JP4262061B2 - Method for producing electrophotographic photosensitive member - Google Patents
Method for producing electrophotographic photosensitive member Download PDFInfo
- Publication number
- JP4262061B2 JP4262061B2 JP2003386794A JP2003386794A JP4262061B2 JP 4262061 B2 JP4262061 B2 JP 4262061B2 JP 2003386794 A JP2003386794 A JP 2003386794A JP 2003386794 A JP2003386794 A JP 2003386794A JP 4262061 B2 JP4262061 B2 JP 4262061B2
- Authority
- JP
- Japan
- Prior art keywords
- surface layer
- epoxy
- resin
- layer
- photosensitive member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Photoreceptors In Electrophotography (AREA)
Description
本発明は電子写真感光体の製造方法に関する。 The present invention relates to a method for producing an electrophotographic photoreceptor.
電子写真プロセスは、例えば、導電性支持体上に少なくとも感光層を有する感光体に対する、帯電、露光による潜像形成、トナーによる現像像の形成、紙を主とする被転写材への転写、および転写残トナーの除去(クリーニング)/回収によって構成されている。ここで使用される電子写真感光体には、適用される電子写真プロセスに応じた所要の感度、電気特性、光学特性を備えていることが要求される。更に繰り返し使用される感光体の表面層には帯電、トナー現像、紙への転写、残存トナーのクリーニングという電気的、機械的外力が直接加えられるため、当該表面層には、それらに対する耐性が要求される。具体的には、摺擦による傷や摩耗、放電を伴う帯電方式を利用する場合には、特に高湿下で発生するオゾンやNOxによる化学的な劣化に対する耐性が要求される。更に繰り返し行われる残存トナーのクリーニング時には、感光体表面へのトナー付着や、ブレードクリーニングを行う際のブレードめくれといった問題があるため、表面の滑り性、離型性、耐汚染性といった特性が要求される。 The electrophotographic process includes, for example, charging a photosensitive member having at least a photosensitive layer on a conductive support, formation of a latent image by exposure, formation of a developed image by toner, transfer to a transfer material mainly composed of paper, and The transfer residual toner is removed (cleaned) / collected. The electrophotographic photosensitive member used here is required to have required sensitivity, electrical characteristics, and optical characteristics according to the applied electrophotographic process. Furthermore, the surface layer of the photoreceptor to be used repeatedly is directly subjected to electrical and mechanical external forces such as charging, toner development, transfer to paper, and cleaning of residual toner. Is done. Specifically, when using a charging method that involves scratches and wear due to rubbing, or discharge, resistance to chemical degradation caused by ozone or NOx generated under high humidity is required. Further, when the remaining toner is repeatedly cleaned, there are problems such as toner adhesion to the surface of the photoconductor and turning of the blade when performing blade cleaning. Therefore, characteristics such as surface slipperiness, releasability, and contamination resistance are required. The
このような要求に応えるために、感光体の表面層の材料として、フッ素系樹脂に代表されるような離型性、滑り性に優れた樹脂や、シリコーン樹脂、ウレタン樹脂、不飽和エステル材料などに代表されるような高硬度の樹脂材料を用いることが広く提案されている。 In order to meet such demands, the surface layer material of the photoreceptor is a resin having excellent releasability and slipperiness such as a fluorine resin, silicone resin, urethane resin, unsaturated ester material, etc. It has been widely proposed to use a high hardness resin material represented by
しかし、先に述べたような種々の特性を満たすような材料はいまだ見いだされていない。例えば、フッ素系樹脂単独では硬度が低く傷の発生を抑えることは困難であるし、更に一般溶剤に難溶であるために成膜が容易ではない。 However, no material has yet been found that satisfies the various characteristics described above. For example, the fluororesin alone has a low hardness and it is difficult to suppress the occurrence of scratches, and furthermore, it is difficult to form a film because it is hardly soluble in general solvents.
一方、アルコキシシランの高い反応性を利用した硬化性シリコーン樹脂のような高硬度な材料を感光体に用いた例が報告されているが、これらの樹脂は滑り性や、高湿下での電気特性、あるいは離型性といった面で十分ではなかった。更に、これらの硬化性材料は水酸基との反応性が高いため感光層を塗布する際の溶剤の制約があり、また、特に水分の影響により硬化反応が徐々に進行するため、塗工液の安定も劣っており、感光体の生産性という点においても問題があった。 On the other hand, examples have been reported in which a material having a high hardness such as a curable silicone resin utilizing the high reactivity of alkoxysilane is used for the photoreceptor, but these resins are slippery and have an electrical property under high humidity. It was not sufficient in terms of characteristics or releasability. Furthermore, since these curable materials are highly reactive with hydroxyl groups, there are restrictions on the solvent used to apply the photosensitive layer, and the curing reaction proceeds gradually due to the influence of moisture, which makes the coating solution stable. There was also a problem in terms of productivity of the photoreceptor.
また、例えば、ジアリルフタレート樹脂のプレポリマーなどの、不飽和結合の開裂を利用して硬化膜を形成する材料は、一般的にラジカル重合性であり、この材料を用いた塗工液は水分に対しては比較的安定なものの、空気中の酸素による重合阻害効果による膜表面での硬化不良、光開始剤を用いた場合に光照射による炭素−炭素結合の切断反応などにより、絶縁抵抗などの電気特性の不安定な硬化物しか得られない。そのため表面自由エネルギーの上昇による転写効率の低下や吸湿による画像ボケといった問題があった。 In addition, for example, a material that forms a cured film using unsaturated bond cleavage , such as a prepolymer of diallyl phthalate resin, is generally radically polymerizable, and a coating solution using this material is resistant to moisture. On the other hand, although it is comparatively stable, insulation resistance, etc. due to poor curing on the film surface due to the polymerization inhibition effect by oxygen in the air, and when a photoinitiator is used, the carbon-carbon bond breakage reaction due to light irradiation. Only cured products with unstable electrical properties can be obtained. Therefore, there are problems such as a decrease in transfer efficiency due to an increase in surface free energy and an image blur due to moisture absorption.
一方、感光体の表面層に用いる材料としては、上述の硬度、耐摺擦性や滑り性といった表面的な特性のみならず、最上表面層内部においても電荷の移動を滞らせることがないような電気的特性が求められる。ここで、表面層に電荷を移動させる機能がない場合には、感光層内部に電荷の蓄積を生じ、帯電―露光の電子写真プロセスを繰り返すことで、残留電位の上昇を招き、画像品質を落とすことになる。 On the other hand, the material used for the surface layer of the photoconductor is not limited to the above-mentioned surface properties such as hardness, rubbing resistance and slipperiness, and the movement of charge is not delayed in the uppermost surface layer. Electrical characteristics are required. Here, when the surface layer does not have a function of moving charges, charge is accumulated in the photosensitive layer, and the electrophotographic process of charge-exposure is repeated, resulting in an increase in residual potential and degrading image quality . It will be.
この点を解決するため、表面層中に電荷輸送物質を含有させる方法が提案されている。例えば、アルコキシシラン類に電荷輸送物質を添加して硬化を行った場合には、電荷輸送物質とシロキサン成分との相溶性が悪い場合が多く、また、ウレタン樹脂のような極性の高いユニットを含む樹脂中に電荷輸送物質を含有させた場合には、電荷輸送物質による電荷の移動度が低減し、満足な電子写真特性を得られないのが実情である。 In order to solve this problem, a method of incorporating a charge transport material in the surface layer has been proposed. For example, when curing is performed by adding a charge transport material to alkoxysilanes, the charge transport material and the siloxane component are often poorly compatible, and also includes a highly polar unit such as a urethane resin. When a charge transport material is contained in the resin, the charge mobility due to the charge transport material is reduced, and satisfactory electrophotographic characteristics cannot be obtained.
更に、熱硬化性樹脂の中には、加熱処理を施すだけでは不十分であって、硬化促進剤や重合開始剤といった硬化触媒を添加させなければならない材料が種々見受けられる。しかしこのような硬化触媒が硬化膜中に残留した場合には、微量であっても電荷の移動を阻害したり、或いは硬化膜の電気抵抗が下がると言った弊害を招いたりする可能性がある。一方、硬化触媒を添加した塗料は、常温においても徐々に反応が進行しやすい傾向にあり、結果として塗料安定性が悪くなり、大量に塗料を製造、保管することが困難となる弊害も発生する。 Further, in thermosetting resins, it is not sufficient to perform heat treatment alone, and various materials to which a curing catalyst such as a curing accelerator and a polymerization initiator must be added are found. However, if such a curing catalyst remains in the cured film, there is a possibility that even if it is a very small amount, the movement of electric charge may be hindered or the electrical resistance of the cured film may be reduced. . On the other hand, paints to which a curing catalyst is added tend to gradually react even at room temperature, resulting in poor paint stability and the disadvantage of making it difficult to produce and store paints in large quantities. .
また、電子写真感光体の帯電方式としては放電を伴う方式が主流であるが、中でも、接触帯電方式の中で帯電部材に直流電圧と交流電圧の両方を重畳し、電子写真感光体と帯電部材とのわずかなギャップにおいて放電を伴って帯電を施す手法は、帯電安定性は優れているものの放電エネルギーにより電子写真感光体の表面組成が酸化劣化的に破壊されていくという現象が見られ、表面自由エネルギ−の上昇により転写効率が低下する。更に硬化性樹脂を用いた場合は感光層の磨耗量が少ないため、酸化劣化的に破壊された物質は吸湿による画像ボケといった問題を引き起こすことも有る。 In addition, as a charging method for the electrophotographic photosensitive member, a method involving discharge is the mainstream, but among them, in the contact charging method, both a DC voltage and an AC voltage are superimposed on the charging member, and the electrophotographic photosensitive member and the charging member are superposed. The method of charging with a slight gap between the surface and the surface of the electrophotographic photoreceptor due to oxidative degradation is observed due to the discharge energy, although the charging stability is excellent. The transfer efficiency decreases due to the increase in free energy. Further, when a curable resin is used, the amount of abrasion of the photosensitive layer is small, so that a substance destroyed due to oxidative degradation may cause a problem such as image blur due to moisture absorption.
また、一般的に熱可塑性樹脂の感光層上に硬化性樹脂で表面層を設けた場合、フッ素樹脂のように下層の感光層と化学組成が全く異なっていると、表面層との密着性が悪く、電子写真プロセスにて長期わたり使用する際に感光層の一部が剥がれて、画像欠陥となる弊害が生じる。 In general, when a surface layer is provided with a curable resin on a thermoplastic resin photosensitive layer, if the chemical composition is completely different from that of the lower photosensitive layer such as a fluororesin, the adhesion to the surface layer is improved. Unfortunately, when used for a long time in an electrophotographic process, a part of the photosensitive layer is peeled off, resulting in an image defect.
また、硬化性樹脂の中には架橋密度が上がると、硬度は上がるものの、同時に脆性も増加し、長期に亘る使用中に電子写真感光体の表面粗さが極端に上昇し、画像上に問題を起こすこともあり、硬化性樹脂を表面層に適応する上で満足な材料は得られていないのが実情である。 In addition, when the crosslink density increases in some curable resins, the hardness increases, but at the same time, the brittleness also increases, and the surface roughness of the electrophotographic photosensitive member increases extremely during long-term use, causing problems on the image. In reality, no satisfactory material has been obtained for adapting the curable resin to the surface layer.
また、特許文献1等においてはフェノール性水酸基やヒドロキシアルキル基を含有する電荷輸送物質を感光体表面層に含有させる例が開示されてはいるが、これらの感光体においても、未だ近年の高耐久、高生産性、高画質化の要求には応じられてはおらず、機械的強度や残留電位、生産性等の点の全てを十分に満足できていないのが実情である。 Further, Patent Document 1 and the like disclose examples in which a charge transport material containing a phenolic hydroxyl group or a hydroxyalkyl group is contained in the surface layer of the photoreceptor, but these photoreceptors still have high durability in recent years. However, it is not in response to the demands for high productivity and high image quality, and the actual situation is that the mechanical strength, residual potential, productivity, etc. are not fully satisfied.
また特許文献2には、レゾール型のフェノール樹脂と、金属粒子又は金属酸化物粒子と、を含有している保護層を感光層上に有している電子写真感光体が、低湿環境下における残留電位の上昇が殆どなく、また高温の環境下における画像ボケ、流れのない高品位の画像を与え、また優れた離型性を示し、磨耗や傷の発生に対して優れた耐久性を有することが開示されている。
本発明の目的は硬化性触媒を加えることなく、耐摩耗性に優れ、傷等が発生しないだけの硬度を有し、なおかつ感光体本来の電荷輸送性を低下させない表面層を有する電子写真感光体の製造方法を提供することである。更に本発明は、高い生産性で塗布することが出来る表面層を有する電子写真感光体の製造方法を提供することである。また、本発明は下層との密着性が良く、放電劣化に対して優れた耐性を示す高品位な電子写真感光体の製造方法を提供することである。 An object of the present invention is to provide an electrophotographic photosensitive member having a surface layer that has excellent wear resistance without causing addition of a curable catalyst, has a hardness that does not cause scratches, etc., and does not reduce the charge transport properties inherent to the photosensitive member. It is to provide a manufacturing method . Furthermore, this invention is providing the manufacturing method of the electrophotographic photoreceptor which has a surface layer which can be apply | coated with high productivity. Another object of the present invention is to provide a method for producing a high-quality electrophotographic photoreceptor that has good adhesion to the lower layer and exhibits excellent resistance to discharge deterioration .
本発明に従って、導電性支持体上に感光層を有する電子写真感光体の製造方法であって、レゾール型フェノール樹脂のフェノール性水酸基に、分子内にエポキシ基を2つ以上有するエポキシ化合物の該エポキシ基を付加させることによって得られたエポキシ変性フェノール樹脂と、電荷輸送物質及び導電性微粒子のうちいずれか一方又は両方と、を含んでいる表面層の形成用塗料の塗膜を硬化させて該電子写真感光体の表面層を形成する工程を有することを特徴とする電子写真感光体の製造方法が提供される。 According to the present invention, there is provided a process for producing an electrophotographic photosensitive member having a photosensitive layer on an electroconductive substrate, the phenolic hydroxyl groups of Les Orres type phenolic resin, the epoxy compound having two or more epoxy groups in the molecule and epoxy-modified phenolic resins obtained by the Rukoto by adding an epoxy group, the charge transport material and the either or both of the conductive fine particles, a coating film of paint for forming a surface layer that contains There is provided a method for producing an electrophotographic photoreceptor, comprising a step of curing to form a surface layer of the electrophotographic photoreceptor.
本発明の表面層を用いることで、密着性、耐摩耗性に優れ、傷等が発生しないだけの硬度、強靭性を有し、なおかつ感光体本来の電荷輸送性を低下させない表面層を具備する電子写真感光体を提供することが可能となった。更に本発明の表面層は、高い生産性で塗布することが可能であり、高耐久、高安定及び高画質である電子写真感光体の大量生産が可能となる。 By using the surface layer of the present invention, it has a surface layer that is excellent in adhesion and wear resistance, has hardness and toughness that do not cause scratches, etc., and does not deteriorate the charge transport property inherent to the photoreceptor. An electrophotographic photoreceptor can be provided. Furthermore, the surface layer of the present invention can be applied with high productivity, and mass production of electrophotographic photoreceptors having high durability, high stability, and high image quality becomes possible .
以下に本発明の実施の形態を詳細に説明する。
本発明者らは、鋭意検討を重ねた結果、特定の構造を有するエポキシ変性フェノール樹脂の架橋物と、電荷輸送物質及び導電性微粒子の少なくとも一方と、を含んでいる表面層を有する電子写真感光体により、上記問題を解決できることを見出すに至った。
Hereinafter, embodiments of the present invention will be described in detail.
As a result of intensive studies, the present inventors have found that an electrophotographic photosensitive member having a surface layer containing a crosslinked product of an epoxy-modified phenol resin having a specific structure and at least one of a charge transport material and conductive fine particles. I have come to find that my body can solve the above problems.
本発明に係るエポキシ変性フェノール樹脂は、レゾール型フェノール樹脂のフェノール性水酸基にエポキシ基を付加させて得られるものである。ここでレゾール型フェノール樹脂は、フェノール性水酸基を有する化合物とアルデヒド類とをアルカリ触媒下で付加・縮合反応させて得た化合物であり、ホルムアルデヒドがフェノール環に付加した際に生成するヒドロキシメチル基が反応性架橋基となる。フェノール性水酸基を有する化合物の例としては、例えばフェノール、クレゾール、キシレノール、パラアルキルフェノール、パラフェニルフェノール、レゾルシン、ビスフェノール等が挙げられる。またアルデヒド類の例としては、ホルムアルデヒド、パラホルムアルデヒド、フルフラール、アセトアルデヒド等が挙げられる。 The epoxy-modified phenol resin according to the present invention is obtained by adding an epoxy group to the phenolic hydroxyl group of a resol type phenol resin. Here, the resol type phenolic resin is a compound obtained by addition / condensation reaction of a compound having a phenolic hydroxyl group and an aldehyde under an alkali catalyst, and the hydroxymethyl group produced when formaldehyde is added to the phenol ring. Reactive crosslinking group. Examples of the compound having a phenolic hydroxyl group include phenol, cresol, xylenol, paraalkylphenol, paraphenylphenol, resorcin, and bisphenol. Examples of aldehydes include formaldehyde, paraformaldehyde, furfural, acetaldehyde and the like.
そしてレゾール型フェノール樹脂のフェノール性水酸基のエポキシ変成化は、アルカリ条件下でのフェノール性水酸基を有する化合物とアルデヒド類とのレゾール化反応時に、反応系内にエポキシ環を有する化合物を混合させ、フェノール性水酸基とエポキシ環とを付加反応させるという方法によって行うことができる。このようなレゾール型フェノール樹脂のフェノール性水酸基をエポキシ基で変性した樹脂は、130℃〜170℃程度の加熱処理を施すことにより、ヒドロキシメチル基同士の縮合反応によりエーテル結合、若しくは更に縮合反応が進み、メチレン結合を形成したり、或いはヒドロキシメチル基とフェノール性水酸基のオルト位やパラ位の水素原子との縮合反応によりメチレン結合を形成したりするが、これらの縮合反応が種々の分子間で起こることにより、架橋密度の高い三次元硬化膜を得ることができる。これらの縮合反応は、本質的に空気中の水分や酸素により阻害されることもなく、また電荷輸送物質を添加した系においても十分に進行する反応である。エポキシ変性フェノール樹脂の加熱処理による架橋反応においては、熱硬化に一般的に用いられるような硬化触媒を特に添加する必要が無いという特徴を有する。従って、本発明に係る化合物を電子写真感光体の表面層に用いる場合には、残留硬化触媒に起因する残留電位の上昇や表面層の抵抗低下といった問題も発生しない。 The epoxy-modified of the phenolic hydroxyl group of resol-type phenolic resin, upon resol reaction of the compound and an aldehyde having a phenolic hydroxyl group under alkaline conditions, by mixing a compound having an epoxy ring in the reaction system, a phenol This can be carried out by a method in which an addition hydroxyl group and an epoxy ring are reacted . A resin in which the phenolic hydroxyl group of such a resol type phenol resin is modified with an epoxy group is subjected to a heat treatment of about 130 ° C. to 170 ° C., whereby an ether bond or a further condensation reaction is caused by a condensation reaction between hydroxymethyl groups. To form a methylene bond, or to form a methylene bond by a condensation reaction between a hydroxymethyl group and a hydrogen atom at the ortho-position or para-position of a phenolic hydroxyl group. These condensation reactions may occur between various molecules. As a result, a three-dimensional cured film having a high crosslinking density can be obtained. These condensation reactions are essentially reactions that are not hindered by moisture and oxygen in the air, and proceed sufficiently even in a system to which a charge transport material is added. The crosslinking reaction by heat treatment of the epoxy-modified phenolic resin has a feature that it is not particularly necessary to add a curing catalyst generally used for thermosetting. Therefore, when the compound according to the present invention is used for the surface layer of the electrophotographic photoreceptor, problems such as an increase in residual potential and a decrease in resistance of the surface layer due to the residual curing catalyst do not occur.
また、本発明のエポキシ変性レゾール型フェノール樹脂は、レゾール型フェノール樹脂のフェノール性水酸基にエポキシ基を付加させて得られたことを特徴としており、単にフェノール樹脂とエポキシ樹脂のブレンドではない。エポキシ樹脂とフェノール樹脂は主剤−硬化剤の関係にあるため、単にブレンドしただけでは徐々に硬化反応が進み、ポットライフが短くなる。逆に反応が遅いエポキシ樹脂−フェノール樹脂の組合せでブレンドしたものは、加熱による硬化も遅く、十分な硬度を得るには感光体の特性を著しく損なうほどの加熱が必要となるが、本発明に係るエポキシ変性フェノール樹脂によれば、予めエポキシ基とフェノール性水酸基との反応は終わっているため、これらポットライフや熱劣化を招くほどの加熱処理から開放される。 In addition, the epoxy-modified resol type phenol resin of the present invention is obtained by adding an epoxy group to the phenolic hydroxyl group of the resol type phenol resin, and is not simply a blend of a phenol resin and an epoxy resin. Since the epoxy resin and the phenol resin are in a main agent-curing agent relationship, the curing reaction proceeds gradually only by blending, and the pot life is shortened. On the other hand, those blended with a slow-reaction epoxy resin-phenolic resin combination are also slow to cure by heating, and in order to obtain sufficient hardness, heating is required to significantly impair the characteristics of the photoreceptor. According to such an epoxy-modified phenol resin, since the reaction between the epoxy group and the phenolic hydroxyl group is completed in advance, the heat treatment that causes such pot life and thermal deterioration is released.
また、本発明に係るエポキシ変性フェノール樹脂は、加熱によって架橋させることができる為、硬化触媒を加える必要が無いことや、ヒドロキシメチル基自体が、イソシアネートやシリコーン樹脂とは異なり、水分に対する安定性も十分にあるため、塗工液の安定性においても優れていることを見出した。 In addition, since the epoxy-modified phenolic resin according to the present invention can be crosslinked by heating, there is no need to add a curing catalyst, and the hydroxymethyl group itself is different from isocyanate and silicone resin, and has stability against moisture. It was found that the coating solution was excellent in stability because it was sufficient.
また、本発明に係るエポキシ変性フェノール樹脂に関して、フェノール性水酸基の変性を、例えば下記式(1)や(2)で示されるエポキシ基で行った場合には、各々下記式(3)及び(4)に示したようにエーテル結合を有することとなる。そして更に、エーテル結合に加え、変性した際に使用したエポキシ化合物の骨格内のアルキレン結合、シクロアルキレン結合、エステル結合などのフレキシビリティーの高い結合基の存在により、本発明に係るエポキシ変性フェノール樹脂、或いはその架橋物は、通常の硬化性フェノール樹脂が具備する、優れた膜強度に加えて、膜に対して柔軟性、屈曲性が付与され靭性をも備えたものとなる。更にエポキシ樹脂樹脂の特徴である被着体への密着性の向上を図ることも可能となる。 Moreover, regarding the epoxy-modified phenol resin according to the present invention, when the phenolic hydroxyl group is modified with, for example, an epoxy group represented by the following formulas (1) or (2), the following formulas (3) and (4) It has an ether bond as shown in FIG. Further, in addition to the ether bond, the epoxy-modified phenol resin according to the present invention is present due to the presence of a highly flexible bond group such as an alkylene bond, a cycloalkylene bond, and an ester bond in the skeleton of the epoxy compound used when modified. Alternatively, the crosslinked product is provided with flexibility and flexibility and toughness in addition to the excellent film strength possessed by a normal curable phenol resin. Furthermore, it is possible to improve the adhesion to the adherend, which is a feature of the epoxy resin.
本発明において、フェノール性水酸基の変性に用いられるエポキシ基を含む化合物の例としては、下記構造式[化5]乃至[化30]で示すエポキシ化合物を挙げることができる。そして特に多官能エポキシ化合物を用いることにより、膜の形成と硬化後の表面層の硬度をより高くすることが可能となる。 In the present invention, examples of the compound containing an epoxy group used for modification of the phenolic hydroxyl group include epoxy compounds represented by the following structural formulas [Chemical Formula 5] to [Chemical Formula 30]. In particular, by using a polyfunctional epoxy compound, the hardness of the surface layer after film formation and curing can be further increased.
これらのエポキシ化合物をレゾール型フェノール樹脂のフェノール性水酸基へ付加させる割合は、硬化後の膜強度や放電劣化に対する耐性に影響を及ぼすため、電子写真感光体の使用環境や求められる耐久寿命等により任意に変えることが可能であるが、レゾール型フェノール樹脂のフェノール性水酸基に対し、3〜70%、好ましくは5〜50%、更に好ましくは7〜25%の割合でエポキシ基を付加させることが可能である。 The proportion of these epoxy compounds added to the phenolic hydroxyl group of the resol-type phenolic resin affects the film strength after curing and the resistance to discharge deterioration. Therefore, it depends on the usage environment of the electrophotographic photoreceptor and the required durability life. However, it is possible to add an epoxy group in a proportion of 3 to 70%, preferably 5 to 50%, more preferably 7 to 25% with respect to the phenolic hydroxyl group of the resol type phenol resin. It is.
また、本発明に係るエポキシ変性フェノール樹脂は酸素以外のヘテロ原子を含有しない構造をとることが可能である。この組成のエポキシ変性フェノール樹脂と電荷輸送物質との組合せにおいては、電荷の輸送能が妨げられることが少ないため、特に優れた電子写真特性を得ることができる。 Moreover, the epoxy-modified phenol resin according to the present invention can have a structure that does not contain hetero atoms other than oxygen. In the combination of the epoxy-modified phenolic resin having this composition and the charge transporting material, the charge transporting ability is hardly hindered, so that particularly excellent electrophotographic characteristics can be obtained.
本発明に係る電子写真感光体の最外表面を構成する層、即ち表面層には、電荷の移動を滞り無く起こさせるため、電荷輸送物質及び導電性微粒子から選ばれる少なくとも一方を含有させることが好ましい。電荷輸送物質の構造は、上記のエポキシ変性フェノール樹脂との相溶性に鑑み、ヒドロキシ基で修飾されていることが好ましい。このヒドロキシ基はヒドロキシアルキル基、ヒドロキシアルコキシ基或いはフェノール性水酸基が適している。 The layer constituting the outermost surface of the electrophotographic photosensitive member according to the present invention, that is, the surface layer, may contain at least one selected from a charge transport material and conductive fine particles in order to cause the movement of charges without delay. preferable. The structure of the charge transport material is preferably modified with a hydroxy group in view of compatibility with the epoxy-modified phenol resin. The hydroxy group is suitably a hydroxyalkyl group, a hydroxyalkoxy group or a phenolic hydroxyl group.
ここで、電荷輸送物質を修飾するヒドロキシ基がヒドロキシアルキル基、ヒドロキシアルコキシ基の場合には、溶剤に対する溶解性も併せて向上させることができるため、表面層中における電荷輸送能を高い状態に維持することが可能である。特にこれらのヒドロキシアルキル基、ヒドロキシアルコキシ基のアルキル鎖の炭素原子数は、これらの電荷輸送物質を合成する上での操作性や溶解性から1〜8、更に好ましくは1〜5が好ましい。 Here, when the hydroxy group that modifies the charge transporting substance is a hydroxyalkyl group or a hydroxyalkoxy group, the solubility in a solvent can also be improved, so that the charge transporting ability in the surface layer is maintained at a high level. Is possible. In particular, the number of carbon atoms in the alkyl chain of these hydroxyalkyl groups and hydroxyalkoxy groups is preferably from 1 to 8, more preferably from 1 to 5, in view of operability and solubility in the synthesis of these charge transport materials.
また、電荷輸送物質を修飾するヒドロキシ基がフェノール性水酸基の場合は、上述のポリヒドロキシメチル化されたビスフェノール化合物の縮合反応過程において、フェノール性水酸基のオルト位若しくはパラ位の水素原子とも反応可能であるため、架橋反応がビスフェノール化合物及び電荷輸送物質の場合においても起こり、形成される表面層の強度が更に向上するという相乗効果的特性を引き出すことが可能である。 In addition, when the hydroxy group that modifies the charge transport material is a phenolic hydroxyl group, it can also react with the ortho- or para-position hydrogen atom of the phenolic hydroxyl group in the condensation reaction process of the polyhydroxymethylated bisphenol compound described above. For this reason, the cross-linking reaction occurs even in the case of the bisphenol compound and the charge transport material, and it is possible to bring out a synergistic effect characteristic that the strength of the formed surface layer is further improved.
以下に、本発明で用いることができるヒドロキシ基を含有する電荷輸送物質(CTM)の具体例を例示するが、本発明はこれらの化合物のみに限定されるものではない。 Specific examples of the charge transport material (CTM) containing a hydroxy group that can be used in the present invention are illustrated below, but the present invention is not limited only to these compounds.
本発明に用いることのできる導電性微粒子の例としては、例えば、酸化亜鉛、酸化チタン、酸化スズ、酸化アンチモン、酸化インジウム、酸化ビスマス、グラファイト、カーボンブラック、インジウムをドープした酸化スズ、アンチモンをドープした酸化スズ及び酸化ジルコニウム等の従来公知の材料より選択することが可能である。これらの導電性粒子は一種類もしくは二種類以上を混合して用いることができる。 Examples of conductive fine particles that can be used in the present invention include, for example, zinc oxide, titanium oxide, tin oxide, antimony oxide, indium oxide, bismuth oxide, graphite, carbon black, tin oxide doped with indium, and antimony doped. It is possible to select from conventionally known materials such as tin oxide and zirconium oxide. These conductive particles can be used alone or in combination of two or more.
表面層の形成用塗料を作製する溶剤としては、本発明に係るエポキシ変性フェノール樹脂、更には電荷輸送物質を良く溶解し、さらにまた、表面層の塗料とが塗布される面を構成する下層、例えば電荷輸送層や電荷発生層等に悪影響を与えない溶剤が好ましい。 As a solvent for preparing a coating material for forming the surface layer, the epoxy-modified phenolic resin according to the present invention, further dissolves the charge transport substance well, and further, a lower layer constituting a surface to which the coating material of the surface layer is applied, For example, a solvent that does not adversely affect the charge transport layer, the charge generation layer, and the like is preferable.
従って、溶剤としてはメタノール、エタノール、2−プロパノール等のアルコール類、アセトン、シクロヘキサノン、MEK等のケトン類、酢酸メチル、酢酸エチル等のエステル類、テトラヒドロフラン、ジオキサン等のエーテル類、トルエン、キシレンなどの芳香族炭化水素類、クロロベンゼン、ジクロロメタン等のハロゲン系炭化水素類等が使用可能であり、更にこれらを混合して用いてもよい。 Therefore, as solvents, alcohols such as methanol, ethanol and 2-propanol, ketones such as acetone, cyclohexanone and MEK, esters such as methyl acetate and ethyl acetate, ethers such as tetrahydrofuran and dioxane, toluene, xylene and the like Aromatic hydrocarbons, halogen-based hydrocarbons such as chlorobenzene and dichloromethane can be used, and these may be used in combination.
これらの中でも、フェノール樹脂の形態に最も好適な溶剤は、メタノール、エタノール、2−プロパノール等のアルコール類である。 Among these, the most suitable solvent for the form of the phenol resin is alcohols such as methanol, ethanol, and 2-propanol.
従来公知の電荷輸送物質は一般的にアルコール類の溶剤には不溶または難溶であり、本発明のエポキシ変性フェノール樹脂への均一な溶解は困難であるが、電荷輸送物質としてヒドロキシ基を含有する場合にはアルコール類を主成分とする溶剤に可溶であり、電荷輸送層等の下層に対するダメージも少ない。 Conventionally known charge transport materials are generally insoluble or hardly soluble in alcohol solvents, and uniform dissolution in the epoxy-modified phenolic resin of the present invention is difficult, but they contain a hydroxy group as a charge transport material. In some cases, it is soluble in a solvent containing alcohol as a main component, and there is little damage to the lower layer such as a charge transport layer.
表面層の塗布方法としては、浸漬コーティング法、スプレーコーティング法、スピンナーコーティング法、ローラーコーティング法、マイヤーバーコーティング法及びブレードコーティング法等の一般的な塗工方法を用いることができる。 As a method for applying the surface layer, general coating methods such as a dip coating method, a spray coating method, a spinner coating method, a roller coating method, a Meyer bar coating method and a blade coating method can be used.
本発明においては、表面層中に、帯電時に発生するオゾンやNOx等の活性物質の付着による表面層の劣化等を防止する目的で、酸化防止剤の添加材を加えてもよい。 In the present invention, an antioxidant additive may be added to the surface layer for the purpose of preventing deterioration of the surface layer due to adhesion of active substances such as ozone and NOx generated during charging.
次に、本発明に係る電子写真感光体の構成について以下に説明する。 Next, the configuration of the electrophotographic photoreceptor according to the present invention will be described below.
本発明に係る電子写真感光体は、主に積層構造を有することが好ましい。図1aの電子写真感光体は、導電性支持体4の上に電荷発生層3、電荷輸送層2が順に設けており、更に本発明の硬化性電荷輸送型の表面層1を設けている。 The electrophotographic photoreceptor according to the present invention preferably has mainly a laminated structure. In the electrophotographic photosensitive member of FIG. 1a, a charge generation layer 3 and a charge transport layer 2 are provided in this order on a conductive support 4, and further a curable charge transport type surface layer 1 of the present invention is provided.
また、図1のb、cの様に導電性支持体4と電荷発生層3の間に、結着層5、更には干渉縞防止等を目的とする下引き層6を設けてもよい。 Further, as shown in FIGS. 1 b and 1 c, a binder layer 5 and an undercoat layer 6 for preventing interference fringes may be provided between the conductive support 4 and the charge generation layer 3.
また、図1のdは導電性支持体4の上に電荷発生層3が順に設けており、更に直接電荷発生層3の上に本発明の硬化性電荷輸送型の表面層1を設けている例である。即ち、電荷輸送層が表面層を構成している態様を示している。 In FIG. 1 d, the charge generation layer 3 is provided in order on the conductive support 4, and the curable charge transport type surface layer 1 of the present invention is provided directly on the charge generation layer 3. It is an example. That is, an embodiment in which the charge transport layer constitutes a surface layer is shown.
感光体の層構成にも依存するが、表面層の膜厚は、感光体の耐久性を向上させ、また表面層を設けたことによる残留電位の上昇を抑える為に、適度な厚さとすることが好ましい。具体的には、例えば図1のa、b、及びcの様に電荷輸送層2の上に表面層1を設ける場合は、0.1μm〜10μmの範囲、特には0.5μm〜7μmの範囲が好ましい。また、図1のdの様に電荷発生層3の上に直接電荷輸送層としての表面層1を設ける場合は、3μm〜40μmの範囲、特には8μm〜20μmの範囲が好ましい。 Although it depends on the layer structure of the photoconductor, the thickness of the surface layer should be set to an appropriate thickness in order to improve the durability of the photoconductor and suppress the increase in residual potential due to the provision of the surface layer. Is preferred. Specifically, for example, when the surface layer 1 is provided on the charge transport layer 2 as shown in FIGS. 1A, 1B, and 1C, a range of 0.1 μm to 10 μm, particularly a range of 0.5 μm to 7 μm. Is preferred. Further, when the surface layer 1 as a charge transport layer is provided directly on the charge generation layer 3 as shown in FIG. 1D, the range of 3 μm to 40 μm, particularly the range of 8 μm to 20 μm is preferable.
導電性支持体4としては、支持体自身が導電性を持つもの、例えば、アルミニウム、アルミニウム合金、ステンレススチールなどを用いることができ、その他にアルミニウム、アルミニウム合金、酸化インジウム−酸化スズ合金などを真空蒸着によって被膜形成された層を有する前記導電性支持体やプラスチック、導電性微粒子(例えば、カーボンブラック、酸化スズ、酸化チタン、銀粒子など)を適当なバインダーとともにプラスチックや紙に含浸した支持体、導電性バインダーを有するプラスチックなどを用いることができる。 As the conductive support 4, it is possible to use a conductive support itself, for example, aluminum, aluminum alloy, stainless steel, etc. In addition, aluminum, aluminum alloy, indium oxide-tin oxide alloy, etc. are vacuumed. The conductive support having a layer formed by vapor deposition, a plastic, a support obtained by impregnating plastic or paper with a suitable binder with conductive fine particles (for example, carbon black, tin oxide, titanium oxide, silver particles, etc.), A plastic having a conductive binder can be used.
また、導電性支持体と感光層の間には、バリアー機能と接着機能を持つ結着層(接着層)を設けることができる。 In addition, a binder layer (adhesive layer) having a barrier function and an adhesive function can be provided between the conductive support and the photosensitive layer.
結着層は感光層の接着性改良、塗工性改良、支持体の保護、支持体の欠陥の被覆、支持体からの電荷注入性改良、感光層の電気的破壊に対する保護などのために形成される。結着層にはカゼイン、ポリビニルアルコール、エチルセルロース、エチレン−アクリル酸コポリマー、ポリアミド、変性ポリアミド、ポリウレタン、ゼラチン、酸化アルミニウムなどによって形成できる。結着層の膜厚は、5μm以下が好ましく、0.1〜3μmがより好ましい。 The binder layer is formed to improve the adhesion of the photosensitive layer, improve coating properties, protect the support, cover defects on the support, improve charge injection from the support, and protect against electrical breakdown of the photosensitive layer. Is done. The binder layer can be formed of casein, polyvinyl alcohol, ethyl cellulose, ethylene-acrylic acid copolymer, polyamide, modified polyamide, polyurethane, gelatin, aluminum oxide, or the like. The thickness of the binding layer is preferably 5 μm or less, and more preferably 0.1 to 3 μm.
本発明に用いられる電荷発生物質としては、(1)モノアゾ、ジスアゾ、トリスアゾ等のアゾ系顔料、(2)金属フタロシアニン及び非金属フタロシアニン等のフタロシアニン系顔料、(3)インジゴ及びチオインジゴ等のインジゴ系顔料、(4)ペリレン酸無水物及びペリレン酸イミド等のペリレン系顔料、(5)アンスラキノン及びピレンキノン等の多環キノン系顔料、(6)スクワリリウム色素、(7)ピリリウム塩及びチアピリリウム塩類、(8)トリフェニルメタン系色素、(9)セレン、セレン−テルル、アモルファスシリコン等の無機物質、(10)キナクリドン顔料、(11)アズレニウム塩顔料、(12)シアニン染料、(13)キサンテン色素、(14)キノンイミン色素、(15)スチリル色素、(16)硫化カドミウム及び(17)酸化亜鉛などが挙げられる。 Examples of the charge generating material used in the present invention include (1) azo pigments such as monoazo, disazo and trisazo, (2) phthalocyanine pigments such as metal phthalocyanine and nonmetal phthalocyanine, and (3) indigo materials such as indigo and thioindigo. Pigments, (4) perylene pigments such as perylene anhydride and perylene imide, (5) polycyclic quinone pigments such as anthraquinone and pyrenequinone, (6) squarylium dyes, (7) pyrylium salts and thiapyrylium salts ( 8) Triphenylmethane dyes, (9) inorganic substances such as selenium, selenium-tellurium, amorphous silicon, (10) quinacridone pigments, (11) azulenium salt pigments, (12) cyanine dyes, (13) xanthene dyes, 14) quinoneimine dye, (15) styryl dye, (16) cadmium sulfide Such as arm and (17) zinc oxide.
電荷発生層に用いる結着樹脂としては、例えば、ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂、ブチラール樹脂、ポリスチレン樹脂、ポリビニルアセタール樹脂、ジアリルフタレート樹脂、アクリル樹脂、メタクリル樹脂、酢酸ビニル樹脂、フェノール樹脂、シリコーン樹脂、ポリスルホン樹脂、スチレン−ブタジエン共重合体樹脂、アルキッド樹脂、エポキシ樹脂、尿素樹脂及び塩化ビニル−酢酸ビニル共重合体樹脂などが挙げられるが、これらに限定されるものではない。これらは単独、混合あるいは共重合体ポリマーとして1種または2種以上用いることができる。 Examples of the binder resin used for the charge generation layer include polycarbonate resin, polyester resin, polyarylate resin, butyral resin, polystyrene resin, polyvinyl acetal resin, diallyl phthalate resin, acrylic resin, methacrylic resin, vinyl acetate resin, phenol resin, Examples include, but are not limited to, silicone resins, polysulfone resins, styrene-butadiene copolymer resins, alkyd resins, epoxy resins, urea resins, and vinyl chloride-vinyl acetate copolymer resins. These may be used alone, as a mixture or as a copolymer polymer, or one or more thereof.
電荷発生層用塗料に用いる溶剤は、使用する樹脂や電荷発生物質の溶解性や分散安定性を考慮して選択されるが、有機溶剤としてはアルコール類、スルホキシド類、ケトン類、エーテル類、エステル類、脂肪族ハロゲン化炭化水素類または芳香族化合物などを用いることができる。 The solvent used for the coating for the charge generation layer is selected in consideration of the solubility and dispersion stability of the resin used and the charge generation material. As the organic solvent, alcohols, sulfoxides, ketones, ethers, esters , Aliphatic halogenated hydrocarbons or aromatic compounds can be used.
電荷発生層3は、前記の電荷発生物質を0.3〜4倍量の結着剤樹脂、および溶剤と共に、ホモジナイザー、超音波、ボールミル、サンドミル、アトライター、ロールミルなどの方法でよく分散し、塗布、乾燥されて形成される。その厚みは、5μm以下、特には0.01〜1μmの範囲が好ましい。 The charge generation layer 3 is well dispersed by a method such as a homogenizer, an ultrasonic wave, a ball mill, a sand mill, an attritor, and a roll mill together with the above-described charge generation material in a amount of 0.3 to 4 times the binder resin and solvent. It is formed by coating and drying. The thickness is preferably 5 μm or less, particularly in the range of 0.01 to 1 μm.
また、電荷発生層3には、種々の増感剤、酸化防止剤、紫外線吸収剤、可塑剤または公知の電荷発生物質を必要に応じて添加することもできる。 In addition, various sensitizers, antioxidants, ultraviolet absorbers, plasticizers or known charge generating substances may be added to the charge generation layer 3 as necessary.
用いられる電荷輸送物質としては各種トリアリールアミン系化合物、各種ヒドラゾン系化合物、各種スチリル系化合物、各種スチルベン系化合物、各種ピラゾリン系化合物、各種オキサゾール系化合物、各種チアゾール系化合物、各種トリアリールメタン系化合物等が挙げられる。 The charge transport materials used are various triarylamine compounds, various hydrazone compounds, various styryl compounds, various stilbene compounds, various pyrazoline compounds, various oxazole compounds, various thiazole compounds, various triarylmethane compounds. Etc.
電荷輸送層2を形成するのに用いられる結着剤樹脂としては、アクリル樹脂、スチレン系樹脂、ポリエステル、ポリカーボネート樹脂、ポリアリレート、ポリサルホン、ポリフェニレンオキシド、エポキシ樹脂、ポリウレタン樹脂、アルキド樹脂、及び不飽和樹脂などから選ばれる樹脂が好ましい。特に好ましい樹脂としては、ポリメチルメタクリレート、ポリスチレン、スチレン−アクリロニトリル共重合体、ポリカーボネート樹脂またはジアリルフタレート樹脂が挙げられる。 Examples of the binder resin used to form the charge transport layer 2 include acrylic resin, styrene resin, polyester, polycarbonate resin, polyarylate, polysulfone, polyphenylene oxide, epoxy resin, polyurethane resin, alkyd resin, and unsaturated resin. A resin selected from resins and the like is preferable. Particularly preferred resins include polymethyl methacrylate, polystyrene, styrene-acrylonitrile copolymer, polycarbonate resin or diallyl phthalate resin.
電荷輸送層2は一般的には前記の電荷輸送物質と結着剤樹脂を溶剤に溶解し,塗布して形成する。電荷輸送物質と結着剤樹脂との混合割合は2:1〜1:2程度である。溶剤としてはアセトン、メチルエチルケトンなどのケトン類、酢酸メチル、酢酸エチルなどのエステル類、トルエン、キシレンなどの芳香族炭化水素類、クロロベンゼン、クロロホルム、四塩化炭素などの塩素系炭化水素類などが用いられる。この溶液を塗布する際には、例えば、浸漬コーティング法、スプレーコーティング法、スピンナーコーティング法などのコーティング法を用いることができ、乾燥は10℃〜200℃、好ましくは20℃〜150℃の範囲の温度で、5分間〜5時間、好ましくは10分間〜2時間の時間で送風乾燥または静止乾燥下で行うことができる。 The charge transport layer 2 is generally formed by dissolving the charge transport material and the binder resin in a solvent and applying them. The mixing ratio of the charge transport material and the binder resin is about 2: 1 to 1: 2. Solvents include ketones such as acetone and methyl ethyl ketone, esters such as methyl acetate and ethyl acetate, aromatic hydrocarbons such as toluene and xylene, and chlorinated hydrocarbons such as chlorobenzene, chloroform and carbon tetrachloride. . When applying this solution, for example, a coating method such as a dip coating method, a spray coating method, or a spinner coating method can be used, and drying is performed at a temperature in the range of 10 ° C. to 200 ° C., preferably 20 ° C. to 150 ° C. It can be carried out under blast drying or static drying at a temperature of 5 minutes to 5 hours, preferably 10 minutes to 2 hours.
電荷輸送層2は、上述の電荷発生層と電気的に接続されており、電界の存在下で電荷発生層から注入された電荷キヤリアを受け取ると共に、これ等の電荷キヤリアを保護層との界面まで輸送する機能を有している。この電荷輸送層は電荷キヤリアを輸送する限界があるので必要以上に膜厚を厚くすることができないが、5〜40μm、特には7〜30μmの範囲が好ましい。 The charge transport layer 2 is electrically connected to the above-described charge generation layer, receives the charge carriers injected from the charge generation layer in the presence of an electric field, and transfers these charge carriers to the interface with the protective layer. Has the function of transporting. Since this charge transport layer has a limit to transport charge carriers, the film thickness cannot be increased more than necessary, but a range of 5 to 40 μm, particularly 7 to 30 μm is preferable.
更に、電荷輸送層2中に酸化防止剤、紫外線吸収剤、可塑剤または公知の電荷輸送物質を必要に応じて添加することもできる。 Furthermore, an antioxidant, a UV absorber, a plasticizer, or a known charge transport material can be added to the charge transport layer 2 as necessary.
本発明では更に、この電荷輸送層の上に前記保護層を塗布、硬化させて成膜することで完成される。 In the present invention, the protective layer is coated on the charge transport layer and cured to form a film.
本発明の電子写真感光体を用いた電子写真装置の具体例を図2に示す。この装置は、電子写真感光体1の周面上に一次帯電手段3、像露光手段4、現像手段5、転写手段6が配置されている。 A specific example of an electrophotographic apparatus using the electrophotographic photosensitive member of the present invention is shown in FIG. In this apparatus, a primary charging unit 3, an image exposure unit 4, a developing unit 5, and a transfer unit 6 are disposed on the peripheral surface of the electrophotographic photosensitive member 1.
画像形成の方法は、まず、一次帯電手段3に電圧を印加し、感光体1表面を帯電し、像露光手段4によって原稿に対応した画像を感光体1表面に像露光し、静電潜像を形成する。次に、現像手段5中のトナーを感光体1に付着させることにより感光体1上の静電潜像を現像(可視増加)する。さらに、感光体1上に形成されたトナー像を供給された紙などの転写材7上に転写手段6によって転写し、転写材に転写されずに感光体1上に残った残トナーをクリーニング手段9等で回収する。近年、クリーナーレスシステムも研究され、残トナーを直接、現像器等で回収することもできる。更に、前露光手段10からの前露光により除電処理がされた後、繰り返し画像形成に使用される。なお、前露光手段は必ずしも必要ではない。 In the image forming method, first, a voltage is applied to the primary charging unit 3 to charge the surface of the photoconductor 1, and an image corresponding to the original is image-exposed on the surface of the photoconductor 1 by the image exposure unit 4, thereby electrostatic latent image Form. Next, the electrostatic latent image on the photosensitive member 1 is developed (visible increase) by attaching the toner in the developing unit 5 to the photosensitive member 1. Further, the toner image formed on the photoconductor 1 is transferred onto a transfer material 7 such as paper supplied by a transfer means 6, and the remaining toner remaining on the photoconductor 1 without being transferred to the transfer material is cleaned. Collect at 9 mag. In recent years, a cleaner-less system has been studied, and the residual toner can be directly collected by a developing device or the like. Further, after the charge removal process is performed by the pre-exposure from the pre-exposure unit 10, it is repeatedly used for image formation. Note that the pre-exposure means is not always necessary.
この画像形成装置において、像露光手段4の光源はハロゲン光、蛍光灯、レーザー光、LEDなどを用いることができる。また必要に応じて他の補助プロセスを加えてもよい。 In this image forming apparatus, a halogen light, a fluorescent lamp, a laser beam, an LED, or the like can be used as a light source of the image exposure unit 4. Moreover, you may add another auxiliary | assistant process as needed.
本発明において、上述の感光体1と、1次帯電手段3、現像手段5及びクリーニング手段9等の構成要素のうち、複数のものをプロセスカートリッジとして一体に結合して構成し、このプロセスカートリッジを複写機やプリンター等の電子写真装置本体に対して着脱可能に構成してもよい。例えば1次帯電手段3、現像手段5およびクリーニング手段9の少なくとも1つを感光体1と共に一体に支持してカートリッジ化し、装置本体のレール12等の案内手段を用いて装置本体に着脱可能なプロセスカートリッジ11とすることができる。また、像露光手段4は、電子写真装置が複写機やプリンターである場合には、原稿からの反射光や透過光を用いる、あるいは、信号化された原稿を、この信号に従って行われるレーザービームの走査、LEDアレイの駆動及び液晶シャッターアレイの駆動等により照射される光である。 In the present invention, the above-described photosensitive member 1 and a plurality of constituent elements such as the primary charging unit 3, the developing unit 5, and the cleaning unit 9 are integrally coupled as a process cartridge. You may comprise so that attachment or detachment with respect to electrophotographic apparatus main bodies, such as a copying machine and a printer, is possible. For example, a process in which at least one of the primary charging unit 3, the developing unit 5, and the cleaning unit 9 is integrally supported together with the photoreceptor 1 to form a cartridge and can be attached to and detached from the apparatus main body using guide means such as the rail 12 of the apparatus main body. The cartridge 11 can be obtained. Further, when the electrophotographic apparatus is a copying machine or a printer, the image exposure means 4 uses reflected light or transmitted light from a document, or converts a signalized document into a laser beam that is performed according to this signal. Light emitted by scanning, LED array driving, liquid crystal shutter array driving, and the like.
次に、本発明を実施例により説明する。ただし、本発明の実施の形態はこれらに限定されるものではない。 Next, an example explains the present invention. However, embodiments of the present invention are not limited to these.
長さ260.5mm、直径30mmのアルミニウムシリンダー(JIS A3003アルミニウムの合金)を支持体として、この上にポリアミド樹脂(商品名:アミランCM8000、東レ製)の5質量%メタノール溶液を浸漬法で塗布し、0.5μmの下引き層を設けた。 Using an aluminum cylinder (JIS A3003 aluminum alloy) having a length of 260.5 mm and a diameter of 30 mm as a support, a 5% by mass methanol solution of polyamide resin (trade name: Amilan CM8000, manufactured by Toray) was applied thereon by a dipping method. A subbing layer of 0.5 μm was provided.
次に、電荷発生物質として下記構造式[化44]で表される、CuKαのX線回折スペクトルにおける回折角 2θ±0.2゜の9.6、27.2゜に強いピークを有する結晶型であるオキシチタニウムフタロシアニン顔料4部(質量部、以下同様)、 Next, a crystal form having strong peaks at 9.6 and 27.2 ° with a diffraction angle of 2θ ± 0.2 ° in the X-ray diffraction spectrum of CuKα represented by the following structural formula [Chemical Formula 44] as a charge generation material. 4 parts of oxytitanium phthalocyanine pigment (parts by mass, the same applies hereinafter)
ポリビニルブチラール樹脂BX−1(積水化学(株)製)2部、および、シクロヘキサノン110部を、φ1mmガラスビーズ入りサンドミルで、4.5時間分散した。その後、酢酸エチル130部で希釈し電荷発生層用塗料とした。
上記分散液を先の下引き層上に浸漬法で塗布し、0.18μmの電荷発生層を形成した。
2 parts of polyvinyl butyral resin BX-1 (manufactured by Sekisui Chemical Co., Ltd.) and 110 parts of cyclohexanone were dispersed in a sand mill with φ1 mm glass beads for 4.5 hours. Thereafter, it was diluted with 130 parts of ethyl acetate to obtain a charge generation layer coating material.
The dispersion was applied onto the previous undercoat layer by a dipping method to form a 0.18 μm charge generation layer.
次いで、下記構造式[化45]の電荷輸送物質7.5部、 Next, 7.5 parts of a charge transport material having the following structural formula [Chemical Formula 45],
及び、ビスフェノールZ型ポリカーボネート(商品名:Z−200、三菱ガス化学製)10部を、モノクロロベンゼン60部とジクロロメタン20部に溶解した。この溶液を、前記電荷発生層上に浸漬塗布し、115℃、50分間で熱風乾燥して、20μmの電荷輸送層を形成した。 And 10 parts of bisphenol Z-type polycarbonate (trade name: Z-200, manufactured by Mitsubishi Gas Chemical) was dissolved in 60 parts of monochlorobenzene and 20 parts of dichloromethane. This solution was dip-coated on the charge generation layer and dried with hot air at 115 ° C. for 50 minutes to form a 20 μm charge transport layer.
次いで、表面層の結着樹脂プレポリマー成分として、フェノール・アルデヒドレゾール型フェノール樹脂のフェノール性水酸基数のうち15%に対し、前記例示化合物[化23]のエポキシ化合物を付加させて得られたエポキシ変成フェノール樹脂を10部、及び前記例示化合物No.12で表される水酸基含有電荷輸送物質7部を、溶剤としてのエチルアルコール40部に溶解させて表面層の塗工溶液とし、前記電荷輸送層の上に浸漬塗布し、155℃で1時間熱風乾燥して膜厚3μmの表面層を設けた。ここで、表面層の膜厚は、干渉膜厚計(大塚電子(株)製)を用いて行った。 Next, an epoxy obtained by adding the epoxy compound of the exemplified compound [Chemical Formula 23] to 15% of the number of phenolic hydroxyl groups of the phenol / aldehyde resol type phenol resin as the binder resin prepolymer component of the surface layer 10 parts of the modified phenolic resin and 7 parts of the hydroxyl group-containing charge transport material represented by the exemplified compound No. 12 are dissolved in 40 parts of ethyl alcohol as a solvent to form a coating solution for the surface layer, and the charge transport layer A surface layer having a thickness of 3 μm was provided by dip coating on the substrate and drying with hot air at 155 ° C. for 1 hour. Here, the film thickness of the surface layer was measured using an interference film thickness meter (manufactured by Otsuka Electronics Co., Ltd.).
尚、この表面層の塗工溶液の安定性は良好で温度23℃、湿度50%の環境下で塗工液を20日間循環させておいても、特に液性に大きな変化は見られなかった。 In addition, the stability of the coating solution of the surface layer was good, and even when the coating solution was circulated for 20 days in an environment of a temperature of 23 ° C. and a humidity of 50%, no significant change in the liquid property was observed. .
また、JISK 5400に基づいて表面層と下層との密着性評価を行った。その結果、本感光体における表面層と下層の電荷輸送層との密着性に関しては全く問題が無かった。 Further, adhesion evaluation between the surface layer and the lower layer was performed based on JISK 5400. As a result, there was no problem with respect to the adhesion between the surface layer and the lower charge transport layer in the photoreceptor.
電子写真特性の評価は、レーザービームプリンター(商品名:LBP−NX:キヤノン(株)製)に取り付けて行った。なお当該レーザービームプリンターは、装着した電子写真感光体の電子写真感度として、暗部電位が−700(V)になるように帯電されるように改造した。そして、暗部電位を−700(V)に設定した感光体に波長780(nm)のレーザー光を照射して−675(V)の電位を−175(V)まで下げるのに必要な光量を測定し電子写真感光体の感度とした。さらに、20μJ/cm2 の光量を照射した場合の電位を残留電位Vrとして測定した。 The electrophotographic characteristics were evaluated by attaching to a laser beam printer (trade name: LBP-NX: manufactured by Canon Inc.). The laser beam printer was modified so that the electrophotographic sensitivity of the mounted electrophotographic photosensitive member was charged so that the dark portion potential was −700 (V). Then, the amount of light necessary to lower the potential of −675 (V) to −175 (V) is measured by irradiating the photosensitive member whose dark portion potential is set to −700 (V) with laser light having a wavelength of 780 (nm). The sensitivity of the electrophotographic photosensitive member was used. Furthermore, the potential when a light amount of 20 μJ / cm 2 was irradiated was measured as a residual potential Vr.
さらに、同様のレーザービームプリンターを用いて温度30℃/湿度80%の環境において、10,000枚の耐久試験後の削れ量の測定及び出力画像品位の比較を行った。 Further, the same laser beam printer was used to measure the amount of scraping after a durability test of 10,000 sheets and to compare the output image quality in an environment of temperature 30 ° C./humidity 80%.
実施例1において、電荷発生物質を、CuKα特性X線回折におけるブラッグ角2θ±0.2°の7.5°、9.9°、16.3°、18.6°、25.1°および28.3°に強いピークを有する結晶型のヒドロキシガリウムフタロシアニンに変えた以外は、全て同様にして電子写真感光体を作製した。 In Example 1, the charge generating material is 7.5 °, 9.9 °, 16.3 °, 18.6 °, 25.1 ° with a Bragg angle 2θ ± 0.2 ° in CuKα characteristic X-ray diffraction and An electrophotographic photosensitive member was produced in the same manner except that the crystal type hydroxygallium phthalocyanine having a strong peak at 28.3 ° was used.
<実施例3〜10>
実施例2において、表面層に用いた樹脂を、それぞれ下記表1に示したエポキシ化合物を用いて得たエポキシ変性レゾール型フェノール樹脂に変えた以外は同様にして電子写真感光体を作製した。
<Examples 3 to 10>
An electrophotographic photoreceptor was prepared in the same manner as in Example 2, except that the resin used for the surface layer was changed to an epoxy-modified resol type phenol resin obtained by using the epoxy compounds shown in Table 1 below.
<実施例11〜18>
表面層膜厚、水酸基含有電荷輸送物質、エポキシ変性レゾール型フェノール樹脂のエポキシ変性率から選ばれる少なくとも1つを表1に示したように変えた以外は実施例3と同様にして電子写真感光体を作製した。
<Examples 11 to 18>
An electrophotographic photoreceptor in the same manner as in Example 3 except that at least one selected from the surface layer thickness, the hydroxyl group-containing charge transport material , and the epoxy modification rate of the epoxy-modified resol type phenol resin is changed as shown in Table 1. Was made.
<実施例19>
水酸基含有電荷輸送物質を例示化合物No.33に代えた以外は実施例1と同様にして電子写真感光体を作製した。
<Example 19>
The hydroxyl group-containing charge transporting material is exemplified by Compound No. An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that 33 was used.
<比較例1>
実施例1において、表面層の樹脂としてエポキシ変成を施していないノボラック型フェノール樹脂(商品名:CMK−2400、昭和高分子(株)製)に変え、例示化合物No.12の代わりに例示化合物No.16を用いた以外は同様にして感光体を作製した。
<Comparative Example 1>
In Example 1, the novolak type phenolic resin (trade name: CMK-2400, manufactured by Showa Polymer Co., Ltd.) not subjected to epoxy modification was used as the resin for the surface layer . In place of Ex. A photoconductor was prepared in the same manner except that No. 16 was used.
<比較例2>
実施例1において、表面層の樹脂を例示化合物[化14]のエポキシ化合物で変成したレゾール型フェノール樹脂(変性率:30%)とし、水酸基含有電荷輸送物質を含有させなかった以外は同様にして電子写真感光体を作製した。
<Comparative example 2>
In Example 1, the resin of the surface layer was changed to a resol type phenol resin (modification rate: 30%) modified with an epoxy compound of the exemplified compound [Chemical Formula 14], and the same procedure was performed except that the hydroxyl group-containing charge transport material was not contained. An electrophotographic photosensitive member was produced.
<比較例3>
実施例2に於いて、下記構造式
<Comparative Example 3>
In Example 2, the following structural formula
で表されるビュレット変性体溶液(固形分67質量%)5部及び電荷輸送物質として前記例示化合物No.16をメチルエチルケトン50部に溶解して塗布液を調製し、電荷輸送層の上にスプレーコート法で塗布し、常温で5分間乾燥した後155℃で60分間加熱し、膜厚3μmの表面層を形成した。この塗工液の混合比は〔例示化合物16のヒドロキシ基の総モル数〕:〔上記化46のイソシアネート基の総モル数〕がおよそ47:53となるように調製した。 A coating solution is prepared by dissolving the exemplified compound No. 16 in 50 parts of methyl ethyl ketone as a charge transporting substance and 5 parts of a modified burette solution (solid content: 67% by mass) represented by the following formula: spray coating on the charge transporting layer It was applied by the method, dried at room temperature for 5 minutes, and then heated at 155 ° C. for 60 minutes to form a surface layer having a thickness of 3 μm. The mixing ratio of this coating solution was adjusted so that [total number of moles of hydroxy groups of Exemplified Compound 16]: [total number of moles of isocyanate groups of Chemical Formula 46] was about 47:53.
<比較例4>
比較例1において、表面層の樹脂として、エポキシ変成を施していないノボラック型フェノール樹脂(商品名:CMK−2400、昭和高分子(株)製)7部及び下記エポキシ化合物[化47]3部の単純ブレンド材料に変えた以外は同様にして電子写真感光体を作製した。
<Comparative example 4>
In Comparative Example 1, as a resin for the surface layer, 7 parts of a novolak type phenol resin (trade name: CMK-2400, manufactured by Showa Polymer Co., Ltd.) not subjected to epoxy modification and 3 parts of the following epoxy compound [Chemical Formula 47] An electrophotographic photoreceptor was prepared in the same manner except that the simple blend material was used.
<比較例5>
実施例1において、表面層を設けなかった以外は同様にして電子写真感光体を作製した。
<Comparative Example 5>
An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the surface layer was not provided.
<比較例6>
エポキシ変性レゾール型フェノール樹脂を、アルカリレゾール型フェノール樹脂(旭有機材工業社製、HP−8300)に代えた以外は、実施例19と同様にして感光体を作製した。
<Comparative Example 6>
A photoconductor was prepared in the same manner as in Example 19 except that the epoxy-modified resol type phenol resin was replaced with an alkali resol type phenol resin (manufactured by Asahi Organic Materials Co., Ltd., HP-8300).
実施例1〜19及び比較例1〜6の保護層構成を表1にまとめて示した。 The protective layer configurations of Examples 1 to 19 and Comparative Examples 1 to 6 are summarized in Table 1.
実施例1〜19及び比較例1〜6の表面層構成
これらの電子写真感光体及び表面層用の塗料に関して、実施例1で述べたのと同様の試験方法により評価した。表面層と感光層の密着性、表面層塗料の安定性、電子写真感光体としての感度更に、温度30℃/湿度80%の環境におけるレーザービームプリンターによる耐久試験後の画像品位、10000枚あたりの表面層の磨耗量を比較し、評価結果を表2にまとめて示した。
Surface layer configurations of Examples 1 to 19 and Comparative Examples 1 to 6 These electrophotographic photoreceptors and coatings for the surface layer were evaluated by the same test method as described in Example 1. Adhesion between surface layer and photosensitive layer, stability of surface layer coating, sensitivity as electrophotographic photoreceptor, image quality after durability test by laser beam printer in environment of temperature 30 ° C / humidity 80%, per 10,000 sheets The amount of wear of the surface layer was compared, and the evaluation results are summarized in Table 2.
なお、密着性、及び塗料安定性の評価は、下記の基準に従って行った。
密着性:JIS K 5400に規定されている塗膜の付着性評価方法(クロスカット法)(ISO 2409:1992に対応)に基づき評価した結果、
○:膜の剥がれが全く認められなかった。
○△:膜の剥がれ部分の面積は、全体の10%未満であった。
×:膜の剥がれ部分の面積が、全体の10%以上であった。
塗料安定性:
○:20日間の塗料循環試験で、塗料の粘度変化、ゲル化、凝集、沈降、濁りに関して、20日後においても変化が認められなかった。
○△:20日間の塗料循環試験で、塗料の粘度変化、ゲル化、凝集、沈降、濁りに関して、20日後には、若干の変化が認められたものの、表面層の塗工性に重大な影響を及ぼさなかった。
×:20日間の塗料循環試験で、塗料の粘度変化、ゲル化、凝集、沈降、濁りに関して、20日後には変化が認められ、それが表面層の塗工性、若しくは塗工後の表面層膜状態に影響を与えた。
The evaluation of adhesion and paint stability was performed according to the following criteria.
Adhesiveness: As a result of evaluation based on the coating adhesion evaluation method (cross-cut method) defined in JIS K 5400 (corresponding to ISO 2409: 1992),
○: No peeling of the film was observed.
(Circle) (triangle | delta): The area of the film peeling part was less than 10% of the whole.
X: The area of the peeling part of the film was 10% or more of the whole.
Paint stability:
○: In the paint circulation test for 20 days, no changes were observed after 20 days with respect to the viscosity change, gelation, aggregation, sedimentation, and turbidity of the paint.
○ △: In 20 days of paint circulation test, some changes were observed after 20 days in terms of viscosity change, gelation, aggregation, sedimentation, and turbidity of the paint, but it had a significant effect on the coatability of the surface layer. Was not affected.
X: In a paint circulation test for 20 days, changes in viscosity, gelation, aggregation, sedimentation, and turbidity of the paint are observed after 20 days, which is the coatability of the surface layer , or the surface layer after coating. The membrane condition was affected.
実施例1〜19及び比較例1〜6の評価結果
これらの結果より、本発明の樹脂を表面層として用いた場合は、電子写真感光体としての著しい感度低下も認められず、電子写真プロセス中における耐久強度を著しく向上させることが可能である。更に、下層の電荷輸送層との密着性も十分に保つことが可能である。また、本発明の樹脂を用いて表面層用塗料を調合した場合、その塗料安定性も十分にあり、連続生産においても何ら支障をきたさない事が分かった。
From the evaluation results of these results of Examples 1 to 19 and Comparative Examples 1 to 6, if the resin of the present invention is used as a table surface layer it may not observed significant decrease in sensitivity as an electrophotographic photoreceptor, the electrophotographic process It is possible to remarkably improve the durability strength inside. Furthermore, it is possible to maintain sufficient adhesion with the lower charge transport layer. Also, when using a resin of the present invention to prepare a coating material for the front surface layer, there is plenty also the paint stability, it has been found that not any disturb even in continuous production.
<実施例20>
実施例2において表面層の塗料を以下のようにして作製した以外は同様にして感光体を作製した。
<Example 20>
A photoconductor was prepared in the same manner as in Example 2 except that the surface layer paint was prepared as follows.
(3,3,3−トリフルオロプロピル)トリメトキシシランで表面処理した平均粒径0.02μmのアンチモン含有酸化スズ微粒子(商品名:T−1、三菱マテリアル(株)製)25部にエタノール100部を加えてサンドミル装置で96時間分散した分散液に、実施例2で用いたエポキシ変性フェノール樹脂を15部溶解させて、表面層用塗料とした。この塗料を用い、電荷輸送層の上に浸漬塗布後、155℃で1時間加熱処理して、厚さ3μmの表面層を設けた。 Antimony-containing tin oxide fine particles (trade name: T-1, manufactured by Mitsubishi Materials Corporation) having an average particle diameter of 0.02 μm and surface-treated with (3,3,3-trifluoropropyl) trimethoxysilane are mixed with 100 parts of ethanol. 15 parts of the epoxy-modified phenol resin used in Example 2 was dissolved in a dispersion obtained by adding 96 parts to a dispersion for 96 hours using a sand mill apparatus to obtain a coating material for the surface layer. Using this coating material, a surface layer having a thickness of 3 μm was provided by dip coating on the charge transport layer and heat treatment at 155 ° C. for 1 hour.
<実施例21>
実施例20において、表面層の膜厚を1μmにした以外は同様にして感光体を作製した。
<Example 21>
A photoconductor was prepared in the same manner as in Example 20 except that the thickness of the surface layer was changed to 1 μm.
<実施例22>
実施例20において、表面層の膜厚を6μmにした以外は同様にして感光体を作製した。
<Example 22>
A photoconductor was prepared in the same manner as in Example 20 except that the thickness of the surface layer was changed to 6 μm.
<実施例23〜32>
実施例20において、表面層に用いた樹脂を、それぞれ表3に示したエポキシ化合物を用いて得たエポキシ変成レゾール型フェノール樹脂に変え、更に表面層の膜厚、エポキシ変性率も表3に示したように変えた以外は同様にして電子写真感光体を作製した。
<Examples 23 to 32>
In Example 20, the resin used for the surface layer was changed to an epoxy-modified resol-type phenol resin obtained by using the epoxy compounds shown in Table 3, respectively, and the film thickness and epoxy modification rate of the surface layer were also shown in Table 3. An electrophotographic photosensitive member was produced in the same manner except that the above was changed.
<実施例33>
実施例20において表面層の塗料を以下のようにして作製した以外は同様にして感光体を作製した。
<Example 33>
A photoconductor was prepared in the same manner as in Example 20 except that the coating material for the surface layer was prepared as follows.
即ち、(3,3,3−トリフルオロプロピル)トリメトキシシランで表面処理した。平均粒径0.02μmのアンチモン含有酸化スズ微粒子(商品名:T−1、三菱マテリアル(株)製)25部にエタノール100部を加えてサンドミル装置で96時間分散した液に四フッ化エチレン樹脂粒子(PTFE粒子、商品名:ルブロンL−2、ダイキン工業(株)製)を8部添加して更に1時間分散処理を行った後、実施例20で用いたエポキシ変性フェノール樹脂を15部溶解させて、表面層用塗料とした。この塗料を用い、電荷輸送層の上に浸漬塗布後、155℃で1時間加熱処理して、厚さ3μmの表面層を設けた。 That is, the surface was treated with (3,3,3-trifluoropropyl) trimethoxysilane. Antimony-containing tin oxide fine particles having an average particle size of 0.02 μm (trade name: T-1, manufactured by Mitsubishi Materials Corporation) in 100 parts of ethanol and dispersed in a sand mill apparatus for 96 hours in a tetrafluoroethylene resin After 8 parts of particles (PTFE particles, trade name: Lubron L-2, manufactured by Daikin Industries, Ltd.) were added and further dispersed for 1 hour, 15 parts of the epoxy-modified phenol resin used in Example 20 was dissolved. Thus, a paint for the surface layer was obtained. Using this coating material, a surface layer having a thickness of 3 μm was provided by dip coating on the charge transport layer and heat treatment at 155 ° C. for 1 hour.
<実施例34〜45>
実施例33において、表面層に用いた樹脂を、それぞれ表3に示したエポキシ化合物を用いて得たエポキシ変成レゾール型フェノール樹脂に変え、更に表面層の膜厚、エポキシ変成率も表3に示したように変えた以外は同様にして電子写真感光体を作製した。
<Examples 34 to 45>
In Example 33, the resin used for the surface layer was changed to an epoxy-modified resol-type phenol resin obtained by using the epoxy compounds shown in Table 3, and the film thickness of the surface layer and the epoxy modification rate were also shown in Table 3. An electrophotographic photosensitive member was produced in the same manner except that the above was changed.
<比較例7>
実施例20において、表面層を以下の様にして設けた以外は同様にして感光体を作製した。
<Comparative Example 7>
A photoconductor was prepared in the same manner as in Example 20 except that the surface layer was provided as follows.
(3,3,3−トリフルオロプロピル)トリメトキシシランで表面処理した。平均粒径0.02μmのアンチモン含有酸化スズ微粒子(商品名:T−1、三菱マテリアル(株)製)25部にメチルエチルケトン100部を加えてサンドミル装置で96時間分散した分散液に、下記構造式 Surface treatment was performed with (3,3,3-trifluoropropyl) trimethoxysilane. In a dispersion obtained by adding 100 parts of methyl ethyl ketone to 25 parts of antimony-containing tin oxide fine particles (trade name: T-1, manufactured by Mitsubishi Materials Corporation) having an average particle size of 0.02 μm and dispersing for 96 hours in a sand mill apparatus, the following structural formula
で表されるビュレット変性体溶液(固形分67質量%)7.2部及び、ノボラック型フェノール樹脂(商品名:CMK−2400、昭和高分子(株)製)10部を溶解して塗布液を調製し、電荷輸送層の上にスプレーコート法で塗布し、常温で5分間乾燥した後155℃で60分間加熱し、膜厚3μmの表面層を形成した。 In this manner, 7.2 parts of a modified burette solution (solid content: 67% by mass) and 10 parts of a novolac type phenol resin (trade name: CMK-2400, manufactured by Showa Polymer Co., Ltd.) are dissolved to obtain a coating solution. It was prepared, applied onto the charge transport layer by spray coating, dried at room temperature for 5 minutes, and then heated at 155 ° C. for 60 minutes to form a surface layer having a thickness of 3 μm.
<比較例8>
実施例20において、表面層の樹脂として、エポキシ変成を施していないフェノール樹脂(商品名:CMK−2400、昭和高分子(株)製)7部及び下記エポキシ化合物[化49]3部の単純ブレンド材料に変えた以外は同様にして電子写真感光体を作製した。
<Comparative Example 8>
In Example 20, as a resin for the surface layer, a simple blend of 7 parts of phenol resin (trade name: CMK-2400, manufactured by Showa Polymer Co., Ltd.) not subjected to epoxy modification and 3 parts of the following epoxy compound [Chemical Formula 49] An electrophotographic photosensitive member was produced in the same manner except that the material was changed.
<比較例9>
実施例20において、表面層の樹脂として、アルカリレゾール型フェノール樹脂(旭有機材工業社製、HP−8300)を用いた以外は同様にして電子写真感光体を作製した。
<Comparative Example 9>
In Example 20, an electrophotographic photosensitive member was produced in the same manner except that an alkaline resol type phenol resin (manufactured by Asahi Organic Materials Co., Ltd., HP-8300) was used as the resin for the surface layer .
実施例20〜45及び比較例7〜9の表面層構成
これらの電子写真感光体及び表面層用の塗料に関して、実施例1で述べたのと同様の試験方法により評価し、表面層と感光層の密着性、表面層塗料の安定性、電子写真感光体としての感度、残量電位(Vr)、更に、温度30℃/湿度80%の環境でレーザービームプリンターによる耐久試験後の画像品位、10000枚あたりの表面層の磨耗量を比較し、評価結果を表4にまとめて示した。
なお、密着性及び塗膜安定性の評価基準は、前記したのと同様である。
Surface layer configurations of Examples 20 to 45 and Comparative Examples 7 to 9 These electrophotographic photoreceptors and coatings for the surface layers were evaluated by the same test method as described in Example 1, and the surface layers and photosensitive layers were evaluated. Adhesion, surface layer coating stability, sensitivity as an electrophotographic photosensitive member, residual potential (Vr), image quality after a durability test with a laser beam printer in an environment of temperature 30 ° C./humidity 80%, 10,000 The amount of wear of the surface layer per sheet was compared, and the evaluation results are summarized in Table 4.
The evaluation criteria for adhesion and coating film stability are the same as described above.
実施例20〜45及び比較例7〜9の評価結果
これらの結果より、本発明の樹脂を表面層として用いた場合は、電子写真感光体としての著しい感度低下も認められず、電子写真プロセス中における耐久強度を著しく向上させることが可能である。更に、下層の電荷輸送層との密着性も十分に保つことが可能である。また、本発明の樹脂を用いて表面層用塗料を調合した場合、その塗料安定性も十分にあり、連続生産においても何ら支障をきたさない事が分かった。
From the evaluation results of these results of Example 20-45 and Comparative Examples 7-9, when the resin of the present invention is used as a table surface layer it may not observed significant decrease in sensitivity as an electrophotographic photoreceptor, the electrophotographic process It is possible to remarkably improve the durability strength inside. Furthermore, it is possible to maintain sufficient adhesion with the lower charge transport layer. Also, when using a resin of the present invention to prepare a coating material for the front surface layer, there is plenty also the paint stability, it has been found that not any disturb even in continuous production.
本発明によれば、密着性、耐摩耗性に優れ、硬度、強靭性を有し、電荷輸送性を低下させない最上表面層を具備する電子写真感光体が提供される。これらの特性を有する電子写真感光体を用いて構成されるプロセスカートリッジ及び電子写真装置を提供することが可能となり、産業上の利用価値は極めて大きい。 According to the present invention, there is provided an electrophotographic photoreceptor having an uppermost surface layer that is excellent in adhesion and wear resistance, has hardness and toughness, and does not deteriorate charge transportability. It becomes possible to provide a process cartridge and an electrophotographic apparatus constituted by using an electrophotographic photosensitive member having these characteristics, and the industrial utility value is extremely large.
1 電子写真感光体
2 軸
3 一次帯電手段
4 像露光手段
5 現像手段
6 転写手段
7 転写材
8 像定着手段
9 クリーニング手段
10 前露光手段
11 プロセスカートリッジ
12 レール
DESCRIPTION OF SYMBOLS 1 Electrophotographic photoreceptor 2 Axis 3 Primary charging means 4 Image exposure means 5 Development means 6 Transfer means 7 Transfer material 8 Image fixing means 9 Cleaning means 10 Pre-exposure means 11 Process cartridge 12 Rail
Claims (4)
レゾール型フェノール樹脂のフェノール性水酸基に、分子内にエポキシ基を2つ以上有するエポキシ化合物の該エポキシ基を付加させることによって得られたエポキシ変性フェノール樹脂と、電荷輸送物質及び導電性微粒子のうちいずれか一方又は両方と、を含んでいる表面層の形成用塗料の塗膜を硬化させて該電子写真感光体の表面層を形成する工程を有することを特徴とする電子写真感光体の製造方法。 A method for producing an electrophotographic photosensitive member having a photosensitive layer on a conductive support ,
The phenolic hydroxyl groups of Les Orres type phenol resin, and epoxy-modified phenolic resins obtained by the Rukoto by adding the epoxy group of the epoxy compound having two or more epoxy groups in the molecule, a charge transport material and a conductive An electrophotographic photosensitive material comprising a step of forming a surface layer of the electrophotographic photosensitive member by curing a coating film of a coating material for forming a surface layer containing any one or both of fine particles Body manufacturing method .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003386794A JP4262061B2 (en) | 2002-11-18 | 2003-11-17 | Method for producing electrophotographic photosensitive member |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002333709 | 2002-11-18 | ||
JP2003386794A JP4262061B2 (en) | 2002-11-18 | 2003-11-17 | Method for producing electrophotographic photosensitive member |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2004184991A JP2004184991A (en) | 2004-07-02 |
JP2004184991A5 JP2004184991A5 (en) | 2006-11-30 |
JP4262061B2 true JP4262061B2 (en) | 2009-05-13 |
Family
ID=32774574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003386794A Expired - Fee Related JP4262061B2 (en) | 2002-11-18 | 2003-11-17 | Method for producing electrophotographic photosensitive member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4262061B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012036295A1 (en) | 2010-09-15 | 2012-03-22 | Ricoh Company, Ltd. | Electrophotographic photoconductor, image forming method, image forming apparatus, and process cartridge |
WO2012099182A1 (en) | 2011-01-21 | 2012-07-26 | Ricoh Company, Ltd. | Electrophotographic photoconductor, and image forming method, image forming apparatus, and process cartridge using the electrophotographic photoconductor |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4506584B2 (en) * | 2005-06-24 | 2010-07-21 | 富士ゼロックス株式会社 | Coating agent composition and method for producing the same, cured film, electrophotographic photosensitive member, image forming apparatus, and process cartridge |
JP4506583B2 (en) * | 2005-06-24 | 2010-07-21 | 富士ゼロックス株式会社 | Coating agent composition, electrophotographic photoreceptor, method for producing the same, and image forming apparatus |
US7560205B2 (en) * | 2005-08-31 | 2009-07-14 | Xerox Corporation | Photoconductive imaging members |
US7811731B2 (en) * | 2005-10-14 | 2010-10-12 | Xerox Corporation | Photoconductive members |
JP4910847B2 (en) * | 2007-04-06 | 2012-04-04 | 富士ゼロックス株式会社 | Electrophotographic photosensitive member, process cartridge, image forming apparatus, and coating liquid for film formation |
JP5716962B2 (en) | 2011-07-20 | 2015-05-13 | 株式会社リコー | Electrophotographic photosensitive member, image forming method using the same, image forming apparatus, and process cartridge for image forming apparatus |
JP6066448B2 (en) | 2012-12-25 | 2017-01-25 | 株式会社リコー | Method for producing electrophotographic photoreceptor and image forming method |
-
2003
- 2003-11-17 JP JP2003386794A patent/JP4262061B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012036295A1 (en) | 2010-09-15 | 2012-03-22 | Ricoh Company, Ltd. | Electrophotographic photoconductor, image forming method, image forming apparatus, and process cartridge |
WO2012099182A1 (en) | 2011-01-21 | 2012-07-26 | Ricoh Company, Ltd. | Electrophotographic photoconductor, and image forming method, image forming apparatus, and process cartridge using the electrophotographic photoconductor |
Also Published As
Publication number | Publication date |
---|---|
JP2004184991A (en) | 2004-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6998210B2 (en) | Electrophotographic photosensitive member, electrophotographic apparatus, and process cartridge | |
JP3740389B2 (en) | Electrophotographic photosensitive member, electrophotographic apparatus, and process cartridge | |
JP3937836B2 (en) | Electrophotographic photosensitive member, process cartridge having the electrophotographic photosensitive member, and electrophotographic apparatus | |
JP4829625B2 (en) | Electrophotographic photosensitive member and image forming apparatus | |
US7560208B2 (en) | Polyester containing member | |
JP6639402B2 (en) | Electrophotographic photoreceptor, method of manufacturing electrophotographic photoreceptor, process cartridge and electrophotographic apparatus | |
US20040023139A1 (en) | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus | |
JP4262061B2 (en) | Method for producing electrophotographic photosensitive member | |
US7534536B2 (en) | Polyarylate containing member | |
JP2002006527A (en) | Electrophotographic photoreceptor and process cartridge and electrophotographic device having the electrophotographic photoreceptor | |
JP2003186222A (en) | Electrophotographic photoreceptor, and process cartridge and electrophotographic device having the electrophotographic photoreceptor | |
JP3944134B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP3944072B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP2005345662A (en) | Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus | |
JP6674270B2 (en) | Electrophotographic photosensitive member, manufacturing method thereof, process cartridge and electrophotographic apparatus | |
JP4989619B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP2015028573A (en) | Method of manufacturing surface layer coating liquid, surface layer coating liquid, method of manufacturing electrophotographic photoreceptor using the surface layer coating liquid, electrophotographic photoreceptor manufactured by the electrophotographic photoreceptor manufacturing method, and image forming apparatus including the electrophotographic photoreceptor | |
JP4346793B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP2004037740A (en) | Electrophotographic photoreceptor, process cartridge, and electrophotographic device | |
JP3848153B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP2005208485A (en) | Electrophotographic apparatus and process cartridge | |
JP3984832B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP2003186220A (en) | Electrophotographic photoreceptor, and process cartridge and electrophotographic device having the electrophotographic photoreceptor | |
JP3046890B2 (en) | Electrophotographic photoreceptor and electrophotographic apparatus provided with the electrophotographic photoreceptor | |
JP4027220B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061011 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061011 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20080207 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080701 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080916 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081117 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090129 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090206 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120220 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4262061 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130220 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140220 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |