JP4259815B2 - Method for producing high purity butyl acetate - Google Patents

Method for producing high purity butyl acetate Download PDF

Info

Publication number
JP4259815B2
JP4259815B2 JP2002165099A JP2002165099A JP4259815B2 JP 4259815 B2 JP4259815 B2 JP 4259815B2 JP 2002165099 A JP2002165099 A JP 2002165099A JP 2002165099 A JP2002165099 A JP 2002165099A JP 4259815 B2 JP4259815 B2 JP 4259815B2
Authority
JP
Japan
Prior art keywords
butyl acetate
sulfuric acid
column
boiling
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002165099A
Other languages
Japanese (ja)
Other versions
JP2004010530A (en
Inventor
牧弘 土田
憲治 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP2002165099A priority Critical patent/JP4259815B2/en
Publication of JP2004010530A publication Critical patent/JP2004010530A/en
Application granted granted Critical
Publication of JP4259815B2 publication Critical patent/JP4259815B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酢酸とn−ブタノールを原料として硫酸等の触媒の存在下に反応させ、その反応粗液から硫酸由来物質及び硫酸を分離精製することにより得られる高純度酢酸ブチルの製造方法に関する。詳しくは、イオンクロマトグラフ分析により検出される未同定の硫酸由来物質及び硫酸の合計濃度が20ppb以下の高純度酢酸ブチルを製造する方法に関する。
【0002】
【従来の技術】
酢酸ブチル(本発明では酢酸n−ブチルを示す)は、沸点124〜125℃の無色透明、果実の芳香を持つ液体で、多くの種類の物質を溶解させる、優れた溶解性を有している。従って、その用途はニトロセルロースラッカーの溶剤の他、多くの樹脂の溶剤や、合成皮革、合成繊維、合成樹脂の製造溶媒、油脂、医薬の抽出溶剤、香水や合成香料の一成分等として広く利用されている。
従来、酢酸ブチルの製造方法としては、酢酸とn−ブタノールを硫酸等の酸触媒の存在下にエステル化して得られた粗酢酸ブチルを脱低沸物蒸留塔に導入して低沸物を除去し、その缶出液を脱高沸物蒸留塔に導入してその塔頂から酢酸ブチルを留出製品として得る方法『CHEM SYSTEMS’PERP-Ethyl Acetate/Buthyl Acetate 97/98S5』等が知られている。
しかしながら、この方法では、原料であるn−ブタノールあるいはn−ブタノール中に含まれるアルコール類と硫酸が反応して、硫酸の中性エステルであるジブチル硫酸のような硫酸ジアルキルRSOやイオン解離可能なモノブチル硫酸のような硫酸モノアルキルRHSO(両者を硫酸アルキル類という)等が生成することが知られており、これらが酢酸ブチル中に混入することになる。
近年、酢酸ブチルは電材向け溶剤としての需要を伸ばしており、フォトレジストを使用した半導体製造時にトラブルの原因となる硫酸由来物質及び硫酸の低減が望まれているが、上記の方法で得られた酢酸ブチルは、純度99.5wt%以上、n−ブタノール0.50wt%以下、水分0.050wt%以下、酸分(酢酸換算)0.01wt%以下の品質を有しているものの、上記硫酸由来物質及び硫酸の除去が不十分であり、フォトレジスト等の用途には適していない。
従来、酢酸ブチルの精製方法としては、蒸留精製による方法、蒸留精製後さらにイオン交換樹脂または活性炭処理する方法(特開昭60−237043号公報)等が知られている。このようにして得られた酢酸ブチルは、純度99.5%以上、エステル価480mg−KOH/g以上、酸価0.05mg−KOH/g以下、硫酸着色20以下、蒸発残分0.005%以下、色相APHA4以下、屈折率1.392〜1.396、沸点124〜125℃、初留点120℃以上、乾点130.5℃以下、比重(20/20℃)0.879〜0.885の品質を有するが、フォトレジスト用等には不十分である。
本発明者らは、フォトレジスト用等に使用されるべき酢酸ブチル中の上記のような硫酸由来物質及び硫酸を低減するために、脱低沸蒸留後、脱高沸蒸留し、さらにイオン交換樹脂により硫酸由来物質及び硫酸を吸着除去させる方法を先に提案(特願2002−031760)した。しかし、この方法には処理設備の建設及び運転に費用がかかること、劣化したイオン交換樹脂の交換等の作業が必要であるといった問題があった。
【0003】
【発明が解決しようとする課題】
本発明の目的は、イオンクロマトグラフ分析により検出される硫酸由来物質及び硫酸の合計濃度が著しく低く、且つ、経時変化による硫酸の増加が少ない高純度酢酸ブチルの製造方法を提供することである。
【0004】
【課題を解決するための手段】
本発明者は、前記課題を達成するために鋭意検討した結果、精製工程の段階で硫酸アルキル類等が加熱されて硫酸由来物質となり製品酢酸ブチル中に混入すること、及びこの硫酸由来物質が除去されていない酢酸ブチルは、経時的に硫酸濃度が増加することを見出した。また、硫酸アルキル類等は酢酸ブチルより高沸物であるので脱低沸物蒸留塔の塔底液中に濃縮させ、脱低沸物蒸留塔からの酢酸ブチルを(缶出抜き取りでなく)サイドカット抜き取りとすることにより、脱高沸物蒸留塔に導入される硫酸アルキル類等を削減できること、及びこの硫酸アルキル類等の少ない酢酸ブチルを脱高沸物蒸留塔にて蒸留することにより、硫酸由来物質及び硫酸の合計濃度が20ppb以下の高純度酢酸ブチルを経済的に製造可能であることを見出し、本発明を完成するに至った。また、硫酸アルキル類等が含まれていても脱高沸物蒸留塔での塔内温度を低減する又は滞留時間を短縮するなどの手段で熱履歴を軽減することにより、硫酸由来物質の生成を抑制できることを見出した。特に、脱高沸物蒸留塔内の温度を低減することにより、硫酸由来物質の生成が著しく抑制され、硫酸由来物質及び硫酸の合計濃度が20ppb以下の高純度酢酸ブチルを経済的に製造可能であることを見出し、本発明を完成するに至った。
【0005】
すなわち、本発明は、「硫酸触媒の存在下、酢酸とn−ブタノールから酢酸ブチルを合成し、脱低沸蒸留後、脱高沸蒸留することにより酢酸ブチルを製造する際、主として酢酸ブチルおよび高沸点物を含む混合物を、塔頂圧力を常圧、塔頂温度を105〜115℃、塔底温度を130〜140℃、還流比を5〜15にコントロールした脱低沸物蒸留塔の側面であって脱低沸物蒸留塔への供給液の供給位置より低い位置から抜き取り、塔頂圧力を常圧、塔頂温度を124〜130℃、塔底温度を130〜135℃、還流比を0.1〜1.0にコントロールした脱高沸物蒸留塔に供給することを特徴とする高純度酢酸ブチルの製造方法」である。
【0006】
【発明の実施の形態】
以下、本発明について詳細に説明する。
原料等
本発明で原料に使用される酢酸は、特に限定されるものではなく、例えば純度99重量%以上、好ましくは純度99.5重量%以上のものであり、工業用グレードが使用できる。
本発明で原料に使用するn−ブタノールは、特に限定されるものではなく、例えば純度98重量%以上、好ましくは純度99重量%以上のものであり、工業用グレードが使用できる。
本発明でエステル化反応に使用する触媒は、硫酸である。
上記硫酸は、特に限定されるものではなく、例えば純度96重量%以上、好ましくは純度97重量%以上、さらに好ましくは純度98重量%以上のものであるが、希硫酸を供給して、所定濃度範囲に脱水しながら使用することもできる
【0007】
反応工程
以下、触媒に硫酸を使用した場合を例にして本発明を説明する。エステル化方法は特に限定されるものではなく、回分式、半回分式、または連続式のいずれでも行うことができる。連続式は槽型反応器でも管型反応器でも行うことが可能である。例えば、連続式の槽型反応器で予備反応させた後、連続式の反応蒸留塔により、蒸留塔の塔頂から酢酸ブチル/n−ブタノール/水の共沸混合物として、副生する水を系外に除去しながら反応させると効率よく製造できる。
反応蒸留塔から得られた酢酸ブチル粗液については、硫酸分をアルカリ中和し、水で洗浄した後、水分の除去を行う。
【0008】
精製工程
本発明の具体例を図1に基づいて説明する。なお、図1は主要な装置の概略のみを示している。反応系(図示せず)で得られた粗反応生成物を中和水洗し、デカンターにより大部分の水及び硫酸を分離した後の酢酸ブチル、n−ブタノール、水、硫酸及び微量の副生物を含む供給液は、ラインAを経てn−ブタノール及び水等の低沸物を除去する目的の脱低沸物蒸留塔1−1に供給される。
なお、図1において、点線は従来(たとえば、前記特願2002−031760等)行われていた方法における脱低沸物蒸留塔から缶出され、脱高沸物蒸留塔1−2へ供給される、主として酢酸ブチル及び高沸点物からなる混合物の供給ラインCである。
脱低沸物蒸留塔1−1は気液の交流多段接触機構を備えるものであれば特にその形式に制約条件は無いが、通常は設備の簡便性から塔形式の装置が選ばれる。塔の充填物はラシヒリング、インターロックサドル、ポールリング、カスケードミニリング、ネットリング等の不規則充填物、或いはメラパック、スルーザーパック、フレキシパック等の規則充填物、或いはシーブトレイ、フレキシトレイ、バルブトレイ、キャップトレイ等の棚段等から幅広く1種或いは2種以上の組合せにおいて自由に選択でき、かつこれら内容物の材質も金属、プラスチック、磁製等制限されない。
脱低沸物蒸留塔1−1は通常、常圧、塔頂温度105〜115℃、塔底温度130〜140℃、還流比5〜15で運転される。
塔頂部からは酢酸ブチルの一部、n−ブタノール、水及び副生物が留出する。塔底部からは酢酸ブチルの他に、反応系から持ち込まれる微量の硫酸、モノブチル硫酸、ジブチル硫酸等の硫酸アルキル類、希には硫酸由来物質及び副生物が缶出する。なお、本発明では、硫酸由来物質とは、未同定の物質であり、イオンクロマトグラフ分析により硫酸の直前に検出され、経時的に減少し、代わりに硫酸が増加する原因物質を指す。
塔側面からは脱高沸物蒸留塔に仕込むための酢酸ブチルが取り出される(以下、蒸留塔側面からの抜き取りをサイドカットと記す場合もある)。脱低沸物蒸留塔から取り出される酢酸ブチルの状態については、気体でも液体でもよい。その状態は特に限定されるものではないが、後の工程である脱高沸物蒸留塔1−2に導入される硫酸アルキル類等の量を低減することを目的とするには、気体状態で酢酸ブチルを取り出すことがより好ましい。一方、脱低沸物蒸留塔の運転状態を安定なものとするためには、液体状態で抜き取る方がより好ましい。
脱低沸物蒸留塔1−1から取り出された酢酸ブチルは、ラインBを経て硫酸アルキル等の高沸物を除去する目的の脱高沸物蒸留塔1−2に供給される。脱高沸物蒸留塔1−2に供給される酢酸ブチルの状態については、気体でも液体でもよい。なお、図1において、1−1−1および1−2−1はいずれもリボイラーであり、1−1−2および1−2−2はいずれもコンデンサーである。
脱低沸物蒸留塔1−1の側面からの取り出し位置は脱低沸物蒸留塔1−1への供給液の供給位置より低ければ特に制限されない。この位置が高目になると、脱高沸物蒸留塔に導入される酢酸ブチル中に含まれるn−ブタノール、水及び副生物の量が多くなり、製品酢酸ブチルの純度が低下するので、好ましくない。
逆に、この位置が低目になると、脱高沸物蒸留塔に導入される酢酸ブチル中の硫酸アルキル類等が多くなり、その除去効果が低下するので、好ましくない。
脱高沸物蒸留塔は気液の交流多段接触機構を備えるものであれば特にその形式に制約条件は無いが、通常は設備の簡便性から塔形式の装置が選ばれる。塔の充填物はラシヒリング、インターロックサドル、ポールリング、カスケードミニリング、ネットリング等の不規則充填物、或いはメラパック、スルーザーパック、フレキシパック等の規則充填物、或いはシーブトレイ、フレキシトレイ、バルブトレイ、キャップトレイ等の棚段等から幅広く1種或いは2種以上の組合せにおいて自由に選択でき、かつこれら充填物の材質も金属、プラスチック、磁製等制限されない。
脱高沸物蒸留塔は通常、常圧条件下では、脱高沸物蒸留塔の塔頂及び塔底温度はそれぞれ124〜130℃、130〜135℃である。
この範囲内で脱高沸物蒸留塔内の温度が変動しても、製品の品質などには特に影響は現れない(理論上は、より低温なほど熱履歴が軽減されるので、硫酸由来物質の発生量は減少することも考えられる)。
還流比は通常0.1〜1.0の範囲内で特に制限されないが、還流比を高くすると製品酸価が若干高くなる傾向がある。反対に低くすると、プロピオン酸ブチルなどの(比較的低分子量の)高沸点物が塔の上方にまで移動し、製品酢酸ブチルに混入するようになる。
【0009】
また、脱低沸物蒸留塔から取り出される脱高沸物蒸留塔への供給液を本発明のように、脱低沸物蒸留塔の側面からではなく、前記特願2000−031760の発明と同様に、図1における点線のように塔底から抜き取る方式を採用しても、塔頂圧力を50〜700mmHg、塔頂温度40〜120℃、塔底温度70〜133℃にコントロールすれば、硫酸由来物質および硫酸の量を低減することが可能である。
塔頂圧力、塔頂温度、塔底温度はどれも低くなるほど、脱高沸物蒸留塔での熱履歴が軽減されるようになるので、より好ましい。
従って、上記のように、脱低沸物蒸留塔の側面から取り出す方式と組みあわせれば、硫酸由来物質及び硫酸の含有率のより低い、すなわち、より品質のよい酢酸ブチルを得ることができる。
脱高沸物蒸留塔1−2からの製品酢酸ブチルの取り出し方法は、塔頂からの取り出し、或いは塔側面からのサイドカット等いずれの方法も使用できる。その方法は特に限定されるものではないが、製品酢酸ブチルに残存する低沸成分である硫酸由来物質の量を低減することを目的とするには、サイドカットで抜き取る方がより好ましい。
塔底部からは酢酸ブチルの他に、硫酸、モノブチル硫酸、ジブチル硫酸等の硫酸アルキル類及び副生物が缶出する。
【0010】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例で用いられている「部」は、特別の説明がない限り「重量部」を意味する。
[評価方法]
1.分析試料の前処理:試料となる酢酸ブチルはイオンクロマトグラフ分析の妨害成分となるので、酢酸ブチルからイオン性物質(硫酸由来物質、硫酸およびモノブチル硫酸)を水抽出して、酢酸ブチルの含まれない水溶液を調製する。具体的には、試料となる酢酸ブチル50ミリリットルとイオン交換水50ミリリットルを分液漏斗に入れ、3分間振とう、2分間静置、分液した後、下層水をイオン交換水で洗浄した100ミリリットルビーカーに採取し、採取した下層水が酢酸ブチルの臭いがしなくなるまで、例えば、30℃の恒温槽内で3分間振とうした水溶液を調製する。
2.イオンクロマトグラフ分析:上記1の前処理方法により得られた水溶液をイオンクロマトグラフにて分析し、濃度既知の硫酸ナトリウムの標準液と比較することにより、硫酸由来物質の濃度を算出する。この分析での硫酸イオンSO4 2-の検出限界は1ppb以下である。硫酸由来物質の感度係数は、硫酸由来物質を60℃、90時間加熱処理して硫酸イオンにまで完全に変化させ、硫酸イオンの増量から求めた。本実施例では、硫酸由来物質の硫酸イオン換算濃度[ppb]=硫酸由来物質のピーク面積/333.6である。
イオンクロマトグラフ分析の条件は以下の通りである。
装置:DX−320(ダイオネクス製)
検出器:電気伝導度計
プレカラム:IonPacAG17(ダイオネクス製)
分離カラム:IonPacAS17(ダイオネクス製)
恒温槽温度:30℃
溶離液:25ミリモルKOH水溶液
溶離液流量:1.5ミリリットル/分
試料注入量:10μリットル
3.ガスクロマトグラフ分析:蒸留塔の仕込液及び各留分をガスクロマトグラフにて分析し、濃度既知のジブチル硫酸で作成した検量線を元にして、ピーク面積から絶対検量線法にて試料中のジブチル硫酸濃度を算出する。
ガスクロマトグラフ分析の条件は以下の通りである。
装置:HP6890(ヒューレットパッカード製)
検出器:FID
カラム:HP5(60m×0.32mm×1.0μm)(ヒューレットパッカード製)
昇温速度:100℃で10分保持→5℃/分で昇温→230℃で14分保持
Heキャリア:2.4ミリリットル/分、22.5psi
試料注入量:1μリットル
4.経時変化試験:脱高沸物蒸留塔の塔頂から留出した酢酸ブチルを褐色の広口瓶に入れ、気相部を窒素シールした後密栓した試料を、25[℃]に設定した恒温槽に3ヶ月間保持し、イオンクロマトグラフ分析及びガスクロマトグラフ分析を行った。
【0011】
[実施例1〜2、比較例1]
図1に示されるフローシートに従って本発明を説明する。原料として、酢酸100部、n−ブタノール124部、触媒として硫酸1.7部を槽型反応器(図示せず)に仕込んだ。槽型反応器を温度95〜105℃、圧力760mmHgに、1時間保持した。槽型反応器から取り出した液を反応蒸留塔(図示せず)に供給し、エステル化反応により生成する水を塔頂より共沸により除去しながら反応を完結させた。反応蒸留塔は、塔頂温度95〜105℃、塔底温度125〜135℃、塔頂圧力760mmHgに保持した。
ここでは、仕込み液量100部に対して水、n−ブタノール及び低沸点物が塔頂より14部留出された。
塔底からは缶出液として、酢酸ブチル、硫酸、未反応の酢酸及び高沸点物が86部取り出された。
反応蒸留塔の缶出液は、中和洗浄槽(図示せず)に仕込まれ、水酸化ナトリウム水溶液により、硫酸及び未反応の酢酸を中和し、高沸点物の一部を水酸化ナトリウムにより分解させた後、静置分液された。中和洗浄槽へは、缶出液100部に対して1部の水酸化ナトリウム及び50部の水が仕込まれた。中和洗浄槽への仕込み液全量100部に対して、硫酸を除去された酢酸ブチル、高沸点物の残り及び水酸化ナトリウムによる分解により生じた低沸点物の一部が66部、上層に取り出された。中和により生じた硫酸塩、酢酸塩及び水酸化ナトリウムによる分解により生じた低沸点物の一部を含む水が34部、下層に排出された。
【0012】
<実施例1(気体サイドカット)>
中和洗浄槽の上層液を分析した結果、硫酸由来物質濃度は2ppb、硫酸イオン濃度は26ppb、モノブチル硫酸濃度は360ppb、ジブチル硫酸濃度は780ppmであった。
段数40段の多孔板塔からなる内径30mmの脱低沸物蒸留塔1−1の下から30段目に上層液100部を仕込み、塔内が温度110〜130℃、圧力760mmHg、還流比10となるように保持した。
これにより、塔頂液1として低沸点物及び酢酸ブチルの一部が塔頂より5部排出された。脱低沸物蒸留塔1−1の塔底からは、塔底液1として酢酸ブチル及び硫酸アルキル類等の高沸点物が5部排出された。
脱低沸物蒸留塔1−1の下から5段目の棚からは、サイドカット気体1として酢酸ブチル及び高沸点物が90部取り出された。
サイドカット気体1の凝縮液を分析した結果、硫酸由来物質濃度は6ppb、硫酸イオン濃度は12ppb、モノブチル硫酸濃度は1ppb以下、ジブチル硫酸濃度は7ppmであった。(表1)
段数30段の多孔板塔からなる内径30[mm]の脱高沸物蒸留塔1−2の下から3段目に、上記サイドカット気体1の凝縮液を100部仕込み、塔内が温度124〜135℃、圧力760mmHg、還流比0.5となるように保持した。これにより、塔底液2として高沸点物及び酢酸ブチルの一部が塔底より5部排出された。
脱高沸物蒸留塔1−2の塔頂からは、塔頂液2として酢酸ブチルが95部留出された。
上記方法により製造された酢酸ブチルについて、製造直後と製造3ヶ月後イオンクロマトグラフ及びガスクロマトグラフにより、硫酸等の分析を行った。結果を表2に示す。製造直後の塔頂液2を分析した結果、硫酸由来物質濃度は7ppb、硫酸イオン濃度は2ppb、モノブチル硫酸濃度は1ppb以下、ジブチル硫酸濃度は1ppm以下であった。製造3ヶ月後においても、硫酸由来物質濃度は検出限界以下であり、硫酸イオン濃度は10ppbであった。
【0013】
<実施例2(液サイドカット)>
段数40段の多孔板塔からなる内径30mmの脱低沸物蒸留塔1−1の下から30段目に、実施例1記載の上層液100部を仕込み、塔内が温度110〜130℃、圧力760mmHg、還流比10となるように保持した。
これにより、塔頂液1として低沸点物及び酢酸ブチルの一部が塔頂より5部排出された。
脱低沸物蒸留塔1−1の塔底からは、塔底液1として酢酸ブチル及び硫酸アルキル類等の高沸点物が5部排出された。
脱低沸物蒸留塔1−1の下から5段目の棚からは、サイドカット液体1として酢酸ブチル及び高沸点物が90部取り出された。
サイドカット液体1を分析した結果、硫酸由来物質濃度は1ppb以下、硫酸イオン濃度は40ppb、モノブチル硫酸濃度は95ppb、ジブチル硫酸濃度は180ppmであった。(表1)
段数30段の多孔板塔からなる内径30mmの脱高沸物蒸留塔1−2の下から3段目に、上記サイドカット液体1を100部仕込み、塔内が温度124〜135℃、圧力760mmHg、還流比0.5となるように保持した。これにより、塔底液2として高沸点物及び酢酸ブチルの一部が塔底より5部排出された。
脱高沸物蒸留塔1−2の塔頂からは、塔頂液2として酢酸ブチルが95部留出された。
上記方法により製造された酢酸ブチルについて、製造直後と製造3ヶ月後イオンクロマトグラフ及びガスクロマトグラフにより、硫酸等の分析を行った。製造直後の塔頂液2を分析した結果、硫酸由来物質濃度は8ppb、硫酸イオン濃度は7ppb、モノブチル硫酸濃度は1ppb以下、ジブチル硫酸濃度は1ppm以下であった。製造3ヶ月後においても、硫酸由来物質濃度は検出限界以下であり、硫酸イオン濃度は15ppbであった。(表2)
【0014】
<比較例1(図1のラインCによる缶出抜き取り)>
段数40段の多孔板塔からなる内径30[mm]の脱低沸物蒸留塔1−1の下から30段目に、実施例1記載の上層液100部を仕込み、塔内が温度110〜130[℃]、圧力760[mmHg]、還流比10となるように保持した。
これにより、塔頂液1として低沸点物及び酢酸ブチルの一部が塔頂より5部排出された。
脱低沸物蒸留塔1−1の塔底からは、塔底液1として酢酸ブチル及び硫酸アルキル類等の高沸点物が95部取り出された。
塔底液1を分析した結果、硫酸由来物質濃度は24ppb、硫酸イオン濃度は428ppb、モノブチル硫酸濃度は435ppb、ジブチル硫酸濃度は1276ppmであった。(表1)
段数30段の多孔板塔からなる内径30[mm]の脱高沸物蒸留塔1−2の下から3段目に、上記塔底液1を100部仕込み、塔内が温度124〜135[℃]、圧力760[mmHg]、還流比0.5となるように保持した。
これにより、塔底液2として高沸点物及び酢酸ブチルの一部が塔底より5部排出された。
脱高沸物蒸留塔1−2の塔頂からは、塔頂液2として酢酸ブチルが95部留出された。
上記方法により製造された酢酸ブチルについて、製造直後と製造3ヶ月後イオンクロマトグラフ及びガスクロマトグラフにより、硫酸等の分析を行った。製造直後の塔頂液2を分析した結果、硫酸由来物質濃度は460ppb、硫酸イオン濃度は27ppb、モノブチル硫酸濃度は1ppb以下、ジブチル硫酸濃度は1ppm以下であった。製造3ヶ月後においては、硫酸由来物質濃度は検出限界以下となり、硫酸イオン濃度が483ppbに増加していた。(表2)
これら蒸留において、脱低沸物蒸留塔から取り出し、脱高沸物蒸留塔に仕込んだ酢酸ブチルの分析結果を、以下の表1に示す。
【0015】
【表1】

Figure 0004259815
【0016】
これら蒸留において、脱高沸物蒸留塔から留出した酢酸ブチルの分析結果を、以下の表2に示す。
【0017】
【表2】
Figure 0004259815
【0018】
[参考例1、2、比較例2]
酢酸ブチルの合成については、実施例1および2と同様に仕込み、合成、中和等を行ない上層液を得た。
参考例1(塔底温度100℃)>40段の多孔板塔からなる内径30mmの脱低沸物蒸留塔1−1の下から30段目に上層液100部を仕込み、塔内が温度110〜130℃、圧力760mmHg、還流比10となるように保持した。
これにより、塔頂液1として低沸点物及び酢酸ブチルの一部が塔頂より5部排出された。
脱低沸物蒸留塔1−1の塔底からは、塔底液1として酢酸ブチル及び硫酸アルキル類等の高沸点物が95部取り出された。塔底液1を分析した結果、硫酸由来物質濃度は6ppb、硫酸イオン濃度は513ppb、モノブチル硫酸濃度は317ppb、ジブチル硫酸濃度は968ppmであった。
段数30段の多孔板塔からなる内径30mmの脱高沸物蒸留塔1−2の下から3段目に、上記塔底液1を100部仕込み(図1のラインC)、塔内が温度92〜100℃、圧力280mmHg、還流比0.5となるように保持した。これにより、塔底液2として高沸点物及び酢酸ブチルの一部が塔底より5部排出された。
脱高沸物蒸留塔1−2の塔頂からは、塔頂液2として酢酸ブチルが95部留出された。
上記方法により製造された酢酸ブチルについて、製造直後と製造3ヶ月後、イオンクロマトグラフ及びガスクロマトグラフにより、硫酸等の分析を行った。製造直後の塔頂液2を分析した結果、硫酸由来物質濃度は12ppb、硫酸イオン濃度は3ppb、モノブチル硫酸濃度は1ppb以下、ジブチル硫酸濃度は1ppm以下であった。製造3ヶ月後においても、硫酸由来物質濃度は検出限界以下であり、硫酸イオン濃度は16ppbであった。(表3)
【0019】
参考例2(塔底温度76℃…実験からの推算により、硫酸由来成分の発生が0になる温度)>
段数30段の多孔板塔からなる内径30mmの脱高沸物蒸留塔1−2の下から3段目に、参考例1記載の塔底液1を100部仕込み(図1のラインC)、塔内が温度65〜76℃、圧力115mmHg、還流比0.5となるように保持した。これにより、塔底液2として高沸点物及び酢酸ブチルの一部が塔底より5部排出された。
脱高沸物蒸留塔1−2の塔頂からは、塔頂液2として酢酸ブチルが95部留出された。
上記方法により製造された酢酸ブチルについて、製造直後と製造3ヶ月後、イオンクロマトグラフ及びガスクロマトグラフにより、硫酸等の分析を行った。製造直後の塔頂液2を分析した結果、硫酸由来物質濃度は1ppb、硫酸イオン濃度は2ppb、モノブチル硫酸濃度は1ppb以下、ジブチル硫酸濃度は1ppm以下であった。製造3ヶ月後においても、硫酸由来物質濃度は検出限界以下であり、硫酸イオン濃度は3ppbであった。(表3)
【0020】
<比較例2(従来の塔底温度(常圧)での蒸留)>
段数30段の多孔板塔からなる内径30mmの脱高沸物蒸留塔1−2の下から3段目に、実施例3記載の塔底液1を100部仕込み(図1のラインC)、塔内が温度124〜135℃、圧力760mmHg、還流比0.5となるように保持した。これにより、塔底液2として高沸点物及び酢酸ブチルの一部が塔底より5部排出された。
脱高沸物蒸留塔1−2の塔頂からは、塔頂液2として酢酸ブチルが95部留出された。
上記方法により製造された酢酸ブチルについて、製造直後と製造3ヶ月後、イオンクロマトグラフ及びガスクロマトグラフにより、硫酸等の分析を行った。製造直後の塔頂液2を分析した結果、硫酸由来物質濃度は322ppb、硫酸イオン濃度は17ppb、モノブチル硫酸濃度は1ppb以下、ジブチル硫酸濃度は1ppm以下であった。製造3ヶ月後においては、硫酸由来物質濃度は検出限界以下となり、硫酸イオン濃度が325ppbに増加していた。(表3)
これら蒸留における脱高沸物蒸留塔から留出した酢酸ブチルの分析結果を、以下の表3に示す。
【0021】
【表3】
Figure 0004259815
【0022】
【発明の効果】
本発明によれば、イオンクロマトグラフ分析により検出される硫酸由来物質および硫酸の合計濃度が20ppb以下の高純度酢酸ブチルが得られた。
【図面の簡単な説明】
【図1】本発明の製造方法のフローシートである。
【符号の説明】
1−1:脱低沸物蒸留塔
1−2:脱高沸物蒸留塔
1−1−1、1−2−1:リボイラー
1−1−2、1−2−2:コンデンサー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing high-purity butyl acetate obtained by reacting acetic acid and n-butanol as raw materials in the presence of a catalyst such as sulfuric acid, and separating and purifying sulfuric acid-derived substances and sulfuric acid from the reaction crude liquid. Specifically, the present invention relates to a method for producing high-purity butyl acetate in which the total concentration of unidentified sulfuric acid-derived substances and sulfuric acid detected by ion chromatographic analysis is 20 ppb or less.
[0002]
[Prior art]
Butyl acetate (showing n-butyl acetate in the present invention) is a colorless and transparent liquid having a boiling point of 124 to 125 ° C., and has a fruity fragrance, and has excellent solubility for dissolving many kinds of substances. . Therefore, in addition to nitrocellulose lacquer solvents, it is widely used as a solvent for many resins, synthetic leather, synthetic fibers, synthetic resin production solvents, fats and oils, pharmaceutical extraction solvents, and a component of perfumes and synthetic fragrances. Has been.
Conventionally, as a method for producing butyl acetate, crude butyl acetate obtained by esterification of acetic acid and n-butanol in the presence of an acid catalyst such as sulfuric acid is introduced into a low-boiling distillation column to remove low-boiling substances. In addition, there are known methods such as “CHEM SYSTEMS'PERP-Ethyl Acetate / Buthyl Acetate 97 / 98S5” that introduces the effluent into a high boiling distillation column and obtains butyl acetate as a distillate from the top of the column. Yes.
However, in this method, n-butanol as a raw material or an alcohol contained in n-butanol reacts with sulfuric acid to produce a dialkyl sulfate R such as dibutyl sulfate as a neutral ester of sulfuric acid.2SO4And monoalkyl sulfate RHSO such as monobutyl sulfate capable of ion dissociation4(Both are referred to as alkyl sulfates) and the like are known to be produced, and these are mixed in butyl acetate.
In recent years, butyl acetate has been increasingly demanded as a solvent for electrical materials, and it is desired to reduce sulfuric acid-derived substances and sulfuric acid that cause troubles in semiconductor manufacturing using photoresists. Although butyl acetate has a purity of 99.5 wt% or more, n-butanol 0.50 wt% or less, moisture 0.050 wt% or less, and acid content (acetic acid equivalent) 0.01 wt% or less, it is derived from the above sulfuric acid. Insufficient removal of substances and sulfuric acid is not suitable for applications such as photoresists.
Conventionally, as a purification method of butyl acetate, a method by distillation purification, a method of further treating with ion exchange resin or activated carbon after distillation purification (Japanese Patent Laid-Open No. 60-237043), and the like are known. The butyl acetate thus obtained has a purity of 99.5% or more, an ester value of 480 mg-KOH / g or more, an acid value of 0.05 mg-KOH / g or less, sulfuric acid coloring of 20 or less, and an evaporation residue of 0.005%. Hereinafter, hue APHA 4 or less, refractive index 1.392 to 1.396, boiling point 124 to 125 ° C., initial boiling point 120 ° C. or more, dry point 130.5 ° C. or less, specific gravity (20/20 ° C.) 0.879 to 0. Although it has a quality of 885, it is insufficient for a photoresist or the like.
In order to reduce sulfuric acid-derived substances and sulfuric acid as described above in butyl acetate to be used for photoresists and the like, the present inventors perform de-low boiling distillation, de-high boiling distillation, and further ion exchange resins. Previously proposed a method for adsorbing and removing sulfuric acid-derived substances and sulfuric acid (Japanese Patent Application No. 2002-031760). However, this method has a problem that it costs money for the construction and operation of the treatment facility, and requires work such as replacement of a deteriorated ion exchange resin.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing high-purity butyl acetate in which the total concentration of sulfuric acid-derived substances and sulfuric acid detected by ion chromatographic analysis is remarkably low, and the increase in sulfuric acid due to changes over time is small.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that alkyl sulfates and the like are heated in the purification process to become sulfuric acid-derived substances and are mixed into the product butyl acetate, and this sulfuric acid-derived substances are removed. It has been found that untreated butyl acetate increases the sulfuric acid concentration over time. In addition, alkyl sulfates are higher in boiling point than butyl acetate, so they are concentrated in the bottom liquid of the low-boiling distillation column, and the butyl acetate from the low-boiling distillation column is not removed from the side. By removing the cut, it is possible to reduce alkyl sulfates and the like introduced into the dehigh-boiling distillation column, and distilling butyl acetate containing a small amount of the alkyl sulfates in the de-high-boiling distillation column, It has been found that high-purity butyl acetate having a total concentration of the derived substance and sulfuric acid of 20 ppb or less can be produced economically, and the present invention has been completed. In addition, even if alkyl sulfates are included, the production of sulfuric acid-derived substances can be reduced by reducing the thermal history by means such as reducing the temperature in the high boiling distillation column or shortening the residence time. It was found that it can be suppressed. In particular, by reducing the temperature in the dehigh-boiling distillation column, the production of sulfuric acid-derived substances is remarkably suppressed, and high-purity butyl acetate having a total concentration of sulfuric acid-derived substances and sulfuric acid of 20 ppb or less can be produced economically. As a result, the present invention has been completed.
[0005]
  That is, the present invention describes that “when butyl acetate is produced by synthesizing butyl acetate from acetic acid and n-butanol in the presence of a sulfuric acid catalyst, and delow-boiling distillation followed by de-high boiling distillation, Mixtures containing boiling productsThe column top pressure was controlled at normal pressure, the column top temperature was 105-115 ° C., the column bottom temperature was 130-140 ° C., and the reflux ratio was controlled at 5-15.Extracted from the side of the low-boiling distillation column and lower than the supply position of the feed liquid to the low-boiling distillation column,The top pressure was controlled at normal pressure, the top temperature was 124-130 ° C, the bottom temperature was 130-135 ° C, and the reflux ratio was controlled at 0.1-1.0.A process for producing high-purity butyl acetate, which is supplied to a dehigh boiling product distillation column.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, the present invention will be described in detail.
Raw materials, etc.
  The acetic acid used as a raw material in the present invention is not particularly limited, and has, for example, a purity of 99% by weight or more, preferably a purity of 99.5% by weight or more, and an industrial grade can be used.
  The n-butanol used as a raw material in the present invention is not particularly limited. For example, the purity is 98% by weight or more, preferably 99% by weight or more, and an industrial grade can be used.
  The catalyst used in the esterification reaction in the present inventionMedium, Sulfuric acidIt is.
  The sulfuric acid is not particularly limited. For example, the purity is 96% by weight or more, preferably 97% by weight or more, and more preferably 98% by weight or more. Can be used while dehydrating to the range.
[0007]
Reaction process
Hereinafter, the present invention will be described with reference to the case where sulfuric acid is used as a catalyst. The esterification method is not particularly limited, and can be carried out by any of batch, semi-batch, and continuous methods. The continuous type can be carried out in either a tank reactor or a tube reactor. For example, after pre-reacting in a continuous tank reactor, water produced as a by-product is converted into a butyl acetate / n-butanol / water azeotrope from the top of the distillation column by a continuous reactive distillation column. If it is made to react while removing outside, it can manufacture efficiently.
About the butyl acetate crude liquid obtained from the reactive distillation tower, the sulfuric acid content is neutralized with alkali, washed with water, and then the water is removed.
[0008]
Purification process
A specific example of the present invention will be described with reference to FIG. FIG. 1 shows only the outline of the main apparatus. The crude reaction product obtained in the reaction system (not shown) is washed with neutralized water, and most of the water and sulfuric acid are separated by a decanter, and then butyl acetate, n-butanol, water, sulfuric acid and a small amount of by-products are removed. The feed liquid that is contained is supplied via line A to a delow boiling product distillation column 1-1 for the purpose of removing low boiling materials such as n-butanol and water.
In FIG. 1, a dotted line is taken out from the low-boiling distillation column in the conventional method (for example, the above-mentioned Japanese Patent Application No. 2002-031760) and supplied to the high-boiling distillation column 1-2. , A feed line C for a mixture consisting mainly of butyl acetate and high boilers.
There are no particular restrictions on the type of the low-boiling distillation column 1-1 provided that it has a gas-liquid AC multistage contact mechanism, but a column-type apparatus is usually selected from the standpoint of facility simplicity. Tower packing is irregular packing such as Raschig ring, interlock saddle, pole ring, cascade mini-ring, net ring, etc., or regular packing such as melapack, sulzer pack, flexipack, or sieve tray, flexi tray, valve tray From a shelf such as a cap tray, etc., one or a combination of two or more can be freely selected, and the material of these contents is not limited to metal, plastic, magnetic, etc.
The low-boiling distillation column 1-1 is usually operated at normal pressure, a column top temperature of 105 to 115 ° C, a column bottom temperature of 130 to 140 ° C, and a reflux ratio of 5 to 15.
A part of butyl acetate, n-butanol, water and by-products are distilled from the top of the column. In addition to butyl acetate, trace amounts of sulfuric acid such as sulfuric acid, monobutyl sulfuric acid and dibutyl sulfuric acid, and rarely sulfuric acid-derived substances and by-products are taken out from the bottom of the column. In the present invention, the sulfuric acid-derived substance is an unidentified substance, which is detected just before sulfuric acid by ion chromatographic analysis, decreases with time, and instead indicates a causative substance that increases sulfuric acid.
Butyl acetate to be charged into the deboiling distillation column is taken out from the side of the column (hereinafter, extraction from the side of the distillation column may be referred to as side cut). The state of butyl acetate taken out from the low-boiling distillation column may be gas or liquid. Although the state is not particularly limited, in order to reduce the amount of alkyl sulfates and the like introduced into the dehigher boiling distillation column 1-2, which is a subsequent step, It is more preferable to take out butyl acetate. On the other hand, in order to stabilize the operation state of the low-boiling product distillation column, it is more preferable to extract in a liquid state.
The butyl acetate taken out from the low-boiling distillation column 1-1 is supplied via a line B to a high-boiling distillation column 1-2 for the purpose of removing high boiling materials such as alkyl sulfate. The state of butyl acetate supplied to the deboiling distillation column 1-2 may be gas or liquid. In FIG. 1, 1-1-1 and 1-2-1 are both reboilers, and 1-1-2 and 1-2-2 are both capacitors.
The position for taking out from the side surface of the low-boiling distillation column 1-1 is not particularly limited as long as it is lower than the supply position of the supply liquid to the low-low boiling distillation column 1-1. When this position becomes high, the amount of n-butanol, water and by-products contained in the butyl acetate introduced into the dehigh-boiling distillation column is increased, and the purity of the product butyl acetate is lowered, which is not preferable. .
On the other hand, if this position is low, the amount of alkyl sulfates in the butyl acetate introduced into the dehigh-boiling distillation column increases, and the removal effect is reduced, which is not preferable.
There are no particular restrictions on the type of the deboiling distillation column provided that it has a gas-liquid AC multistage contact mechanism, but a column-type apparatus is usually selected because of the simplicity of the equipment. Tower packing is irregular packing such as Raschig ring, interlock saddle, pole ring, cascade mini-ring, net ring, etc., or regular packing such as melapack, sulzer pack, flexipack, or sieve tray, flexi tray, valve tray In addition, it can be freely selected from one or a combination of two or more types from a shelf such as a cap tray, and the material of these fillers is not limited to metal, plastic, magnetic, etc.
In the high-boiling distillation column, normally, the top and bottom temperatures of the high-boiling distillation column are 124 to 130 ° C. and 130 to 135 ° C., respectively, under normal pressure conditions.
Even if the temperature in the deboiling distillation column fluctuates within this range, there is no particular effect on the quality of the product (theoretically, the lower the temperature, the lesser the heat history, so sulfuric acid-derived substances) It is also possible that the amount of generated will decrease).
The reflux ratio is usually not particularly limited within the range of 0.1 to 1.0, but if the reflux ratio is increased, the product acid value tends to be slightly higher. On the contrary, if it is lowered, high boiling point substances (relatively low molecular weight) such as butyl propionate will move to the top of the column and become mixed into the product butyl acetate.
[0009]
Further, as in the present invention, the feed solution to the dehigh boiling product distillation column taken out from the low low boiling product distillation column is not from the side of the delow boiling product distillation column, but is the same as the invention of the aforementioned Japanese Patent Application No. 2000-031760. In addition, even if the method of extracting from the bottom of the tower as shown by the dotted line in FIG. 1 is adopted, if the top pressure is controlled to 50 to 700 mmHg, the top temperature is 40 to 120 ° C., and the bottom temperature is 70 to 133 ° C., it is derived from sulfuric acid. It is possible to reduce the amount of material and sulfuric acid.
The lower the column top pressure, the column top temperature, and the column bottom temperature are more preferable, because the thermal history in the dehydroboiling distillation column is reduced.
Therefore, as described above, when combined with the method of taking out from the side of the low-boiling distillation column, butyl acetate having a lower content of sulfuric acid-derived material and sulfuric acid, that is, higher quality can be obtained.
As a method for taking out product butyl acetate from the deboiling distillation column 1-2, any method such as taking out from the top of the column or side-cutting from the side of the column can be used. The method is not particularly limited, but in order to reduce the amount of sulfuric acid-derived substance that is a low-boiling component remaining in the product butyl acetate, it is more preferable to extract by side cut.
In addition to butyl acetate, alkyl sulfates such as sulfuric acid, monobutyl sulfuric acid and dibutyl sulfuric acid and by-products are taken out from the bottom of the column.
[0010]
【Example】
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. The “part” used in the examples means “part by weight” unless otherwise specified.
[Evaluation methods]
1. Pretreatment of analytical sample: Since butyl acetate as a sample is an interference component for ion chromatographic analysis, ionic substances (sulfuric acid-derived substances, sulfuric acid and monobutyl sulfuric acid) are extracted from butyl acetate with water, and butyl acetate is contained. Prepare no aqueous solution. Specifically, 50 mL of butyl acetate as a sample and 50 mL of ion exchange water were placed in a separatory funnel, shaken for 3 minutes, allowed to stand for 2 minutes and separated, and then the lower layer water was washed with ion exchange water. The sample is collected in a milliliter beaker, and an aqueous solution shaken for 3 minutes in a thermostatic bath at 30 ° C., for example, is prepared until the collected lower layer water does not smell of butyl acetate.
2. Ion chromatographic analysis: The concentration of sulfuric acid-derived substance is calculated by analyzing the aqueous solution obtained by the above pretreatment method 1 with an ion chromatograph and comparing it with a standard solution of sodium sulfate of known concentration. Sulfate ion SO in this analysisFour 2-The detection limit is 1 ppb or less. The sensitivity coefficient of the sulfuric acid-derived substance was obtained from the increase in the sulfate ion by heat-treating the sulfuric acid-derived substance at 60 ° C. for 90 hours to completely change it to sulfate ion. In this example, the sulfate ion equivalent concentration [ppb] of the sulfuric acid-derived substance = peak area of the sulfuric acid-derived substance / 333.6.
The conditions for ion chromatographic analysis are as follows.
Device: DX-320 (manufactured by Dionex)
Detector: Electric conductivity meter
Precolumn: IonPacAG17 (manufactured by Dionex)
Separation column: IonPacAS17 (Dionex)
Thermostatic bath temperature: 30 ° C
Eluent: 25 mmol KOH aqueous solution
Eluent flow rate: 1.5 ml / min
Sample injection volume: 10 μl
3. Gas chromatographic analysis: Analyzing the charged solution and each fraction of the distillation column with a gas chromatograph, and using a calibration curve created with dibutyl sulfate of known concentration, dibutyl sulfate in the sample from the peak area using the absolute calibration curve method Calculate the concentration.
The conditions for gas chromatographic analysis are as follows.
Device: HP6890 (manufactured by Hewlett-Packard)
Detector: FID
Column: HP5 (60 m × 0.32 mm × 1.0 μm) (manufactured by Hewlett Packard)
Temperature increase rate: Hold at 100 ° C for 10 minutes → Increase at 5 ° C / minute → Hold at 230 ° C for 14 minutes
He carrier: 2.4 ml / min, 22.5 psi
Sample injection volume: 1 μl
4). Temporal change test: Put butyl acetate distilled from the top of the deboiling tower into a brown jar, seal the gas phase with nitrogen, and seal the sample in a thermostat set at 25 [° C]. The sample was held for 3 months and subjected to ion chromatography analysis and gas chromatography analysis.
[0011]
[Examples 1 and 2, Comparative Example 1]
The present invention will be described with reference to the flow sheet shown in FIG. As raw materials, 100 parts of acetic acid, 124 parts of n-butanol, and 1.7 parts of sulfuric acid as a catalyst were charged into a tank reactor (not shown). The tank reactor was maintained at a temperature of 95 to 105 ° C. and a pressure of 760 mmHg for 1 hour. The liquid taken out from the tank reactor was supplied to a reactive distillation column (not shown), and the reaction was completed while removing water generated by the esterification reaction from the top of the column by azeotropic distillation. The reactive distillation column was maintained at a column top temperature of 95 to 105 ° C., a column bottom temperature of 125 to 135 ° C., and a column top pressure of 760 mmHg.
Here, 14 parts of water, n-butanol and low-boiling substances were distilled from the top of the column with respect to 100 parts of the charged liquid.
From the bottom of the tower, 86 parts of butyl acetate, sulfuric acid, unreacted acetic acid and high-boiling substances were taken out as bottoms.
The bottoms of the reactive distillation column are charged into a neutralization washing tank (not shown), neutralized with sulfuric acid and unreacted acetic acid with an aqueous sodium hydroxide solution, and a portion of the high-boiling products with sodium hydroxide. After decomposing, it was subjected to stationary separation. The neutralization washing tank was charged with 1 part of sodium hydroxide and 50 parts of water with respect to 100 parts of the bottoms. 66 parts of butyl acetate from which sulfuric acid has been removed, the remaining high-boiling substances and a part of low-boiling substances generated by decomposition with sodium hydroxide are taken out to the upper layer with respect to 100 parts of the total amount of the liquid charged into the neutralization washing tank. It was. 34 parts of water containing a part of low-boiling substances generated by decomposition with sulfate, acetate and sodium hydroxide generated by neutralization were discharged to the lower layer.
[0012]
<Example 1 (gas side cut)>
As a result of analyzing the upper layer solution of the neutralization washing tank, the sulfuric acid-derived substance concentration was 2 ppb, the sulfate ion concentration was 26 ppb, the monobutyl sulfate concentration was 360 ppb, and the dibutyl sulfate concentration was 780 ppm.
100 parts of the upper layer liquid is charged to the 30th stage from the bottom of the low-boiling distillation tower 1-1 having an inner diameter of 30 mm consisting of a perforated plate tower having 40 stages, the temperature in the tower is 110 to 130 ° C., the pressure is 760 mmHg, the reflux ratio is 10 Was held to be.
Thereby, 5 parts of low boiling point substances and a part of butyl acetate were discharged from the top of the tower as the top liquid 1. From the bottom of the low-boiling distillation column 1-1, 5 parts of high-boiling substances such as butyl acetate and alkyl sulfates were discharged as the bottom liquid 1.
90 parts of butyl acetate and high-boiling substances were taken out as a side cut gas 1 from the bottom shelf at the bottom of the low-boiling distillation column 1-1.
As a result of analyzing the condensate of the side cut gas 1, the concentration of the sulfuric acid-derived substance was 6 ppb, the sulfate ion concentration was 12 ppb, the monobutyl sulfate concentration was 1 ppb or less, and the dibutyl sulfate concentration was 7 ppm. (Table 1)
100 parts of the condensate of the above-mentioned sidecut gas 1 is charged to the third stage from the bottom of the dehydroboiling distillation tower 1-2 having an inner diameter of 30 [mm] consisting of a perforated plate tower having 30 stages, and the temperature in the tower is 124. It was kept at ˜135 ° C., a pressure of 760 mmHg, and a reflux ratio of 0.5. Thereby, 5 parts of high boilers and a part of butyl acetate were discharged from the bottom of the tower bottom liquid 2.
95 parts of butyl acetate was distilled as a top liquid 2 from the top of the deboiling column 1-2.
About the butyl acetate manufactured by the said method, the sulfuric acid etc. were analyzed by the ion chromatograph and the gas chromatograph immediately after manufacture and 3 months after manufacture. The results are shown in Table 2. As a result of analyzing the top liquid 2 immediately after production, the concentration of the sulfuric acid-derived substance was 7 ppb, the sulfate ion concentration was 2 ppb, the monobutyl sulfate concentration was 1 ppb or less, and the dibutyl sulfate concentration was 1 ppm or less. Even after 3 months of production, the sulfuric acid-derived substance concentration was below the detection limit, and the sulfate ion concentration was 10 ppb.
[0013]
<Example 2 (liquid side cut)>
100 parts of the upper layer liquid described in Example 1 is charged in the 30th stage from the bottom of the 30-mm inner diameter low-boiling distillation tower 1-1 consisting of a perforated plate tower having 40 stages, and the temperature in the tower is 110 to 130 ° C. The pressure was maintained at 760 mmHg and a reflux ratio of 10.
Thereby, 5 parts of low boiling point substances and a part of butyl acetate were discharged from the top of the tower as the top liquid 1.
From the bottom of the low-boiling distillation column 1-1, 5 parts of high-boiling substances such as butyl acetate and alkyl sulfates were discharged as the bottom liquid 1.
90 parts of butyl acetate and high-boiling substances were taken out as the side cut liquid 1 from the bottom shelf at the bottom of the low-boiling distillation column 1-1.
As a result of analyzing the side cut liquid 1, the sulfuric acid-derived substance concentration was 1 ppb or less, the sulfate ion concentration was 40 ppb, the monobutyl sulfate concentration was 95 ppb, and the dibutyl sulfate concentration was 180 ppm. (Table 1)
100 parts of the above-mentioned side cut liquid 1 is charged into the third stage from the bottom of the 30 mm inner diameter dehigh boiling boiling column 1-2 consisting of a perforated plate tower having 30 stages, and the inside of the tower is at a temperature of 124 to 135 ° C. and a pressure of 760 mmHg. The reflux ratio was kept at 0.5. Thereby, 5 parts of high boilers and a part of butyl acetate were discharged from the bottom of the tower bottom liquid 2.
95 parts of butyl acetate was distilled as a top liquid 2 from the top of the deboiling column 1-2.
About the butyl acetate manufactured by the said method, the sulfuric acid etc. were analyzed by the ion chromatograph and the gas chromatograph immediately after manufacture and 3 months after manufacture. As a result of analyzing the column top liquid 2 immediately after production, the concentration of the sulfuric acid-derived substance was 8 ppb, the sulfate ion concentration was 7 ppb, the monobutyl sulfate concentration was 1 ppb or less, and the dibutyl sulfate concentration was 1 ppm or less. Even after 3 months of production, the sulfuric acid-derived substance concentration was below the detection limit, and the sulfate ion concentration was 15 ppb. (Table 2)
[0014]
<Comparative example 1 (can take-out and removal by line C in FIG. 1)>
100 parts of the upper layer liquid described in Example 1 was charged into the 30th stage from the bottom of the delow boiling distillation tower 1-1 having an inner diameter of 30 [mm] made of a perforated plate tower having 40 stages. It was maintained at 130 [° C.], a pressure of 760 [mmHg], and a reflux ratio of 10.
Thereby, 5 parts of low boiling point substances and a part of butyl acetate were discharged from the top of the tower as the top liquid 1.
From the bottom of the low-boiling distillation column 1-1, 95 parts of high-boiling substances such as butyl acetate and alkyl sulfates were taken out as the bottom liquid 1.
As a result of analyzing the bottom liquid 1, the sulfuric acid-derived substance concentration was 24 ppb, the sulfate ion concentration was 428 ppb, the monobutyl sulfate concentration was 435 ppb, and the dibutyl sulfate concentration was 1276 ppm. (Table 1)
100 parts of the above-mentioned column bottom liquid 1 is charged to the third stage from the bottom of the dehydroboiling distillation tower 1-2 having an inner diameter of 30 [mm] consisting of a perforated plate tower having 30 stages, and the temperature in the tower is 124 to 135 [ [° C.], a pressure of 760 [mmHg], and a reflux ratio of 0.5.
Thereby, 5 parts of high boilers and a part of butyl acetate were discharged from the bottom of the tower bottom liquid 2.
95 parts of butyl acetate was distilled as a top liquid 2 from the top of the deboiling column 1-2.
About the butyl acetate manufactured by the said method, the sulfuric acid etc. were analyzed by the ion chromatograph and the gas chromatograph immediately after manufacture and 3 months after manufacture. As a result of analyzing the tower top liquid 2 immediately after the production, the concentration of the sulfuric acid-derived substance was 460 ppb, the sulfate ion concentration was 27 ppb, the monobutyl sulfate concentration was 1 ppb or less, and the dibutyl sulfate concentration was 1 ppm or less. After 3 months of production, the concentration of sulfuric acid-derived substance was below the detection limit, and the sulfate ion concentration was increased to 483 ppb. (Table 2)
In these distillations, the analysis results of butyl acetate taken out from the low-boiling distillation column and charged into the high-boiling distillation column are shown in Table 1 below.
[0015]
[Table 1]
Figure 0004259815
[0016]
In these distillations, the analysis results of butyl acetate distilled from the deboiling distillation column are shown in Table 2 below.
[0017]
[Table 2]
Figure 0004259815
[0018]
[Reference example1, 2Comparative Example 2]
  About the synthesis | combination of butyl acetate, it prepared similarly to Example 1 and 2, and performed synthesis, neutralization, etc., and obtained the upper layer liquid.
<Reference example 1(Tube bottom temperature 100 ° C.)> 100 parts of the upper layer liquid was charged to the 30th stage from the bottom of the low-boiling distillation column 1-1 having a 30 mm inner diameter consisting of a 40-stage perforated plate tower, and the temperature inside the tower was 110 to 130 ° C. The pressure was kept at 760 mmHg and the reflux ratio was 10.
  Thereby, 5 parts of low boiling point substances and a part of butyl acetate were discharged from the top of the tower as the top liquid 1.
  From the bottom of the low-boiling distillation column 1-1, 95 parts of high-boiling substances such as butyl acetate and alkyl sulfates were taken out as the bottom liquid 1. As a result of analyzing the bottom liquid 1, the concentration of the sulfuric acid-derived substance was 6 ppb, the sulfate ion concentration was 513 ppb, the monobutyl sulfate concentration was 317 ppb, and the dibutyl sulfate concentration was 968 ppm.
  100 parts of the above-mentioned column bottom liquid 1 (line C in FIG. 1) is charged to the third stage from the bottom of the high-boiling distillation tower 1-2 having a 30-mm inner diameter and a perforated plate tower having 30 stages. The temperature was maintained at 92 to 100 ° C., a pressure of 280 mmHg, and a reflux ratio of 0.5. Thereby, 5 parts of high boilers and a part of butyl acetate were discharged from the bottom of the tower bottom liquid 2.
  95 parts of butyl acetate was distilled as a top liquid 2 from the top of the deboiling column 1-2.
  About the butyl acetate manufactured by the said method, the sulfuric acid etc. were analyzed by the ion chromatograph and the gas chromatograph immediately after manufacture and 3 months after manufacture. As a result of analyzing the top liquid 2 immediately after production, the concentration of the sulfuric acid-derived substance was 12 ppb, the concentration of sulfate ions was 3 ppb, the concentration of monobutyl sulfate was 1 ppb or less, and the concentration of dibutyl sulfate was 1 ppm or less. Even after 3 months of production, the sulfuric acid-derived substance concentration was below the detection limit, and the sulfate ion concentration was 16 ppb. (Table 3)
[0019]
<Reference example 2(Temperature at 76 ° C .... temperature at which generation of sulfuric acid-derived components is 0 by estimation from experiments)>
  In the third stage from the bottom of the high-boiling distillation column 1-2 having a 30 mm inner diameter consisting of a perforated plate tower having 30 stages,Reference example 1100 parts of the described column bottom liquid 1 was charged (line C in FIG. 1), and the inside of the column was maintained at a temperature of 65 to 76 ° C., a pressure of 115 mmHg, and a reflux ratio of 0.5. Thereby, 5 parts of high boilers and a part of butyl acetate were discharged from the bottom of the tower bottom liquid 2.
  95 parts of butyl acetate was distilled as a top liquid 2 from the top of the deboiling column 1-2.
  About the butyl acetate manufactured by the said method, the sulfuric acid etc. were analyzed by the ion chromatograph and the gas chromatograph immediately after manufacture and 3 months after manufacture. As a result of analyzing the top liquid 2 immediately after production, the concentration of the sulfuric acid-derived substance was 1 ppb, the sulfate ion concentration was 2 ppb, the monobutyl sulfate concentration was 1 ppb or less, and the dibutyl sulfate concentration was 1 ppm or less. Even after 3 months of production, the sulfuric acid-derived substance concentration was below the detection limit, and the sulfate ion concentration was 3 ppb. (Table 3)
[0020]
<Comparative Example 2 (distillation at conventional tower bottom temperature (normal pressure))>
100 parts of the bottom liquid 1 described in Example 3 was charged to the third stage from the bottom of the 30-diameter dehigh boiling boiling column 1-2 consisting of a perforated plate tower having 30 stages (line C in FIG. 1). The inside of the tower was maintained at a temperature of 124 to 135 ° C., a pressure of 760 mmHg, and a reflux ratio of 0.5. Thereby, 5 parts of high boilers and a part of butyl acetate were discharged from the bottom of the tower bottom liquid 2.
95 parts of butyl acetate was distilled as a top liquid 2 from the top of the deboiling column 1-2.
About the butyl acetate manufactured by the said method, the sulfuric acid etc. were analyzed by the ion chromatograph and the gas chromatograph immediately after manufacture and 3 months after manufacture. As a result of analyzing the tower top liquid 2 immediately after the production, the concentration of the sulfuric acid-derived substance was 322 ppb, the sulfate ion concentration was 17 ppb, the monobutyl sulfate concentration was 1 ppb or less, and the dibutyl sulfate concentration was 1 ppm or less. Three months after the production, the concentration of the sulfuric acid-derived substance was below the detection limit, and the sulfate ion concentration was increased to 325 ppb. (Table 3)
The analysis results of butyl acetate distilled from the deboiling distillation column in these distillations are shown in Table 3 below.
[0021]
[Table 3]
Figure 0004259815
[0022]
【The invention's effect】
According to the present invention, high-purity butyl acetate having a total concentration of sulfuric acid-derived substance and sulfuric acid detected by ion chromatography analysis of 20 ppb or less was obtained.
[Brief description of the drawings]
FIG. 1 is a flow sheet of a production method of the present invention.
[Explanation of symbols]
1-1: Deboiling distillation column
1-2: Deboiling distillation column
1-1-1, 1-2-1: Reboiler
1-1-2, 1-2-2: capacitor

Claims (3)

硫酸触媒の存在下、酢酸とn−ブタノールから酢酸ブチルを合成し、脱低沸蒸留後、脱高沸蒸留することにより酢酸ブチルを製造する際、主として酢酸ブチルおよび高沸点物を含む混合物を、塔頂圧力を常圧、塔頂温度を105〜115℃、塔底温度を130〜140℃、還流比を5〜15にコントロールした脱低沸物蒸留塔の側面であって脱低沸物蒸留塔への供給液の供給位置より低い位置から抜き取り、塔頂圧力を常圧、塔頂温度を124〜130℃、塔底温度を130〜135℃、還流比を0.1〜1.0にコントロールした脱高沸物蒸留塔に供給することを特徴とする高純度酢酸ブチルの製造方法。When butyl acetate is produced by synthesizing butyl acetate from acetic acid and n-butanol in the presence of a sulfuric acid catalyst, and delow-boiling distillation followed by de-high boiling distillation, a mixture mainly containing butyl acetate and high-boiling substances is obtained . This is a side of a low boiling distillation column in which the column top pressure is controlled at normal pressure, the column top temperature is 105 to 115 ° C., the column bottom temperature is 130 to 140 ° C., and the reflux ratio is controlled to 5 to 15, and the column low distillation distillation is performed. Withdrawing from a position lower than the supply position of the supply liquid to the tower, the tower top pressure is normal pressure, the tower top temperature is 124 to 130 ° C., the tower bottom temperature is 130 to 135 ° C., and the reflux ratio is 0.1 to 1.0. A method for producing high-purity butyl acetate, which is supplied to a controlled deboiling distillation column. 混合物の脱低沸物蒸留塔側面からの抜き取りが液状態で行われる請求項1に記載の高純度酢酸ブチルの製造方法。  The method for producing high-purity butyl acetate according to claim 1, wherein the mixture is extracted from the side of the low-boiling distillation column in a liquid state. フォトレジスト用溶剤に使用される請求項1又は2記載の高純度酢酸ブチルの製造方法。The method for producing high-purity butyl acetate according to claim 1 or 2, which is used as a solvent for photoresist.
JP2002165099A 2002-06-06 2002-06-06 Method for producing high purity butyl acetate Expired - Lifetime JP4259815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002165099A JP4259815B2 (en) 2002-06-06 2002-06-06 Method for producing high purity butyl acetate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002165099A JP4259815B2 (en) 2002-06-06 2002-06-06 Method for producing high purity butyl acetate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008159836A Division JP2008308500A (en) 2008-06-19 2008-06-19 Production method of high purity butyl acetate

Publications (2)

Publication Number Publication Date
JP2004010530A JP2004010530A (en) 2004-01-15
JP4259815B2 true JP4259815B2 (en) 2009-04-30

Family

ID=30433019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002165099A Expired - Lifetime JP4259815B2 (en) 2002-06-06 2002-06-06 Method for producing high purity butyl acetate

Country Status (1)

Country Link
JP (1) JP4259815B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4593638B2 (en) * 2008-02-18 2010-12-08 ダイセル化学工業株式会社 Method for producing ester solvent
NZ618178A (en) * 2011-06-08 2016-03-31 Biogen Ma Inc Process for preparing high purity and crystalline dimethyl fumarate
JP6287269B2 (en) * 2014-01-30 2018-03-07 三菱ケミカル株式会社 Method for producing butyl acrylate
KR102604389B1 (en) * 2016-03-31 2023-11-23 후지필름 가부시키가이샤 Treatment liquid for semiconductor production, method for producing same, pattern formation method, and method for producing electronic device
JP2023529958A (en) 2020-06-12 2023-07-12 フジフイルム エレクトロニック マテリアルズ ユー.エス.エー., インコーポレイテッド Systems and methods for purifying solvents

Also Published As

Publication number Publication date
JP2004010530A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
US4039395A (en) Purification of acetic acid
US20070293688A1 (en) Method for the Separation by Distillation of Pure Trioxane
JP4559625B2 (en) High purity 1,3-butylene glycol and process for producing the same
EP1343745B1 (en) Process for removing methanol from formaldehyde-containing solutions
JP2008308500A (en) Production method of high purity butyl acetate
EP2341041B1 (en) Trimethylolpropane color improvement
KR100591625B1 (en) Treatment of Formaldehyde-Containing Mixtures
KR20010102420A (en) High-purity 1,3-butylene glycol, process for producing 1,3-butylene glycol, and process for producing by-product butanol and butyl acetate
JP4259815B2 (en) Method for producing high purity butyl acetate
JPH08169862A (en) Production of methyl methacrylate not containing diacetyl
EP0343583B1 (en) A process for purifying methyl methacrylate
JP4059685B2 (en) High purity butyl acetate and method for producing the same
US4059632A (en) Process for the production of isophorone
US3956406A (en) Purification of trimethylolpropane
JP2006514087A (en) Purification of 1,3-propanediol by distillation
US20160083340A1 (en) Method of purifying dimethyl sulfoxide
US4066514A (en) Recovery of nitrated compounds from water by distillation
CN109153633B (en) Process for recovering by-product from MMA
JP2000256265A (en) Production of methyl methacrylate
RU2317970C2 (en) Distillation-mediated 1,3-propanediol purification
EP4339183A1 (en) Method for collecting carboxylic acid
Bi et al. Chemical esterification of fusel oil alcohol for the production of flavor and fragrance esters
GB2290291A (en) Methanol purification
KR20050102678A (en) Purification of 1,3-propanediol by distillation
CS234604B1 (en) Method of reaction mixture treatment during methylisobutylketone production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050525

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050912

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050815

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051021

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4259815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term