JP4259713B2 - Variable intake system for inline 4-cylinder internal combustion engine - Google Patents

Variable intake system for inline 4-cylinder internal combustion engine Download PDF

Info

Publication number
JP4259713B2
JP4259713B2 JP2000025697A JP2000025697A JP4259713B2 JP 4259713 B2 JP4259713 B2 JP 4259713B2 JP 2000025697 A JP2000025697 A JP 2000025697A JP 2000025697 A JP2000025697 A JP 2000025697A JP 4259713 B2 JP4259713 B2 JP 4259713B2
Authority
JP
Japan
Prior art keywords
intake
cylinder
combustion engine
internal combustion
passages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000025697A
Other languages
Japanese (ja)
Other versions
JP2001214747A (en
Inventor
佳行 海野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000025697A priority Critical patent/JP4259713B2/en
Priority to US09/770,373 priority patent/US6382162B2/en
Priority to MYPI20010398A priority patent/MY128120A/en
Priority to DE60117882T priority patent/DE60117882T2/en
Priority to TW090101920A priority patent/TW475968B/en
Priority to CNB011017538A priority patent/CN1166856C/en
Priority to EP01102228A priority patent/EP1122410B1/en
Publication of JP2001214747A publication Critical patent/JP2001214747A/en
Application granted granted Critical
Publication of JP4259713B2 publication Critical patent/JP4259713B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Characterised By The Charging Evacuation (AREA)

Description

【0001】
【発明の属する技術分野】
本願の発明は、内燃機関の低回転速度域から高回転速度域まで広い回転速度域にわたって高い吸気充填効率と高い出力トルクとが得られるようにされた4気筒内燃機関の可変吸気装置の改良に関する。
【0002】
【従来の技術】
従来より、多気筒内燃機関の各気筒に連通接続される吸気通路に発生する吸気圧力振動を利用して、各気筒における吸気行程の後半に、その気筒の吸気ポート部分の圧力を上昇させて、吸気過給効果を得るようにした吸気装置が種々提案されている。
【0003】
例えば、内燃機関の吸気管の管路長や容積を内燃機関の回転数に応じて変えて、吸気の慣性過給効果や共鳴過給効果を得て、これらを適切に組み合わせ利用することにより、低回転速度域から高回転速度域まで広い回転速度域にわたって吸気充填効率を高く維持して、出力トルクを向上させることが行なわれている。
【0004】
4気筒内燃機関においては、各気筒に連通する吸気管路長を内燃機関の低回転速度域、中回転速度域、高回転速度域の3段階に変えて、いずれも吸気の慣性過給効果を利用して、高い吸気充填効率を得て、出力トルクの向上を図ったもの(特平7−30698号公報)や、各気筒に連通する吸気管路を吸気行程が互いに連続しない気筒群毎に合流させた合流部を共鳴室とし、その上流側に共鳴管を気筒配列方向に沿って接続し、これら一対の共鳴管の上流側に集合部を設け、一対の共鳴室間の連通を内燃機関の低中回転速度域、高回転速度域にしたがって遮断、連通させて、吸気の共鳴過給効果および慣性過給効果を利用して、高い吸気充填効率を得て、出力トルクの向上を図ったもの(特開平10−73024号公報)等がある。
【0005】
【発明が解決しようとする課題】
しかしながら、前者のものにおいては、各々が個別に作動し得る2つの吸気制御弁が必要であり、部品点数、重量が増大して、スペース的にも不利であるという難点があった。また、低中回転速度域において共鳴過給効果を利用した後者のものにおいては、共鳴室、共鳴管、集合部の設置が必要であり、一対の共鳴管を有することで気筒配列方向に吸気装置自体が大型化し、気筒配列方向にスペース的に不利があった。また、低中回転速度域と高回転速度域との狭間の部分におけるフラットな吸気充填効率が得られにくかった。
【0006】
本願の発明は、従来の4気筒内燃機関の可変吸気装置が有する前記のような問題点を解決して、内燃機関の低回転速度域から高回転速度域まで広い回転速度域にわたって高い吸気充填効率を得ることができ、これにより、高い出力トルクを得ることができて、しかも、部品点数が少なく、構造を簡単化でき、スペースを要さない4気筒内燃機関の可変吸気装置を提供することを課題とする。
【0007】
【課題を解決するための手段および効果】
本願の発明は、前記のような課題を解決した4気筒内燃機関の可変吸気装置に係り、その請求項1に記載された発明は、直列4気筒内燃機関の各気筒に一端がそれぞれ連通接続され、単一の吸気集合室に他端が連通接続される4つの互いに独立な吸気通路が、各気筒に一端がそれぞれ連通接続される部分の近傍の交差部分を除いて、吸気行程が互いに連続しない気筒群毎に気筒配列方向に平行に直列に配置され、内側に巻き込むように湾曲され、前記吸気通路の前記湾曲の内部空間に、前記吸気集合室が配置され、その外周の略1/3円弧長が前記吸気通路の途中に突出し、その外周の少なくとも残りの一部が前記吸気集合室の壁により抱持されるようにして、ロータリーバルブが設けられ、前記ロータリーバルブは、前記内燃機関の回転速度に応じて等間隔に3段階に切り換えられて、隣接する全ての吸気通路間もしくは吸気行程が互いに連続しない気筒群における各気筒に一端がそれぞれ連通接続される隣接する1対の吸気通路間を連通もしくは遮断することができるようにされたことを特徴とする直列4気筒内燃機関の可変吸気装置である。
【0008】
請求項1に記載された発明は、前記のように構成されているので、直列4気筒内燃機関の各気筒に一端がそれぞれ連通接続され、単一の吸気集合室に他端が連通接続される4つの互いに独立な吸気通路が、各気筒に一端がそれぞれ連通接続される部分の近傍の交差部分を除いて、吸気行程が互いに連続しない気筒群毎に気筒配列方向に平行に直列に配置され、内側に巻き込むように湾曲される。そして、その外周の略1/3円弧長がそれらの吸気通路の途中に突出、その外周の少なくとも残りの一部が前記吸気集合室の壁により抱持されるようにして、前記のような作用をするロータリーバルブが設けられている。
【0009】
この結果、4つの互いに独立な吸気通路は、各気筒に一端がそれぞれ連通接続される部分の近傍の交差部分を除いて、互いに交差することがなく、また、可変吸気作用をするロータリーバルブが長さ方向に出っ張ることもなく、全体が側面視丸い形状にまとめられるので、吸気マニホールドを含む可変吸気装置を気筒配列方向を含めてコンパクトに形成することができて、スペース効率が良い。また、各吸気通路の等長化を図ることが容易である。
【0010】
また、吸気通路の途中に、その外周の略1/3円弧長が突出するようにして、ロータリーバルブが設けられ、該ロータリーバルブは、内燃機関の回転速度に応じて等間隔に3段階に切り換えられて、隣接する全ての吸気通路間もしくは吸気行程が互いに連続しない気筒群における各気筒に一端がそれぞれ連通接続される隣接する1対の吸気通路間を連通もしくは遮断することができるようにされる。
【0011】
この結果、直列4気筒内燃機関の可変吸気装置が、吸気通路の途中にその外周の略1/3円弧長が突出するようにして設けられるロータリーバルブを、内燃機関の回転速度に応じて等間隔に3段階に切り換えるようにすることにより得られるので、バルブやアクチュエータ等の部品の点数が少なくなり、コストの低減、構造の簡単化、軽量化等に資することができ、スペースを要さない直列4気筒内燃機関の可変吸気装置を容易に得ることができる。また、ロータリーバルブは、その弁体および軸部が吸気通路内に突出しないので、吸気抵抗を増大させることがない。
【0012】
さらに、請求項2記載のように請求項1記載の発明を構成することにより、ロータリーバルブは、その外周に、その軸方向から側面視して周方向に等間隔に仕切られた仮想3面を有し、該仮想3面が内燃機関の回転速度に応じて周方向に3段階に切り換えられて、内燃機関の低回転速度域で、隣接する全ての吸気通路間を遮断し、中回転速度域で、吸気行程が互いに連続しない気筒群における各気筒に一端がそれぞれ連通接続される隣接する1対の吸気通路間を連通し、高回転速度域で、隣接する全ての吸気通路間を連通するようにされる。
【0013】
この結果、仮想3面の各面側に、内燃機関の低、中、高回転速度域に応じてそれぞれの可変吸気作用を発揮する構造を付与すればよいので、ロータリーバルブの内部構造を比較的簡単に形成することができる。特に、内燃機関の中回転速度域で、吸気行程が互いに連続しない気筒群における各気筒に一端がそれぞれ連通接続される1対の吸気通路間を連通するのに、これら1対の吸気通路は互いに隣接し合っているのでこれらの間の仕切壁を削除するのみでよく、その連通路の構造をきわめて簡単に形成することができる。
【0014】
また、仮想3面が内燃機関の回転速度に応じて周方向に3段階に切り換えられて、ロータリーバルブが前記のような作用をするので、内燃機関の低回転速度域においては、吸気集合室が大気開放部として作用して、ここが吸気圧力振動の反転室となり、燃焼室から吸気集合室までの長い独立した各吸気通路内での低い固有振動数の吸気圧力振動と機関の低回転に基づく吸気弁の長い開閉サイクルとが同調して、高い慣性過給効果が得られ、全ての気筒について高い吸気充填効率が得られて、出力トルクを向上させることができる。
【0015】
また、中回転速度域においては、吸気行程が互いに連続しない気筒群における各気筒に一端がそれぞれ連通接続される隣接する1対の吸気通路間の連通部より上流側の吸気通路部分が各気筒群の共鳴系を構成して、各吸気通路および吸気連通部内を吸気圧力波が反転することなく、同一気筒群における他の気筒の次の吸気行程にその吸気圧力波を伝播させることができ、高い共鳴過給効果が得られ、吸気行程が互いに連続しない気筒群における各気筒について高い吸気充填効率が得られて、出力トルクを向上させることができ、低回転速度域と高回転速度域との間の吸気充填効率と出力トルクとが低下する谷間の部分を埋め合わせることができる。
【0016】
さらに、高回転速度域においては、隣接する全ての吸気通路間の連通部(連通室)が大気開放部として作用して、ここが吸気圧力振動の反転室となり、燃焼室から該連通部までの短い吸気通路内での高い固有振動数の吸気圧力振動と機関の高回転に基づく吸気弁の短い開閉サイクルとが同調して、高い慣性過給効果が得られ、全ての気筒について高い吸気充填効率が得られて、出力トルクを向上させることができる。
このようにして、低回転速度域から高回転速度域までの広い回転速度域にわたって、高い吸気充填効率と高い出力トルクとを得ることができる。
【0017】
さらにまた、請求項3記載のように請求項1記載の発明を構成することにより、ロータリーバルブは、それぞれ外方に向けて開放された4つの互いに独立な通路と3つの連通室とを有し、該4つの互いに独立な通路は、ロータリーバルブの外周を周方向に等間隔に3分割して得られる正三角形の2つの頂点間にまたがり、4つの互いに独立な吸気通路の並設長に及ぶ長さを有する第1の仕切壁と、該第1の仕切壁に連設されて、隣接する吸気通路間を遮断する3つの第2の仕切壁とにより区画形成され、該3つの連通室のうちの2つは、正三角形の残りの1つの頂点と該第1の仕切壁の一方の端縁もしくは該端縁近傍の点との間にまたがり、4つの互いに独立な吸気通路の並設長に及ぶ長さを有する第3の仕切壁と、少なくとも該第3の仕切壁に連設されて、中央2つの隣接する吸気通路間を遮断する第4の仕切壁とによりそれぞれ区画形成され、該3つの連通室のうちの残りの1つは、該4つの互いに独立な通路および該3つの連通室のうちの2つを除いた空間により形成されている。
【0018】
この結果、ロータリーバルブを内燃機関の回転速度に応じて等間隔に3段階に切り換えて、隣接する全ての吸気通路間もしくは吸気行程が互いに連続しない気筒群における各気筒に一端がそれぞれ連通接続される隣接する1対の吸気通路間を連通もしくは遮断することができるロータリーバルブの内部構造を、ロータリーバルブの内部を第1〜第4の仕切壁により仕切って、4つの互いに独立な通路と3つの連通室とを形成するという、比較的簡単な方法により得ることができる。
【0019】
【発明の実施の形態】
以下、図1ないし図8に図示される本願の請求項1ないし請求項8に記載された発明の一実施形態について説明する。
図1は、本実施形態における直列4気筒内燃機関の可変吸気装置を吸気通路部分について吸気通路に沿って上半分を切断して仮想して見た概略斜視図であって、内燃機関が低回転速度域にあるときのロータリーバルブの回転状態と吸気の流れ状態とを併せて示した図、図2は、図1の可変吸気装置の横断面図であって、吸気通路を完全体で示した図、図3は、図1と同様の図であって、内燃機関が中回転速度域にあるときのロータリーバルブの回転状態と吸気の流れ状態とを併せて示した図、図4は、図2と同様の図であって、図3の可変吸気装置の横断面図、図5は、図1と同様の図であって、内燃機関が高回転速度域にあるときのロータリーバルブの回転状態と吸気の流れ状態とを併せて示した図、図6は、図2と同様の図であって、図5の可変吸気装置の横断面図、図7は、図1の可変吸気装置の作用を説明するための図、図8は、図1の可変吸気装置の特性線図である。なお、以下において、気筒配列方向を左右方向とし、図1において左方を左方とする。
【0020】
図1および図2において、本実施形態における直列4気筒内燃機関の可変吸気装置1は、内燃機関の第1〜第4気筒♯1〜♯4(図示されず)の各気筒に一端がそれぞれ連通接続され、単一の吸気集合室5に他端が連通接続される4つの互いに独立な第1〜第4吸気通路41 〜44 を有する吸気マニホールド2を備えている。
【0021】
第1〜第4気筒♯1〜♯4は、第1気筒♯1、第3気筒♯3、第4気筒♯4、第2気筒♯2の順に点火される。したがって、各気筒における吸気行程も、この順となり、第1、第4気筒♯1、♯4からなる気筒群と、第2、第3気筒♯2、♯3からなる気筒群とは、吸気行程が互いに連続しない気筒群である。
【0022】
第1〜第4吸気通路41 〜44 は、各気筒♯1〜♯4に一端がそれぞれ連通接続される部分の近傍の交差部分(図1において、第4吸気通路44 の上方湾曲部分が第2、第3吸気通路42 、43 の上方湾曲部分と交差している部分)を除いて、吸気行程が互いに連続しない気筒群♯1、♯4と♯2、♯3毎に第1、第4吸気通路41 、44 と第2、第3吸気通路42 、43 とに纏められて、気筒配列方向に平行且つ直列に配置されている。したがって、第1、第4吸気通路41 、44 の各々は、気筒配列方向左半において互いに隣接し合っており、第2、第3吸気通路42 、43 の各々は、気筒配列方向右半において互いに隣接し合っている。
【0023】
これより、吸気行程が互いに連続しない気筒群における各気筒に一端がそれぞれ連通接続される隣接する1対の吸気通路は、第1、第4気筒♯1、♯4からなる気筒群における各気筒に一端がそれぞれ連通接続される隣接する1対の第1、第4吸気通路41 、44 と、第2、第3気筒♯2、♯3からなる気筒群における各気筒に一端がそれぞれ連通接続される隣接する1対の第2、第3吸気通路42 、43 とである。
【0024】
第1〜第4吸気通路41 〜44 は、略等長にされ、図2に図示されるように、丸く内側に巻き込まれるようにして湾曲されて形成されており、その先端に吸気集合室5が連通接続されている。この吸気集合室5は、この吸気集合室5に隣接して設けられた吸気ダクト6とともに、第1〜第4吸気通路41 〜44 の湾曲の内部空間に抱持されるようにして設けられていて、可変吸気装置1のコンパクト化が図られている。
【0025】
図示されないエアクリーナ、スロットルボディを経て吸気ダクト6に導かれた吸気は、次いで、比較的大容積からなる吸気集合室5に流入し、ここに集合させられる。そして、内燃機関の回転数が低中回転速度域にあるとき、ここからさらに第1〜第4吸気通路41 〜44 のそれぞれに分かれて流入して、これらの比較的長い通路を流れて、第1〜第4気筒♯1〜♯4のそれぞれに吸入される。吸気ダクト6と吸気集合室5との連通路は、図示されてはいないが、吸気集合室5の長さ方向の中央部に設けられ、これにより、吸気集合室5から各気筒♯1〜♯4に至る第1〜第4吸気通路41 〜44 を含む吸気通路長の等長化が図られている。
【0026】
第1〜第4吸気通路41 〜44 のそれぞれの途中の底壁には、正面視略矩形状の第1〜第4開口71 〜74 が形成されており、これらの第1〜第4開口71 〜74 からその一部を第1〜第4吸気通路41 〜44 のそれぞれに突出させるようにして、単一体からなるロータリーバルブ3が設けられている。このロータリーバルブ3の第1〜第4吸気通路41 〜44 への突出部分は、ロータリーバルブ3を軸方向から側面視した場合、その略1/3円弧長で切り取られる三日月状部分に相当する(図2参照)。
【0027】
このロータリーバルブ3は、第1〜第4吸気通路41 〜44 のそれぞれに突出する側面視略1/3円弧部分を除いた残りの部分が吸気マニホールド2の本体壁部分8により抱持されて、配置されている。この本体壁部分8は、側面視略2/3円弧状をなしていて、ロータリーバルブ3の後述する第1、第2連通室10、12をロータリーバルブ3の回転位置に応じて閉鎖することができる。本体壁部分8の略半分は、吸気集合室5の壁の一部をなしている。
【0028】
次に、ロータリーバルブ3の構造と作用、効果について詳細に説明する。
ロータリーバルブ3は、図2に図示されるように、その外周に、その軸方向から側面視して周方向に等間隔に仕切られた仮想3面a、b、cを有し、これら仮想3面a、b、cが内燃機関の回転速度に応じて周方向に3段階に切り換えられることにより、以下に詳しく説明されるように、隣接する吸気通路41 と44 、44 と42 、42 と43 間もしくは吸気行程が互いに連続しない気筒群における各気筒に一端がそれぞれ連通接続される隣接する1対の第1、第4吸気通路41 、44 間、第2、第3吸気通路42 、43 間を連通もしくは遮断することができるようにされている。
【0029】
ロータリーバルブ3の仮想3面a、b、cのうちの1面a側は、図5および図6に図示されるように、隣接する吸気通路41 と44 、44 と42 、42 と43 間を連通することができる大容積の第1の連通室10を有する。
【0030】
この第1の連通室10は、1面a側と他の1面b側とをロータリーバルブ3の全長にわたって仕切る仕切壁(第3の仕切壁)14と1面a側および他の1面b側とさらに他の1面c側とをロータリーバルブ3の全長にわたって仕切る仕切壁(第1の仕切壁)15とにより挟まれて、ロータリーバルブ3の内方に凹入するような形状に形成され、第1〜第4吸気通路41 〜44 の各断面積および後述する第2の連通室12の断面積よりも大きい断面積を有し、第1〜第4吸気通路41 〜44 の各断面形状を急激に変化させつつ、これらの吸気通路の全てを連通する。
【0031】
ロータリーバルブ3の仮想3面a、b、cのうちの他の1面b側は、図3および図4に図示されるように、吸気行程が互いに連続しない気筒群♯1、♯4と♯2、♯3における各気筒に一端がそれぞれ連通接続される隣接する1対の第1、第4吸気通路41 、44 、隣接する1対の第2、第3吸気通路42 、43 の各間をそれぞれ連通することができる連通室121 、連通室122 を有している。これら2つの連通室121 、122 をまとめて、第2の連通室12と呼ぶこととする。
【0032】
第2の連通室12のうちの1つである連通室121 、他の1つである連通室122 は、仕切壁(第3の仕切壁)14と仕切壁(第1の仕切壁)15と中央2つの第4、第2吸気通路44 、42 間を仕切る仕切壁(第4の仕切壁)16とにより囲まれて、それぞれ形成されている。仕切壁(第3の仕切壁)14は、連通室121 、122 の断面積が各吸気通路41 〜44 の断面積に略等しくなるように、ロータリーバルブ3の内方に凹まされた形状に形成されている。
【0033】
これら第1の連通室10、第2の連通室12(121 、122 )は、ロータリーバルブ3が図1、図2に図示される回転位置にあるとき、吸気マニホールド2の本体壁部分8により同時に閉鎖される。
【0034】
ロータリーバルブ3の仮想3面a、b、cのうちのさらに他の1面c側は、図1および図2に図示されるように、隣接する吸気通路41 と44 、44 と42 、42 と43 間をそれぞれ遮断する仕切壁を有している。この仕切壁は、これらの吸気通路間をそれぞれ仕切る三日月状仕切壁(第2の仕切壁の1〜3)17〜19と、前記した仕切壁(第1の仕切壁)15とから構成されている。そして、ロータリーバルブ3が図1および図2に図示される回転位置にあるとき、隣接する吸気通路41 と44 、44 と42 、42 と43 間をそれぞれ遮断して、完全に独立した長い吸気通路41 〜44 を形成する4つの独立な通路部分を提供する。
【0035】
この仕切壁15は、各吸気通路41 〜44 の通路長さ方向に沿う断面形状を変化させないように、各通路内に突出するように湾曲され、また、各吸気通路41 〜44 の通路長さ方向と直交する方向に沿う断面形状を変化させないように、ロータリーバルブ内方にわずかに凹むように湾曲されて、形成されている。
【0036】
第1〜第4の仕切壁14〜19、第1、第2の連通室10、12(121 、122 )について、さらに詳細に説明する。
第1の仕切壁15は、ロータリーバルブ3の外周を周方向に等間隔に3分割して得られる正三角形の2つの頂点間にまたがり、4つの互いに独立な吸気通路41 〜44 の並設長に及ぶ長さを有している。3つの第2の仕切壁17〜19は、第1の仕切壁15に連設されて、三日月状を呈し、隣接する吸気通路41 と44 、44 と42 、42 と43 間を遮断する。第3の仕切壁14は、正三角形の残りの1つの頂点と第1の仕切壁15の一方(図2において上方)の端縁の近傍の点との間にまたがり、4つの互いに独立な吸気通路41 〜44 の並設長に及ぶ長さを有している。第4の仕切壁16は、第3の仕切壁14および第1の仕切壁15に第1の仕切壁15の一方の端縁の側において連設されて、中央2つの隣接する吸気通路44 、42 間を遮断する。第1の連通室10と第2の連通室12(121 、122 )とは、第3の仕切壁14を境にして背中合わせに配置されている。ロータリーバルブ3は、その内部に合計3つの区画された連通室10、121 、122 を有する。
【0037】
ロータリーバルブ3は、仮想3面a、b、cのうちのいずれかが第1〜第4吸気通路41 〜44 の第1〜第4開口71 〜74 に面するように、内燃機関の回転速度に応じて等間隔に3段階に切換可能な制御手段を備えている。この制御手段には、電動もしくは負圧アクチュエータ(図示されず)が使用される。
【0038】
これらのアクチュエータは、ロータリーバルブ3の一側端側の吸気装置1に配設される。ロータリーバルブ3は、内燃機関の回転速度に応じて段階的に順次作動するようになっており、内燃機関の回転速度の増減に応じて正方向に、また、逆方向に回転する。電動アクチュエータの場合、制御手段の信号により、電動モータを段階的に作動させるだけでよい。負圧アクチュエータの場合、負圧室を少なくとも2室備えたダイヤフラムが必要であり、その各々に制御弁を設け、内燃機関の回転速度に応じて順に制御弁を作動させ負圧導入することで、ロータリーバルブ3の段階的な作動が可能になり、その負圧の導入(指示)を制御手段が行なう。その負圧は、スロットルバルブの下流から導入され、負圧チャンバーを介して各制御弁に分配される。
【0039】
この制御手段は、内燃機関の回転速度に応じて、ロータリーバルブ3を次のように切換制御する。
先ず、この制御手段は、内燃機関の回転数が所定の回転数N1 より低い低回転速度域ある場合(N<N1 )においては、図1および図2に図示されるように、ロータリーバルブ3の仮想3面a、b、cのうちのさらに他の1面c側が第1〜第4吸気通路41 〜44 の第1〜第4開口71 〜74 に面するようにロータリーバルブ3を切換制御する。これにより、隣接する吸気通路41 と44 、44 と42 、42 と43 間が仕切壁15、仕切壁17〜19により全て遮断され、完全に独立した長い第1〜第4吸気通路41 〜44 が形成される。
【0040】
そして、吸気集合室5内の吸気は、これらの長い第1〜第4吸気通路41 〜44 にそれぞれ流入し、これらの吸気通路41 〜44 を流れて、各気筒♯1〜♯4に供給される。このとき、吸気集合室5は、大気開放部として作用して、ここが吸気圧力振動の反転室となり、燃焼室から吸気集合室5までの長い吸気通路41 〜44 内での低い固有振動数の吸気圧力振動と機関の低回転に基づく吸気弁の長い開閉サイクルとが同調して、高い慣性過給効果が得られ、全ての気筒について高い吸気充填効率が得られて、出力トルクを向上させることができる(図7、図8の▲1▼参照)。
【0041】
次に、この制御手段は、内燃機関の回転数がN1 より高く、所定の回転数N2 (N1 <N2 )より低い中回転速度域にある場合(N1 <N<N2 )においては、図3および図4に図示されるように、ロータリーバルブ3の仮想3面a、b、cのうちの他の1面b側が第1〜第4吸気通路41 〜44 の第1〜第4開口71 〜74 に面するようにロータリーバルブ3を切換制御する。これにより、吸気行程が互いに連続しない気筒群♯1、♯4、気筒群♯2、♯3における各気筒に一端がそれぞれ連通接続される1対の第1、第4吸気通路41 、44 間、1対の第2、第3吸気通路42 、43 間が、それぞれ連通室121 、122 を介して連通される。
【0042】
そして、これら1対の第1、第4吸気通路41 、44 間、1対の第2、第3吸気通路42 、43 間の各連通部(第2の連通室12を構成する連通室121 、122 )より上流側の各吸気通路部分41u、44uの組と42u、43uの組とが、各気筒群の共鳴系を構成して、各吸気通路41 〜44 および各吸気連通部(連通室121 、122 )内を吸気圧力波が反転することなく、同一気筒群における他の気筒の次の吸気行程にその吸気圧力波を伝播させることができ、高い共鳴過給効果が得られ、吸気行程が互いに連続しない気筒群♯1、♯4と♯2、♯3における各気筒について高い吸気充填効率が得られて、出力トルクを向上させることができる。このようにして、低回転速度域と高回転速度域との間の吸気充填効率と出力トルクとが低下する谷間の部分を埋め合わせることができる(図7、図8の▲2▼参照)。
【0043】
さらに次に、この制御手段は、内燃機関の回転数がN2 より高い高回転速度域にある場合(N2 <N)においては、図5および図6に図示されるように、ロータリーバルブ3の仮想3面a、b、cのうちの1面a側が第1〜第4吸気通路41 〜44 の第1〜第4開口71 〜74 に面するようにロータリーバルブ3を切換制御する。これにより、隣接する吸気通路41 と44 、44 と42 、42 と43 間が全て連通されて、第1〜第4吸気通路41 〜44 は、全て互いに連通状態になる。
【0044】
このとき、大容積に形成されている第1の連通室10は、第1〜第4吸気通路41 〜44 の各断面形状を急激に変化させるので、ここが大気開放部として作用して、吸気圧力振動の反転室となり、燃焼室から該第1の連通室10までの短い吸気通路部分41d〜44d内での高い固有振動数の吸気圧力振動と機関の高回転に基づく吸気弁の短い開閉サイクルとが同調して、高い慣性過給効果が得られ、全ての気筒について高い吸気充填効率が得られて、出力トルクを向上させることができる(図7、図8の▲3▼参照)。
【0045】
このようにして、内燃機関の低回転速度域から高回転速度域までの広い回転速度域にわたって、フラットな高い吸気充填効率と高い出力トルクとを得ることができる。一般に、慣性過給と共鳴過給とを比較すると、その効果は、慣性過給の方が大きく、共鳴過給は慣性過給を補う効果として位置付けられるが、本実施形態においては、前記のとおり、低回転速度域において得られる慣性過給効果に基づく高い吸気充填効率と高回転速度域において得られる慣性過給効果に基づく高い吸気充填効率との間の谷間の部分が、中回転速度域において得られる共鳴過給効果に基づく吸気充填効率の向上により十分に補われている。なお、内燃機関の全回転速度域にわたって、吸気は常に吸気集合室5から各気筒♯1〜♯4に供給されていることに変わりはない。
【0046】
本実施形態は、前記のように構成されているので、さらに、次のような効果を奏することができる。
直列4気筒内燃機関の各気筒に一端がそれぞれ連通接続され、単一の吸気集合室5に他端が連通接続される4つの互いに独立な第1〜第4吸気通路41 〜44 が、各気筒に一端がそれぞれ連通接続される部分の近傍の交差部分を除いて、吸気行程が互いに連続しない気筒群毎に気筒配列方向に平行に直列に配置される。そして、これらの吸気通路41 〜44 の途中に、その外周の略1/3円弧長が突出するようにして、ロータリーバルブ3が設けられている。
【0047】
この結果、第1〜第4吸気通路41 〜44 は、各気筒に一端がそれぞれ連通接続される部分の近傍の交差部分を除いて、互いに交差することがなく、また、可変吸気作用をするロータリーバルブ3が長さ方向に出っ張ることもなく、吸気マニホールド2を含む可変吸気装置1を特に気筒配列方向においてコンパクトに形成することができて、スペース効率が良い。また、各吸気通路41 〜44 の等長化を図ることが容易である。
【0048】
また、低回転速度域から高回転速度域までの広い回転速度域にわたる高い吸気充填効率と高い出力トルクとが、第1〜第4吸気通路41 〜44 の途中にその外周の略1/3円弧長が突出するようにして設けられるロータリーバルブ3を内燃機関の回転速度に応じて等間隔に3段階に切換制御することにより得られるので、バルブやアクチュエータ等の部品の点数が少なくなり、コストの低減、構造の簡単化、軽量化等に資することができ、スペースを要さない4気筒内燃機関の可変吸気装置1を容易に得ることができる。また、ロータリーバルブ3は、その弁体および軸部が第1〜第4吸気通路41 〜44 内に突出しないので、吸気抵抗を増大させることがない。
【0049】
また、ロータリーバルブ3は、電動もしくは負圧アクチュエータにより切換作動されるので、ロータリーバルブ3を内燃機関の回転速度に応じて等間隔に3段階に切換制御する制御手段の構成が容易になる。
【0050】
さらに、ロータリーバルブ3は、その外周に、その軸方向から側面視して周方向に等間隔に仕切られた仮想3面a、b、cを有し、該仮想3面a、b、cが内燃機関の回転速度に応じて周方向に3段階に切り換えられて、内燃機関の低回転速度域で、隣接する全ての吸気通路41 と44 、44 と42 、42 と43 間を遮断し、中回転速度域で、吸気行程が互いに連続しない気筒群における各気筒に一端がそれぞれ連通接続される隣接する1対の第1、第4吸気通路41 、44 間、1対の第2、第3吸気通路42 、43 間を連通し、高回転速度域で、隣接する全ての吸気通路41 と44 、44 と42 、42 と43 間を連通するようにされる。
【0051】
この結果、仮想3面a、b、cの各面側に、内燃機関の低、中、高回転速度域に応じてそれぞれの可変吸気作用を発揮する構造を付与すればよいので、ロータリーバルブ3の内部構造を比較的簡単に形成することができる。特に、内燃機関の中回転速度域で、吸気行程が互いに連続しない気筒群における各気筒に一端がそれぞれ連通接続される1対の第1、第4吸気通路41 、44 間、1対の第2、第3吸気通路42 、43 間を連通するのに、これら各対における吸気通路は互いに隣接し合っているのでこれらの間の仕切壁を削除するのみでよく、その連通路(第2の連通室12(121 、122 ))の構造をきわめて簡単に形成することができる。
【0052】
また、第1〜第4吸気通路41 〜44 は、内側に巻き込むように湾曲され、その湾曲の内部空間に、吸気集合室5および吸気ダクト6が配置され、ロータリーバルブ3は、その外周の一部が該吸気集合室3の壁により抱持されるようにして配置されるので、可変吸気装置1は、全体が側面視丸い形状に纏められ、可変吸気装置1をさらにコンパクトに形成することができて、スペース効率がさらに良くなる。
【0053】
なお、第1の連通室10、第2の連通室12(121 、122 )、仕切壁14、15の構造は、本実施形態の図示のものに限定されず、種々の変形が可能である。
【図面の簡単な説明】
【図1】本実施形態における直列4気筒内燃機関の可変吸気装置を、吸気通路部分について吸気通路に沿って上半分を切断して仮想して見た概略斜視図であって、内燃機関が低回転速度域にあるときのロータリーバルブの回転状態と吸気の流れ状態とを併せて示した図である。
【図2】図1の可変吸気装置の横断面図である。
【図3】図1と同様の図であって、内燃機関が中回転速度域にあるときのロータリーバルブの回転状態と吸気の流れ状態とを併せて示した図である。
【図4】図2と同様の図であって、図3の可変吸気装置の横断面図である。
【図5】図1と同様の図であって、内燃機関が高回転速度域にあるときのロータリーバルブの回転状態と吸気の流れ状態とを併せて示した図である。
【図6】図2と同様の図であって、図5の可変吸気装置の横断面図である。
【図7】本実施形態における直列4気筒内燃機関の可変吸気装置の作用を説明するための図である。
【図8】本実施形態における直列4気筒内燃機関の可変吸気装置の特性線図である。
【符号の説明】
1…可変吸気装置、2…吸気マニホールド、3…ロータリーバルブ、41 〜44 …第1〜第4吸気通路、41u〜44u…上流側吸気通路部分、41d〜44d…下流側吸気通路部分、5…吸気集合室、6…吸気ダクト、71 〜74 …第1〜第4開口、8…本体壁部分、10…第1の連通室、12(121 、122 )…第2の連通室、14…第3の仕切壁、15…第1の仕切壁、16…第4の仕切壁、17〜19…3つの第2の仕切壁、a〜c…仮想3面。
[0001]
BACKGROUND OF THE INVENTION
The invention of the present application relates to an improvement of a variable intake device for a four-cylinder internal combustion engine that is configured to obtain high intake charging efficiency and high output torque over a wide rotational speed range from a low rotational speed range to a high rotational speed range of the internal combustion engine. .
[0002]
[Prior art]
Conventionally, using the intake pressure vibration generated in the intake passage connected to each cylinder of the multi-cylinder internal combustion engine, in the second half of the intake stroke in each cylinder, the pressure of the intake port portion of the cylinder is increased, Various intake devices have been proposed that achieve an intake supercharging effect.
[0003]
For example, by changing the pipe length and volume of the intake pipe of the internal combustion engine according to the number of revolutions of the internal combustion engine to obtain the inertial supercharging effect and the resonant supercharging effect of the intake air, by appropriately using these in combination, The intake torque efficiency is maintained high over a wide rotational speed range from a low rotational speed range to a high rotational speed range, and output torque is improved.
[0004]
In a four-cylinder internal combustion engine, the intake pipe length communicating with each cylinder is changed into three stages of the low rotation speed range, medium rotation speed range, and high rotation speed range of the internal combustion engine. Used to obtain high intake charge efficiency and improve output torque (special public No. 7-30698), or a confluence section where the intake pipes communicating with each cylinder join together for each cylinder group in which the intake strokes do not continue to each other is used as a resonance chamber, and a resonance pipe is provided upstream in the cylinder arrangement direction. Resonance of the intake air by providing a collecting part upstream of the pair of resonance tubes and blocking and communicating the communication between the pair of resonance chambers according to the low / medium speed range and the high speed range of the internal combustion engine. There are some which have used high supercharging effect and inertial supercharging effect to obtain high intake charge efficiency and improve output torque (Japanese Patent Laid-Open No. 10-73024).
[0005]
[Problems to be solved by the invention]
However, in the former, two intake control valves each capable of operating individually are necessary, and the number of parts and weight are increased, which is disadvantageous in terms of space. Further, in the latter type using the resonance supercharging effect in the low / medium rotational speed region, it is necessary to install a resonance chamber, a resonance tube, and a collecting portion. By having a pair of resonance tubes, an intake device is arranged in the cylinder arrangement direction. The size of the cylinder itself increased, and there was a disadvantage in terms of space in the cylinder arrangement direction. In addition, it is difficult to obtain a flat intake charging efficiency in a portion between the low and medium rotation speed range and the high rotation speed range.
[0006]
The invention of the present application solves the above-mentioned problems of the conventional variable intake system of a four-cylinder internal combustion engine, and achieves high intake charging efficiency over a wide rotational speed range from a low rotational speed range to a high rotational speed range of the internal combustion engine. Thus, it is possible to obtain a variable intake device for a four-cylinder internal combustion engine that can obtain a high output torque, can reduce the number of components, can be simplified in structure, and does not require a space. Let it be an issue.
[0007]
[Means for solving the problems and effects]
The invention of the present application relates to a variable intake system for a four-cylinder internal combustion engine that solves the above-described problems. The invention described in claim 1 is configured such that one end is connected to each cylinder of an in-line four-cylinder internal combustion engine. The four independent intake passages whose other ends are connected in communication with the single intake air collecting chamber are not connected to each other except for the intersection near the portion where one end is connected to each cylinder. Each cylinder group is arranged in series in parallel with the cylinder arrangement direction, is curved so as to be wound inside, and the intake air collecting chamber is arranged in the curved internal space of the intake passage, and is substantially 1 / arc of the outer periphery thereof. A rotary valve is provided such that the length protrudes in the middle of the intake passage and at least the remaining part of the outer periphery thereof is held by the wall of the intake air collecting chamber, and the rotary valve rotates the internal combustion engine. Speed Are switched at three steps at equal intervals, and communicated between a pair of adjacent intake passages, one end of which is connected to each cylinder in a group of cylinders where the intake strokes are not continuous with each other. Alternatively, it is a variable intake device for an in-line four-cylinder internal combustion engine characterized in that it can be shut off.
[0008]
Since the invention described in claim 1 is configured as described above, one end is connected to each cylinder of the in-line four-cylinder internal combustion engine, and the other end is connected to the single intake manifold. Four mutually independent intake passages are arranged in series in parallel to the cylinder arrangement direction for each cylinder group in which the intake strokes are not continuous with each other, except for an intersection near a portion where one end of each cylinder is connected in communication. Curved to wrap inside. Then, approximately 1/3 arc length of the outer periphery protrudes in the middle of the intake passage, and at least the remaining part of the outer periphery is held by the wall of the intake air collecting chamber. A rotary valve is provided.
[0009]
As a result, the four independent intake passages do not intersect each other except for an intersection near the portion where one end of each cylinder is connected to each other, and the rotary valve that performs variable intake action is long. Since the whole is gathered into a round shape when viewed from the side without protruding in the vertical direction, the variable intake device including the intake manifold can be formed compactly including the cylinder arrangement direction, and the space efficiency is good. Further, it is easy to make each intake passage the same length.
[0010]
In addition, a rotary valve is provided in the middle of the intake passage so that approximately 1/3 arc length of the outer circumference protrudes, and the rotary valve is switched in three steps at equal intervals according to the rotational speed of the internal combustion engine. Thus, it is possible to communicate or block between a pair of adjacent intake passages whose one ends are connected to each cylinder in a cylinder group in which the intake strokes are not continuous with each other between all adjacent intake passages. .
[0011]
As a result, the variable intake device of the in-line four-cylinder internal combustion engine is provided with a rotary valve provided so that approximately 1/3 arc length of the outer periphery protrudes in the middle of the intake passage at equal intervals according to the rotational speed of the internal combustion engine. Since the number of parts such as valves and actuators can be reduced, the cost can be reduced, the structure can be simplified, and the weight can be reduced. A variable intake device for a four-cylinder internal combustion engine can be easily obtained. Further, since the valve body and the shaft portion of the rotary valve do not protrude into the intake passage, the intake resistance is not increased.
[0012]
Further, by configuring the invention according to claim 1 as described in claim 2, the rotary valve has three virtual surfaces that are partitioned at equal intervals in the circumferential direction as viewed from the side in the axial direction. The virtual three planes are switched in three stages in the circumferential direction according to the rotational speed of the internal combustion engine, and in the low rotational speed range of the internal combustion engine, all adjacent intake passages are blocked, and the intermediate rotational speed range In the cylinder group in which the intake strokes do not continue to each other, each cylinder is connected to a pair of adjacent intake passages whose one ends are connected to each other, and all adjacent intake passages are connected in a high rotational speed range. To be.
[0013]
As a result, it is only necessary to provide each of the three virtual surfaces with a structure that exhibits each variable intake action according to the low, medium, and high rotational speed ranges of the internal combustion engine. It can be easily formed. In particular, in a medium rotational speed region of an internal combustion engine, a pair of intake passages having one end connected to each cylinder in a cylinder group in which intake strokes are not continuous with each other are communicated with each other. Since they are adjacent to each other, it is only necessary to delete the partition wall between them, and the structure of the communication path can be formed very easily.
[0014]
Further, the virtual three planes are switched in three stages in the circumferential direction in accordance with the rotational speed of the internal combustion engine, and the rotary valve operates as described above. Therefore, in the low rotational speed range of the internal combustion engine, the intake collecting chamber is Acts as an atmosphere opening part, which becomes the reversal chamber of the intake pressure vibration, and is based on the intake pressure vibration of the low natural frequency and the low rotation of the engine in each long independent intake passage from the combustion chamber to the intake manifold In synchronism with the long open / close cycle of the intake valve, a high inertial supercharging effect is obtained, high intake charging efficiency is obtained for all the cylinders, and the output torque can be improved.
[0015]
Further, in the middle rotational speed region, the intake passage portion on the upstream side of the communication portion between a pair of adjacent intake passages, one end of which is connected to each cylinder in the cylinder group in which the intake strokes are not continuous, is in each cylinder group. The resonance pressure system is configured so that the intake pressure wave can be propagated to the next intake stroke of other cylinders in the same cylinder group without reversing the intake pressure wave in each intake passage and the intake communication portion. Resonance supercharging effect is obtained, high intake charging efficiency is obtained for each cylinder in the cylinder group in which the intake stroke is not continuous with each other, output torque can be improved, and between the low rotation speed range and the high rotation speed range It is possible to make up for the valley where the intake air charging efficiency and the output torque are reduced.
[0016]
Further, in the high rotational speed region, the communication portion (communication chamber) between all the adjacent intake passages acts as an air release portion, which becomes an inversion chamber of the intake pressure vibration, from the combustion chamber to the communication portion. A high inertial charging effect is achieved by synchronizing the intake pressure oscillation with high natural frequency in the short intake passage and the short opening and closing cycle of the intake valve based on the high engine speed, and high intake charging efficiency for all cylinders Thus, the output torque can be improved.
In this way, high intake charging efficiency and high output torque can be obtained over a wide rotational speed range from a low rotational speed range to a high rotational speed range.
[0017]
Furthermore, by configuring the invention according to claim 1 as described in claim 3, the rotary valve has four mutually independent passages and three communication chambers that are opened outward. The four mutually independent passages span between two vertices of an equilateral triangle obtained by dividing the outer periphery of the rotary valve into three equal intervals in the circumferential direction, and extend over the parallel length of four mutually independent intake passages. A first partition wall having a length, and three second partition walls that are connected to the first partition wall and block between adjacent intake passages; Two of them are spanning between the remaining vertex of the equilateral triangle and one edge of the first partition wall or a point in the vicinity of the edge, and the parallel lengths of four independent intake passages. A third partition wall having a length extending to at least the third partition wall Each of the three communication chambers includes a fourth partition wall and a fourth partition wall that blocks between the two adjacent intake passages. The remaining one of the three communication chambers includes the four independent passages. And a space excluding two of the three communication chambers.
[0018]
As a result, the rotary valve is switched in three stages at equal intervals according to the rotational speed of the internal combustion engine, and one end is connected to each cylinder in the cylinder group where the adjacent intake passages or the intake strokes are not continuous with each other. The internal structure of the rotary valve capable of communicating or blocking between a pair of adjacent intake passages is divided into four independent passages and three communication spaces by dividing the interior of the rotary valve by first to fourth partition walls. It can be obtained by a relatively simple method of forming a chamber.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the invention described in claims 1 to 8 of the present application illustrated in FIGS. 1 to 8 will be described.
FIG. 1 is a schematic perspective view of a variable intake device for an in-line four-cylinder internal combustion engine according to the present embodiment viewed virtually by cutting the upper half of the intake passage portion along the intake passage. FIG. 2 is a cross-sectional view of the variable intake device of FIG. 1, and shows the intake passage in its entirety. FIG. 3 is a view similar to FIG. 1, and shows the rotational state of the rotary valve and the intake air flow state when the internal combustion engine is in the middle rotational speed range, and FIG. 2 is a cross-sectional view of the variable intake device of FIG. 3, FIG. 5 is a view similar to FIG. 1, and the rotational state of the rotary valve when the internal combustion engine is in a high rotational speed range And FIG. 6 is a view similar to FIG. Cross-sectional view of the variable intake apparatus, FIG. 7, FIG, 8 for explaining the operation of the variable intake apparatus of FIG. 1 is a characteristic diagram of the variable intake apparatus of FIG. In the following, the cylinder arrangement direction is the left-right direction, and the left side in FIG. 1 is the left side.
[0020]
1 and 2, the variable intake device 1 for an in-line four-cylinder internal combustion engine according to the present embodiment has one end communicating with each cylinder of first to fourth cylinders # 1 to # 4 (not shown) of the internal combustion engine. Four mutually independent first to fourth intake passages 4 connected and connected to the single intake manifold 5 at the other end. 1 ~ 4 Four Is provided.
[0021]
The first to fourth cylinders # 1 to # 4 are ignited in the order of the first cylinder # 1, the third cylinder # 3, the fourth cylinder # 4, and the second cylinder # 2. Therefore, the intake stroke in each cylinder is also in this order, and the cylinder group consisting of the first and fourth cylinders # 1 and # 4 and the cylinder group consisting of the second and third cylinders # 2 and # 3 are in the intake stroke. Are cylinder groups that are not continuous with each other.
[0022]
First to fourth intake passages 4 1 ~ 4 Four Is a crossing portion in the vicinity of a portion where one end of each cylinder # 1 to # 4 is connected in communication (in FIG. 1, the fourth intake passage 4 Four The upper curved portion of the second and third intake passages 4 is 2 4 Three The first and fourth intake passages 4 for each of the cylinder groups # 1, # 4, # 2, and # 3 in which the intake strokes are not continuous with each other (except for the portion that intersects the upper curved portion). 1 4 Four And the second and third intake passages 4 2 4 Three Are arranged in parallel and in series with the cylinder arrangement direction. Therefore, the first and fourth intake passages 4 1 4 Four Are adjacent to each other in the left half of the cylinder arrangement direction, and the second and third intake passages 4 2 4 Three Are adjacent to each other in the right half of the cylinder arrangement direction.
[0023]
As a result, a pair of adjacent intake passages, one end of which is connected to each cylinder in the cylinder group in which the intake strokes are not continuous, are connected to each cylinder in the cylinder group including the first and fourth cylinders # 1 and # 4. A pair of adjacent first and fourth intake passages 4 whose one ends are in communication with each other 1 4 Four And a pair of adjacent second and third intake passages 4 each having one end communicating with each cylinder in the cylinder group including the second and third cylinders # 2 and # 3. 2 4 Three It is.
[0024]
First to fourth intake passages 4 1 ~ 4 Four 2, is formed in a curved shape so as to be rolled up inside as shown in FIG. 2, and an intake air collecting chamber 5 is connected to the tip thereof. The intake air collecting chamber 5 has an intake duct 6 provided adjacent to the intake air collecting chamber 5 and the first to fourth intake passages 4. 1 ~ 4 Four The variable intake device 1 can be made compact by being held in the curved internal space.
[0025]
The intake air introduced to the intake duct 6 through an air cleaner and a throttle body (not shown) then flows into the intake air collecting chamber 5 having a relatively large volume and is collected there. Then, when the rotational speed of the internal combustion engine is in the low / medium rotational speed range, the first to fourth intake passages 4 are further started from here. 1 ~ 4 Four And then flows through these relatively long passages and is sucked into each of the first to fourth cylinders # 1 to # 4. Although not shown, the communication path between the intake duct 6 and the intake manifold 5 is provided at the center of the intake manifold 5 in the longitudinal direction. 1st to 4th intake passage 4 leading to 4 1 ~ 4 Four The intake passage length including the same is made equal.
[0026]
First to fourth intake passages 4 1 ~ 4 Four The bottom wall in the middle of each of the first to fourth openings 7 having a substantially rectangular shape in front view. 1 ~ 7 Four These first to fourth openings 7 are formed. 1 ~ 7 Four To a part of the first to fourth intake passages 4 1 ~ 4 Four A single rotary valve 3 is provided so as to protrude from each of the two. The first to fourth intake passages 4 of the rotary valve 3 1 ~ 4 Four When the rotary valve 3 is viewed from the side in the axial direction, the projecting portion corresponds to a crescent-shaped portion that is cut out by approximately 1/3 arc length (see FIG. 2).
[0027]
The rotary valve 3 includes first to fourth intake passages 4. 1 ~ 4 Four The remaining portions excluding the approximately 1/3 arc portion protruding in the side view are held by the main body wall portion 8 of the intake manifold 2 and arranged. The main body wall portion 8 has a substantially arc shape that is 2/3 in a side view, and can close first and second communication chambers 10 and 12 (to be described later) of the rotary valve 3 according to the rotational position of the rotary valve 3. it can. Almost half of the main body wall portion 8 forms a part of the wall of the intake air collecting chamber 5.
[0028]
Next, the structure, operation, and effect of the rotary valve 3 will be described in detail.
As shown in FIG. 2, the rotary valve 3 has virtual three surfaces a, b, and c that are partitioned at equal intervals in the circumferential direction when viewed from the side in the axial direction. By switching the surfaces a, b and c in three stages in the circumferential direction according to the rotational speed of the internal combustion engine, as will be described in detail below, adjacent intake passages 4 1 And 4 Four 4 Four And 4 2 4 2 And 4 Three A pair of adjacent first and fourth intake passages 4 each having one end communicating with each cylinder in a cylinder group in which the intervals or the intake strokes are not continuous with each other 1 4 Four Between the second and third intake passages 4 2 4 Three It can be communicated or blocked.
[0029]
One surface a side of the virtual three surfaces a, b, c of the rotary valve 3 is adjacent to the intake passage 4 as shown in FIGS. 5 and 6. 1 And 4 Four 4 Four And 4 2 4 2 And 4 Three The first communication chamber 10 having a large volume capable of communicating with each other is provided.
[0030]
The first communication chamber 10 has a partition wall (third partition wall) 14 that partitions the first surface a side and the other one surface b side over the entire length of the rotary valve 3, the first surface a side, and the other one surface b. Is formed in a shape that is recessed inward of the rotary valve 3 by being sandwiched by a partition wall (first partition wall) 15 that divides the side and the other surface c side over the entire length of the rotary valve 3. , First to fourth intake passages 4 1 ~ 4 Four Each having a cross-sectional area larger than the cross-sectional area of the second communication chamber 12 described later, and the first to fourth intake passages 4. 1 ~ 4 Four All of these intake passages are communicated while abruptly changing the cross-sectional shape of each of the above.
[0031]
As shown in FIGS. 3 and 4, the other one side b of the virtual three surfaces a, b, and c of the rotary valve 3 has cylinder groups # 1, # 4, and # in which the intake strokes are not continuous with each other. 2 and # 3, a pair of adjacent first and fourth intake passages 4 whose one ends are connected to the respective cylinders in # 3 and # 3. 1 4 Four , A pair of adjacent second and third intake passages 4 2 4 Three 12 communication rooms that can communicate with each other 1 , Communication room 12 2 have. These two communication rooms 12 1 , 12 2 Are collectively referred to as a second communication chamber 12.
[0032]
Communication room 12 which is one of the second communication rooms 12 1 The other one, the communication room 12 2 Are a partition wall (third partition wall) 14, a partition wall (first partition wall) 15, and two central fourth and second intake passages 4. Four 4 2 It is formed by being surrounded by a partition wall (fourth partition wall) 16 for partitioning. The partition wall (third partition wall) 14 has a communication chamber 12 1 , 12 2 Is the cross-sectional area of each intake passage 4 1 ~ 4 Four The rotary valve 3 is formed in a shape recessed inward so as to be substantially equal to the cross-sectional area of the rotary valve 3.
[0033]
These first communication chamber 10 and second communication chamber 12 (12 1 , 12 2 ) Are simultaneously closed by the body wall portion 8 of the intake manifold 2 when the rotary valve 3 is in the rotational position shown in FIGS.
[0034]
As shown in FIGS. 1 and 2, the other one surface c side of the virtual three surfaces a, b, c of the rotary valve 3 is adjacent to the intake passage 4. 1 And 4 Four 4 Four And 4 2 4 2 And 4 Three It has the partition wall which interrupts | blocks each. This partition wall is composed of crescent-shaped partition walls (1 to 3 of the second partition wall) 17 to 19 that partition these intake passages, respectively, and the aforementioned partition wall (first partition wall) 15. Yes. When the rotary valve 3 is in the rotational position shown in FIGS. 1 and 2, the adjacent intake passage 4 1 And 4 Four 4 Four And 4 2 4 2 And 4 Three A long and independent intake passage 4 that is completely independent from each other. 1 ~ 4 Four Providing four independent passage portions.
[0035]
This partition wall 15 is connected to each intake passage 4 1 ~ 4 Four In order not to change the cross-sectional shape along the passage length direction, the air intake passage 4 is curved so as to protrude into each passage. 1 ~ 4 Four In order not to change the cross-sectional shape along the direction orthogonal to the passage length direction, the curved portion is formed so as to be slightly recessed inward of the rotary valve.
[0036]
First to fourth partition walls 14 to 19, first and second communication chambers 10 and 12 (12 1 , 12 2 ) Will be described in more detail.
The first partition wall 15 extends between two vertices of an equilateral triangle obtained by dividing the outer periphery of the rotary valve 3 into three parts at equal intervals in the circumferential direction, and four independent intake passages 4. 1 ~ 4 Four It has a length that extends to the parallel length of. The three second partition walls 17 to 19 are connected to the first partition wall 15, have a crescent shape, and are adjacent to the intake passage 4. 1 And 4 Four 4 Four And 4 2 4 2 And 4 Three Block the gap. The third partition wall 14 spans between the remaining vertex of the equilateral triangle and a point near the edge of one of the first partition walls 15 (upper side in FIG. 2), and four independent intakes. Passage 4 1 ~ 4 Four It has a length that extends to the parallel length of. The fourth partition wall 16 is connected to the third partition wall 14 and the first partition wall 15 on one end edge side of the first partition wall 15, and has two adjacent intake passages 4 in the center. Four 4 2 Block the gap. First communication chamber 10 and second communication chamber 12 (12 1 , 12 2 Are arranged back to back with the third partition wall 14 as a boundary. The rotary valve 3 has three communication chambers 10 and 12 in total. 1 , 12 2 Have
[0037]
The rotary valve 3 has any one of the virtual three surfaces a, b, c in the first to fourth intake passages 4. 1 ~ 4 Four First through fourth openings 7 1 ~ 7 Four As shown, the control means is provided that can be switched in three stages at equal intervals according to the rotational speed of the internal combustion engine. An electric or negative pressure actuator (not shown) is used for this control means.
[0038]
These actuators are disposed in the intake device 1 on one end side of the rotary valve 3. The rotary valve 3 is sequentially operated step by step in accordance with the rotational speed of the internal combustion engine, and rotates in the forward direction and in the reverse direction in accordance with increase / decrease in the rotational speed of the internal combustion engine. In the case of an electric actuator, it is only necessary to operate the electric motor stepwise by a signal from the control means. In the case of a negative pressure actuator, a diaphragm having at least two negative pressure chambers is required, and a control valve is provided for each of them, and the negative pressure is introduced by sequentially operating the control valve according to the rotational speed of the internal combustion engine. The rotary valve 3 can be operated stepwise, and the control means performs introduction (instruction) of the negative pressure. The negative pressure is introduced from the downstream of the throttle valve and is distributed to each control valve via the negative pressure chamber.
[0039]
This control means switches the rotary valve 3 as follows according to the rotational speed of the internal combustion engine.
First, the control means is configured such that the rotational speed of the internal combustion engine is a predetermined rotational speed N. 1 When there is a lower low speed range (N <N 1 ), As shown in FIGS. 1 and 2, the other one surface c side of the virtual three surfaces a, b, c of the rotary valve 3 is the first to fourth intake passages 4. 1 ~ 4 Four First through fourth openings 7 1 ~ 7 Four The rotary valve 3 is controlled so as to face Thereby, the adjacent intake passage 4 1 And 4 Four 4 Four And 4 2 4 2 And 4 Three The first to fourth intake passages 4 are long and completely separated by the partition wall 15 and the partition walls 17 to 19 and are completely independent. 1 ~ 4 Four Is formed.
[0040]
The intake air in the intake air collecting chamber 5 is supplied to these long first to fourth intake passages 4. 1 ~ 4 Four To each of these intake passages 4 1 ~ 4 Four And supplied to each cylinder # 1 to # 4. At this time, the intake air collecting chamber 5 acts as an atmosphere opening portion, and this is an inversion chamber of the intake pressure vibration, and a long intake passage 4 from the combustion chamber to the intake air collecting chamber 5. 1 ~ 4 Four The intake pressure oscillation with a low natural frequency in the engine and the long open / close cycle of the intake valve based on the low engine rotation synchronize with each other to obtain a high inertial supercharging effect and high intake charging efficiency for all cylinders. Thus, the output torque can be improved (see (1) in FIGS. 7 and 8).
[0041]
Next, this control means is such that the rotational speed of the internal combustion engine is N 1 Higher, the predetermined speed N 2 (N 1 <N 2 ) In the lower middle rotation speed range (N 1 <N <N 2 3), as shown in FIGS. 3 and 4, the other one surface b side of the virtual three surfaces a, b, c of the rotary valve 3 is the first to fourth intake passages 4. 1 ~ 4 Four First through fourth openings 7 1 ~ 7 Four The rotary valve 3 is controlled so as to face As a result, a pair of first and fourth intake passages 4 whose one ends are connected to the respective cylinders in the cylinder groups # 1 and # 4 and the cylinder groups # 2 and # 3 whose intake strokes are not continuous with each other. 1 4 Four Between the pair of second and third intake passages 4 2 4 Three Each room has 12 communication rooms 1 , 12 2 It is communicated via.
[0042]
The pair of first and fourth intake passages 4 1 4 Four Between the pair of second and third intake passages 4 2 4 Three Each communication section (communication chamber 12 constituting the second communication chamber 12) 1 , 12 2 ) Each intake passage section 4 on the upstream side 1u 4 4u Set of and 4 2u 4 3u Constitute a resonance system of each cylinder group, and each intake passage 4 1 ~ 4 Four And each intake communication section (communication chamber 12 1 , 12 2 ) The intake pressure wave can be propagated to the next intake stroke of other cylinders in the same cylinder group without reversing the intake pressure wave, and a high resonance supercharging effect is obtained, and the intake strokes are continuous with each other. High intake charging efficiency is obtained for each cylinder in the cylinder groups # 1, # 4 and # 2, # 3 which are not, and the output torque can be improved. In this way, it is possible to make up for a valley where the intake charging efficiency and the output torque between the low rotation speed region and the high rotation speed region decrease (see (2) in FIGS. 7 and 8).
[0043]
Next, the control means is configured such that the rotational speed of the internal combustion engine is N. 2 When in a higher high speed range (N 2 In <N), as shown in FIGS. 5 and 6, the first surface a side of the virtual three surfaces a, b, c of the rotary valve 3 is the first to fourth intake passages 4. 1 ~ 4 Four First through fourth openings 7 1 ~ 7 Four The rotary valve 3 is controlled so as to face Thereby, the adjacent intake passage 4 1 And 4 Four 4 Four And 4 2 4 2 And 4 Three The first to fourth intake passages 4 are all connected to each other. 1 ~ 4 Four Are all in communication with each other.
[0044]
At this time, the first communication chamber 10 formed in a large volume has the first to fourth intake passages 4. 1 ~ 4 Four Since each of the cross-sectional shapes of the intake air is changed abruptly, this acts as an atmosphere opening portion, which becomes an inversion chamber of the intake pressure vibration, and a short intake passage portion 4 from the combustion chamber to the first communication chamber 10 1d ~ 4 4d The intake pressure vibration with a high natural frequency in the engine and the short opening / closing cycle of the intake valve based on the high engine speed are synchronized to provide a high inertial supercharging effect and high intake charging efficiency for all cylinders. Thus, the output torque can be improved (see (3) in FIGS. 7 and 8).
[0045]
In this way, a flat and high intake charging efficiency and a high output torque can be obtained over a wide rotational speed range from a low rotational speed range to a high rotational speed range of the internal combustion engine. In general, when inertial supercharging and resonance supercharging are compared, the effect is greater in inertial supercharging, and resonance supercharging is positioned as an effect that compensates for inertial supercharging. The valley between the high intake charging efficiency based on the inertial supercharging effect obtained in the low rotational speed range and the high intake charging efficiency based on the inertial supercharging effect obtained in the high rotational speed range is in the middle rotational speed range. This is fully compensated for by improving the intake charging efficiency based on the obtained resonance supercharging effect. The intake air is always supplied from the intake manifold 5 to the cylinders # 1 to # 4 over the entire rotational speed range of the internal combustion engine.
[0046]
Since the present embodiment is configured as described above, the following effects can be further achieved.
Four mutually independent first to fourth intake passages 4 having one end connected to each cylinder of the in-line four-cylinder internal combustion engine and the other end connected to a single intake manifold 5. 1 ~ 4 Four However, the cylinders are arranged in series in parallel to the cylinder arrangement direction for each cylinder group in which the intake strokes are not continuous with each other, except for the intersection near the portion where one end is connected to each cylinder. And these intake passages 4 1 ~ 4 Four The rotary valve 3 is provided in such a way that approximately 1/3 arc length of the outer circumference protrudes.
[0047]
As a result, the first to fourth intake passages 4 1 ~ 4 Four Does not cross each other except for an intersection near the portion where one end of each cylinder is connected in communication, and the rotary valve 3 that performs variable intake does not protrude in the length direction. The variable intake device 1 including the manifold 2 can be formed compactly, particularly in the cylinder arrangement direction, and space efficiency is good. In addition, each intake passage 4 1 ~ 4 Four It is easy to achieve the same length.
[0048]
Further, high intake charging efficiency and high output torque over a wide rotational speed range from the low rotational speed range to the high rotational speed range are the first to fourth intake passages 4. 1 ~ 4 Four Since the rotary valve 3 provided so that approximately 1/3 arc length of the outer circumference protrudes in the middle of the engine is switched and controlled in three stages at equal intervals according to the rotational speed of the internal combustion engine. The number of such parts can be reduced, contributing to cost reduction, simplification of the structure, weight reduction, etc., and the variable intake device 1 for a four-cylinder internal combustion engine that does not require space can be easily obtained. Further, the rotary valve 3 has a valve body and a shaft portion whose first to fourth intake passages 4 are arranged. 1 ~ 4 Four Since it does not protrude inward, the intake resistance is not increased.
[0049]
Further, since the rotary valve 3 is switched by an electric or negative pressure actuator, the configuration of control means for switching the rotary valve 3 in three steps at equal intervals according to the rotational speed of the internal combustion engine becomes easy.
[0050]
Further, the rotary valve 3 has virtual three surfaces a, b, and c that are partitioned at equal intervals in the circumferential direction as viewed from the side in the axial direction on the outer periphery. It is switched in three stages in the circumferential direction according to the rotational speed of the internal combustion engine, and all adjacent intake passages 4 in the low rotational speed range of the internal combustion engine. 1 And 4 Four 4 Four And 4 2 4 2 And 4 Three A pair of adjacent first and fourth intake passages 4 having one end connected to each cylinder in the cylinder group in which the intake strokes are not continuous with each other in the middle rotational speed region. 1 4 Four Between the pair of second and third intake passages 4 2 4 Three All adjacent intake passages 4 that communicate with each other at high rotational speeds 1 And 4 Four 4 Four And 4 2 4 2 And 4 Three It is made to communicate between them.
[0051]
As a result, it is only necessary to provide each of the virtual three surfaces a, b, and c with a structure that exhibits each variable intake action according to the low, medium, and high rotational speed regions of the internal combustion engine. The internal structure can be formed relatively easily. In particular, a pair of first and fourth intake passages 4 each having one end communicating with each cylinder in a group of cylinders in which the intake strokes are not continuous with each other in the middle rotational speed region of the internal combustion engine. 1 4 Four Between the pair of second and third intake passages 4 2 4 Three In order to communicate with each other, the intake passages in each of these pairs are adjacent to each other. Therefore, it is only necessary to delete the partition wall between them, and the communication passage (second communication chamber 12 (12 1 , 12 2 )) Structure can be formed very easily.
[0052]
Also, the first to fourth intake passages 4 1 ~ 4 Four Is bent so as to be wound inside, and the intake air collecting chamber 5 and the intake duct 6 are arranged in the curved inner space, and the rotary valve 3 is partly held by the wall of the air intake collecting chamber 3. Since the variable intake device 1 is arranged in a round shape when viewed from the side, the variable intake device 1 can be formed more compactly, and the space efficiency is further improved.
[0053]
The first communication chamber 10 and the second communication chamber 12 (12 1 , 12 2 ), The structure of the partition walls 14 and 15 is not limited to that illustrated in the present embodiment, and various modifications are possible.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of a variable intake device for an in-line four-cylinder internal combustion engine according to the present embodiment viewed virtually by cutting the upper half of the intake passage portion along the intake passage. It is the figure which showed together the rotation state of the rotary valve when it exists in a rotation speed area, and the flow state of intake air.
2 is a cross-sectional view of the variable intake device of FIG. 1. FIG.
FIG. 3 is a view similar to FIG. 1 and also shows the rotational state of the rotary valve and the intake air flow state when the internal combustion engine is in the middle rotational speed range.
4 is a cross-sectional view of the variable intake device of FIG. 3, similar to FIG.
FIG. 5 is a view similar to FIG. 1 and also shows a rotational state of the rotary valve and an intake air flow state when the internal combustion engine is in a high rotational speed range.
6 is a view similar to FIG. 2 and a cross-sectional view of the variable intake device of FIG.
FIG. 7 is a view for explaining the operation of the variable intake device of the in-line four-cylinder internal combustion engine in the present embodiment.
FIG. 8 is a characteristic diagram of a variable intake device for an in-line four-cylinder internal combustion engine in the present embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Variable intake device, 2 ... Intake manifold, 3 ... Rotary valve, 4 1 ~ 4 Four ... First to fourth intake passages, 4 1u ~ 4 4u ... Upstream side intake passage part, 4 1d ~ 4 4d ... downstream side intake passage part, 5 ... intake manifold, 6 ... intake duct, 7 1 ~ 7 Four ... 1st-4th opening, 8 ... Main part wall part, 10 ... 1st communication chamber, 12 (12 1 , 12 2 ) ... second communication chamber, 14 ... third partition wall, 15 ... first partition wall, 16 ... fourth partition wall, 17-19 ... three second partition walls, ac ... virtual 3 surface.

Claims (3)

直列4気筒内燃機関の各気筒に一端がそれぞれ連通接続され、単一の吸気集合室に他端が連通接続される4つの互いに独立な吸気通路が、各気筒に一端がそれぞれ連通接続される部分の近傍の交差部分を除いて、吸気行程が互いに連続しない気筒群毎に気筒配列方向に平行に直列に配置され、内側に巻き込むように湾曲され、
前記吸気通路の前記湾曲の内部空間に、前記吸気集合室が配置され、
その外周の略1/3円弧長が前記吸気通路の途中に突出し、その外周の少なくとも残りの一部が前記吸気集合室の壁により抱持されるようにして、ロータリーバルブが設けられ、
前記ロータリーバルブは、前記内燃機関の回転速度に応じて等間隔に3段階に切り換えられて、隣接する全ての吸気通路間もしくは吸気行程が互いに連続しない気筒群における各気筒に一端がそれぞれ連通接続される隣接する1対の吸気通路間を連通もしくは遮断することができるようにされたことを特徴とする直列4気筒内燃機関の可変吸気装置。
Four independent intake passages, one end of which is connected to each cylinder of the in-line four-cylinder internal combustion engine and the other end of which is connected to a single intake manifold, and one end of which is connected to each cylinder. Are arranged in series in parallel with the cylinder arrangement direction for each cylinder group in which the intake strokes are not continuous with each other, except for the intersecting portion in the vicinity of
The intake air collecting chamber is disposed in the curved internal space of the intake passage,
A rotary valve is provided so that an approximately 1/3 arc length of the outer periphery protrudes in the middle of the intake passage, and at least the remaining part of the outer periphery is held by the wall of the intake air collecting chamber.
The rotary valve is switched in three stages at equal intervals according to the rotational speed of the internal combustion engine, and one end thereof is connected to each cylinder in a cylinder group where all adjacent intake passages or intake strokes are not continuous with each other. A variable intake device for an in-line four-cylinder internal combustion engine, wherein a pair of adjacent intake passages adjacent to each other can be communicated or blocked.
前記ロータリーバルブは、その外周に、その軸方向から側面視して周方向に等間隔に仕切られた仮想3面を有し、前記仮想3面が前記内燃機関の回転速度に応じて周方向に3段階に切り換えられて、
前記内燃機関の低回転速度域で、隣接する全ての吸気通路間を遮断し、
中回転速度域で、吸気行程が互いに連続しない気筒群における各気筒に一端がそれぞれ連通接続される隣接する1対の吸気通路間を連通し、
高回転速度域で、隣接する全ての吸気通路間を連通する
ようにされたことを特徴とする請求項1記載の直列4気筒内燃機関の可変吸気装置。
The rotary valve has, on its outer periphery, three virtual surfaces that are partitioned at equal intervals in the circumferential direction as viewed from the axial direction, and the virtual three surfaces are arranged in the circumferential direction according to the rotational speed of the internal combustion engine. It is switched to 3 stages
In the low rotational speed range of the internal combustion engine, shuts off all adjacent intake passages,
Communicating between a pair of adjacent intake passages each having one end connected to each cylinder in a group of cylinders in which the intake strokes are not continuous with each other in a middle rotational speed range;
2. A variable intake system for an in-line four-cylinder internal combustion engine according to claim 1, wherein all adjacent intake passages communicate with each other in a high rotational speed range.
前記ロータリーバルブは、それぞれ外方に向けて開放された4つの互いに独立な通路と3つの連通室とを有し、
前記4つの互いに独立な通路は、前記ロータリーバルブの外周を周方向に等間隔に3分割して得られる正三角形の2つの頂点間にまたがり、前記4つの互いに独立な吸気通路の並設長に及ぶ長さを有する第1の仕切壁と、前記第1の仕切壁に連設されて、隣接する吸気通路間を遮断する3つの第2の仕切壁とにより区画形成され、
前記3つの連通室のうちの2つは、前記正三角形の残りの1つの頂点と前記第1の仕切壁の一方の端縁もしくは該端縁近傍の点との間にまたがり、前記4つの互いに独立な吸気通路の並設長に及ぶ長さを有する第3の仕切壁と、少なくとも前記第3の仕切壁に連設されて、中央2つの隣接する吸気通路間を遮断する第4の仕切壁とによりそれぞれ区画形成され、
前記3つの連通室のうちの残りの1つは、前記4つの互いに独立な通路および前記3つの連通室のうちの2つを除いた空間により形成されている
ことを特徴とする請求項1記載の直列4気筒内燃機関の可変吸気装置。
The rotary valve has four independent passages and three communication chambers, each of which opens outward.
The four mutually independent passages span between two vertices of an equilateral triangle obtained by dividing the outer periphery of the rotary valve into three equal intervals in the circumferential direction, and are parallel to the length of the four independent intake passages. Partitioned by a first partition wall having a length that extends and three second partition walls that are connected to the first partition wall and block between adjacent intake passages,
Two of the three communication chambers span between the remaining vertex of the equilateral triangle and one end edge of the first partition wall or a point near the end edge, and A third partition wall having a length that extends over the length of the independent intake passages, and a fourth partition wall that is connected to at least the third partition wall and blocks between the two adjacent intake passages. And each compartment is formed,
The remaining one of the three communication chambers is formed by a space excluding the four independent passages and two of the three communication chambers. A variable intake system for an in-line four-cylinder internal combustion engine.
JP2000025697A 2000-01-31 2000-02-02 Variable intake system for inline 4-cylinder internal combustion engine Expired - Fee Related JP4259713B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2000025697A JP4259713B2 (en) 2000-02-02 2000-02-02 Variable intake system for inline 4-cylinder internal combustion engine
US09/770,373 US6382162B2 (en) 2000-01-31 2001-01-29 Variable intake apparatus for in-line four-cylinder internal combustion engine
MYPI20010398A MY128120A (en) 2000-01-31 2001-01-30 Variable intake apparatus for in-line four-cylinder internal combustion engine
TW090101920A TW475968B (en) 2000-01-31 2001-01-31 Variable intake apparatus for in-line four-cylinder internal combustion engine
DE60117882T DE60117882T2 (en) 2000-01-31 2001-01-31 Variable geometry intake device for four-cylinder in-line engine
CNB011017538A CN1166856C (en) 2000-01-31 2001-01-31 Changeable air intake device for straight-four engine
EP01102228A EP1122410B1 (en) 2000-01-31 2001-01-31 Variable intake apparatus for in-line four-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000025697A JP4259713B2 (en) 2000-02-02 2000-02-02 Variable intake system for inline 4-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001214747A JP2001214747A (en) 2001-08-10
JP4259713B2 true JP4259713B2 (en) 2009-04-30

Family

ID=18551522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000025697A Expired - Fee Related JP4259713B2 (en) 2000-01-31 2000-02-02 Variable intake system for inline 4-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JP4259713B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104481756A (en) * 2014-12-03 2015-04-01 储德新 Interpenetrating type control system

Also Published As

Publication number Publication date
JP2001214747A (en) 2001-08-10

Similar Documents

Publication Publication Date Title
EP1122410B1 (en) Variable intake apparatus for in-line four-cylinder internal combustion engine
TW200415299A (en) Variable air intake mechanism of engine
JP4259713B2 (en) Variable intake system for inline 4-cylinder internal combustion engine
JP4259715B2 (en) Variable intake system for inline 4-cylinder internal combustion engine
JP3783828B2 (en) Variable intake system for inline 4-cylinder internal combustion engine
JP2007205198A (en) Intake device for internal combustion engine
JP4420509B2 (en) Seal structure of rotary valve in variable intake system of inline 4-cylinder internal combustion engine
JPH03286129A (en) Air intake device for multiple cylinder engine
JPS59173519A (en) Variable suction system for internal-combustion engine
JP5361770B2 (en) Engine intake system
JP3781961B2 (en) Engine operating characteristics variable device
JPH06280576A (en) Intake device of engine
JP2001227348A (en) Variable intake device of in-line four-cylinder internal combustion engine
JP3675226B2 (en) Intake device for internal combustion engine
JP2000328947A (en) Variable intake device for internal combustion engine
JPH0720344Y2 (en) Multi-cylinder engine intake system
JP3624540B2 (en) Engine intake system
JP2772674B2 (en) Intake device for V-type multi-cylinder internal combustion engine
JPH10196373A (en) Variable intake mechanism
JP2724750B2 (en) Intake device for multi-cylinder internal combustion engine
JPH0586869A (en) Intake device for multiple cylinder engine
JP2808312B2 (en) Valve Noise Prevention Method for Multi-Cylinder Internal Combustion Engine
JP2001227349A (en) Variable intake device of in-line four-cylinder internal combustion engine
JPH0649864Y2 (en) Intake device for V-type multi-cylinder internal combustion engine
JPH03286132A (en) Air intake device for multiple cylinder engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees