-06 2010-05-21 Airbus France METHOD FOR REMOVING A COATING TO ENHANCE LAMINAR FLOW
EP2177352A1 (en) * 2008-10-08 2010-04-21 Hydro Aluminium Deutschland GmbH Compound material for noise and heat insulation and method for producing same
US8282042B2 (en) 2009-06-22 2012-10-09 The Boeing Company Skin panel joint for improved airflow
US9821538B1 (en) * 2009-06-22 2017-11-21 The Boeing Company Ribbed caul plate for attaching a strip to a panel structure and method for use
US20110143081A1 (en) * 2010-06-29 2011-06-16 General Electric Company Modified ply drops for composite laminate materials
US20110143082A1 (en) * 2010-06-29 2011-06-16 General Electric Company Ply drops modifications for composite laminate materials and related methods
US8993084B2 (en) 2010-08-17 2015-03-31 The Boeing Company Multi-layer metallic structure and composite-to-metal joint methods
US9522512B2 (en) * 2010-08-17 2016-12-20 The Boeing Company Methods for making composite structures having composite-to-metal joints
US8652606B2 (en) * 2010-08-17 2014-02-18 The Boeing Company Composite structures having composite-to-metal joints and method for making the same
CN103501996B (en) * 2011-02-21 2016-01-20 多产研究有限责任公司 Comprise composite and the method in the region of different performance
NL2007603C2 (en) * 2011-10-14 2013-04-16 Univ Delft Tech Fiber metal laminate.
US9233526B2 (en) 2012-08-03 2016-01-12 Productive Research Llc Composites having improved interlayer adhesion and methods thereof
US9302349B2 (en) 2012-10-31 2016-04-05 Productive Research Llc Edge joint of light weight composites
US20160347044A1 (en) * 2013-10-23 2016-12-01 Hewlett-Packard Development Company, L.P. Multi-Layered Metal
EP2907654A1 (en) 2014-02-13 2015-08-19 Airbus Operations GmbH Joints in fibre metal laminates
NL2012458B1 (en) * 2014-03-17 2016-01-08 Gtm-Advanced Products B V Laminate of mutually bonded adhesive layers and metal sheets, and method to obtain such laminate.
NL2012692B1 (en) * 2014-04-25 2016-07-18 Fokker Aerostructures Bv Panel from laminates, as well as method for manufacturing them.
CN104015917A (en) * 2014-06-16 2014-09-03 上海飞机制造有限公司 Fiber aluminum lithium alloy laminated board used as airplane wall board and production method of laminated board
NL2015437B1 (en) 2015-09-15 2017-04-03 Gtm-Advanced Products B V Laminate of mutually bonded adhesive layers and metal sheets, and method to obtain such laminate.
GB2545655A (en) 2015-12-18 2017-06-28 Airbus Operations Ltd A structure formed from composite material
DE102016012691A1 (en) * 2016-10-25 2018-04-26 Hydro Aluminium Rolled Products Gmbh Multilayer structural component, process for its production and uses therefor
NL2017850B1 (en) 2016-11-23 2018-05-28 Gtm Advanced Products B V Laminate of mutually bonded adhesive layers and spliced metal sheets

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8100087A (en) 1981-01-09 1982-08-02 Tech Hogeschool Delft Afdeling LAMINATE OF METAL PLATES AND CONNECTED WIRES.
NL8100088A (en) 1981-01-09 1982-08-02 Tech Hogeschool Delft Afdeling LAMINATE OF METAL SHEETS AND CONNECTED WIRES, AND METHODS FOR MANUFACTURE THEREOF
ATE61970T1 (en) 1987-10-14 1991-04-15 Akzo Nv LAMINATE OF METAL LAYERS AND CONTINUOUS FIBER REINFORCED SYNTHETIC MATERIAL.
EP0312150B1 (en) 1987-10-14 1992-12-02 Structural Laminates Company Laminate of metal sheets and continuous filaments-reinforced thermoplastic synthetic material, as well as a process for the manufacture of such a laminate
GB9103804D0 (en) 1991-02-23 1991-04-10 British Aerospace Improvements relating to diffusion bonded/superplastically formed cellular structures
US5429326A (en) 1992-07-09 1995-07-04 Structural Laminates Company Spliced laminate for aircraft fuselage
US5567535A (en) * 1992-11-18 1996-10-22 Mcdonnell Douglas Corporation Fiber/metal laminate splice
US5547735A (en) 1994-10-26 1996-08-20 Structural Laminates Company Impact resistant laminate

Also Published As

Publication number Publication date
AU8435298A (en) 1998-12-30
DE69808903D1 (en) 2002-11-28
DE69808903T2 (en) 2003-08-07
ATE226512T1 (en) 2002-11-15
EP0983141A1 (en) 2000-03-08
ES2186184T3 (en) 2003-05-01
WO1998053989A1 (en) 1998-12-03
US6736919B1 (en) 2004-05-18
JP2001526601A (en) 2001-12-18
EP0983141B1 (en) 2002-10-23

Similar Documents

Publication Publication Date Title
JP4262782B2 (en) LAMINATE MANUFACTURING METHOD AND LAMINATE OBTAINED BY THE METHOD
EP3119594B1 (en) Laminate of mutually bonded adhesive layers and metal sheets, and method to obtain such laminate
EP0783960B1 (en) Titanium-polymer hybrid laminates
NL2000232C2 (en) Skin panel for an aircraft fuselage.
EP2026962B1 (en) Laminate of metal sheets and polymer
US20110052910A1 (en) High toughness fiber-metal laminate
EP3349978B1 (en) Laminate of mutually bonded adhesive layers and metal sheets, and method to obtain such laminate
US20080292853A1 (en) Composite Laminated Material and Article Made Thereof
EP3544802B1 (en) Laminate of mutually bonded adhesive layers and spliced metal sheets
NL2017849B1 (en) Laminate of mutually bonded adhesive layers and spliced metal sheets
RU2600765C1 (en) Laminar alumino-fibre glass and article made therefrom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070815

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees