JP4261438B2 - Power generation and seawater desalination system - Google Patents

Power generation and seawater desalination system Download PDF

Info

Publication number
JP4261438B2
JP4261438B2 JP2004235321A JP2004235321A JP4261438B2 JP 4261438 B2 JP4261438 B2 JP 4261438B2 JP 2004235321 A JP2004235321 A JP 2004235321A JP 2004235321 A JP2004235321 A JP 2004235321A JP 4261438 B2 JP4261438 B2 JP 4261438B2
Authority
JP
Japan
Prior art keywords
seawater
heat
power generation
working fluid
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004235321A
Other languages
Japanese (ja)
Other versions
JP2006051451A (en
Inventor
定幸 實原
英隆 澤田
敬之 渡辺
義信 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xenesys Inc
Original Assignee
Xenesys Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xenesys Inc filed Critical Xenesys Inc
Priority to JP2004235321A priority Critical patent/JP4261438B2/en
Publication of JP2006051451A publication Critical patent/JP2006051451A/en
Application granted granted Critical
Publication of JP4261438B2 publication Critical patent/JP4261438B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Description

本発明は、各種プラント等で発生する排熱を有効利用して別途新たにエネルギを消費することなしに発電並びに海水淡水化が行える発電及び海水淡水化システムに関する。   The present invention relates to a power generation and seawater desalination system that can effectively use waste heat generated in various plants and the like and perform power generation and seawater desalination without newly consuming energy.

各種プラント等で発生する約150℃以下の排熱は、従来、そのままあるいは図2に示すような冷却工程等を経て自然環境に放出される場合が多かったものの、エネルギ有効利用の観点から、近年、こうした低温の熱源でも有効な仕事を行えるアンモニアと水等の非共沸混合媒体を作動流体とする動力サイクル発電システムを用いて、エネルギ回収を行う場合が増えつつある。   In the past, exhaust heat of about 150 ° C. or less generated in various plants and the like has often been released into the natural environment as it is or through a cooling process as shown in FIG. There is an increasing number of cases where energy recovery is performed using a power cycle power generation system using a non-azeotropic mixed medium such as ammonia and water as a working fluid that can perform effective work even with such a low-temperature heat source.

こうした発電システムの一例として、特開平10−26009号公報に記載されるものがある。この従来の発電システムは、低沸点媒体成分としてアンモニアを、高沸点媒体として水を用いた非共沸混合媒体サイクル発電システムとなっており、熱エネルギを効率よくタービン仕事に変換して発電を行える仕組みである。   An example of such a power generation system is described in Japanese Patent Laid-Open No. 10-26009. This conventional power generation system is a non-azeotropic mixed medium cycle power generation system using ammonia as a low boiling point medium component and water as a high boiling point medium, and can efficiently generate heat by converting thermal energy into turbine work. It is a mechanism.

一方、動力プラントや内燃機関などの排熱利用によるエネルギ回収の一つの手段として、蒸発式の海水淡水化装置を用いる例も近年多く見られるようになっている。この海水淡水化装置の場合、凝縮器や熱交換器の冷却用媒体として海水を用い、排熱を利用して海水の温度を上げ、海水の蒸発割合を高めて一定時間あたりの凝縮量(淡水の収量)を増大させる仕組みとなっている。
特開平10−26009号公報
On the other hand, as an example of energy recovery by utilizing exhaust heat from a power plant or an internal combustion engine, many examples of using an evaporative seawater desalination apparatus have recently been seen. In the case of this seawater desalination system, seawater is used as a cooling medium for condensers and heat exchangers, the temperature of seawater is increased by using exhaust heat, the evaporation rate of seawater is increased, and the amount of condensation per unit time (freshwater) It is a mechanism to increase the yield of
Japanese Patent Laid-Open No. 10-26009

従来の発電システムは以上のように構成されており、電力という形で熱エネルギを回収できるものの、排熱で作動流体を昇温させた残りの熱エネルギや、作動流体が凝縮時に放出する熱エネルギといった有効に使われないエネルギ分が比較的大きく、エネルギ回収が十分であるとは言えなかった。これら排出されようとする熱エネルギを混合媒体サイクルでなるべく回収しようとすると、サイクルをより複雑なものにする必要があり、設備コストが増大してしまうという課題を有していた。   Although the conventional power generation system is configured as described above and can recover thermal energy in the form of electric power, the remaining thermal energy obtained by raising the temperature of the working fluid by exhaust heat or the thermal energy released when the working fluid condenses. The amount of energy that is not used effectively is relatively large, and it cannot be said that energy recovery is sufficient. When trying to recover the heat energy to be discharged as much as possible in the mixed medium cycle, it is necessary to make the cycle more complicated, and there is a problem that the equipment cost increases.

本発明は前記課題を解消するためになされたもので、排熱を導入して発電用サイクルを稼働させるだけでなく、発電用サイクルで回収し得なかった残りの熱エネルギも有効に回収可能な海水淡水化装置を組合わせて、効率よく電力と淡水を獲得できると共に、排熱を確実に回収してエネルギの浪費と環境への負荷を低減できる発電及び海水淡水化システムを提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and not only can exhaust heat be introduced to operate the power generation cycle, but also the remaining heat energy that could not be recovered by the power generation cycle can be recovered effectively. The purpose is to provide a power generation and seawater desalination system that can efficiently acquire power and freshwater by combining seawater desalination equipment, and can reliably recover exhaust heat to reduce energy waste and environmental impact. And

本発明に係る発電及び海水淡水化システムは、液相の作動流体を所定の高温流体と熱交換させて作動流体を蒸発させ、得られた気相の作動流体の保有する熱エネルギを動力に変換し当該動力で発電を行う一方、前記熱エネルギを動力に変換した後の作動流体を所定の低温流体と熱交換させて凝縮させ、作業流体を液相に戻して再び前記高温流体と熱交換させる過程を繰返し行う動力サイクルからなる発電装置と、所定の放熱手段で加熱されて昇温した海水の少なくとも一部を蒸発させる蒸発手段、及び、少なくとも前記昇温した海水より低温の海水を冷却水として用いる凝縮手段を少なくとも有し、前記蒸発手段で蒸発させた水分を前記凝縮手段で凝縮させて塩分を含まない水を得る海水淡水化装置とを備え、前記放熱手段が、前記蒸発手段で蒸発しなかった残りの海水の一部を前記低温流体として供給され、前記作動流体を凝縮する際の凝縮熱で海水を加熱する前記発電装置の凝縮器としての第一の放熱手段と、前記海水淡水化装置の凝縮手段で冷却水として使用した海水の一部を供給され、前記発電装置で液相の作動流体と熱交換された後の前記高温流体と海水を熱交換させて海水を加熱する第二の放熱手段とからなり、前記第一の放熱手段及び第二の放熱手段でそれぞれ熱交換した後の海水を混合状態で前記海水淡水化装置の蒸発手段に導入するものである。   The power generation and seawater desalination system according to the present invention evaporates the working fluid by exchanging heat between the liquid working fluid and a predetermined high-temperature fluid, and converts the thermal energy possessed by the obtained gas-phase working fluid into power. While generating power with the power, the working fluid after converting the heat energy to power is condensed by exchanging heat with a predetermined low-temperature fluid, and the working fluid is returned to the liquid phase to exchange heat with the high-temperature fluid again. A power generation apparatus comprising a power cycle that repeats the process, an evaporation means for evaporating at least a part of seawater heated by a predetermined heat dissipation means and heated, and at least seawater lower in temperature than the heated seawater as cooling water A seawater desalination device that has at least a condensing unit to be used, and condenses the water evaporated by the evaporating unit by the condensing unit to obtain water not containing salt, and the heat dissipating unit includes the evaporating unit A portion of the remaining seawater that has not evaporated is supplied as the low-temperature fluid, and the first heat dissipating means as a condenser of the power generation apparatus that heats the seawater with condensation heat when condensing the working fluid; Part of the seawater used as cooling water by the condensing means of the desalination apparatus is supplied, and the high-temperature fluid and the seawater are heat-exchanged with the liquid-phase working fluid in the power generation apparatus to heat the seawater. It comprises a second heat radiating means, and the seawater after heat exchange by the first heat radiating means and the second heat radiating means is introduced into the evaporation means of the seawater desalination apparatus in a mixed state.

このように本発明においては、海水を利用する発電装置及び海水淡水化装置が配設され、高温流体で発電装置の作動流体を加熱、蒸発させると共に、高温流体の残りの熱エネルギ及び発電装置からの排熱で海水淡水化装置の蒸発手段に導入される海水の温度を高め、発電用動力サイクルと海水淡水化工程を高温流体から得たエネルギで同時に稼働させることにより、高温流体の熱エネルギを発電及び海水淡水化にそれぞれ有効に活用して十分にエネルギを回収し、外部に排熱として放出されるエネルギ量を極力減らせることとなり、全体的な熱効率を高められると共に、発電により得た電力で海水に対するポンプ仕事をはじめとする海水淡水化に係るエネルギ消費を賄えることとなり、高温流体の保有する熱エネルギ以外は外部からエネルギを一切与えずに発電及び海水淡水化を連続的に実行でき、極めて低コストの電力と淡水が得られる。   As described above, in the present invention, the power generation device and the seawater desalination device using seawater are disposed, and the working fluid of the power generation device is heated and evaporated with the high-temperature fluid, and the remaining heat energy of the high-temperature fluid and the power generation device are used. By increasing the temperature of the seawater introduced to the evaporation means of the seawater desalination system with the exhaust heat of the heat, and operating the power cycle for power generation and the seawater desalination process simultaneously with the energy obtained from the high temperature fluid, the thermal energy of the high temperature fluid is reduced. It can be effectively used for power generation and seawater desalination to sufficiently recover energy, reducing the amount of energy released as waste heat to the outside as much as possible, improving the overall thermal efficiency and increasing the power obtained by power generation. The energy consumption related to seawater desalination, including pumping work on seawater, can be covered. The power generation and desalination without giving any can continuously run, very low-cost power and fresh water is obtained.

また、本発明に係る発電及び海水淡水化システムは必要に応じて、前記高温流体が、石油精製プラントで蒸留、精製された直後の、製品として取扱い可能な温度まで温度低下する前で所定の熱エネルギを保有する気相又は液相の最終精製物であるものである。   In addition, the power generation and seawater desalination system according to the present invention, if necessary, has a predetermined heat before the temperature of the high-temperature fluid is reduced to a temperature at which it can be handled as a product immediately after being distilled and refined in an oil refinery plant. It is the final purified product in the gas phase or liquid phase that retains energy.

このように本発明においては、石油精製プラントで精製された最終精製物の従来冷却されて捨てられていた保有熱を発電装置及び海水淡水化装置で大部分回収し、電力及び淡水を得ることにより、最終精製物に対する冷却のコストと手間を一切省略できることとなり、石油精製プラント側における各処理工程に影響を与えずに電力と淡水が効率よく得られることと合わせて、プラント全体でエネルギ収支を大幅に改善できる他、発電装置及び海水淡水化装置をそれぞれ別個にプラントに併設する場合と比べて稼働コストを抑えられる。   As described above, in the present invention, most of the retained heat of the final refined product refined in the oil refinery plant that has been cooled and discarded in the past is recovered by the power generation device and the seawater desalination device to obtain electric power and fresh water. The cost and effort of cooling the final refined product can be eliminated, and the energy balance of the entire plant can be greatly increased, together with the efficient production of electric power and fresh water without affecting each processing step on the oil refinery plant side. In addition, the operation cost can be reduced as compared with the case where the power generation device and the seawater desalination device are separately provided in the plant.

以下、本発明の一実施の形態を図1に基づいて説明する。図1は本実施の形態に係る発電及び海水淡水化システムの概略構成説明図である。
前記図1において本実施の形態に係る発電及び海水淡水化システム1は、石油精製プラントで精製された直後の最終精製物流体と熱交換する作動流体の相変化で発電のための動力を得る発電装置10と、最終精製物流体及び前記作動流体との熱交換で温められた海水を蒸発、凝縮させて淡水を得る多段フラッシュ蒸発型の海水淡水化装置20とを備える構成である。
Hereinafter, an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic configuration explanatory diagram of a power generation and seawater desalination system according to the present embodiment.
In FIG. 1, the power generation and seawater desalination system 1 according to the present embodiment obtains power for power generation by phase change of a working fluid that exchanges heat with a final refined product fluid immediately after being refined in an oil refinery plant. The apparatus 10 includes a multistage flash evaporation type seawater desalination apparatus 20 that evaporates and condenses seawater heated by heat exchange with the final purified product fluid and the working fluid to obtain fresh water.

前記発電装置10は、発電用動力サイクルの作動流体(アンモニアと水の混合水等)と前記高温流体としての最終精製物流体とを熱交換させ、作動流体の蒸気を得る蒸発器11と、この蒸発器11で得られた作動流体蒸気により動作し、作動流体の保有する熱エネルギを動力に変換するタービン12と、タービン12により駆動される発電機13と、タービン12を出た蒸気を凝縮させて液相とする前記第一の放熱手段としての凝縮器14と、凝縮器14から作動流体を取出して蒸発器11に導入するポンプ15とを備える構成である。この発電装置10の動力サイクルを成立させる前記各機器は、公知の非共沸混合流体サイクルに用いられるのと同様のものであり、詳細な説明を省略する。   The power generation apparatus 10 includes an evaporator 11 for exchanging heat between a working fluid of a power cycle for power generation (mixed water of ammonia and water, etc.) and a final purified product fluid as the high-temperature fluid, and obtaining a vapor of the working fluid. It operates with the working fluid vapor obtained in the evaporator 11, converts the thermal energy possessed by the working fluid into power, the generator 13 driven by the turbine 12, and condenses the steam exiting the turbine 12. In this configuration, the condenser 14 as the first heat radiating means in the liquid phase and the pump 15 that takes out the working fluid from the condenser 14 and introduces the working fluid into the evaporator 11 are provided. Each device that establishes the power cycle of the power generation apparatus 10 is the same as that used in a known non-azeotropic fluid mixture cycle, and detailed description thereof is omitted.

前記海水淡水化装置20は、内部空間を大気圧以下に減圧される減圧容器21と、あらかじめ温められた海水を前記減圧容器21内でフラッシュ蒸発させて水蒸気を得る前記蒸発手段としての複数のフラッシュ蒸発部22と、前記減圧容器21内でフラッシュ蒸発部22で得られた水蒸気を凝縮させて不純物(塩分)を含まない水を得る前記凝縮手段としての複数の凝縮部23と、フラッシュ蒸発部22に導入される前の海水を加熱する前記第二の放熱手段としての熱交換器25と、減圧容器21に対し海水を導入したり淡水又は海水を排出したりする複数の管路並びにポンプ(図示を省略)とを備える構成である。   The seawater desalination apparatus 20 includes a decompression vessel 21 whose interior space is decompressed to an atmospheric pressure or less, and a plurality of flashes as the evaporation means that obtains water vapor by flash-evaporating preheated seawater in the decompression vessel 21. An evaporation unit 22, a plurality of condensing units 23 as the condensing means for condensing water vapor obtained in the flash evaporating unit 22 in the decompression vessel 21 to obtain water containing no impurities (salt content), and the flash evaporating unit 22 A heat exchanger 25 as the second heat dissipating means for heating the seawater before being introduced into the tank, a plurality of pipelines and pumps for introducing seawater into and discharging fresh water or seawater into the decompression vessel 21 (illustrated) Is omitted).

前記フラッシュ蒸発部22は、減圧容器21内の複数の区画として配設され、凝縮部23へ向う蒸気流の中に混じった水の微細水滴(ミスト)を捕捉して取除くセパレータ22aをそれぞれ併設されてなる構成である。また、前記凝縮部23は、冷却水を内部に通せる伝熱部分を有して減圧容器21の各フラッシュ蒸発部22に対応させて複数配設されてなり、フラッシュ蒸発部22で蒸発した蒸気と接触し、冷却水との熱交換により蒸気を凝縮させ、得られた凝縮水を集めて外部に送出すものであり、これらフラッシュ蒸発部22及び凝縮部23は公知の多段フラッシュ蒸発型海水淡水化装置と同様の構成であり、詳細な説明を省略する。   The flash evaporation section 22 is arranged as a plurality of compartments in the decompression vessel 21, and is provided with separators 22a that capture and remove fine water droplets (mist) of water mixed in the steam flow toward the condensation section 23. It is the structure which is made. Further, the condensing unit 23 has a heat transfer portion through which cooling water can be passed, and a plurality of the condensing units 23 are arranged corresponding to each flash evaporation unit 22 of the decompression vessel 21, and vapor evaporated by the flash evaporation unit 22. The steam is condensed by heat exchange with the cooling water, and the obtained condensed water is collected and sent to the outside. The flash evaporation section 22 and the condensation section 23 are known multi-stage flash evaporation type seawater fresh water. The configuration is the same as that of the conversion apparatus, and detailed description thereof is omitted.

各凝縮部23の冷却水としては、海から取水された海水が用いられ、この海水は取水管(図示を省略)から取込まれて凝縮部23に導入され使用された後、凝縮部23から取出され、その一部は熱交換器25に向い、残りは海に排出されることとなる。また、この凝縮部23に対応させて、凝縮水として得られた淡水を一時的に貯水するタンク27も配設される。   As the cooling water for each condensing unit 23, seawater taken from the sea is used, and this seawater is taken from a water intake pipe (not shown), introduced into the condensing unit 23 and used, and then from the condensing unit 23. It is taken out, part of which is directed to the heat exchanger 25 and the rest is discharged to the sea. A tank 27 for temporarily storing fresh water obtained as condensed water is also provided corresponding to the condensing unit 23.

前記減圧容器21には、管路を通じて減圧排気装置24が接続され、減圧容器21内に導入される海水と同温度における水の飽和蒸気圧以下の圧力に減圧容器21内を減圧し、各フラッシュ蒸発部22で水が液相から気相に変化する(蒸発する)温度、及び、凝縮部23内で蒸気の気相から液相に変化する(凝縮する)温度をそれぞれ大気圧における各温度に比べて低くなるよう維持している。これにより減圧容器21内に導入された水の一部が液相から気相に変化すると共に、液相で残った水の温度が低下する仕組みである。   A decompression exhaust device 24 is connected to the decompression container 21 through a pipe line, and the interior of the decompression container 21 is decompressed to a pressure equal to or lower than the saturated vapor pressure of water at the same temperature as seawater introduced into the decompression container 21. The temperature at which the water changes from the liquid phase to the gas phase (evaporates) in the evaporating unit 22 and the temperature at which the water changes from the gas phase to the liquid phase (condenses) in the condensing unit 23 to each temperature at atmospheric pressure. It is kept low compared to it. Thereby, a part of the water introduced into the decompression vessel 21 is changed from the liquid phase to the gas phase, and the temperature of the water remaining in the liquid phase is lowered.

この減圧容器21内で蒸発しなかった分の海水は、一部が減圧容器21から取出されて発電装置10の凝縮器14に達し、熱交換による昇温後、熱交換器25を出た海水と合流してフラッシュ蒸発部22に戻る一方、他は減圧容器21から排水されて海へ排出されることとなる。   A portion of the seawater that has not evaporated in the decompression vessel 21 is extracted from the decompression vessel 21 and reaches the condenser 14 of the power generation apparatus 10. After the temperature rises due to heat exchange, the seawater exits the heat exchanger 25. And the flow returns to the flash evaporation unit 22, while others are drained from the decompression vessel 21 and discharged to the sea.

前記熱交換器25は、凝縮部23で冷却水として使用した海水の一部を供給され、この海水を発電装置10で液相の作動流体と熱交換された後の最終生成物流体と熱交換させ、海水を加熱するものである。熱交換器としての構造自体は公知のものであり、詳細な説明を省略する。凝縮部23を出てこの熱交換器25に向う海水は、脱気装置26を経由して熱交換器25に達する仕組みとされており、脱気装置26の前後でpH調整等、海水によるスケール発生等防止のための処理も行われる。   The heat exchanger 25 is supplied with a part of the seawater used as cooling water in the condensing unit 23, and heat-exchanges the seawater with the final product fluid after the seawater is heat-exchanged with the liquid-phase working fluid. And heats the seawater. The structure itself as a heat exchanger is a known one, and detailed description thereof is omitted. Seawater that leaves the condensing unit 23 and travels toward the heat exchanger 25 reaches the heat exchanger 25 via the deaerator 26, and the scale is adjusted by seawater such as pH adjustment before and after the deaerator 26. Processing for preventing occurrence and the like is also performed.

なお、前記発電装置10の蒸発器11へ最終精製物流体を送込む管路、及び、熱交換器25から温度低下した最終精製物流体を排出する管路は、それぞれ、石油精製プラントの既存の最終精製物冷却工程の前後における各管路に接続され、最終精製物流体を冷却工程へ向わせずに本システム側へ通す仕組みとなっており、システム全体を既存のプラント管路の一部に対するバイパス管路として低コストで配設することができる。   In addition, the pipe line which sends the final refined product fluid to the evaporator 11 of the power generation apparatus 10 and the pipe line which discharges the final refined product fluid whose temperature is lowered from the heat exchanger 25 are respectively existing in the oil refinery plant. It is connected to each pipeline before and after the final purified product cooling process, and the final purified product fluid is passed to this system side without going to the cooling process, and the entire system is connected to a part of the existing plant pipeline. The bypass pipe can be arranged at low cost.

次に、本実施の形態に係る発電及び海水淡水化システムの動作状態について説明する。石油精製プラントの蒸留塔など最終精製工程から取出された最終精製物流体は、約120℃であり、本来冷却工程に通され、一般に約50℃前後まで冷却され、必要に応じて蒸気から凝縮された液体となるなどの相変化を伴った後、製品として送出されるものである。この最終精製物流体は、前記冷却工程に進む代りに、プラント管路からシステム入口Aを経由してまず発電装置10の蒸発器11内に導入され、作動流体との熱交換で液相の作動流体を加熱・蒸発させる。作動流体との熱交換で温度を低下させるものの、依然として前記冷却工程の出口温度より高い温度を有する最終精製物流体は、蒸発器11を出た後、海水淡水化装置20の熱交換器25に導入され、海水と熱交換して海水温度を高める一方、それ自体の温度は大きく低下させ、冷却工程の出口温度に近付いた状態で熱交換器25から排出され、システム出口Bから既存の精製物搬出用管路に戻る。   Next, the operation state of the power generation and seawater desalination system according to the present embodiment will be described. The final refined product fluid extracted from the final refining process such as a distillation column of an oil refinery plant is about 120 ° C., and is inherently passed through a cooling process, generally cooled to about 50 ° C., and condensed from steam as necessary. After being accompanied by a phase change such as becoming a liquid, it is delivered as a product. Instead of proceeding to the cooling step, this final purified product fluid is first introduced into the evaporator 11 of the power generation apparatus 10 from the plant line via the system inlet A, and operates in the liquid phase by heat exchange with the working fluid. Heat and evaporate the fluid. Although the temperature is lowered by heat exchange with the working fluid, the final purified product fluid still having a temperature higher than the outlet temperature of the cooling step leaves the evaporator 11 and then enters the heat exchanger 25 of the seawater desalination apparatus 20. Introduced and heat-exchanged with seawater to increase the temperature of seawater, while the temperature of itself is greatly reduced, discharged from the heat exchanger 25 in a state of approaching the outlet temperature of the cooling process, and existing purified product from the system outlet B Return to the unloading pipeline.

発電装置10では、蒸発器11で最終精製物流体との熱交換により昇温、蒸発し、気相となった作動流体がタービン12を作動させ、このタービン12により発電機13が駆動されて発電を行う。タービン12を出た作動流体は凝縮器14に導入され、これとは別に凝縮器14内に導入された海水淡水化装置20での未蒸発海水との熱交換により凝縮され、液相となって蒸発器11内に戻り、さらに蒸発以降の各過程を繰返すこととなる。凝縮器14で作動流体の凝縮に使用された海水は、作動流体の凝縮潜熱分を受熱して約15℃程度昇温した状態となる。   In the power generation apparatus 10, the working fluid, which has been heated and evaporated by heat exchange with the final purified product fluid in the evaporator 11 and turned into a gas phase, operates the turbine 12, and the generator 13 is driven by the turbine 12 to generate power. I do. The working fluid that exits the turbine 12 is introduced into the condenser 14, and is condensed by heat exchange with non-evaporated seawater in the seawater desalination apparatus 20 introduced into the condenser 14, and becomes a liquid phase. Returning to the evaporator 11, each process after evaporation is repeated. Seawater used for the condensation of the working fluid in the condenser 14 receives the condensation latent heat of the working fluid and is heated to about 15 ° C.

海水淡水化装置20では、まず、海から取水された海水が、取水管を通じて凝縮部23に冷却水として導入され、凝縮部23周囲の蒸気と熱交換してこの蒸気を冷却して凝縮させる代りに温度上昇する。海水はこの昇温状態で凝縮部23を出て排水管へ進み、一部がいったん脱気装置26に導かれ、海水中の空気を除去された後、熱交換器25に送られ、他は海へ排出される。熱交換器25では、導入された海水が冷却水として用いられてこの熱交換器25に別途導入された最終精製物流体と熱交換し、海水は温度上昇する。この熱交換器25から排出された海水は、導入時点と比べて約10℃程度高い温度となっており、この海水をフラッシュ蒸発部22に導いて淡水化を図る。   In the seawater desalination apparatus 20, first, seawater taken from the sea is introduced as cooling water into the condensing unit 23 through the intake pipe, and heat is exchanged with the steam around the condensing unit 23 to cool and condense the steam. The temperature rises. The seawater exits the condensing part 23 in this temperature rise state and proceeds to the drain pipe, and part of the seawater is once guided to the deaeration device 26 and removed from the seawater, and then sent to the heat exchanger 25. Discharged into the sea. In the heat exchanger 25, the introduced seawater is used as cooling water to exchange heat with the final purified product fluid separately introduced into the heat exchanger 25, and the temperature of the seawater rises. The seawater discharged from the heat exchanger 25 has a temperature about 10 ° C. higher than that at the time of introduction, and the seawater is led to the flash evaporation section 22 to desalinate.

熱交換器25から出た海水は、減圧容器21内のフラッシュ蒸発部22に導かれ、約10〜60mmHg程度まで圧力の下がっている減圧容器21内空間において、海水の一部はフラッシュ蒸発により蒸気に相変化し、同時に海水の温度は降下する。   Seawater from the heat exchanger 25 is guided to the flash evaporation section 22 in the decompression vessel 21, and a part of the seawater is vaporized by flash evaporation in the inner space of the decompression vessel 21 where the pressure is reduced to about 10 to 60 mmHg. At the same time, the temperature of the seawater drops.

水分の蒸発により得られた蒸気はセパレータ22aを通り、浮遊する液分(ミスト)を除去された状態で凝縮部23に流入する。凝縮部23で蒸気は冷却水としてのより温度の低い海水と熱交換して冷却され、凝縮して塩分を含まない水滴となり、いったんタンク27内に集められ、まとまった量の淡水Wとして外部に送出される。フラッシュ蒸発部22で蒸発しなかった海水は次段のフラッシュ蒸発部22に達し、一部が蒸発して凝縮部23で凝縮し、塩分を含まない水になるという前記同様の過程がフラッシュ蒸発部22の段数分繰返されることとなる。   The vapor obtained by the evaporation of moisture passes through the separator 22a and flows into the condensing unit 23 in a state where the floating liquid (mist) is removed. In the condensing unit 23, the steam is cooled by exchanging heat with lower temperature seawater as cooling water, condensed to form water droplets that do not contain salt, and once collected in the tank 27, it is collected as a collective amount of fresh water W to the outside. Sent out. The seawater that has not evaporated in the flash evaporating unit 22 reaches the flash evaporating unit 22 in the next stage, part of which evaporates and condenses in the condensing unit 23, and the same process as described above is performed in the flash evaporating unit. This is repeated for 22 stages.

ここで、各フラッシュ蒸発部22で蒸発しなかった海水は減圧容器21下部に一時的に溜ることとなるが、その大部分は減圧容器21の外に取出され、発電装置10の凝縮器14へ送られる。この凝縮器14へ導かれた海水は、冷却水として利用され、高温の作動流体との熱交換により温められる。こうして凝縮器14で温められた海水は、熱交換器25を出た海水と合流し、フラッシュ蒸発部22へ供給される。   Here, the seawater that has not evaporated in each flash evaporation section 22 is temporarily stored in the lower part of the decompression vessel 21, but most of the seawater is taken out of the decompression vessel 21 and sent to the condenser 14 of the power generation apparatus 10. Sent. The seawater led to the condenser 14 is used as cooling water and warmed by heat exchange with a high-temperature working fluid. The seawater thus warmed by the condenser 14 merges with the seawater that has exited the heat exchanger 25 and is supplied to the flash evaporator 22.

定常動作状態では、凝縮器14で熱交換してフラッシュ蒸発部22へ供給される海水の量が、熱交換器25で熱交換してフラッシュ蒸発部22へ供給される海水の量の約2倍となっており、最終精製物流体の高い熱エネルギを得た作動流体を十分な量の冷却用海水で確実に凝縮させて発電のための仕事を最大限に行わせる一方、熱交換器25で最終精製物流体の残りの熱エネルギを確実に回収して海水温度を可能な限り高めることができ、最終精製物流体から有効に熱回収が図れると共に発電と海水淡水化をバランスよく高効率で進められることとなる。また、蒸発しきれなかった海水を再び淡水化のための原水として利用することで、新規に取水された海水の脱気装置26や熱交換器25を通ってフラッシュ蒸発部22へ向う量を大幅に減らすことができ、脱気やpH調整等の新規に取水された海水に対する前処理の機会を減らして取水に伴うコスト増大を抑えられる。   In a steady operation state, the amount of seawater exchanged by the condenser 14 and supplied to the flash evaporation unit 22 is approximately twice the amount of seawater exchanged by the heat exchanger 25 and supplied to the flash evaporation unit 22. The working fluid that has obtained the high thermal energy of the final purified product fluid is reliably condensed with a sufficient amount of cooling seawater to maximize the work for power generation, while the heat exchanger 25 The remaining heat energy of the final refined product fluid can be reliably recovered to increase the seawater temperature as much as possible, heat can be effectively recovered from the final refined product fluid, and power generation and seawater desalination can be promoted in a balanced and highly efficient manner. Will be. In addition, by using seawater that could not be evaporated again as raw water for desalination, the amount of freshly drawn seawater passing through the deaerator 26 and the heat exchanger 25 toward the flash evaporator 22 is greatly increased. It is possible to reduce the amount of pretreatment for newly taken seawater, such as degassing and pH adjustment, and to suppress the cost increase associated with water intake.

こうして、減圧容器21内のフラッシュ蒸発部22で蒸発しなかった海水が発電装置10の凝縮器14で温められ、再びフラッシュ蒸発部22に導入されるサイクルが繰返されることとなり、フラッシュ蒸発部22に導入される海水は、凝縮部23に導入される海水と比べて高い温度で安定した状態となっており、この海水をフラッシュ蒸発部22で蒸発させることで効率よく淡水化が図れる。   In this way, the seawater that has not evaporated in the flash evaporation section 22 in the decompression vessel 21 is warmed by the condenser 14 of the power generation apparatus 10 and is repeatedly introduced into the flash evaporation section 22. The introduced seawater is in a stable state at a higher temperature than the seawater introduced into the condensing unit 23, and the seawater is evaporated by the flash evaporation unit 22, so that desalination can be efficiently achieved.

一方、フラッシュ蒸発部22で蒸発しなかった海水のうち、発電装置10側に送られない残りの分は、減圧容器21から外部に排出され、最終的に海へ捨てられる。この捨てられる海水と海中に元からある海水との温度差はフラッシュ蒸発の際の熱消費によって十分小さくなっているので、排出による周囲環境への悪影響は小さい。   On the other hand, of the seawater that has not evaporated in the flash evaporator 22, the remaining portion that is not sent to the power generation device 10 side is discharged from the decompression vessel 21 and finally discarded to the sea. Since the temperature difference between the discarded seawater and the seawater originally in the sea is sufficiently small due to heat consumption during flash evaporation, the adverse effects on the surrounding environment due to discharge are small.

このように、本実施の形態に係る発電及び海水淡水化システムにおいては、海水を利用する発電装置10及び海水淡水化装置20を用い、石油精製プラントで精製された最終精製物の従来冷却されて捨てられていた熱エネルギで、発電用動力サイクルと海水淡水化工程を同時に稼働させてこの熱エネルギを回収することにより、外部に排熱として放出されるエネルギ量を極力減らせることとなり、全体的な熱効率を高められると共に、発電により得た電力で海水に対するポンプ仕事をはじめとする海水淡水化に係るエネルギ消費を賄えることとなり、最終精製物の保有する熱エネルギ以外は外部からエネルギを一切与えずに発電及び海水淡水化を連続的に実行でき、極めて低コストの電力と淡水が得られる。また、最終精製物に対する特別な冷却のコストと手間を省略できることとなり、プラント全体でエネルギ収支を大幅に改善できる。   As described above, in the power generation and seawater desalination system according to the present embodiment, the final refined product refined in the oil refinery plant is conventionally cooled using the power generation apparatus 10 and the seawater desalination apparatus 20 that use seawater. By operating the power cycle for power generation and the seawater desalination process at the same time and recovering this thermal energy with the discarded thermal energy, the amount of energy released as waste heat to the outside can be reduced as much as possible. In addition to improving the thermal efficiency, it will be able to cover the energy consumption related to seawater desalination, including the pumping work for seawater, using the power generated by the power generation. In addition, power generation and seawater desalination can be carried out continuously, and extremely low-cost electric power and fresh water can be obtained. In addition, the cost and labor of special cooling for the final purified product can be omitted, and the energy balance can be greatly improved in the entire plant.

なお、前記実施の形態に係る海水淡水化装置において、高温流体として、石油精製プラントで精製された直後の最終精製物を用いる構成としているが、これに限らず、内燃機関や、発電所、製鉄所、又はゴミ焼却施設等の各種プラントで発生する約150℃以下の冷却水や排ガス、プラント流体を用いることもでき、前記同様にエネルギの有効利用が図れると共に周囲環境への影響を抑えられる。   In the seawater desalination apparatus according to the above-described embodiment, the final refined product immediately after being refined in an oil refining plant is used as the high-temperature fluid. However, the present invention is not limited thereto, and the internal combustion engine, the power plant, and iron manufacturing are used. It is also possible to use cooling water, exhaust gas, and plant fluid generated at various plants such as incinerators or garbage incineration facilities, which can effectively use energy as well as the above and suppress the influence on the surrounding environment.

本発明の一実施の形態に係る発電及び海水淡水化システムの概略構成説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is schematic structure explanatory drawing of the electric power generation and seawater desalination system which concern on one embodiment of this invention. 従来のプラントの冷却工程概略説明図である。It is a cooling process schematic explanatory drawing of the conventional plant.

符号の説明Explanation of symbols

1 発電及び海水淡水化システム
10 発電装置
11 蒸発器
12 タービン
13 発電機
14 凝縮器
15 ポンプ
20 海水淡水化装置
21 減圧容器
22 フラッシュ蒸発部
22a セパレータ
23 凝縮部
24 減圧排気装置
25 熱交換器
26 脱気装置
27 タンク
DESCRIPTION OF SYMBOLS 1 Power generation and seawater desalination system 10 Power generation apparatus 11 Evaporator 12 Turbine 13 Generator 14 Condenser 15 Pump 20 Seawater desalination apparatus 21 Depressurization container 22 Flash evaporation part 22a Separator 23 Condensing part 24 Depressurization exhaust apparatus 25 Heat exchanger 26 Desorption Ventilator 27 tank

Claims (3)

液相の作動流体を所定の高温流体と熱交換させて作動流体を蒸発させ、得られた気相の作動流体の保有する熱エネルギを動力に変換し当該動力で発電を行う一方、前記熱エネルギを動力に変換した後の作動流体を所定の低温流体と熱交換させて凝縮させ、作動流体を液相に戻して再び前記高温流体と熱交換させる過程を繰返し行う動力サイクルからなる発電装置と、
所定の放熱手段で加熱されて昇温した海水の少なくとも一部を蒸発させる一又は複数の蒸発手段、及び、少なくとも前記昇温した海水より低温の海水を冷却水として用いる一又は複数の凝縮手段を少なくとも有し、前記蒸発手段で蒸発させた水分を前記凝縮手段で凝縮させて塩分を含まない水を得る海水淡水化装置とを備え、
前記放熱手段が、前記蒸発手段で蒸発しなかった残りの海水の一部を前記低温流体として供給され、前記作動流体を凝縮する際の凝縮熱で海水を加熱する前記発電装置の凝縮器としての第一の放熱手段と、前記海水淡水化装置の凝縮手段で冷却水として使用した海水の一部を供給され、前記発電装置で液相の作動流体と熱交換された後の前記高温流体と海水を熱交換させて海水を加熱する第二の放熱手段とからなり、
前記第一の放熱手段及び第二の放熱手段でそれぞれ熱交換した後の海水を混合状態で前記海水淡水化装置の蒸発手段に導入することを
特徴とする発電及び海水淡水化システム。
The liquid-phase working fluid is heat-exchanged with a predetermined high-temperature fluid to evaporate the working fluid, and the thermal energy possessed by the obtained gas-phase working fluid is converted into motive power, and power is generated with the motive power. A power generation apparatus comprising a power cycle that repeats the process of exchanging heat with a predetermined low-temperature fluid to condense and condensing the working fluid after conversion into motive power, returning the working fluid to the liquid phase and exchanging heat with the high-temperature fluid again;
One or a plurality of evaporating means for evaporating at least a part of the seawater heated by a predetermined heat radiating means and heated, and one or a plurality of condensing means using at least a seawater lower in temperature than the heated seawater as cooling water A seawater desalination apparatus that has at least the water evaporated by the evaporation means to condense the moisture by the condensation means to obtain water that does not contain salt.
A part of the remaining seawater that has not evaporated by the evaporating means is supplied as the low-temperature fluid, and the heat dissipating means serves as a condenser of the power generation apparatus that heats the seawater with condensation heat when condensing the working fluid. The high-temperature fluid and seawater after a part of the seawater used as cooling water by the first heat dissipating means and the condensing means of the seawater desalination device is supplied and heat-exchanged with the liquid-phase working fluid by the power generation device A second heat dissipating means that heats seawater by exchanging heat,
The power generation and seawater desalination system, wherein the seawater after heat exchange by the first heat dissipation means and the second heat dissipation means is introduced into the evaporation means of the seawater desalination apparatus in a mixed state.
前記請求項1に記載の発電及び海水淡水化システムにおいて、
前記高温流体が、石油精製プラントで蒸留、精製された直後の、製品として取扱い可能な温度まで温度低下する前で所定の熱エネルギを保有する気相又は液相の最終精製物であることを
特徴とする発電及び海水淡水化システム。
In the power generation and seawater desalination system according to claim 1,
The high-temperature fluid is a gas or liquid final refined product having a predetermined heat energy immediately after being distilled and refined in an oil refinery plant and before the temperature is lowered to a temperature at which it can be handled as a product. Power generation and seawater desalination system.
液相の作動流体を所定の高温流体と熱交換させて作動流体を蒸発させる蒸発器、得られた気相の作動流体の保有する熱エネルギを動力に変換するタービン、当該タービンで得た動力で発電を行う発電機、及び、前記熱エネルギを動力に変換した後の作動流体を海水と熱交換させて凝縮させ液相に戻す凝縮器を有する発電装置と、
所定の放熱手段で加熱されて昇温した海水の少なくとも一部を蒸発させる一又は複数の蒸発手段、及び、少なくとも前記昇温した海水より低温の海水を冷却水として用いる一又は複数の凝縮手段を少なくとも有し、前記蒸発手段で蒸発させた水分を前記凝縮手段で凝縮させて塩分を含まない水を得る海水淡水化装置とを備え、
外部から供給される前記高温流体を、前記発電装置の蒸発器で前記作動流体と熱交換させた後、前記海水淡水化装置の少なくとも一の放熱手段に導入して海水と熱交換させ、
外部から供給される海水を、前記海水淡水化装置の凝縮手段、放熱手段に通して昇温させた後、前記蒸発手段に導入して一部を淡水化させる一方、蒸発手段で蒸発しなかった残りの海水の一部を前記発電装置の凝縮器に導入し、凝縮熱で加熱された海水をあらためて海水淡水化装置の蒸発手段に導入して淡水化させる過程を繰返し、淡水化された量に相当する海水を外部から供給された分で補充していくことを
特徴とする発電及び海水淡水化システム。
An evaporator that evaporates the working fluid by exchanging heat between the liquid-phase working fluid and a predetermined high-temperature fluid, a turbine that converts the thermal energy of the obtained gas-phase working fluid into power, and the power obtained by the turbine A generator for generating electricity, and a generator having a condenser for exchanging heat with the seawater to convert the working fluid after converting the thermal energy into motive power and returning it to the liquid phase;
One or a plurality of evaporating means for evaporating at least a part of the seawater heated by a predetermined heat radiating means and heated, and one or a plurality of condensing means using at least a seawater lower in temperature than the heated seawater as cooling water A seawater desalination apparatus that has at least the water evaporated by the evaporation means to condense the moisture by the condensation means to obtain water that does not contain salt.
The high-temperature fluid supplied from the outside is subjected to heat exchange with the working fluid in the evaporator of the power generation device, and then introduced into at least one heat dissipating means of the seawater desalination device to exchange heat with seawater.
The seawater supplied from the outside was heated through the condensing means and the heat dissipating means of the seawater desalination apparatus, and then introduced into the evaporating means to partially desalinate, while the evaporating means did not evaporate. A part of the remaining seawater is introduced into the condenser of the power generation apparatus, and the process of renewing the seawater heated by the condensation heat and introducing it into the evaporation means of the seawater desalination apparatus is repeated to obtain a desalinated amount. A power generation and seawater desalination system characterized by replenishing the corresponding seawater by the amount supplied from the outside.
JP2004235321A 2004-08-12 2004-08-12 Power generation and seawater desalination system Expired - Fee Related JP4261438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004235321A JP4261438B2 (en) 2004-08-12 2004-08-12 Power generation and seawater desalination system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004235321A JP4261438B2 (en) 2004-08-12 2004-08-12 Power generation and seawater desalination system

Publications (2)

Publication Number Publication Date
JP2006051451A JP2006051451A (en) 2006-02-23
JP4261438B2 true JP4261438B2 (en) 2009-04-30

Family

ID=36029246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004235321A Expired - Fee Related JP4261438B2 (en) 2004-08-12 2004-08-12 Power generation and seawater desalination system

Country Status (1)

Country Link
JP (1) JP4261438B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5403677B2 (en) * 2009-09-03 2014-01-29 太平洋セメント株式会社 Incineration main ash desalination system
JP2012046422A (en) * 2011-11-02 2012-03-08 Mitsubishi Heavy Ind Ltd Salt maker and salt making method
JP6362126B2 (en) 2013-03-11 2018-07-25 三菱重工エンジニアリング株式会社 Methanol plant and gasoline synthesis plant
CN104860364B (en) * 2015-05-25 2017-01-18 青岛理工大学 Tidal direct-driving seawater desalination and energy utilization system

Also Published As

Publication number Publication date
JP2006051451A (en) 2006-02-23

Similar Documents

Publication Publication Date Title
EP2246531A1 (en) Power plant with CO2 capture and water treatment plant
US6919000B2 (en) Diffusion driven desalination apparatus and process
US7037430B2 (en) System and method for desalination of brackish water from an underground water supply
JP4901749B2 (en) Steam driving equipment, in particular, a method of operating steam driving equipment of a power plant for generating at least electric energy and the steam driving equipment
US20090077969A1 (en) Heat Transfer Methods for Ocean Thermal Energy Conversion and Desalination
US10850210B2 (en) Production water desalinization via a reciprocal heat transfer and recovery
RU2656036C2 (en) Method and apparatus for recycling water
WO2006138516A2 (en) Air heated diffusion driven water purification system
JP2008510610A (en) MSF distillate-driven desalting process and desalting apparatus
US9540250B2 (en) Cooling tower water reclamation system and method
JP7115680B2 (en) Desalination and temperature difference power generation system
CN103806964A (en) Method and system for comprehensively utilizing steam turbine dead steam latent heat
EP2039407B1 (en) MSF desalination apparatus with heat-pipe heat dissipater
US11465924B2 (en) Hybrid process and system for recovering water
JP2005185988A (en) Seawater desalination system
CN102079552B (en) Low-temperature multi-effect evaporation seawater desalination system with falling film condenser
JP4261438B2 (en) Power generation and seawater desalination system
US11465068B2 (en) Multi-stage flash (MSF) reversal system and method
KR101323160B1 (en) Marine vertical multistage desalinator
Najafabadi Geothermal power plant condensers in the world
WO2004060812A1 (en) Diffusion driven desalination apparatus and process
KR20100109552A (en) Method and plant for the desalination of salt water using msf desalination units with a steam recirculation system
US9790154B2 (en) Methanol plant and gasoline synthesis plant
RU2363662C2 (en) Heat pump converter for salt water (versions)
KR100937450B1 (en) A seawater supplying apparatus with cooling tower for a multiple stage flashing facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4261438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150220

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees