JP4262107B2 - Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member - Google Patents
Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member Download PDFInfo
- Publication number
- JP4262107B2 JP4262107B2 JP2004019721A JP2004019721A JP4262107B2 JP 4262107 B2 JP4262107 B2 JP 4262107B2 JP 2004019721 A JP2004019721 A JP 2004019721A JP 2004019721 A JP2004019721 A JP 2004019721A JP 4262107 B2 JP4262107 B2 JP 4262107B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- photosensitive member
- repellent treatment
- electrophotographic photosensitive
- conductive particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Photoreceptors In Electrophotography (AREA)
Description
本発明は、電子写真感光体、電子写真感光体を有するプロセスカートリッジおよび電子写真装置、ならびに、電子写真感光体の製造方法に関する。 The present invention relates to an electrophotographic photosensitive member, a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member, and a method for manufacturing the electrophotographic photosensitive member .
電子写真感光体には、適用される電子写真プロセスに応じた感度、電気的特性および光学的特性を有することが要求される。また、電子写真感光体の表面には、帯電、露光(画像露光)、トナーによる現像、転写材(紙など)への転写およびクリーニングなどの電気的外力、機械的外力が加えられるため、それらに対する耐久性も要求される。具体的には、帯電、転写、クリーニング時に各当接部材が電子写真感光体の表面を摺擦することによって生じる摩耗や傷に対する耐久性や、帯電時に発生するオゾンや帯電生成物による電位特性の劣化などに対する耐久性などが要求される。さらに、現像やクリーニングの繰り返しによる電子写真感光体の表面へのトナーの付着という問題もあり、良好なクリーニング性も要求されている。 The electrophotographic photosensitive member is required to have sensitivity, electrical characteristics, and optical characteristics according to the applied electrophotographic process. Further, the surface of the electrophotographic photosensitive member is subjected to electric external force and mechanical external force such as charging, exposure (image exposure), development with toner, transfer to a transfer material (paper, etc.) and cleaning. Durability is also required. Specifically, durability against wear and scratches caused by the contact members rubbing the surface of the electrophotographic photosensitive member during charging, transfer, and cleaning, as well as potential characteristics due to ozone and charged products generated during charging. Durability against deterioration is required. Further, there is a problem that toner adheres to the surface of the electrophotographic photosensitive member due to repeated development and cleaning, and good cleaning properties are also required.
上述の電子写真感光体に要求される特性を満足するために、電子写真感光体の表面層にはいろいろな工夫がなされてきた。 In order to satisfy the characteristics required for the above-described electrophotographic photosensitive member, various devices have been made on the surface layer of the electrophotographic photosensitive member.
1つの方法として、感光層上に樹脂を主成分とする保護層を設ける試みがなされている。例えば、特開昭56−042863号公報(特許文献1)や特開昭53−103741号公報(特許文献2)には、硬化性樹脂を主成分とする保護層を設けることにより、電子写真感光体の表面の硬度や耐摩耗性を向上させる技術が開示されている。 As one method, an attempt is made to provide a protective layer mainly composed of a resin on the photosensitive layer. For example, Japanese Patent Application Laid-Open No. 56-042863 (Patent Document 1) and Japanese Patent Application Laid-Open No. 53-103741 (Patent Document 2) provide an electrophotographic photosensitive film by providing a protective layer mainly composed of a curable resin. Techniques for improving the hardness and wear resistance of the body surface are disclosed.
また、優れた出力画像を得るためには、電子写真感光体の保護層には高い硬度および優れた耐摩耗性といった特性だけでなく、保護層の体積抵抗率が適切であることが要求される。つまり、保護層の体積抵抗率が低すぎる場合には、帯電、露光により電子写真感光体の表面に形成された静電潜像が保護層中を面方向に流れてしまい、画像のにじみやボケなどの問題が発生する。一方、保護層の体積抵抗率が高すぎる場合には、帯電、露光を繰り返すことにより、保護層に電荷が蓄積されていく、いわゆる残留電位の増加が起こり、電子写真感光体の繰り返し使用時に電位が安定しないために、画質も不安定になる。 In addition, in order to obtain an excellent output image, the protective layer of the electrophotographic photoreceptor is required not only to have properties such as high hardness and excellent wear resistance but also to have an appropriate volume resistivity of the protective layer. . That is, when the volume resistivity of the protective layer is too low, an electrostatic latent image formed on the surface of the electrophotographic photosensitive member by charging and exposure flows in the surface direction in the protective layer, and blurring or blurring of the image occurs. Problems occur. On the other hand, when the volume resistivity of the protective layer is too high, charging and exposure are repeated, so that charges are accumulated in the protective layer, which increases the so-called residual potential. Is not stable, so the image quality becomes unstable.
こういった問題を解決するために、例えば、特開昭57−030843号公報(特許文献3)には、保護層に導電性粒子として金属酸化物粒子を添加することによって保護層の体積抵抗率を制御する技術が開示されている。なお、電子写真感光体の保護層の適切な体積抵抗率は1×1010〜1×1015Ω・cmである。 In order to solve these problems, for example, in Japanese Patent Application Laid-Open No. 57-030843 (Patent Document 3), the volume resistivity of the protective layer is obtained by adding metal oxide particles as conductive particles to the protective layer. Techniques for controlling are disclosed. The appropriate volume resistivity of the protective layer of the electrophotographic photosensitive member is 1 × 10 10 to 1 × 10 15 Ω · cm.
また、金属酸化物の表面の吸水性は高く、その吸水の度合により保護層の体積抵抗率も変化してしまうため、保護層の体積抵抗率が環境に依存し、導電性粒子として金属酸化物粒子を添加しただけでは、あらゆる環境下で保護層の体積抵抗率を適切な範囲に保つことは困難であった。 In addition, since the water absorption of the surface of the metal oxide is high and the volume resistivity of the protective layer changes depending on the degree of water absorption, the volume resistivity of the protective layer depends on the environment, and the metal oxide is used as conductive particles. It was difficult to keep the volume resistivity of the protective layer in an appropriate range under any environment only by adding particles.
この問題を解決するために、例えば、特開昭62−295066号公報(特許文献4)には、結着樹脂の中に、撥水処理して分散性や耐湿性の向上させた金属粒子や金属酸化物粒子を分散した保護層を設けることによって保護層の体積抵抗率を制御する技術が開示されている。 In order to solve this problem, for example, in Japanese Patent Application Laid-Open No. 62-295066 (Patent Document 4), metal particles whose water-repellent treatment has improved dispersibility and moisture resistance in a binder resin, A technique for controlling the volume resistivity of a protective layer by providing a protective layer in which metal oxide particles are dispersed is disclosed.
しかしながら、撥水処理をすることによって、低湿下での保護層の体積抵抗率が常湿下での保護層の体積抵抗率に比べ、極端に高くなりやすく、あらゆる環境下で保護層の体積抵抗率を適切な範囲に保つことは困難であった。 However, by performing water-repellent treatment, the volume resistivity of the protective layer under low humidity tends to be extremely high compared to the volume resistivity of the protective layer under normal humidity, and the volume resistivity of the protective layer under any environment. It was difficult to keep the rate in the proper range.
近年のさらなる高画質化、高耐久化に伴い、より優れた耐久性を有し、優れた画像を安定して提供できる電子写真感光体が検討されている。また、ディジタル静電潜像を採用した電子写真装置が提供されてきており、画像の高精細性、ドット再現性がより一層要求されてきている。
電子写真感光体の表面層の体積抵抗率が適切でない場合、静電潜像の形成が不十分になったり、形成した静電潜像がボケにより崩れてしまったりするため、正確なドット再現ができなくなる。 If the volume resistivity of the surface layer of the electrophotographic photosensitive member is not appropriate, formation of the electrostatic latent image will be insufficient, or the formed electrostatic latent image will be destroyed by blurring, so accurate dot reproduction will be possible. become unable.
上述のように、電子写真感光体の表面層として、結着樹脂の中に、撥水処理して分散性や耐湿性の向上させた金属粒子や金属酸化物粒子を分散した保護層を設けても、低湿下での保護層の体積抵抗率が常湿下での保護層の体積抵抗率に比べ、極端に高くなりやすく、あらゆる環境下で保護層の体積抵抗率を適切な範囲に保つことは困難であった。 As described above, as the surface layer of the electrophotographic photosensitive member, a protective layer in which metal particles or metal oxide particles whose water repellency treatment has improved the dispersibility and moisture resistance is dispersed is provided in the binder resin. However, the volume resistivity of the protective layer under low humidity tends to be extremely high compared to the volume resistivity of the protective layer under normal humidity, and the volume resistivity of the protective layer should be kept in an appropriate range under any environment. Was difficult.
また、導電性粒子の撥水処理が均一になされていない場合、保護層の体積抵抗率が不均一(ムラ)になり、出力画像の濃度ムラ、白抜けなどが発生する場合があった。 In addition, when the water repellent treatment of the conductive particles is not uniform, the volume resistivity of the protective layer becomes non-uniform (uneven), and the density unevenness of the output image and white spots may occur.
本発明の目的は、表面層が撥水処理剤を用いて撥水処理された導電性粒子を含有する電子写真感光体において、表面層の体積抵抗率の環境変動が小さく、あらゆる環境下で保護層の体積抵抗率を精度良く適切に保つことが可能で、にじみ、ボケ、ムラ、白抜けなどの画像不良がなく、出力画像の高精細性、ドット再現性と、電気的外力、機械的外力に対する耐久性とが両立された電子写真感光体およびその製造方法を提供することにある。 The object of the present invention is to provide an electrophotographic photosensitive member containing conductive particles whose surface layer has been subjected to a water repellent treatment using a water repellent treatment agent, so that the environmental variation of the volume resistivity of the surface layer is small and can be protected under any environment. It is possible to maintain the volume resistivity of the layer accurately and appropriately, and there are no image defects such as blurring, blurring, unevenness, and whiteout, and the output image has high definition, dot reproducibility, electrical external force, and mechanical external force. It is an object of the present invention to provide an electrophotographic photosensitive member and a method for producing the same.
また、本発明の目的は、上記電子写真感光体を有するプロセスカートリッジおよび電子写真装置を提供することにある。 Another object of the present invention is to provide a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member.
本発明は、支持体および該支持体上の感光層を有し、かつ表面層が導電性粒子を含有する層である電子写真感光体において、
該導電性粒子が、乾燥減量(未撥水処理の導電性粒子を105℃で2時間乾燥した後の質量をMdとし、乾燥する前の質量をMとしたとき、[(M−Md)/M]×100で算出される乾燥減量[質量%])が2〜7質量%である未撥水処理の導電性粒子に対し、撥水処理剤を用いた撥水処理を施すことによって得られた撥水処理済みの導電性粒子である
ことを特徴とする電子写真感光体である。
The present invention, support and have a photosensitive layer on the support, and an electrophotographic photosensitive member is a layer containing a surface layer Gashirube conductive particles,
When the conductive particles, a drying loss (mass after drying 2 hours conductive particles outstanding water repellent treatment at 105 ° C. and Md, the mass prior to drying was M, [(M-Md) / M] × 100 and obtained by subjecting the non-water-repellent treated conductive particles having a loss on drying [mass%] of 2 to 7 mass% to a water-repellent treatment using a water-repellent treatment agent. An electrophotographic photosensitive member characterized by being water-repellent treated conductive particles .
また、本発明は、上記電子写真感光体と、帯電手段、現像手段、転写手段およびクリーニング手段からなる群より選択される少なくとも1つの手段とを一体に支持し、電子写真装置本体に着脱自在であることを特徴とするプロセスカートリッジである。
また、本発明は、上記電子写真感光体、帯電手段、露光手段、現像手段および転写手段を有することを特徴とする電子写真装置である。
また、本発明は、支持体および該支持体上の感光層を有し、かつ表面層が導電性粒子を含有する層である電子写真感光体を製造する方法において、
乾燥減量(未撥水処理の導電性粒子を105℃で2時間乾燥した後の質量をMdとし、乾燥する前の質量をMとしたとき、[(M−Md)/M]×100で算出される乾燥減量[質量%])が2〜7質量%である未撥水処理の導電性粒子に対し、撥水処理剤を用いた撥水処理を施すことによって、撥水処理済みの導電性粒子を得る撥水処理工程と、
該撥水処理済みの導電性粒子を用いて該表面層を形成する表面層形成工程と
を有することを特徴とする電子写真感光体の製造方法である。
Further, the present invention integrally supports the electrophotographic photosensitive member and at least one means selected from the group consisting of a charging means, a developing means, a transfer means, and a cleaning means, and is detachable from the main body of the electrophotographic apparatus. It is a process cartridge characterized by being.
The present invention also provides an electrophotographic apparatus comprising the electrophotographic photosensitive member, a charging unit, an exposure unit, a developing unit, and a transfer unit.
Further, the present invention provides a method for producing an electrophotographic photosensitive member having a support and a photosensitive layer on the support, and the surface layer is a layer containing conductive particles.
Loss on drying (calculated as [(M−Md) / M] × 100, where Md is the mass after drying the non-water-repellent conductive particles at 105 ° C. for 2 hours and M is the mass before drying) Water-repellent treatment using a water-repellent treatment agent to non-water-repellent conductive particles having a loss on drying [mass%] of 2 to 7 mass%. A water repellent treatment step for obtaining particles;
And a surface layer forming step of forming the surface layer using the water-repellent treated conductive particles .
本発明によれば、表面層が撥水処理剤を用いて撥水処理された導電性粒子を含有する電子写真感光体において、表面層の体積抵抗率の環境変動が小さく、あらゆる環境下で保護層の体積抵抗率を精度良く適切に保つことが可能で、にじみ、ボケ、ムラ、白抜けなどの画像不良がなく、出力画像の高精細性、ドット再現性と、電気的外力、機械的外力に対する耐久性とが両立された電子写真感光体およびその製造方法を提供することができる。 According to the present invention, in an electrophotographic photosensitive member containing conductive particles whose surface layer has been subjected to water repellent treatment using a water repellent treatment agent, the environmental variation of the volume resistivity of the surface layer is small and can be protected under any environment. It is possible to maintain the volume resistivity of the layer accurately and appropriately, and there are no image defects such as blurring, blurring, unevenness, and whiteout, and the output image has high definition, dot reproducibility, electrical external force, and mechanical external force. It is possible to provide an electrophotographic photosensitive member and a method for producing the same , which are compatible with the durability against the above.
また、本発明によれば、上記電子写真感光体を有するプロセスカートリッジおよび電子写真装置を提供することができる。 Further, according to the present invention, a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member can be provided.
本発明の上記構成を採ることにより、表面層が撥水処理剤を用いて撥水処理された導電性粒子を含有する電子写真感光体においても、表面層の体積抵抗率の環境変動が小さく、あらゆる環境下で保護層の体積抵抗率を精度良く適切に保つことが可能で、にじみ、ボケ、ムラ、白抜けなどの画像不良がなく、出力画像の高精細性、ドット再現性と、電気的外力、機械的外力に対する耐久性とが両立される理由としては、以下のように推測する。 By adopting the above-described configuration of the present invention, even in an electrophotographic photosensitive member containing conductive particles whose surface layer has been subjected to water-repellent treatment using a water-repellent treatment agent, environmental fluctuation of the volume resistivity of the surface layer is small, It is possible to maintain the volume resistivity of the protective layer accurately and appropriately in any environment, and there is no image defect such as blurring, blurring, unevenness, and whiteout, and the output image has high definition, dot reproducibility, and electrical The reason why both external force and durability against mechanical external force are compatible is presumed as follows.
すなわち、導電性粒子を撥水処理剤で撥水処理したとき、撥水処理前の導電性粒子の表面が均一に撥水処理剤で処理されていないと、つまり、多く撥水処理されている部分と、少なく撥水処理されている部分/全く撥水処理されていない部分とができると、撥水処理のされ方のムラが体積抵抗率のムラになる、吸湿しやすい部分が偏在する、導電性粒子を分散するときの分散性が変わる、などの現象が起き、導電性粒子自体の体積抵抗率のムラや導電性粒子を含有する表面層の体積抵抗率のミクロなムラが生じることで、上記課題が発生する。 That is, when the conductive particles are water-repellent treated with a water-repellent treatment agent, the surface of the conductive particles before the water-repellent treatment is not uniformly treated with the water-repellent treatment agent, that is, a lot of water-repellent treatment is performed. If there is a part and a part that is water-repellent treatment / part that is not water-repellent at all, unevenness in how water-repellent treatment is performed becomes uneven in volume resistivity. Phenomena such as dispersibility changes when dispersing conductive particles occur, causing irregularities in the volume resistivity of the conductive particles themselves and micro irregularities in the volume resistivity of the surface layer containing the conductive particles. The above problem occurs.
撥水処理剤で撥水処理する際、本発明の上記条件を満たさないと、導電性粒子と撥水処理剤との距離が適正でなく、体積抵抗率の環境変動が大きくなると考えられる。 When performing the water repellent treatment with the water repellent treatment agent, if the above conditions of the present invention are not satisfied, the distance between the conductive particles and the water repellent treatment agent is not appropriate, and it is considered that the environmental fluctuation of the volume resistivity increases.
つまり、本発明の上記構成を採ることにより、導電性粒子を均一に撥水処理でき、導電性粒子自体の体積抵抗率のムラや導電性粒子を含有する表面層の体積抵抗率のミクロなムラが生じないため、上記課題が解決できるのである。 That is, by adopting the above-described configuration of the present invention, the conductive particles can be uniformly water-repellent treated, and the volumetric resistivity unevenness of the conductive particles themselves or the microscopic unevenness of the volume resistivity of the surface layer containing the conductive particles. Therefore, the above problem can be solved.
本発明において用いられる導電性粒子としては、例えば、金属粒子、金属酸化物粒子、カーボンブラックなどが挙げられる。 Examples of the conductive particles used in the present invention include metal particles, metal oxide particles, and carbon black.
金属粒子としては、例えば、アルミニウム、亜鉛、銅、クロム、ニッケル、銀、ステンレスなどの粒子、また、これらの金属をプラスチックなどの粒子の表面に蒸着したものが挙げられる。 Examples of the metal particles include particles such as aluminum, zinc, copper, chromium, nickel, silver, and stainless steel, and those obtained by depositing these metals on the surface of particles such as plastic.
金属酸化物粒子としては、例えば、酸化亜鉛、酸化スズ、酸化アンチモン、酸化インジウム、酸化ビスマス、スズをドープした酸化インジウム、アンチモンやタンタルをドープした酸化スズ、アンチモンをドープした酸化ジルコニウムなどの粒子が挙げられる。 Examples of the metal oxide particles include zinc oxide, tin oxide, antimony oxide, indium oxide, bismuth oxide, tin-doped indium oxide, antimony and tantalum-doped tin oxide, and antimony-doped zirconium oxide. Can be mentioned.
これら粒子は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。2種以上を組み合わせて用いる場合は、単に混合してもよく、固溶体や融着の形にしてもよい。 These particles may be used alone or in combination of two or more. When two or more types are used in combination, they may be simply mixed, or may be in the form of a solid solution or fusion.
本発明においては、透明性などの観点から金属酸化物粒子が好ましい。 In the present invention, metal oxide particles are preferred from the viewpoint of transparency.
本発明において用いられる導電性粒子の平均粒径は、電子写真感光体の表面層の透明性および表面層の体積抵抗率の均一性の観点から0.3μm以下であることが好ましく、特には0.1μm以下であることがより好ましい。 The average particle diameter of the conductive particles used in the present invention is preferably 0.3 μm or less from the viewpoint of the transparency of the surface layer of the electrophotographic photosensitive member and the uniformity of the volume resistivity of the surface layer, in particular 0. More preferably, it is 1 μm or less.
本発明においては、導電性粒子とは、体積抵抗率が102Ω・cm以下である粒子を指す。この「体積抵抗率」は、以下のようにして測定できる。 In the present invention, the conductive particles refer to particles having a volume resistivity of 10 2 Ω · cm or less. This “volume resistivity” can be measured as follows.
まず、試料を100kg/cm2の圧力をかけることによって、直径4cm、厚さ0.2cmの円盤状ペレットにする。次に、この円盤状ペレットの体積抵抗率(Ω・cm)をハイレスタAP(三菱油化(株)製)を用いて測定する。 First, a sample is formed into a disk-shaped pellet having a diameter of 4 cm and a thickness of 0.2 cm by applying a pressure of 100 kg / cm 2 . Next, the volume resistivity (Ω · cm) of the disk-shaped pellet is measured using Hiresta AP (manufactured by Mitsubishi Oil Chemical Co., Ltd.).
本発明においては、導電性粒子は、金属粒子または金属酸化物粒子であることが好ましく、特に金属酸化物粒子がより好ましく、その中でも酸化スズの粒子がより一層好ましい。また、酸化スズの粒子は、酸化アンチモンをドープした酸化スズの粒子であることが好ましい。また、酸化スズの中でも、SnO2が好ましい。また、酸化アンチモンの中でも、Sb2O5が好ましい。 In the present invention, the conductive particles are preferably metal particles or metal oxide particles, more preferably metal oxide particles, and even more preferably tin oxide particles. The tin oxide particles are preferably tin oxide particles doped with antimony oxide. Of the tin oxides, SnO 2 is preferable. Of the antimony oxides, Sb 2 O 5 is preferable.
また、本発明の電子写真感光体の表面層に用いられる導電性粒子は、上述のとおり、撥水処理剤を用いて撥水処理された導電性粒子であるが、その撥水処理剤の使用量は、撥水処理前の導電性粒子の質量に対して8〜30質量%であることが好ましい。8質量%未満の場合、撥水処理剤が導電性粒子の表面を覆う量が少なくて、吸湿しやすくなったり、体積抵抗率が低くなりすぎたりすることがある。30質量%を超える場合、撥水処理剤が導電性粒子の表面を覆う量が多くて、体積抵抗率が高くなりすぎることがある。 The conductive particles used in the surface layer of the electrophotographic photosensitive member of the present invention are conductive particles that have been subjected to a water repellent treatment using a water repellent treatment agent as described above. The amount is preferably 8 to 30% by mass with respect to the mass of the conductive particles before the water repellent treatment. When the amount is less than 8% by mass, the amount of the water repellent agent covering the surface of the conductive particles is small, and it may be easy to absorb moisture or the volume resistivity may be too low. When it exceeds 30% by mass, the amount of the water-repellent treatment agent covering the surface of the conductive particles is large, and the volume resistivity may be too high.
また、使用する撥水処理剤としては、シランカップリング剤、シロキサン化合物、フッ素原子含有化合物が好ましい。また、フッ素原子含有化合物の中でも、フッ素原子含有シランカップリング剤、フッ素変性シリコーンオイル、フッ素原子含有界面活性剤が好ましい。 Moreover, as a water-repellent processing agent to be used, a silane coupling agent, a siloxane compound, and a fluorine atom containing compound are preferable. Of the fluorine atom-containing compounds, fluorine atom-containing silane coupling agents, fluorine-modified silicone oils, and fluorine atom-containing surfactants are preferred.
以下に、フッ素原子含有シランカップリング剤の具体例を挙げる。 Specific examples of the fluorine atom-containing silane coupling agent are given below.
以下に、フッ素変性シリコーンオイルの具体例を挙げる。 Specific examples of the fluorine-modified silicone oil are given below.
(上記式(SO−1)中、nso1、nso2は、それぞれ独立に、正の整数である。)
以下に、フッ素原子含有界面活性剤の具体例を挙げる。
(In the formula (SO-1), n so1 and n so2 are each independently a positive integer.)
Specific examples of the fluorine atom-containing surfactant will be given below.
(上記式(SA−1)〜(SA−25)中、Xsaは、−CF3、−C4F9、−C8F17などの1価のフッ化炭素基を示す。Rsaは、アルキレン基、アリーレン基またはアルキレンアリーレン基を示す。式中にRsaが複数ある場合、それらは同一のものであっても異なるものであってもよい。)
以下に、シロキサン化合物の具体例を挙げる。
In (the formula (SA-1) ~ (SA -25), X sa is, -CF 3, -C 4 F 9 , .R represents a monovalent fluorocarbon groups such as -C 8 F 17 sa is An alkylene group, an arylene group or an alkylene arylene group, and when there are a plurality of R sa s in the formula, they may be the same or different.)
Specific examples of the siloxane compound are given below.
(上記式(SX−1)中、Xsxは、水素原子またはメチル基を示す。複数のXsxは、同一のものであっても異なるものであってもよいが、Xsxの全部に対する水素原子の割合は0.1〜50%である。nsxは、正の整数である。)
上記式(SX−1)で示される構造を有するシロキサン化合物の重量平均分子量は、200〜30000であることが好ましい。
(In the above formula (SX-1), X sx represents a hydrogen atom or a methyl group. The plurality of X sx may be the same or different, but hydrogen for all of X sx (The atomic ratio is 0.1 to 50%, and n sx is a positive integer.)
The weight average molecular weight of the siloxane compound having the structure represented by the formula (SX-1) is preferably 200 to 30000.
撥水処理剤を用いて導電性粒子を撥水処理する方法としては、湿式法と乾式法の2種に大別されるが、処理反応の安定性、取扱のしやすさなどの点で、湿式法が好ましい。湿式法によって導電性粒子を撥水処理する場合、例えば、以下のように行うことができる。 The method of water-repellent treatment of conductive particles using a water-repellent treatment agent is roughly classified into two types, a wet method and a dry method. In terms of stability of the treatment reaction and ease of handling, A wet method is preferred. In the case where the conductive particles are subjected to water repellent treatment by a wet method, for example, the following can be performed.
すなわち、撥水処理前の導電性粒子と撥水処理剤とを溶剤中で混合、分散し、撥水処理剤を導電性粒子の表面に付着させる。分散の方法としては、ボールミル、サンドミルなどを用いた分散方法が挙げられる。導電性粒子の分散後、分散液から溶剤を除去し、撥水処理剤を導電性粒子の表面に固着させる。また、必要に応じて、この後さらに熱処理を行ってもよい。また、分散液中には反応促進のための触媒を添加してもよい。さらに、必要に応じて、撥水処理後の導電性粒子にさらに粉砕処理を施してもよい。 That is, the conductive particles before the water repellent treatment and the water repellent treatment agent are mixed and dispersed in a solvent, and the water repellent treatment agent is adhered to the surface of the conductive particles. Examples of the dispersion method include a dispersion method using a ball mill, a sand mill, or the like. After dispersion of the conductive particles, the solvent is removed from the dispersion, and the water repellent treatment agent is fixed to the surface of the conductive particles. Moreover, you may heat-process further after this as needed. Further, a catalyst for promoting the reaction may be added to the dispersion. Furthermore, if necessary, the conductive particles after the water repellent treatment may be further pulverized.
導電性粒子がSb2O5をドープしたSnO2の粒子であり、撥水処理剤が上記式(SC−1)で示される構造を有するフッ素原子含有シランカップリング剤である場合について、以下、より具体的に説明する。 In the case where the conductive particles are SnO 2 particles doped with Sb 2 O 5 and the water repellent agent is a fluorine atom-containing silane coupling agent having a structure represented by the above formula (SC-1), This will be described more specifically.
(撥水処理例1)
下記(i)から(vi)の順に行う。
(Water repellent treatment example 1)
The following steps (i) to (vi) are performed.
(i)Sb2O5をドープしたSnO2の粒子の乾燥減量を確認する。Sb2O5をドープしたSnO2の粒子の乾燥減量が2質量%未満の場合は、その粒子を湿度60%RH以上の雰囲気下に曝すことによって、乾燥減量が2〜7質量%になるように調整する。一方、Sb2O5をドープしたSnO2の粒子の乾燥減量が7質量%を超える場合は、真空乾燥機などの乾燥機を用いて、乾燥減量が2〜7質量%になるように調整する。 (I) The loss on drying of the SnO 2 particles doped with Sb 2 O 5 is confirmed. When the loss on drying of the SnO 2 particles doped with Sb 2 O 5 is less than 2% by mass, the loss on drying becomes 2 to 7% by mass by exposing the particles to an atmosphere having a humidity of 60% RH or more. Adjust to. On the other hand, when the loss on drying of the SnO 2 particles doped with Sb 2 O 5 exceeds 7% by mass, the drying loss is adjusted to 2 to 7% by mass using a dryer such as a vacuum dryer. .
(ii)Sb2O5をドープしたSnO2の粒子、該粒子と略同質量のトルエンおよびメタノール、および、該粒子の質量に対して8〜30質量%の上記式(SC−1)で示される構造を有するフッ素原子含有シランカップリング剤をウルトラミキサーに入れ、十分に攪拌する。攪拌した混合液を連続式のビーズミルに送り、分散、湿式粉砕をする。 (Ii) SnO 2 particles doped with Sb 2 O 5 , toluene and methanol having approximately the same mass as the particles, and 8 to 30% by mass of the above formula (SC-1) with respect to the mass of the particles Fluorine atom-containing silane coupling agent having a structure as described above is put into an ultramixer and sufficiently stirred. The stirred liquid mixture is sent to a continuous bead mill, and dispersed and wet pulverized.
(iii)質量比1:1のトルエン/メタノール混合溶剤にて、ビーズミルから混合液を回収する。 (Iii) The mixed liquid is recovered from the bead mill with a toluene / methanol mixed solvent having a mass ratio of 1: 1.
(iv)加熱しながら真空ポンプにて減圧蒸留を行う。 (Iv) Perform vacuum distillation with a vacuum pump while heating.
(v)150℃で2時間キュアリングを行う。 (V) Curing is performed at 150 ° C. for 2 hours.
(vi)乾式粉砕機にて粉砕を行い、撥水処理済みの導電性粒子を得る。 (Vi) Pulverization is performed with a dry pulverizer to obtain water-repellent conductive particles.
(撥水処理例2)
撥水処理例1において、(ii)の工程を以下のように変更した以外は、撥水処理例1と同じ。
(Water repellent treatment example 2)
In the water repellent treatment example 1, the process of (ii) was changed as follows, and was the same as the water repellent treatment example 1.
すなわち、
(ii)Sb2O5をドープしたSnO2の粒子と略同質量のトルエンおよびメタノールをウルトラミキサーに入れ、次に、該粒子の質量に対して8〜30質量%の上記式(SC−1)で示される構造を有するフッ素原子含有シランカップリング剤を加え、次に、該粒子の質量に対して2〜10質量%の水を加え、最後に、Sb2O5をドープしたSnO2の粒子を入れ、十分に攪拌する。攪拌した混合液を連続式のビーズミルに送り、分散、湿式粉砕をする。
That is,
(Ii) Toluene and methanol having substantially the same mass as the SnO 2 particles doped with Sb 2 O 5 are put into an ultramixer, and then 8 to 30% by mass of the above formula (SC-1 based on the mass of the particles) ), A fluorine atom-containing silane coupling agent having a structure represented by the following formula is added, then 2 to 10% by mass of water is added to the mass of the particles, and finally SnO 2 doped with Sb 2 O 5 is added. Put the particles and stir well. The stirred liquid mixture is sent to a continuous bead mill, and dispersed and wet pulverized.
(撥水処理例3)
撥水処理例1において、(ii)の工程を以下のように変更した以外は、撥水処理例1と同じ。
(Water repellent treatment example 3)
In the water repellent treatment example 1, the process of (ii) was changed as follows, and was the same as the water repellent treatment example 1.
すなわち、
(ii)Sb2O5をドープしたSnO2の粒子と略同質量のトルエンおよびメタノールをウルトラミキサーに入れ、次に、該粒子の質量に対して2〜10質量%の水を加え、次に、Sb2O5をドープしたSnO2の粒子を入れ、十分に攪拌する。次に、該粒子の質量に対して8〜30質量%の上記式(SC−1)で示される構造を有するフッ素原子含有シランカップリング剤を加え、再度十分に攪拌する。攪拌した混合液を連続式のビーズミルに送り、分散、湿式粉砕をする。
That is,
(Ii) Put toluene and methanol of approximately the same mass as the SnO 2 particles doped with Sb 2 O 5 into the ultramixer, then add 2-10% water by weight with respect to the mass of the particles, then , Put SnO 2 particles doped with Sb 2 O 5 and stir well. Next, the fluorine atom containing silane coupling agent which has a structure shown by the said Formula (SC-1) of 8-30 mass% with respect to the mass of this particle | grain is added, and it fully stirs again. The stirred liquid mixture is sent to a continuous bead mill, and dispersed and wet pulverized.
(撥水処理例4)
撥水処理例2において、(i)の工程を省いた以外は、撥水処理例2と同じ。
(Water repellent treatment example 4)
In the water repellent treatment example 2, it is the same as the water repellent treatment example 2 except that the step (i) is omitted.
(撥水処理例5)
撥水処理例3において、(i)の工程を省いた以外は、撥水処理例3と同じ。
(Water repellent treatment example 5)
In the water repellent treatment example 3, it is the same as the water repellent treatment example 3 except that the step (i) is omitted.
つまり、撥水処理例4や5のように、(ii)の工程において、撥水処理前の導電性粒子の質量に対して2〜10質量%の水を加えることによって、撥水処理例1の(i)の工程を省いても、(i)の工程を行った場合と同様の効果が得られる。 That is, as in water repellent treatment examples 4 and 5, in the step (ii), water repellent treatment example 1 is performed by adding 2 to 10% by mass of water to the mass of the conductive particles before the water repellent treatment. Even if the step (i) is omitted, the same effect as that obtained when the step (i) is performed can be obtained.
導電性粒子がSb2O5をドープしたSnO2の粒子でない場合についても、また、撥水処理剤が上記式(SC−1)で示される構造を有するフッ素原子含有シランカップリング剤でない場合についても、上述の方法と同様にして導電性粒子の撥水処理をすることができる。 Regarding the case where the conductive particles are not SnO 2 particles doped with Sb 2 O 5 , and the case where the water repellent treatment agent is not a fluorine atom-containing silane coupling agent having a structure represented by the above formula (SC-1). Alternatively, the water repellent treatment of the conductive particles can be performed in the same manner as described above.
次に、本発明に用いられる電子写真感光体の構成について説明する。 Next, the configuration of the electrophotographic photosensitive member used in the present invention will be described.
上述のとおり、本発明に用いられる電子写真感光体は、支持体上に感光層を有する電子写真感光体である。 As described above, the electrophotographic photosensitive member used in the present invention is an electrophotographic photosensitive member having a photosensitive layer on a support.
感光層は、電荷輸送物質と電荷発生物質を同一の層に含有する単層型感光層であっても、電荷発生物質を含有する電荷発生層と電荷輸送物質を含有する電荷輸送層とに分離した積層型(機能分離型)感光層であってもよいが、電子写真特性の観点からは積層型感光層が好ましい。また、積層型感光層には、支持体側から電荷発生層、電荷輸送層の順に積層した順層型感光層と、支持体側から電荷輸送層、電荷発生層の順に積層した逆層型感光層があるが、電子写真特性の観点からは順層型感光層が好ましい。 The photosensitive layer is separated into a charge generating layer containing a charge generating material and a charge transporting layer containing a charge transporting material even if it is a single layer type photosensitive layer containing the charge transporting material and the charge generating material in the same layer. A laminated type (functional separation type) photosensitive layer may be used, but a laminated type photosensitive layer is preferred from the viewpoint of electrophotographic characteristics. The laminated photosensitive layer has a normal layer type photosensitive layer laminated in the order of the charge generation layer and the charge transport layer from the support side, and a reverse layer type photosensitive layer laminated in the order of the charge transport layer and the charge generation layer from the support side. However, a normal photosensitive layer is preferred from the viewpoint of electrophotographic characteristics.
感光層が電子写真感光体の表面層となる場合において、該感光層が単層型感光層の場合は該単層型感光層が電子写真感光体の表面層であり、該感光層が順層型感光層の場合は電荷輸送層が電子写真感光体の表面層であり、逆層型感光層の場合は電荷発生層が電子写真感光体の表面層である。 When the photosensitive layer is a surface layer of an electrophotographic photosensitive member, when the photosensitive layer is a single layer type photosensitive layer, the single layer type photosensitive layer is a surface layer of the electrophotographic photosensitive member, and the photosensitive layer is a normal layer. In the case of the type photosensitive layer, the charge transport layer is the surface layer of the electrophotographic photoreceptor, and in the case of the reverse layer type photosensitive layer, the charge generation layer is the surface layer of the electrophotographic photoreceptor.
本発明においては、上述のとおり、電子写真感光体の表面層となる層には、撥水処理剤を用いて撥水処理された導電性粒子が含有される。したがって、電子写真感光体の表面層が単層型感光層である場合は、該単層型感光層は、撥水処理剤を用いて撥水処理された導電性粒子を含有する層でなければならない。また、電子写真感光体の表面層が電荷発生層である場合は、該電荷発生層は、撥水処理剤を用いて撥水処理された導電性粒子を含有する層でなければならない。また、電子写真感光体の表面層が電荷輸送層である場合は、該電荷輸送層は、撥水処理剤を用いて撥水処理された導電性粒子を含有する層でなければならない。 In the present invention, as described above, the layer serving as the surface layer of the electrophotographic photosensitive member contains conductive particles that have been subjected to water repellent treatment using a water repellent treatment agent. Therefore, when the surface layer of the electrophotographic photosensitive member is a single layer type photosensitive layer, the single layer type photosensitive layer must be a layer containing conductive particles that have been subjected to water repellent treatment using a water repellent treatment agent. Don't be. When the surface layer of the electrophotographic photosensitive member is a charge generation layer, the charge generation layer must be a layer containing conductive particles that have been subjected to a water repellent treatment using a water repellent treatment agent. When the surface layer of the electrophotographic photosensitive member is a charge transport layer, the charge transport layer must be a layer containing conductive particles that have been subjected to water repellent treatment using a water repellent treatment agent.
また、上記の感光層とは別に、電子写真感光体の表面の機械的強度を高めることを目的とした層(以下、保護層とも呼ぶ)を上記の感光層上に設け、それを電子写真感光体の表面層としてもよい。電子写真感光体の機械的耐久性向上の観点からは、保護層を設けることが好ましい。保護層は電子写真感光体の表面層であるから、本発明においては、撥水処理剤を用いて撥水処理された導電性粒子を含有する層でなければならない。 In addition to the photosensitive layer described above, a layer (hereinafter also referred to as a protective layer) intended to increase the mechanical strength of the surface of the electrophotographic photosensitive member is provided on the photosensitive layer, and is provided on the electrophotographic photosensitive layer. It may be a body surface layer. From the viewpoint of improving the mechanical durability of the electrophotographic photosensitive member, it is preferable to provide a protective layer. Since the protective layer is a surface layer of the electrophotographic photosensitive member, in the present invention, it must be a layer containing conductive particles that have been subjected to water repellent treatment using a water repellent treatment agent.
図1に、本発明の電子写真感光体の層構成の例を示す。 FIG. 1 shows an example of the layer structure of the electrophotographic photosensitive member of the present invention.
図1(a)で示される層構成の電子写真感光体は、支持体101の上に感光層104が設けられており、さらにその上に表面層として、撥水処理剤を用いて撥水処理された導電性粒子を含有する層105が設けられている。また、図1(b)で示される層構成の電子写真感光体は、支持体101の上に電荷発生層1041、電荷輸送層1042が順に設けられており、さらにその上に表面層として、撥水処理剤を用いて撥水処理された導電性粒子を含有する層(保護層)105が設けられている。また、図1(c)に示すように、支持体101と電荷発生層1041(感光層)との間に、後述の導電層102や中間層103を設けてもよい。
In the electrophotographic photosensitive member having the layer structure shown in FIG. 1A, a
また、図1(d)で示される層構成の電子写真感光体は、支持体101の上に電荷発生層1041が設けられており、その上に表面層として、電荷輸送物質および撥水処理剤を用いて撥水処理された導電性粒子を含有する層105’が直接設けられている。
In addition, the electrophotographic photosensitive member having the layer structure shown in FIG. 1D is provided with a
以下、電子写真感光体の好ましい層構成として、支持体上に電荷発生層、電荷輸送層、保護層をこの順に有する電子写真感光体を例にとり説明する。 Hereinafter, as a preferable layer structure of the electrophotographic photoreceptor, an electrophotographic photoreceptor having a charge generation layer, a charge transport layer, and a protective layer in this order on a support will be described as an example.
支持体としては、導電性を有していればよく(導電性支持体)、例えば、アルミニウム、アルミニウム合金、ステンレスなどの金属製の支持体を用いることができる。また、アルミニウム、アルミニウム合金、酸化インジウム−酸化スズ合金などを真空蒸着によって被膜形成された層を有する上記金属製支持体やプラスチック製支持体を用いることもできる。また、カーボンブラック、酸化スズ粒子、酸化チタン粒子、銀粒子などの導電性粒子を適当な結着樹脂と共にプラスチックや紙に含浸した支持体や、導電性結着樹脂を有するプラスチック製の支持体などを用いることもできる。また、支持体の形状としては、ドラム状(円筒状)、ベルト状などが挙げられる。 As a support body, what is necessary is just to have electroconductivity (conductive support body), for example, metal supports, such as aluminum, an aluminum alloy, and stainless steel, can be used. Moreover, the said metal support body and plastic support body which have the layer in which aluminum, an aluminum alloy, an indium oxide tin oxide alloy etc. were formed into a film by vacuum deposition can also be used. Also, a support in which conductive particles such as carbon black, tin oxide particles, titanium oxide particles, and silver particles are impregnated into plastic or paper together with an appropriate binder resin, a plastic support having a conductive binder resin, etc. Can also be used. Examples of the shape of the support include a drum shape (cylindrical shape) and a belt shape.
支持体と感光層(電荷発生層)または後述の中間層との間には、レーザー光などの散乱による干渉縞の防止や、支持体の傷の被覆を目的とした導電層を設けてもよい。導電層は、カーボンブラック、金属粒子などの導電性粒子を結着樹脂に分散させて形成することができる。導電層の膜厚は、1〜40μmであることが好ましく、特には2〜20μmであることがより好ましい。 A conductive layer may be provided between the support and the photosensitive layer (charge generation layer) or an intermediate layer, which will be described later, for the purpose of preventing interference fringes due to scattering of laser light or the like, and for covering scratches on the support. . The conductive layer can be formed by dispersing conductive particles such as carbon black and metal particles in a binder resin. The thickness of the conductive layer is preferably 1 to 40 μm, and more preferably 2 to 20 μm.
また、支持体または導電層と感光層(電荷発生層)との間には、バリア機能や接着機能を有する中間層を設けてもよい。中間層は、感光層の接着性改良、塗工性改良、支持体からの電荷注入性改良、感光層の電気的破壊に対する保護などのために形成される。中間層は、カゼイン、ポリビニルアルコール、エチルセルロース、エチレン−アクリル酸コポリマー、ポリアミド、変性ポリアミド、ポリウレタン、ゼラチン、酸化アルミニウムなどの材料を用いて形成することができる。中間層の膜厚は5μm以下であることが好ましく、特には0.1〜3μmであることがより好ましい。 Further, an intermediate layer having a barrier function or an adhesive function may be provided between the support or the conductive layer and the photosensitive layer (charge generation layer). The intermediate layer is formed for the purpose of improving the adhesion of the photosensitive layer, improving the coating property, improving the charge injection property from the support, and protecting the photosensitive layer from electrical breakdown. The intermediate layer can be formed using materials such as casein, polyvinyl alcohol, ethyl cellulose, ethylene-acrylic acid copolymer, polyamide, modified polyamide, polyurethane, gelatin, and aluminum oxide. The thickness of the intermediate layer is preferably 5 μm or less, and more preferably 0.1 to 3 μm.
支持体、導電層または中間層の上には、電荷発生層が設けられる。 A charge generation layer is provided on the support, the conductive layer, or the intermediate layer.
電荷発生層に用いる電荷発生物質としては、例えば、モノアゾ、ジスアゾ、トリスアゾなどのアゾ顔料や、金属フタロシアニン、非金属フタロシアニンなどのフタロシアニン顔料や、インジゴ、チオインジゴなどのインジゴ顔料や、ペリレン酸無水物、ペリレン酸イミドなどのペリレン顔料や、アンスラキノン、ピレンキノンなどの多環キノン顔料や、スクワリリウム色素や、ピリリウム塩およびチアピリリウム塩や、トリフェニルメタン色素や、セレン、セレン−テルル、アモルファスシリコンなどの無機物質や、キナクリドン顔料や、アズレニウム塩顔料や、シアニン染料や、キサンテン色素や、キノンイミン色素や、スチリル色素や、硫化カドミウムや、酸化亜鉛などが挙げられる。これら電荷発生物質は1種のみ用いてもよく、2種以上用いてもよい。 Examples of the charge generation material used in the charge generation layer include azo pigments such as monoazo, disazo, and trisazo, phthalocyanine pigments such as metal phthalocyanine and nonmetal phthalocyanine, indigo pigments such as indigo and thioindigo, perylene acid anhydride, Perylene pigments such as peryleneimide, polycyclic quinone pigments such as anthraquinone and pyrenequinone, squarylium dyes, pyrylium salts and thiapyrylium salts, triphenylmethane dyes, inorganic substances such as selenium, selenium-tellurium and amorphous silicon And quinacridone pigments, azulenium salt pigments, cyanine dyes, xanthene dyes, quinone imine dyes, styryl dyes, cadmium sulfide, and zinc oxide. These charge generation materials may be used alone or in combination of two or more.
電荷発生層に用いる結着樹脂としては、例えば、ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂、ブチラール樹脂、ポリスチレン樹脂、ポリビニルアセタール樹脂、ジアリルフタレート樹脂、アクリル樹脂、メタクリル樹脂、酢酸ビニル樹脂、フェノール樹脂、シリコーン樹脂、ポリサルフォン樹脂、スチレン−ブタジエン共重合体樹脂、アルキッド樹脂、エポキシ樹脂、尿素樹脂、塩化ビニル−酢酸ビニル共重合体樹脂などが挙げられる。これらは単独、混合または共重合体として1種または2種以上用いることができる。 Examples of the binder resin used for the charge generation layer include polycarbonate resin, polyester resin, polyarylate resin, butyral resin, polystyrene resin, polyvinyl acetal resin, diallyl phthalate resin, acrylic resin, methacrylic resin, vinyl acetate resin, phenol resin, Examples include silicone resins, polysulfone resins, styrene-butadiene copolymer resins, alkyd resins, epoxy resins, urea resins, vinyl chloride-vinyl acetate copolymer resins, and the like. These can be used singly or in combination of two or more as a mixture or copolymer.
電荷発生層用塗布液に用いる溶剤は、使用する結着樹脂や電荷発生物質の溶解性や分散安定性から選択されるが、有機溶剤としてはアルコール、スルホキシド、ケトン、エーテル、エステル、脂肪族ハロゲン化炭化水素、芳香族化合物などが挙げられる。 The solvent used in the coating solution for the charge generation layer is selected from the solubility and dispersion stability of the binder resin and charge generation material used, and the organic solvents include alcohols, sulfoxides, ketones, ethers, esters, aliphatic halogens. Hydrocarbons and aromatic compounds.
電荷発生層は、電荷発生物質を結着樹脂および溶剤と共に分散して得られる電荷発生層用塗布液を塗布し、乾燥することによって形成することができる。分散方法としては、ホモジナイザー、超音波、ボールミル、サンドミル、アトライター、ロールミルなどを用いた方法が挙げられる。電荷発生物質と結着樹脂との割合は、1:0.3〜1:4(質量比)の範囲が好ましい。 The charge generation layer can be formed by applying and drying a charge generation layer coating solution obtained by dispersing a charge generation material together with a binder resin and a solvent. Examples of the dispersion method include a method using a homogenizer, an ultrasonic wave, a ball mill, a sand mill, an attritor, a roll mill and the like. The ratio between the charge generating material and the binder resin is preferably in the range of 1: 0.3 to 1: 4 (mass ratio).
電荷発生層用塗布液を塗布する際には、例えば、浸漬塗布法(浸漬コーティング法)、スプレーコーティング法、スピンナーコーティング法、ローラーコーティング法、マイヤーバーコーティング法、ブレードコーティング法などの塗布方法を用いることができる。 When applying the coating solution for the charge generation layer, for example, a coating method such as a dip coating method (a dip coating method), a spray coating method, a spinner coating method, a roller coating method, a Meyer bar coating method, or a blade coating method is used. be able to.
電荷発生層の膜厚は5μm以下であることが好ましく、特には0.05〜3μmであることがより好ましい。 The thickness of the charge generation layer is preferably 5 μm or less, and more preferably 0.05 to 3 μm.
また、電荷発生層には、種々の増感剤、酸化防止剤、紫外線吸収剤、可塑剤などを必要に応じて添加することもできる。 In addition, various sensitizers, antioxidants, ultraviolet absorbers, plasticizers, and the like can be added to the charge generation layer as necessary.
電荷発生層の上には電荷輸送層が設けられる。 A charge transport layer is provided on the charge generation layer.
電荷輸送層に用いる電荷輸送物質としては、例えば、トリアリールアミン化合物、ヒドラゾン化合物、スチリル化合物、スチルベン化合物、ピラゾリン化合物、オキサゾール化合物、チアゾール化合物、トリアリールメタン化合物などが挙げられる。これら電荷輸送物質は1種のみ用いてもよく、2種以上用いてもよい。 Examples of the charge transport material used for the charge transport layer include triarylamine compounds, hydrazone compounds, styryl compounds, stilbene compounds, pyrazoline compounds, oxazole compounds, thiazole compounds, and triarylmethane compounds. These charge transport materials may be used alone or in combination of two or more.
感光層が積層型感光層である場合、電荷輸送層に用いる結着樹脂としては、例えば、アクリル樹脂、スチレン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリサルフォン樹脂、ポリフェニレンオキシド樹脂、エポキシ樹脂、ポリウレタン樹脂、アルキド樹脂、不飽和樹脂などが挙げられる。特には、ポリメチルメタクリレート樹脂、ポリスチレン樹脂、スチレン−アクリロニトリル共重合体樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ジアリルフタレート樹脂などが好ましい。これらは単独、混合または共重合体として1種または2種以上用いることができる。 When the photosensitive layer is a laminated photosensitive layer, examples of the binder resin used for the charge transport layer include acrylic resin, styrene resin, polyester resin, polycarbonate resin, polyarylate resin, polysulfone resin, polyphenylene oxide resin, epoxy resin, Examples include polyurethane resins, alkyd resins, and unsaturated resins. In particular, polymethyl methacrylate resin, polystyrene resin, styrene-acrylonitrile copolymer resin, polycarbonate resin, polyarylate resin, diallyl phthalate resin and the like are preferable. These can be used singly or in combination of two or more as a mixture or copolymer.
電荷輸送層は、電荷輸送物質と結着樹脂を溶剤に溶解して得られる電荷輸送層用塗布液を塗布し、乾燥することによって形成することができる。電荷輸送物質と結着樹脂との割合は、2:1〜1:2(質量比)の範囲が好ましい。 The charge transport layer can be formed by applying and drying a charge transport layer coating solution obtained by dissolving a charge transport material and a binder resin in a solvent. The ratio between the charge transport material and the binder resin is preferably in the range of 2: 1 to 1: 2 (mass ratio).
電荷輸送層用塗布液に用いる溶剤としては、アセトン、メチルエチルケトンなどのケトン、酢酸メチル、酢酸エチルなどのエステル、トルエン、キシレンなどの芳香族炭化水素、1,4−ジオキサン、テトラヒドロフランなどのエーテル、クロロベンゼン、クロロホルム、四塩化炭素などのハロゲン原子で置換された炭化水素などが用いられる。 Solvents used in the charge transport layer coating solution include ketones such as acetone and methyl ethyl ketone, esters such as methyl acetate and ethyl acetate, aromatic hydrocarbons such as toluene and xylene, ethers such as 1,4-dioxane and tetrahydrofuran, and chlorobenzene. , Hydrocarbons substituted with halogen atoms such as chloroform and carbon tetrachloride are used.
電荷輸送層用塗布液を塗布する際には、例えば、浸漬塗布法(浸漬コーティング法)、スプレーコーティング法、スピンナーコーティング法、ローラーコーティング法、マイヤーバーコーティング法、ブレードコーティング法などの塗布方法を用いることができる。 When applying the coating solution for the charge transport layer, for example, a coating method such as a dip coating method (dip coating method), a spray coating method, a spinner coating method, a roller coating method, a Meyer bar coating method, a blade coating method, or the like is used. be able to.
電荷輸送層の膜厚は5〜40μmであることが好ましく、特には10〜30μmであることがより好ましい。 The thickness of the charge transport layer is preferably 5 to 40 μm, and more preferably 10 to 30 μm.
また、電荷輸送層には、酸化防止剤、紫外線吸収剤、可塑剤などを必要に応じて添加することもできる。 In addition, an antioxidant, an ultraviolet absorber, a plasticizer, and the like can be added to the charge transport layer as necessary.
電荷輸送層の上には電子写真感光体の表面層としての保護層が設けられる。 A protective layer as a surface layer of the electrophotographic photosensitive member is provided on the charge transport layer.
保護層に用いる結着樹脂としては、例えば、アクリル樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、セルロース樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリウレタン樹脂、エポキシ樹脂、シリコーン樹脂、ポリ塩化ビニル樹脂などが挙げられる。これらの中でも、電子写真感光体の表面の硬度、耐摩耗性、導電性粒子の分散性、分散安定性の観点から、硬化性樹脂が好ましい。 Examples of the binder resin used for the protective layer include acrylic resin, polyester resin, polycarbonate resin, polystyrene resin, cellulose resin, polyethylene resin, polypropylene resin, polyurethane resin, epoxy resin, silicone resin, and polyvinyl chloride resin. . Among these, curable resins are preferable from the viewpoints of the surface hardness of the electrophotographic photosensitive member, wear resistance, dispersibility of conductive particles, and dispersion stability.
保護層の結着樹脂として硬化性樹脂を用いる場合、保護層は、撥水処理剤を用いて撥水処理された導電性粒子を結着樹脂のモノマー/オリゴマーおよび溶剤と共に分散して得られる保護層用塗布液を塗布し、熱や光などによって硬化することによって形成することができる。 When a curable resin is used as the binder resin for the protective layer, the protective layer is obtained by dispersing conductive particles that have been subjected to water repellent treatment with a water repellent treatment agent together with the binder resin monomer / oligomer and solvent. It can be formed by applying a layer coating solution and curing it by heat or light.
熱や光などによって硬化するモノマー/オリゴマーとは、例えば、モノマー/オリゴマーの末端に熱や光などのエネルギーによって重合反応を起こす官能基を有するモノマー/オリゴマーである。繰り返し構造単位の数が2〜20個の大きな分子がオリゴマー、1個の分子がモノマーである。 The monomer / oligomer curable by heat, light, or the like is, for example, a monomer / oligomer having a functional group that causes a polymerization reaction by energy such as heat or light at the end of the monomer / oligomer. Large molecules having 2 to 20 repeating structural units are oligomers, and one molecule is a monomer.
上記重合反応を起こす官能基としては、例えば、アクリロイル基、メタクリロイル基、ビニル基、アセトフェノン基などの炭素−炭素二重結合を有する基や、シラノール基や、環状エーテル基などの開環重合を起こす基や、フェノール+ホルムアルデヒドのように2種類以上の分子が反応して重合を起こすものなどが挙げられる。 Examples of the functional group causing the polymerization reaction include ring-opening polymerization of a group having a carbon-carbon double bond such as acryloyl group, methacryloyl group, vinyl group, and acetophenone group, silanol group, and cyclic ether group. Groups, and those in which two or more kinds of molecules react to cause polymerization, such as phenol + formaldehyde.
結着樹脂と導電性粒子との割合は、保護層の体積抵抗率に関連があり、保護層の体積抵抗率が1010〜1015Ω・cmの範囲になるよう、結着樹脂と導電性粒子との割合を決定することが好ましい。 The ratio between the binder resin and the conductive particles is related to the volume resistivity of the protective layer, and the volume resistivity of the protective layer is in the range of 10 10 to 10 15 Ω · cm. It is preferable to determine the proportion of particles.
保護層中に、分散性、結着性、耐候性を向上させる目的で、カップリング剤、酸化防止剤などの添加物を加えてもよい。 In the protective layer, additives such as a coupling agent and an antioxidant may be added for the purpose of improving dispersibility, binding properties, and weather resistance.
また、保護層中に、電子写真感光体の表面の離型性、撥水性、表面潤滑性を向上させる目的で、フッ素原子含有樹脂粒子を含有させてもよい。フッ素原子含有樹脂粒子としては、例えば、四フッ化エチレン樹脂、三フッ化塩化エチレン樹脂、六フッ化プロピレン樹脂、フッ化ビニル樹脂、フッ化ビニリデン樹脂、二フッ化二塩化エチレン樹脂、また、これらの共重合体などの粒子が挙げられる。これらの中から1種または2種以上を適宜選択して用いる。これらフッ素原子含有樹脂粒子の中でも、四フッ化エチレン樹脂粒子、フッ化ビニリデン樹脂粒子が好ましい。 The protective layer may contain fluorine atom-containing resin particles for the purpose of improving the releasability, water repellency and surface lubricity of the surface of the electrophotographic photosensitive member. Examples of the fluorine atom-containing resin particles include tetrafluoroethylene resin, trifluoroethylene chloride resin, hexafluoropropylene resin, vinyl fluoride resin, vinylidene fluoride resin, ethylene difluoride dichloride resin, and these And particles such as a copolymer. One or more of these are appropriately selected and used. Among these fluorine atom-containing resin particles, ethylene tetrafluoride resin particles and vinylidene fluoride resin particles are preferable.
保護層中のフッ素原子含有樹脂粒子の割合は、保護層全質量に対して70質量%以下であることが好ましく、特には10〜60質量%であることがより好ましい。フッ素原子含有樹脂粒子の割合が高すぎると、保護層の機械的強度が低下することがある。 The proportion of the fluorine atom-containing resin particles in the protective layer is preferably 70% by mass or less, more preferably 10 to 60% by mass, based on the total mass of the protective layer. If the ratio of the fluorine atom-containing resin particles is too high, the mechanical strength of the protective layer may be lowered.
図2に、本発明の電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の概略構成の一例を示す。 FIG. 2 shows an example of a schematic configuration of an electrophotographic apparatus provided with a process cartridge having the electrophotographic photosensitive member of the present invention.
図2において、1は円筒状の電子写真感光体であり、軸2を中心に矢印方向に所定の周速度で回転駆動される。 In FIG. 2, reference numeral 1 denotes a cylindrical electrophotographic photosensitive member, which is driven to rotate at a predetermined peripheral speed in the direction of an arrow about an axis 2.
回転駆動される電子写真感光体1の表面は、帯電手段(一次帯電手段:帯電ローラーなど)3により、正または負の所定電位に均一に帯電され、次いで、スリット露光やレーザービーム走査露光などの露光手段(不図示)から出力される露光光(画像露光光)4を受ける。こうして電子写真感光体1の表面に、目的の画像に対応した静電潜像が順次形成されていく。 The surface of the electrophotographic photosensitive member 1 that is rotationally driven is uniformly charged to a predetermined positive or negative potential by a charging unit (primary charging unit: charging roller or the like) 3, and then subjected to slit exposure, laser beam scanning exposure, or the like. Exposure light (image exposure light) 4 output from exposure means (not shown) is received. In this way, electrostatic latent images corresponding to the target image are sequentially formed on the surface of the electrophotographic photosensitive member 1.
電子写真感光体1の表面に形成された静電潜像は、現像手段5の現像剤に含まれるトナーにより現像されてトナー像となる。次いで、電子写真感光体1の表面に形成担持されているトナー像が、転写手段(転写ローラーなど)6からの転写バイアスによって、転写材供給手段(不図示)から電子写真感光体1と転写手段6との間(当接部)に電子写真感光体1の回転と同期して取り出されて給送された転写材(紙など)Pに順次転写されていく。 The electrostatic latent image formed on the surface of the electrophotographic photosensitive member 1 is developed with toner contained in the developer of the developing unit 5 to become a toner image. Next, the toner image formed and supported on the surface of the electrophotographic photoreceptor 1 is transferred from a transfer material supply means (not shown) to the electrophotographic photoreceptor 1 and the transfer means by a transfer bias from a transfer means (transfer roller or the like) 6. 6 (contact portion) is sequentially transferred onto a transfer material (paper or the like) P taken out and fed in synchronization with the rotation of the electrophotographic photosensitive member 1.
トナー像の転写を受けた転写材Pは、電子写真感光体1の表面から分離されて定着手段8へ導入されて像定着を受けることにより画像形成物(プリント、コピー)として装置外へプリントアウトされる。 The transfer material P that has received the transfer of the toner image is separated from the surface of the electrophotographic photosensitive member 1 and introduced into the fixing means 8 to receive the image fixing, and is printed out as an image formed product (print, copy). Is done.
トナー像転写後の電子写真感光体1の表面は、クリーニング手段(クリーニングブレードなど)7によって転写残りの現像剤(トナー)の除去を受けて清浄面化され、さらに前露光手段(不図示)からの前露光光(不図示)により除電処理された後、繰り返し画像形成に使用される。なお、図2に示すように、帯電手段3が帯電ローラーなどを用いた接触帯電手段である場合は、前露光は必ずしも必要ではない。 The surface of the electrophotographic photosensitive member 1 after the transfer of the toner image is cleaned by a cleaning means (cleaning blade or the like) 7 to remove the developer (toner) remaining after transfer, and further from a pre-exposure means (not shown). After being subjected to charge removal processing by pre-exposure light (not shown), it is repeatedly used for image formation. As shown in FIG. 2, when the charging unit 3 is a contact charging unit using a charging roller or the like, pre-exposure is not necessarily required.
上述の電子写真感光体1、帯電手段3、現像手段5、転写手段6およびクリーニング手段7などの構成要素のうち、複数のものを容器に納めてプロセスカートリッジとして一体に結合して構成し、このプロセスカートリッジを複写機やレーザービームプリンターなどの電子写真装置本体に対して着脱自在に構成してもよい。図2では、電子写真感光体1と、帯電手段3、現像手段5およびクリーニング手段7とを一体に支持してカートリッジ化して、電子写真装置本体のレールなどの案内手段10を用いて電子写真装置本体に着脱自在なプロセスカートリッジ9としている。
Among the above-described components such as the electrophotographic photosensitive member 1, the charging unit 3, the developing unit 5, the transfer unit 6 and the cleaning unit 7, a plurality of components are housed in a container and integrally combined as a process cartridge. The process cartridge may be configured to be detachable from an electrophotographic apparatus main body such as a copying machine or a laser beam printer. In FIG. 2, the electrophotographic photosensitive member 1, the charging unit 3, the developing unit 5 and the cleaning unit 7 are integrally supported to form a cartridge, and the electrophotographic apparatus is used by using a
以下に、具体的な実施例を挙げて本発明をさらに詳細に説明する。ただし、本発明はこれらに限定されるものではない。なお、実施例中の「部」は「質量部」を意味する。 Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to these. In the examples, “part” means “part by mass”.
(参考例1)
直径30mm、長さ254mmのアルミニウムシリンダーを支持体とした。
( Reference Example 1)
An aluminum cylinder having a diameter of 30 mm and a length of 254 mm was used as a support.
次に、SnO2コート処理硫酸バリウム(導電性粒子)10部、酸化チタン(体積抵抗率調整用)2部、フェノール樹脂(商品名:プライオーフェンJ−325、大日本インキ化学工業(株)製)2部、シリコーンオイル(レベリング剤)0.001部、および、メタノール4部/メトキシプロパノール16部の混合溶媒を、直径1mmのガラスビーズを用いたサンドミル装置で20時間分散して、導電層用塗布液を調製した。 Next, 10 parts of SnO 2 coated treated barium sulfate (conductive particles), 2 parts of titanium oxide (for volume resistivity adjustment), phenol resin (trade name: Pryofen J-325, manufactured by Dainippon Ink & Chemicals, Inc.) ) 2 parts, 0.001 part of silicone oil (leveling agent) and 16 parts of methanol / 16 parts of methoxypropanol were dispersed for 20 hours in a sand mill using glass beads with a diameter of 1 mm for the conductive layer. A coating solution was prepared.
この導電層用塗布液を、支持体上に浸漬塗布し、140℃で30分間熱硬化して、膜厚が15μmの導電層を形成した。 This conductive layer coating solution was applied by dip coating on a support and thermally cured at 140 ° C. for 30 minutes to form a conductive layer having a thickness of 15 μm.
次に、共重合ポリアミド樹脂(商品名:アミランCM−8000、東レ(株)製)10部、メトキシメチル化6ナイロン樹脂(商品名:トレジンEF−30T、帝国化学(株)製)30部を、メタノール400部/n−ブタノール200部の混合溶媒に溶解して、中間層用塗布液を調製した。 Next, 10 parts of copolymerized polyamide resin (trade name: Amilan CM-8000, manufactured by Toray Industries, Inc.), 30 parts of methoxymethylated 6 nylon resin (trade name: Toresin EF-30T, manufactured by Teikoku Chemical Co., Ltd.) Then, it was dissolved in a mixed solvent of methanol 400 parts / n-butanol 200 parts to prepare an intermediate layer coating solution.
この中間層用塗布液を、導電層上に浸漬塗布し、90℃で10分間熱風乾燥して、膜厚が0.66μmの中間層を形成した。 This intermediate layer coating solution was dip-coated on the conductive layer and dried in hot air at 90 ° C. for 10 minutes to form an intermediate layer having a thickness of 0.66 μm.
次に、CuKα特性X線回折におけるブラッグ角2θ±0.2°の9.0゜、14.2゜、23.9゜、27.1゜に強いピークを有する結晶形のオキシチタニウムフタロシアニン(電荷発生物質)3.24部、ブチラール樹脂(商品名:エスレックBX−1、積水化学(株)製)2部およびシクロヘキサノン100部を、直径1mmのガラスビーズを用いたサンドミル装置で4時間分散し、次に、酢酸エチル90部を加えて電荷発生層用塗布液を調製した。 Next, a crystalline oxytitanium phthalocyanine (charge) having strong peaks at 9.0 °, 14.2 °, 23.9 °, and 27.1 ° with a Bragg angle 2θ ± 0.2 ° in CuKα characteristic X-ray diffraction. (Generating material) 3.24 parts, 2 parts of butyral resin (trade name: ESREC BX-1, manufactured by Sekisui Chemical Co., Ltd.) and 100 parts of cyclohexanone were dispersed for 4 hours in a sand mill using glass beads having a diameter of 1 mm. Next, 90 parts of ethyl acetate was added to prepare a coating solution for charge generation layer.
この電荷発生層用塗布液を、中間層上に浸漬塗布し、82℃で15分間熱風乾燥して、膜厚が0.18μmの電荷発生層を形成した。 This charge generation layer coating solution was dip coated on the intermediate layer and dried in hot air at 82 ° C. for 15 minutes to form a charge generation layer having a thickness of 0.18 μm.
次に、下記式で示される構造を有する化合物(電荷輸送物質)7部、 Next, 7 parts of a compound (charge transport material) having a structure represented by the following formula:
および、ビスフェノールZ型ポリカーボネート(商品名:ユーピロンZ−400、三菱ガス化学(株)製)10部を、モノクロロベンゼン40部/ジクロロメタン30部の混合溶媒に溶解して電荷輸送層用塗布液を調製した。 Further, 10 parts of bisphenol Z-type polycarbonate (trade name: Iupilon Z-400, manufactured by Mitsubishi Gas Chemical Co., Ltd.) is dissolved in a mixed solvent of 40 parts of monochlorobenzene / 30 parts of dichloromethane to prepare a coating solution for a charge transport layer. did.
この電荷輸送層用塗布液を、電荷発生層上に浸漬塗布し、110℃で60分間乾燥して、膜厚が18μmの電荷輸送層を形成した。 This charge transport layer coating solution was dip coated on the charge generation layer and dried at 110 ° C. for 60 minutes to form a charge transport layer having a thickness of 18 μm.
次に、撥水処理例4により撥水処理したSb2O5をドープしたSnO2の粒子(導電性粒子、平均粒径:0.02μm、上記式(SC−1)で示される構造を有するフッ素原子含有シランカップリング剤の割合は該粒子の質量に対して13質量%、水の割合は該粒子の質量に対して4質量%)120部、および、下記式で示される構造を有するアクリル樹脂モノマー43.2部、 Next, SnO 2 particles doped with Sb 2 O 5 subjected to water repellent treatment according to water repellent treatment example 4 (conductive particles, average particle size: 0.02 μm, having a structure represented by the above formula (SC-1)) The proportion of fluorine atom-containing silane coupling agent is 13% by mass with respect to the mass of the particles, the proportion of water is 4% by mass with respect to the mass of the particles) and 120 parts of acrylic having a structure represented by the following formula: 43.2 parts of resin monomer,
および、エタノール210部を、サンドミル装置で90時間分散して、分散液を得た。 Then, 210 parts of ethanol was dispersed with a sand mill apparatus for 90 hours to obtain a dispersion.
この分散液に、四フッ化エチレン樹脂粒子(商品名:ルブロンL−2、ダイキン工業(株)製)40.8部を加え、サンドミル装置でさらに2時間分散し、これに、2,4−ジエチルチオキサントン(光重合開始剤)6.48部、および、4,4’−ビス(ジエチルアミノ)ベンゾフェノン(開始助剤)2.16部を加えて溶解して保護層用塗布液を調製した。 40.8 parts of ethylene tetrafluoride resin particles (trade name: Lubron L-2, manufactured by Daikin Industries, Ltd.) are added to this dispersion, and the mixture is further dispersed for 2 hours with a sand mill device. 6.48 parts of diethylthioxanthone (photopolymerization initiator) and 2.16 parts of 4,4′-bis (diethylamino) benzophenone (initiator aid) were added and dissolved to prepare a coating solution for a protective layer.
この保護層用塗布液を、電荷輸送層上に浸漬塗布し、メタルハライドランプにて1.20×10−5W/m2の光強度で30秒間紫外線照射し、光硬化を行い、その後、120℃で1時間40分間熱風乾燥して、膜厚が6μmの保護層を形成した。 This protective layer coating solution is dip coated on the charge transport layer, irradiated with UV light at a light intensity of 1.20 × 10 −5 W / m 2 for 30 seconds with a metal halide lamp, photocured, and then 120 The film was dried with hot air at 1 ° C. for 1 hour and 40 minutes to form a protective layer having a thickness of 6 μm.
このようにして、保護層が表面層である電子写真感光体を作製した。 In this way, an electrophotographic photoreceptor having a protective layer as a surface layer was produced.
また、電子写真感光体とは別に以下の試料(保護層体積抵抗率測定用試料)を作製し、保護層の体積抵抗率を以下のようにして測定した。 Separately from the electrophotographic photoreceptor, the following sample (protective layer volume resistivity measurement sample) was prepared, and the volume resistivity of the protective layer was measured as follows.
まず、電極間距離(D)180μm、長さ(L)5.9cmのクシ型金電極上に、厚さ(T)4μmの保護層を設けた試料を複数準備した。 First, a plurality of samples were prepared in which a protective layer having a thickness (T) of 4 μm was provided on a comb-type gold electrode having an interelectrode distance (D) of 180 μm and a length (L) of 5.9 cm.
次に、試料を23℃/5.5%RH環境下、23℃/50%RH環境下、28.5℃/70%RH環境下でそれぞれ一晩放置し、それぞれの環境下でクシ型電極間に100Vの直流電圧V[V]を印加したときの電流値I[A]をpA(ピコアンペア)メーターによって測定した。下記式によって体積抵抗率ρvが導き出される。結果を表1に示す。 Next, the sample is left overnight in a 23 ° C./5.5% RH environment, a 23 ° C./50% RH environment, and a 28.5 ° C./70% RH environment. A current value I [A] was measured with a pA (picoampere) meter when a DC voltage V [V] of 100 V was applied between them. The volume resistivity ρv is derived from the following equation. The results are shown in Table 1.
(上記式中、T[cm]×L[cm]は試料の断面積、D[cm]は試料の長さ)
表1中の体積抵抗率の環境変動率評価(RL/RN評価およびRN/RH評価)に関しては、23℃/5.5%RH環境下の体積抵抗率をRL、23℃/50%RH環境下の体積抵抗率をRN、28.5℃/70%RH環境下の体積抵抗率をRHとしたときの、RL/RNおよびRN/RHである。
(In the above formula, T [cm] × L [cm] is the cross-sectional area of the sample, and D [cm] is the length of the sample)
Regarding the environmental variation rate evaluation (R L / RN evaluation and R N / RH evaluation) of the volume resistivity in Table 1, the volume resistivity under the environment of 23 ° C./5.5% RH is expressed as R L , 23 ° C. / the volume resistivity under 50% RH environment R N, when the volume resistivity under 28.5 ° C. / 70% RH environment and R H, which is R L / R N and R N / R H.
また、作製した電子写真感光体を23℃/5.5%RH環境下、23℃/50%RH環境下、28.5℃/70%RH環境下でそれぞれ一晩放置し、その後、レーザービームプリンター(商品名:LBP−EX、キヤノン(株)製、図2に示す構成)に装着し、表面電位(明部電位Vl)を測定した。初期の表面電位を測定した後、2万枚通紙・印字を繰り返す耐久試験を行い、出力画像を評価し、良い方からA(にじみ、ボケ、ムラ、白抜けなどの画像不良がない)、B(にじみ、ボケ、ムラ、白抜けなどの画像不良がややある)、C(にじみ、ボケ、ムラ、白抜けなどの画像不良がある)の順でランク付けした。 The produced electrophotographic photosensitive member is allowed to stand overnight in a 23 ° C./5.5% RH environment, a 23 ° C./50% RH environment, and a 28.5 ° C./70% RH environment. It was mounted on a printer (trade name: LBP-EX, manufactured by Canon Inc., configuration shown in FIG. 2), and the surface potential (bright part potential Vl) was measured. After measuring the initial surface potential, endurance test that repeats 20,000 sheets passing through and printing is performed, and the output image is evaluated, and A (from there is no image defect such as blurring, blurring, unevenness, whiteout), Ranking was performed in the order of B (there is a slight image defect such as blur, blur, unevenness, white spot) and C (there is an image defect such as blur, blur, unevenness, white spot).
結果を表1に示す。 The results are shown in Table 1.
(参考例2)
参考例1において、以下の点を変更した以外は、参考例1と同様にして電子写真感光体および保護層体積抵抗率測定用試料を作製し、評価した。結果を表1に示す。
( Reference Example 2)
In Reference Example 1, a sample for measuring an electrophotographic photoreceptor and a protective layer volume resistivity was prepared and evaluated in the same manner as Reference Example 1 except that the following points were changed. The results are shown in Table 1.
・保護層中の導電性粒子
導電性粒子の撥水処理を、撥水処理例4から撥水処理例5に変更した。また、撥水処理剤を、上記式(SC−1)で示される構造を有するフッ素原子含有シランカップリング剤から、上記式(SX−1)で示される構造を有するシロキサン化合物(nsxの平均は21、Xsxの全部に対する水素原子の割合は43.5%)に変更した。上記式(SX−1)で示される構造を有するシロキサン化合物の割合は撥水処理前の導電性粒子の質量に対して20質量%とし、水の割合は撥水処理前の導電性粒子の質量に対して7質量%とした。
-Conductive particles in protective layer The water-repellent treatment of the conductive particles was changed from the water-repellent treatment example 4 to the water-repellent treatment example 5. Further, the water repellent treatment agent is changed from a fluorine atom-containing silane coupling agent having a structure represented by the above formula (SC-1) to a siloxane compound having a structure represented by the above formula (SX-1) (average of n sx 21 and the ratio of hydrogen atoms to all of X sx was changed to 43.5%). The ratio of the siloxane compound having the structure represented by the formula (SX-1) is 20% by mass with respect to the mass of the conductive particles before the water repellent treatment, and the ratio of water is the mass of the conductive particles before the water repellent treatment. The content was 7% by mass.
(実施例3)
参考例1において、以下の点を変更した以外は、参考例1と同様にして電子写真感光体および保護層体積抵抗率測定用試料を作製し、評価した。結果を表1に示す。
(Example 3)
In Reference Example 1, a sample for measuring an electrophotographic photoreceptor and a protective layer volume resistivity was prepared and evaluated in the same manner as Reference Example 1 except that the following points were changed. The results are shown in Table 1.
・保護層中の導電性粒子
導電性粒子の撥水処理を、撥水処理例4から撥水処理例1に変更した。Sb2O5をドープしたSnO2の粒子は、撥水処理前に湿度80%RHの雰囲気下に8時間曝して乾燥減量を4質量%に調整した。上記式(SC−1)で示される構造を有するフッ素原子含有シランカップリング剤の割合は撥水処理前の導電性粒子の質量に対して13質量%とした。
-Conductive particles in the protective layer The water-repellent treatment of the conductive particles was changed from the water-repellent treatment example 4 to the water-repellent treatment example 1. The SnO 2 particles doped with Sb 2 O 5 were exposed to an atmosphere of 80% humidity for 8 hours before the water repellent treatment to adjust the loss on drying to 4% by mass. The ratio of the fluorine atom-containing silane coupling agent having the structure represented by the above formula (SC-1) was 13% by mass with respect to the mass of the conductive particles before the water repellent treatment.
(実施例4)
実施例3において、撥水処理前の導電性粒子を湿度80%RHの雰囲気下に曝す時間を変更することによって乾燥減量を2質量%に調整した以外は、実施例3と同様にして電子写真感光体および保護層体積抵抗率測定用試料を作製し、評価した。結果を表1に示す。
(Example 4)
In Example 3, electrophotography was carried out in the same manner as in Example 3 except that the loss on drying was adjusted to 2% by mass by changing the time during which the conductive particles before the water repellent treatment were exposed to an atmosphere of 80% humidity. Samples for measuring the volume resistivity of the photoreceptor and the protective layer were prepared and evaluated. The results are shown in Table 1.
(実施例5)
実施例3において、撥水処理前の導電性粒子を湿度80%RHの雰囲気下に曝す時間を変更することによって乾燥減量を7質量%に調整した以外は、実施例3と同様にして電子写真感光体および保護層体積抵抗率測定用試料を作製し、評価した。結果を表1に示す。
(Example 5)
In Example 3, electrophotography was performed in the same manner as in Example 3 except that the loss on drying was adjusted to 7% by mass by changing the time during which the conductive particles before the water repellent treatment were exposed to an atmosphere having a humidity of 80% RH. Samples for measuring the volume resistivity of the photoreceptor and the protective layer were prepared and evaluated. The results are shown in Table 1.
(参考例6)
参考例1において、以下の点を変更した以外は、参考例1と同様にして電子写真感光体および保護層体積抵抗率測定用試料を作製し、評価した。結果を表1に示す。
( Reference Example 6)
In Reference Example 1, a sample for measuring an electrophotographic photoreceptor and a protective layer volume resistivity was prepared and evaluated in the same manner as Reference Example 1 except that the following points were changed. The results are shown in Table 1.
・保護層中の導電性粒子
参考例1で用いた導電性粒子120部の代わりに、撥水処理例4により撥水処理したSb2O5をドープしたSnO2の粒子(導電性粒子、平均粒径:0.02μm、上記式(SC−1)で示される構造を有するフッ素原子含有シランカップリング剤の割合は該粒子の質量に対して13質量%、水の割合は該粒子の質量に対して4質量%)40部と、撥水処理例4により撥水処理したSb2O5をドープしたSnO2の粒子(導電性粒子、平均粒径:0.02μm、撥水処理剤は上記式(SX−1)で示される構造を有するシロキサン化合物(nsxの平均は21、Xsxの全部に対する水素原子の割合は43.5%)に変更、該シロキサン化合物の割合は該粒子の質量に対して25質量%、水の割合は該粒子の質量に対して5質量%)80部とを併用した。
・ Conductive particles in the protective layer
Instead of 120 parts of the conductive particles used in Reference Example 1, SnO 2 particles doped with Sb 2 O 5 subjected to water repellent treatment according to water repellent treatment example 4 (conductive particles, average particle size: 0.02 μm, above) 40 parts by weight of the fluorine atom-containing silane coupling agent having the structure represented by the formula (SC-1) is 13% by mass with respect to the mass of the particles, and the ratio of water is 4% by mass with respect to the mass of the particles And SnO 2 particles doped with Sb 2 O 5 subjected to water repellent treatment according to the water repellent treatment example 4 (conductive particles, average particle size: 0.02 μm, the water repellent treatment agent is represented by the above formula (SX-1). (The average of n sx is 21, and the ratio of hydrogen atoms to the total of X sx is 43.5%), the ratio of the siloxane compound is 25% by mass with respect to the mass of the particles, water Is 5% by mass with respect to the mass of the particles And 80 parts in combination.
(参考例7)
参考例1において、導電性粒子の撥水処理に用いたフッ素原子含有シランカップリング剤の割合を撥水処理前の導電性粒子の質量に対して8質量%に変更した以外は、参考例1と同様にして電子写真感光体および保護層体積抵抗率測定用試料を作製し、評価した。結果を表1に示す。
( Reference Example 7)
Reference Example 1 except that the ratio of the fluorine atom-containing silane coupling agent used in the water-repellent treatment of the conductive particles in Reference Example 1 was changed to 8% by mass with respect to the mass of the conductive particles before the water-repellent treatment. In the same manner as described above, an electrophotographic photosensitive member and a protective layer volume resistivity measurement sample were prepared and evaluated. The results are shown in Table 1.
(参考例8)
参考例1において、導電性粒子の撥水処理に用いたフッ素原子含有シランカップリング剤の割合を撥水処理前の導電性粒子の質量に対して30質量%に変更した以外は、参考例1と同様にして電子写真感光体および保護層体積抵抗率測定用試料を作製し、評価した。結果を表1に示す。
( Reference Example 8)
Reference Example 1 except that the ratio of the fluorine atom-containing silane coupling agent used in the water-repellent treatment of the conductive particles in Reference Example 1 was changed to 30% by mass with respect to the mass of the conductive particles before the water-repellent treatment. In the same manner as described above, an electrophotographic photosensitive member and a protective layer volume resistivity measurement sample were prepared and evaluated. The results are shown in Table 1.
(参考例9)
参考例1において、導電性粒子の撥水処理に用いた水の割合を撥水処理前の導電性粒子の質量に対して2質量%に変更した以外は、参考例1と同様にして電子写真感光体および保護層体積抵抗率測定用試料を作製し、評価した。結果を表1に示す。
( Reference Example 9)
In Reference Example 1, electrophotography was performed in the same manner as in Reference Example 1, except that the ratio of water used for the water repellent treatment of the conductive particles was changed to 2% by mass with respect to the mass of the conductive particles before the water repellent treatment. Samples for measuring the volume resistivity of the photoreceptor and the protective layer were prepared and evaluated. The results are shown in Table 1.
(参考例10)
参考例1において、導電性粒子の撥水処理に用いた水の割合を撥水処理前の導電性粒子の質量に対して10質量%に変更した以外は、参考例1と同様にして電子写真感光体および保護層体積抵抗率測定用試料を作製し、評価した。結果を表1に示す。
( Reference Example 10)
In Reference Example 1, electrophotography was performed in the same manner as in Reference Example 1, except that the ratio of water used for the water repellent treatment of the conductive particles was changed to 10% by mass with respect to the mass of the conductive particles before the water repellent treatment. Samples for measuring the volume resistivity of the photoreceptor and the protective layer were prepared and evaluated. The results are shown in Table 1.
(実施例11)
参考例1において、以下の点を変更した以外は、参考例1と同様にして電子写真感光体および保護層体積抵抗率測定用試料を作製し、評価した。結果を表1に示す。
(Example 11)
In Reference Example 1, a sample for measuring an electrophotographic photoreceptor and a protective layer volume resistivity was prepared and evaluated in the same manner as Reference Example 1 except that the following points were changed. The results are shown in Table 1.
・保護層中の導電性粒子
導電性粒子の撥水処理を、撥水処理例4から撥水処理例2に変更した。上記式(SC−1)で示される構造を有するフッ素原子含有シランカップリング剤の割合は撥水処理前の導電性粒子の質量に対して13質量%とし、水の割合は撥水処理前の導電性粒子の質量に対して4質量%とした。また、Sb2O5をドープしたSnO2の粒子は、撥水処理前に湿度80%RHの雰囲気下に8時間曝して乾燥減量を4質量%に調整した。
-Conductive particles in protective layer The water-repellent treatment of the conductive particles was changed from the water-repellent treatment example 4 to the water-repellent treatment example 2. The ratio of the fluorine atom-containing silane coupling agent having the structure represented by the formula (SC-1) is 13% by mass with respect to the mass of the conductive particles before the water-repellent treatment, and the ratio of water is the ratio before the water-repellent treatment. It was 4 mass% with respect to the mass of electroconductive particle. Further, SnO 2 particles doped with Sb 2 O 5 were exposed to an atmosphere of 80% humidity for 8 hours before the water repellent treatment to adjust the loss on drying to 4% by mass.
(実施例12)
参考例1において、以下の点を変更した以外は、参考例1と同様にして電子写真感光体および保護層体積抵抗率測定用試料を作製し、評価した。結果を表1に示す。
Example 12
In Reference Example 1, a sample for measuring an electrophotographic photoreceptor and a protective layer volume resistivity was prepared and evaluated in the same manner as Reference Example 1 except that the following points were changed. The results are shown in Table 1.
・保護層中の導電性粒子
導電性粒子の撥水処理を、撥水処理例4から撥水処理例3に変更した。上記式(SC−1)で示される構造を有するフッ素原子含有シランカップリング剤の割合は撥水処理前の導電性粒子の質量に対して13質量%とし、水の割合は撥水処理前の導電性粒子の質量に対して4質量%とした。また、Sb2O5をドープしたSnO2の粒子は、撥水処理前に湿度80%RHの雰囲気下に8時間曝して乾燥減量を4質量%に調整した。
-Conductive particles in the protective layer The water-repellent treatment of the conductive particles was changed from the water-repellent treatment example 4 to the water-repellent treatment example 3. The ratio of the fluorine atom-containing silane coupling agent having the structure represented by the formula (SC-1) is 13% by mass with respect to the mass of the conductive particles before the water-repellent treatment, and the ratio of water is the ratio before the water-repellent treatment. It was 4 mass% with respect to the mass of electroconductive particle. Further, SnO 2 particles doped with Sb 2 O 5 were exposed to an atmosphere of 80% humidity for 8 hours before the water repellent treatment to adjust the loss on drying to 4% by mass.
(比較例1)
実施例3において、撥水処理前の導電性粒子の乾燥減量が1質量%である以外は、実施例3と同様にして電子写真感光体および保護層体積抵抗率測定用試料を作製し、評価した。結果を表1に示す。
(Comparative Example 1)
In Example 3, an electrophotographic photosensitive member and a sample for measuring volume resistivity of a protective layer were prepared and evaluated in the same manner as in Example 3 except that the drying loss of the conductive particles before water repellent treatment was 1% by mass. did. The results are shown in Table 1.
(比較例2)
実施例11において、撥水処理前の導電性粒子の乾燥減量が1質量%であり、導電性粒子の撥水処理に用いた水の割合が撥水処理前の導電性粒子の質量に対して12質量%である以外は、実施例11と同様にして電子写真感光体および保護層体積抵抗率測定用試料を作製し、評価した。結果を表1に示す。
(Comparative Example 2)
In Example 11, the loss on drying of the conductive particles before water repellent treatment was 1% by mass, and the proportion of water used for the water repellent treatment of the conductive particles was based on the mass of the conductive particles before water repellent treatment. A sample for measuring an electrophotographic photoreceptor and a protective layer volume resistivity was prepared and evaluated in the same manner as in Example 11 except that the content was 12% by mass. The results are shown in Table 1.
(比較例3)
比較例2において、撥水処理前の導電性粒子の乾燥減量が8質量%である以外は、比較例2と同様にして電子写真感光体および保護層体積抵抗率測定用試料を作製し、評価した。結果を表1に示す。
(Comparative Example 3)
In Comparative Example 2, an electrophotographic photosensitive member and a protective layer volume resistivity measurement sample were prepared and evaluated in the same manner as in Comparative Example 2, except that the drying loss of the conductive particles before water repellent treatment was 8% by mass. did. The results are shown in Table 1.
このように、本発明によれば、表面層が撥水処理剤を用いて撥水処理された導電性粒子を含有する電子写真感光体において、表面層の体積抵抗率の環境変動が小さく、あらゆる環境下で保護層の体積抵抗率を精度良く適切に保つことが可能で、にじみ、ボケ、ムラ、白抜けなどの画像不良がなく、出力画像の高精細性、ドット再現性と、電気的外力、機械的外力に対する耐久性とが両立された電子写真感光体およびその製造方法を提供することができる。 As described above, according to the present invention, in an electrophotographic photosensitive member containing conductive particles whose surface layer has been subjected to a water repellent treatment using a water repellent treatment agent, environmental fluctuations in the volume resistivity of the surface layer are small, It is possible to maintain the volume resistivity of the protective layer accurately and appropriately in the environment, and there is no image defect such as blurring, blurring, unevenness, and whiteout, and the output image has high definition, dot reproducibility, and electrical external force. Further, it is possible to provide an electrophotographic photosensitive member that is compatible with durability against mechanical external force and a method for manufacturing the same .
また、本発明によれば、上記電子写真感光体を有するプロセスカートリッジおよび電子写真装置を提供することができる。 Further, according to the present invention, a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member can be provided.
101 支持体
102 導電層
103 中間層
104 感光層
1041 電荷発生層
1042 電荷輸送層
105 撥水処理剤を用いて撥水処理された導電性粒子を含有する層
105’ 電荷輸送物質および撥水処理剤を用いて撥水処理された導電性粒子を含有する層
1 電子写真感光体
2 軸
3 帯電手段
4 露光光
5 現像手段
6 転写手段
7 クリーニング手段
8 定着手段
9 プロセスカートリッジ
10 案内手段
DESCRIPTION OF
Claims (15)
該導電性粒子が、乾燥減量(未撥水処理の導電性粒子を105℃で2時間乾燥した後の質量をMdとし、乾燥する前の質量をMとしたとき、[(M−Md)/M]×100で算出される乾燥減量[質量%])が2〜7質量%である未撥水処理の導電性粒子に対し、撥水処理剤を用いた撥水処理を施すことによって得られた撥水処理済みの導電性粒子である
ことを特徴とする電子写真感光体。 In an electrophotographic photosensitive member having a support and a photosensitive layer on the support, and the surface layer being a layer containing conductive particles,
When the conductive particles lose weight on drying (Md is the mass after drying the non-water-repellent conductive particles at 105 ° C. for 2 hours, and M is the mass before drying, [(M−Md) / M] × 100 and obtained by subjecting the non-water-repellent treated conductive particles having a drying loss [mass%] of 2 to 7 mass% to water-repellent treatment using a water-repellent treatment agent. An electrophotographic photosensitive member characterized by being water-repellent treated conductive particles.
乾燥減量(未撥水処理の導電性粒子を105℃で2時間乾燥した後の質量をMdとし、乾燥する前の質量をMとしたとき、[(M−Md)/M]×100で算出される乾燥減量[質量%])が2〜7質量%である未撥水処理の導電性粒子に対し、撥水処理剤を用いた撥水処理を施すことによって、撥水処理済みの導電性粒子を得る撥水処理工程と、
該撥水処理済みの導電性粒子を用いて該表面層を形成する表面層形成工程と
を有することを特徴とする電子写真感光体の製造方法。 In a method for producing an electrophotographic photosensitive member having a support and a photosensitive layer on the support, and the surface layer being a layer containing conductive particles,
Loss on drying (calculated as [(M−Md) / M] × 100, where Md is the mass after drying the non-water-repellent conductive particles at 105 ° C. for 2 hours and M is the mass before drying) Water-repellent treatment using a water-repellent treatment agent to non-water-repellent conductive particles having a loss on drying [mass%] of 2 to 7 mass%. A water repellent treatment step for obtaining particles;
And a surface layer forming step of forming the surface layer using the water repellent conductive particles. A method for producing an electrophotographic photoreceptor, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004019721A JP4262107B2 (en) | 2004-01-28 | 2004-01-28 | Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004019721A JP4262107B2 (en) | 2004-01-28 | 2004-01-28 | Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008316035A Division JP4989619B2 (en) | 2008-12-11 | 2008-12-11 | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2005215143A JP2005215143A (en) | 2005-08-11 |
JP2005215143A5 JP2005215143A5 (en) | 2007-02-22 |
JP4262107B2 true JP4262107B2 (en) | 2009-05-13 |
Family
ID=34903860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004019721A Expired - Fee Related JP4262107B2 (en) | 2004-01-28 | 2004-01-28 | Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4262107B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9122183B2 (en) | 2012-03-16 | 2015-09-01 | Ricoh Company, Ltd. | Electrophotographic photoreceptor, image forming apparatus and process cartridge |
-
2004
- 2004-01-28 JP JP2004019721A patent/JP4262107B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005215143A (en) | 2005-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6433238B2 (en) | Electrophotographic photosensitive member, manufacturing method thereof, process cartridge, and electrophotographic apparatus | |
JP6562804B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP6704739B2 (en) | Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus | |
JP6406931B2 (en) | Electrophotographic photosensitive member, manufacturing method thereof, electrophotographic apparatus, and process cartridge | |
JP6639402B2 (en) | Electrophotographic photoreceptor, method of manufacturing electrophotographic photoreceptor, process cartridge and electrophotographic apparatus | |
JP5127991B1 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
US20140038099A1 (en) | Electrophotographic photosensitive member, process cartridge,and electrophotographic apparatus | |
JP2017227867A (en) | Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, process cartridge, and electrophotographic image forming apparatus | |
KR100531399B1 (en) | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus | |
JP2017227885A (en) | Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, process cartridge including the electrophotographic photoreceptor, and electrophotographic device | |
JP4630813B2 (en) | Electrophotographic photosensitive member and method for manufacturing the same, process cartridge and electrophotographic apparatus | |
JP4745542B2 (en) | Electrophotographic photosensitive member, process cartridge having the electrophotographic photosensitive member, and electrophotographic apparatus | |
JP6071733B2 (en) | Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP4989619B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP2003345049A (en) | Electrophotographic photoreceptor, process cartridge and electrophotographic device | |
JP3944134B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP6674270B2 (en) | Electrophotographic photosensitive member, manufacturing method thereof, process cartridge and electrophotographic apparatus | |
JP2007156081A (en) | Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus | |
JP2003186227A (en) | Electrophotographic photoreceptor, electrophotographic device, and process cartridge | |
JP6433337B2 (en) | Electrophotographic photosensitive member, manufacturing method thereof, process cartridge, and electrophotographic apparatus | |
JP4262107B2 (en) | Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member | |
JP2005234321A (en) | Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus | |
JP4346793B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP3848153B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP2001117256A (en) | Electrophotographic photoreceptor and process cartridge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070110 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070110 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081111 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081211 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090120 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090206 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120220 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4262107 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130220 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140220 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |