JP4259090B2 - Manufacturing method of flash lamp - Google Patents

Manufacturing method of flash lamp Download PDF

Info

Publication number
JP4259090B2
JP4259090B2 JP2002315377A JP2002315377A JP4259090B2 JP 4259090 B2 JP4259090 B2 JP 4259090B2 JP 2002315377 A JP2002315377 A JP 2002315377A JP 2002315377 A JP2002315377 A JP 2002315377A JP 4259090 B2 JP4259090 B2 JP 4259090B2
Authority
JP
Japan
Prior art keywords
sintered body
electrode
arc tube
glass
flash lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002315377A
Other languages
Japanese (ja)
Other versions
JP2004152568A (en
Inventor
藤 真 一 遠
森 崇 豊
谷 俊 明 大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP2002315377A priority Critical patent/JP4259090B2/en
Publication of JP2004152568A publication Critical patent/JP2004152568A/en
Application granted granted Critical
Publication of JP4259090B2 publication Critical patent/JP4259090B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Discharge Lamp (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光パルスによる紫外線殺菌の光源として利用されるフラッシュランプとその製造方法及びフラッシュランプに用いる電極ユニットに関する。
【0002】
【従来の技術】
紫外線殺菌の光源としては、殺菌に有効とされる波長254nmの紫外線を効率良く放射し、ランプ寿命も長い低圧水銀ランプが一般的に使用されているが、該ランプは、紫外線出力が低いため短時間で大量の被処理物を殺菌処理することができず、また、高出力を得ようとすればランプの使用本数を多くしなければならないので、その設置スペースが大きくなり、更に、被処理物の光透過率が低い場合や、菌が高濃度で存在して被処理物の表面等に重なり合って付着している場合、菌がバイオフィルムを生成してその中に潜んでいる場合、あるいは厚い皮膜で覆われた芽胞菌等のように紫外線の被照射耐性が高い菌の場合には、滅菌レベル(99.9999%以上の殺菌)の殺菌効果を得ることができないという欠点があった。
【0003】
このため、加熱殺菌に適さない食品、飲料、医薬品等やその容器、包装資材等の殺菌処理は、薬液を用いて行なうのが一般的であるが、薬液を使用すると、殺菌処理した被処理物の表面に付着残存する薬液を洗浄除去しなければならないので、被処理物を無菌水で洗浄する洗浄設備や、その無菌水を作って供給する給水設備、使用済みの薬液が含まれた排水を無害化する排水処理設備等が必要となり、それらの設備費やランニングコストが嵩むと同時に、設備の設置スペースも著しく大きくなるという問題があった。また、近時は、世界的な環境保全運動の高まりに伴って、薬液を使用しない無公害な殺菌処理技術の開発が待望されている。
【0004】
以上のような事情に鑑みて、低圧水銀ランプよりも高出力、高照度の紫外線を放射するフラッシュランプ(閃光放電灯)を用いた殺菌処理技術が種々提案されている。この技術は、例えば図5に示すようなキセノンフラッシュランプ40によって瞬間的に高照度の紫外線を照射するもので、該ランプ40は、希ガスのキセノンガスを封入したガラス製発光管41の両端に一対の電極ユニット42、43が対向して配置された構造になっている。
【0005】
発光管41は、紫外線透過率の高い石英ガラスによって円筒形に成形され、その両端に配置される各電極ユニット42、43は、夫々電極リード棒44、45の外周に溶着された封止用ガラス46、47によって、キセノンガスが封入された発光管41の端部を気密に封止すると同時に、その発光管41の端部に固定されるようになっている。
【0006】
電極ユニット42の電極リード棒44は、電極(陽極)となる先端部48をバルク状に成形加工したタングステンロッドで形成され、また、電極ユニット43の電極リード棒45は、先端に電極(陰極)となる電子放出性物質の燒結体49が固着されたタングステンロッドで形成されている。
【0007】
以上の如く構成されたキセノンフラッシュランプ40は、電極リード棒44、45の後端部に接続されたリード線(図示せず)を介してパルス電力が供給されると、発光管41内に生ずる瞬間的な放電プラズマ中でキセノンガスが励起されて、殺菌効果を奏する200〜300nmの短波長紫外線を強力に発するようになっている。
【0008】
これにより、例えば発光長250mm、発光管外径10mm(内径8mm)のキセノンフラッシュランプ40を用いた殺菌試験では、該ランプの中心から被処理物の表面までの照射距離を100mmとしたときに、その被処理物の表面に付着した微生物の滅菌処理に必要なランプ出力と照射回数は、枯草菌芽胞の場合:500Jを6回又は2000Jを1回で足り、また、黒麹カビの場合:500Jを16回又は2000Jを3回で足り、その処理時間も、僅か数秒〜数十秒で足りるという優れた殺菌効果を奏することが確認されている。
【0009】
しかし、短時間で大量の被処理物を殺菌処理するためにフラッシュランプ40を短いインターバルで連発的に発光させると、電極ユニット43の電極リード棒45に固着された電子放出性物質の燒結体49が短期間で分解して不活性化し、約100万回程度の少ない点灯回数で放電不能(不点灯)となり、ランプ寿命が著しく短くなるという問題が発生した。
【0010】
光パルス殺菌に用いられるフラッシュランプの電極ユニットは、いずれも、電極リード棒の先端に電極を設け、その電極リード棒の外周に封止用ガラスを溶着させた基本構造を有する点で共通しており(例えば、特許文献1参照)、電子放出性物質の燒結体を電極(陰極)とする電極ユニットも、従来品はその基本構造において共通しているので、上記と同様の問題が発生することは不可避であり、これがフラッシュランプによる光パルス殺菌の実用化と普及を妨げる大きな要因の一つとなっていた。
【0011】
【特許文献1】
特許第2723573号公報(第1−3頁、第1−3図)
【0012】
【発明が解決しようとする課題】
このため、電極となる燒結体49が短期間で分解して不活性化する原因を究明したところ、電極ユニット43の製造過程で、電子放出性物質の粉末を電極形の圧粉塊にプレス成形して電極リード棒45の先端に取り付け、その圧粉塊を真空熱処理炉内で千数百度に加熱して燒結させ、これにより先端に燒結体49が固着生成された電極リード棒45を真空熱処理炉から取り出した際に、燒結体49が大気に触れてその表面に大気中の水分が吸着され、次いで、先端に燒結体49が固着された電極リード棒45の後端側に封止用ガラス47となるビーズ状のガラスを外嵌して、これを水素雰囲気中で加熱して電極リード棒45の外周に溶着させる際に、その熱で、燒結体49の表面に吸着された水分と水素が該燒結体49の内部に拡散するため、フラッシュランプ40の点灯動作時に燒結体49の内部から水分及び水素ガスが放出されることが原因であると判明した。
【0013】
そこで本発明は、フラッシュランプによる光パルス殺菌の実用化と普及を図るために、ランプの点灯動作時に電極となる焼結体の内部から水分や水素ガスが放出されて該焼結体が分解することを確実に防止し、そのランプ寿命を飛躍的に向上させることを技術的課題としている。
【0014】
【課題を解決するための手段】
上記の課題を解決するために、請求項1の発明は、希ガスが封入されるガラス製発光管の両端に、その端部を夫々電極リード棒の外周に溶着された封止用ガラスで気密に封止する一対の電極ユニットが対向して配置されたフラッシュランプの製造方法において、ガラス製発光管の片端側に、一方の電極ユニットを配置すると共に、ガラス製発光管の他端側に、電極リード棒の先端に電極となる電子放出性物質の焼結体が固着され、該焼結体と前記封止用ガラスとの間における電極リード棒の外周部分に導電性耐熱材料で成るコイルが巻装された他方の電極ユニットを配置して、それら両電極ユニットの電極リード棒の外周に溶着された封止用ガラスでガラス製発光管の両端を封止し、次いで、該発光管の管外から前記コイルを誘導加熱し、その熱で前記焼結体を加熱して該焼結体に吸着された水分やガス成分を蒸発させ、その蒸発成分を発光管の希ガス封入口から管外へ吸引排出した後、該希ガス封入口から発光管の管内に希ガスを封入することを特徴とする。
【0018】
本発明方法によれば、電極ユニットの製造過程で焼結体に吸着された水分や水素が、その電極ユニットを用いてフラッシュランプを製造する過程で除去されるので、ランプの点灯動作時に焼結体の内部から水分や水素ガスが放出されて該焼結体が分解することがない。
【0019】
【発明の実施の形態】
以下、本発明の実施形態を図面によって具体的に説明する。
図1は本発明によるフラッシュランプの一例を示す断面図、図2はその端部の拡大断面図、図3はフラッシュランプに用いる電極ユニットの例を示す断面図、図4はフラッシュランプの点灯回路を示す図である。
【0020】
図1のフラッシュランプ1は、紫外線透過率の良い石英ガラスで成形されたガラス製発光管2の両端に一対の電極ユニット3及び4が対向して配置されている。
【0021】
一方の電極ユニット3は、電極(陽極)となる先端部6をバルク状に成形加工したタングステンロッドで成る電極リード棒5の外周にガラス製発光管2の片端部を気密に封止する封止用ガラス7が溶着されている。
【0022】
他方の電極ユニット4は、タングステンロッドで成る電極リード棒8の先端に電極(陰極)となる電子放出性物質の燒結体9が固着され、該電極リード棒8の外周にガラス製発光管2の他端部を気密に封止する封止用ガラス10が溶着されると共に、燒結体9と封止用ガラス10との間における電極リード棒8の外周に、タングステン等の導電性耐熱材料で成るコイル11が巻装されている。
【0023】
なお、電極ユニット4は、タングステン粉末及びタングステンとアルカリ土類金属の複合酸化物の粉末を電極の形にプレス成形した圧粉塊を電極リード棒8の先端に取り付け、その圧粉塊を1600℃で真空焼成して電極リード棒8の先端に焼結体9を生成固着させる工程と、該工程により先端に焼結体9が固着された電極リード棒8の後端側からコイル11を外嵌して外周に巻装させ、次に、ビーズ状の封止用ガラス10を外嵌して、該封止用ガラス10を水素雰囲気中で加熱して電極リード棒8の外周に溶着させる工程を経て製造されており、その製造過程で電極リード棒8の先端に固着された焼結体9の表面には水分や水素が吸着されている。
【0024】
そこで、本発明のフラッシュランプ1は、まず、図1の如く、ガラス製発光管2の片端側に電極ユニット3を配置すると共に、そのガラス製発光管2の他端側に電極ユニット4を配置して、それら両電極ユニット3、4の電極リード棒5、8の外周に溶着された封止用ガラス7、10でガラス製発光管2の両端を気密に封止し、次いで、図2の如く、高周波電源15に接続される高周波誘導加熱装置13の高周波コイル14をガラス製発光管2の外部から電極ユニット4の電極リード棒8に巻装されたコイル11を囲繞するように配して、その高周波コイル14でガラス製発光管2の管外からコイル11を誘導加熱し、そのコイル11の放熱により焼結体9を間接加熱して該焼結体9に吸着された水分やガス成分を蒸発させ、その蒸発成分を真空ポンプ等でガラス製発光管2の希ガス封入口12から管外へ吸引排出した後、該希ガス封入口12から発光管2の管内に希ガスのキセノンガスを常温で約40kPa封入して、その希ガス封入口12を加熱溶封する方法によって製造されている。
【0025】
これにより、フラッシュランプ1の点灯動作時に燒結体9の内部から水分や水素ガスが放出されて該燒結体9が分解することがないので、フラッシュランプ1の寿命が飛躍的に向上し、図4の点灯回路を用いたフラッシュランプ1の寿命試験によれば、1000万回の点灯でも安定した点灯特性を示すことが確認された。
【0026】
すなわち、図4に示すフラッシュランプ1の点灯回路は、充電用コンデンサ16、充電用電源17、波形調整用コイル18及びトリガ発生回路19とで構成され、まず、充電用電源17からコンデンサ16に直流電圧が印加されて、500Jの充電エネルギーが蓄えられる(充電電圧2000V、コンデンサ容量250μF)。そして、トリガ発生回路19に点灯信号が入力されると、スイッチSが閉じてパルス状のトリガ電圧(ピーク電圧15kV、半値幅2μs)が誘起され、該トリガ電圧がフラッシュランプ1の電極間に印加されると、発光管2の内部に封入されたキセノンガスの一部が電離して種放電が生じ、コンデンサ16に蓄えられた電荷が一気に流れて、瞬間的に高強度の光パルスが発せられる。なお、電流は波形調整用コイル18で制御されるが、本寿命試験におけるピーク電流は800Aとした。
【0027】
この点灯回路によりフラッシュランプ1を1秒間に2回の頻度で点灯させて、コンベアにより30m/minの速度でランプ長手方向に連続的に搬送されるゼリー物質の包装容器(口径60mm、深さ45mm、底面径50mm)を一回の照射で枯草菌芽胞を99.9%殺菌することができる照射距離10mmで毎分480個の割合で殺菌処理すると、燒結体9で成る電極の温度が上昇して1200℃で動作するようになる。
【0028】
燒結体9は、水分または水素の介在によって分解しやすいが、本発明のフラッシュランプ1は、その焼結体9で成る電極が高温動作しても、該燒結体9がその内部からの水分や水素ガスの放出によって分解することがない。したがって、図5に示す従来のフラッシュランプ40は、100万回の点灯で不点灯となるものがあり、200万回の点灯で不点灯となる確率が約5%にも達するのに対し、本発明のフラッシュランプ1は、1000万回の点灯でも不点灯とならず、安定した点灯特性を示した。
【0029】
そして、上記の如くランプ寿命に各段の差異がある従来品のフラッシュランプ40と本発明品のフラッシュランプ1を各々1万回ずつ点灯動作(エージング)させた後、その発光管を真空チャンバ内で破壊して、マススペクトル分析装置により封入ガスの全圧中の不純ガス分圧から発光管内に混入している水分と水素ガスの量を求めた結果、表1のとおり、本発明品は、ランプ1本当たりの水分と水素の混入量が従来品に比べて桁違いに少ないことが確認された。
【0030】
【表1】

Figure 0004259090
【0031】
この表1の実験データは、図1に示すフラッシュランプ1の燒結体9に吸着された水分及び水素の量が、図5に示す従来のフラッシュランプ40の燒結体49に吸着された量より各段に少ないことを示している。これにより、本発明のフラッシュランプ1は、その点灯動作時に燒結体9の内部から水分や水素ガスが放出されて該焼結体9が分解することがなく、そのランプ寿命が飛躍的に向上することが実証されている。
【0032】
なお、フラッシュランプ1の製造過程で焼結体9の表面に吸着している水分や水素等のガス成分を効率良く蒸発させるには、焼結体9を800℃前後の高温に加熱することが望ましいが、その焼結体9を加熱するコイル11が、図3(a)に示す電極ユニット4の如く焼結体9と封止用ガラス10の中間位置に巻装されている場合は、焼結体9の加熱効率が良くない一方、ガラス製発光管2の端部を封止する封止用ガラス10の温度が500℃を超えて、その封止部に熱歪やクラック等が生ずるおそれがある。
【0033】
そこで、図3(b)に示す電極ユニット4は、焼結体9の加熱効率を高めてその焼結体に吸着された水分や水素の蒸発を促進させると同時に、封止用ガラス10の温度を500℃以下に抑えて封止部にクラック等を生じさせないようにするため、コイル11が、封止用ガラス10から遠ざけられて焼結体9に近い所に巻装されている。また、図3(c)に示す電極ユニット4は、焼結体9の加熱効率をより一層高めるために、コイル11が、封止用ガラス10から遠ざけられて焼結体9に近い所に巻装されると同時に、該コイル11が電極リード棒8の外周部分に二重に巻き付けられた重ね巻きコイルになっている。
【0034】
また、電極リード棒8の外周部分に巻装させたコイル11が定位置から擦り動かないようにするため、該コイル11は、その内径が電極リード棒8の外径よりも若干小さく選定されている。なお、コイル11は、タングステン以外の導電性耐熱材料で成形された例えばモリブデンコイル等を用いても良い。
【0035】
【発明の効果】
本発明によれば、光パルス殺菌に用いるフラッシュランプを短いインターバルで連発的に点灯させても、電極となる電子放出性物質の燒結体が短期間で分解して不活性化することがなく、フラッシュランプのランプ寿命が飛躍的に向上するので、光パルス殺菌技術の実用化と普及に資することができるという大変優れた効果がある。
【図面の簡単な説明】
【図1】本発明によるフラッシュランプの一例を示す断面図
【図2】本発明によるフラッシュランプの製造方法を示す端部の拡大断面図
【図3】本発明のフラッシュランプに用いる電極ユニットの例を示す断面図
【図4】フラッシュランプの点灯回路を示す図
【図5】従来のフラッシュランプを示す断面図
【符号の説明】
1……………フラッシュランプ 10……………封止用ガラス
2……………ガラス製発光管 11……………コイル
4……………電極ユニット 12……………希ガス封入口
8……………電極リード棒
9……………電子放出性物質の燒結体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flash lamp used as a light source for ultraviolet sterilization by a light pulse, a manufacturing method thereof, and an electrode unit used for the flash lamp.
[0002]
[Prior art]
As a light source for ultraviolet sterilization, a low-pressure mercury lamp that efficiently emits ultraviolet light having a wavelength of 254 nm, which is effective for sterilization, and has a long lamp life is generally used. A large amount of processing objects cannot be sterilized in time, and if a high output is to be obtained, the number of lamps to be used must be increased. If the light transmittance is low, or if the bacteria are present in high concentration and adhere to the surface of the object to be treated, etc., if the bacteria generate a biofilm and lurk in it, or are thick In the case of bacteria having high resistance to irradiation with ultraviolet rays, such as spore bacteria covered with a film, there is a drawback that a sterilization effect (sterilization of 99.9999% or more) cannot be obtained.
[0003]
For this reason, sterilization of foods, beverages, pharmaceuticals, etc., containers and packaging materials that are not suitable for heat sterilization is generally performed using a chemical solution. The chemical solution remaining on the surface of the product must be washed and removed, so a cleaning facility that cleans the material to be treated with aseptic water, a water supply facility that supplies and supplies the sterile water, and wastewater that contains used chemical solution There is a problem that wastewater treatment facilities and the like are required to be detoxified, and the facility costs and running costs increase, and at the same time, the installation space for the facilities is significantly increased. In recent years, the development of a non-polluting sterilization technology that does not use chemicals is awaited as the global environmental conservation movement increases.
[0004]
In view of the above circumstances, various sterilization treatment techniques using flash lamps (flash discharge lamps) that emit ultraviolet rays with higher output and higher illuminance than low-pressure mercury lamps have been proposed. In this technique, for example, a high-intensity ultraviolet ray is instantaneously irradiated by a xenon flash lamp 40 as shown in FIG. 5, and the lamp 40 is provided at both ends of a glass arc tube 41 filled with a rare gas xenon gas. A pair of electrode units 42 and 43 are arranged to face each other.
[0005]
The arc tube 41 is formed into a cylindrical shape with quartz glass having a high ultraviolet transmittance, and the electrode units 42 and 43 disposed at both ends thereof are sealing glasses welded to the outer periphery of the electrode lead bars 44 and 45, respectively. The end portions of the arc tube 41 filled with xenon gas are hermetically sealed by 46 and 47, and at the same time, are fixed to the end portions of the arc tube 41.
[0006]
The electrode lead bar 44 of the electrode unit 42 is formed of a tungsten rod in which a tip portion 48 to be an electrode (anode) is formed into a bulk shape, and the electrode lead bar 45 of the electrode unit 43 is an electrode (cathode) at the tip. It is formed of a tungsten rod to which a sintered body 49 of an electron emitting material is fixed.
[0007]
The xenon flash lamp 40 configured as described above is generated in the arc tube 41 when pulsed power is supplied through lead wires (not shown) connected to the rear ends of the electrode lead bars 44 and 45. Xenon gas is excited in an instantaneous discharge plasma, and emits a short wavelength ultraviolet ray of 200 to 300 nm that exhibits a bactericidal effect.
[0008]
Thus, for example, in a sterilization test using a xenon flash lamp 40 having a light emission length of 250 mm and an arc tube outer diameter of 10 mm (inner diameter of 8 mm), when the irradiation distance from the center of the lamp to the surface of the workpiece is 100 mm, The lamp output and the number of irradiations necessary for sterilization of microorganisms attached to the surface of the object to be treated are: Bacillus subtilis spores: 6 times for 500J or 1 time for 2000J, and for black mold: 500J 16 times or 3 times 2000J, and it has been confirmed that the processing time is only a few seconds to a few tens of seconds.
[0009]
However, when the flash lamp 40 is caused to emit light continuously at short intervals in order to sterilize a large amount of objects to be processed in a short time, a sintered body 49 of an electron-emitting substance fixed to the electrode lead rod 45 of the electrode unit 43 is obtained. Is decomposed and deactivated in a short period of time, and discharge becomes impossible (non-lighting) with a small number of lighting times of about one million times, resulting in a problem that the lamp life is remarkably shortened.
[0010]
The electrode units of flash lamps used for light pulse sterilization are common in that they have a basic structure in which an electrode is provided at the tip of the electrode lead bar and sealing glass is welded to the outer periphery of the electrode lead bar. (For example, refer to Patent Document 1), the electrode unit using the sintered body of the electron-emitting substance as an electrode (cathode) also has the same problem as the above because the conventional product is common in its basic structure. Was inevitable, and this was one of the major factors hindering the practical application and spread of light pulse sterilization using flash lamps.
[0011]
[Patent Document 1]
Japanese Patent No. 2723573 (page 1-3, Fig. 1-3)
[0012]
[Problems to be solved by the invention]
For this reason, the cause of the sintered body 49 that becomes an electrode being decomposed and inactivated in a short period of time was investigated, and in the process of manufacturing the electrode unit 43, the electron-emitting substance powder was pressed into an electrode-type green compact. The electrode lead bar 45 is attached to the tip of the electrode lead bar 45, and the compacted lump is heated to a few hundred degrees in a vacuum heat treatment furnace and sintered, whereby the electrode lead bar 45 having the sintered body 49 fixedly formed at the tip is vacuum heat treated. When the sintered body 49 is exposed to the atmosphere when taken out from the furnace, moisture in the atmosphere is adsorbed on the surface thereof, and then a sealing glass is formed on the rear end side of the electrode lead rod 45 having the sintered body 49 fixed to the tip. When the bead-like glass 47 is externally fitted and heated in a hydrogen atmosphere to be welded to the outer periphery of the electrode lead bar 45, the heat and moisture adsorbed on the surface of the sintered body 49 by the heat To diffuse into the sintered body 49 Of moisture and hydrogen gas from the interior of the sintered body 49 at the time of lighting operation of the flash lamp 40 is released it has been found to be the cause.
[0013]
Accordingly, in order to put the light pulse sterilization using a flash lamp into practical use and spread, the present invention releases moisture and hydrogen gas from the inside of the sintered body which becomes an electrode during the lighting operation of the lamp, and the sintered body is decomposed. It is a technical problem to reliably prevent this and dramatically improve the lamp life.
[0014]
[Means for Solving the Problems]
In order to solve the above problems, the invention of claim 1 is characterized in that a glass arc tube in which a rare gas is sealed is sealed with sealing glass in which both ends are welded to the outer periphery of the electrode lead rod. In the method of manufacturing a flash lamp in which a pair of electrode units sealed to each other are arranged to face each other, one electrode unit is arranged on one end side of the glass arc tube, and the other end side of the glass arc tube is A sintered body of an electron-emitting substance that serves as an electrode is fixed to the tip of the electrode lead bar, and a coil made of a conductive heat-resistant material is provided on the outer periphery of the electrode lead bar between the sintered body and the sealing glass. The other electrode unit wound is disposed, both ends of the glass arc tube are sealed with sealing glass welded to the outer periphery of the electrode lead rods of both electrode units, and then the tube of the arc tube The coil is heated from the outside by induction heating. The sintered body is heated with heat to evaporate moisture and gas components adsorbed on the sintered body, and the evaporated components are sucked and discharged from the rare gas sealing port of the arc tube to the outside of the tube, and then the rare gas sealing is performed. A rare gas is sealed from the entrance into the tube of the arc tube .
[0018]
According to the method of the present invention, moisture and hydrogen adsorbed on the sintered body during the manufacturing process of the electrode unit are removed during the process of manufacturing the flash lamp using the electrode unit. Moisture and hydrogen gas are not released from the inside of the body and the sintered body is not decomposed.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be specifically described below with reference to the drawings.
1 is a cross-sectional view showing an example of a flash lamp according to the present invention, FIG. 2 is an enlarged cross-sectional view of an end thereof, FIG. 3 is a cross-sectional view showing an example of an electrode unit used in the flash lamp, and FIG. FIG.
[0020]
The flash lamp 1 of FIG. 1 has a pair of electrode units 3 and 4 facing each other at both ends of a glass arc tube 2 formed of quartz glass having a high ultraviolet transmittance.
[0021]
One electrode unit 3 is a seal that hermetically seals one end of a glass arc tube 2 on the outer periphery of an electrode lead bar 5 made of a tungsten rod formed by bulk forming a tip 6 serving as an electrode (anode). Glass 7 for welding is welded.
[0022]
In the other electrode unit 4, a sintered body 9 of an electron-emitting substance that becomes an electrode (cathode) is fixed to the tip of an electrode lead rod 8 made of a tungsten rod, and the glass arc tube 2 is attached to the outer periphery of the electrode lead rod 8. A sealing glass 10 that hermetically seals the other end is welded, and an outer periphery of the electrode lead bar 8 between the sintered body 9 and the sealing glass 10 is made of a conductive heat-resistant material such as tungsten. A coil 11 is wound.
[0023]
In addition, the electrode unit 4 is attached to the tip of the electrode lead bar 8 with a compacted powder obtained by pressing a tungsten powder and a composite oxide of tungsten and an alkaline earth metal into an electrode, and the compacted mass is 1600 ° C. The process of generating and fixing the sintered body 9 to the tip of the electrode lead bar 8 by vacuum firing, and the coil 11 is externally fitted from the rear end side of the electrode lead bar 8 having the sintered body 9 fixed to the tip of the process. Then, the step of winding around the outer periphery, then fitting the bead-shaped sealing glass 10 and heating the sealing glass 10 in a hydrogen atmosphere to be welded to the outer periphery of the electrode lead bar 8 is performed. Thus, moisture and hydrogen are adsorbed on the surface of the sintered body 9 fixed to the tip of the electrode lead bar 8 during the manufacturing process.
[0024]
Therefore, in the flash lamp 1 of the present invention, first, as shown in FIG. 1, the electrode unit 3 is disposed on one end side of the glass arc tube 2 and the electrode unit 4 is disposed on the other end side of the glass arc tube 2. Then, both ends of the glass arc tube 2 are hermetically sealed with sealing glasses 7 and 10 welded to the outer periphery of the electrode lead rods 5 and 8 of both the electrode units 3 and 4, and then, as shown in FIG. As described above, the high-frequency coil 14 of the high-frequency induction heating device 13 connected to the high-frequency power source 15 is arranged so as to surround the coil 11 wound around the electrode lead rod 8 of the electrode unit 4 from the outside of the glass arc tube 2. Moisture and gas components adsorbed on the sintered body 9 by inductively heating the coil 11 from the outside of the glass arc tube 2 with the high-frequency coil 14 and indirectly heating the sintered body 9 by heat radiation of the coil 11 Evaporate After sucking and discharging from the rare gas filling port 12 of the glass arc tube 2 with an empty pump or the like, the rare gas xenon gas is sealed into the tube of the arc tube 2 from the rare gas filling port 12 at about 40 kPa at room temperature. The rare gas filling port 12 is manufactured by heating and sealing.
[0025]
As a result, moisture or hydrogen gas is not released from the inside of the sintered body 9 during the lighting operation of the flash lamp 1 and the sintered body 9 is not decomposed, so that the life of the flash lamp 1 is greatly improved. According to the life test of the flash lamp 1 using the lighting circuit, it was confirmed that stable lighting characteristics were exhibited even after 10 million times of lighting.
[0026]
That is, the lighting circuit of the flash lamp 1 shown in FIG. 4 includes a charging capacitor 16, a charging power source 17, a waveform adjusting coil 18, and a trigger generation circuit 19. First, a direct current is supplied from the charging power source 17 to the capacitor 16. A voltage is applied to store 500 J of charging energy (charging voltage 2000 V, capacitor capacity 250 μF). When a lighting signal is input to the trigger generation circuit 19, the switch S is closed to induce a pulsed trigger voltage (peak voltage 15 kV, half width 2 μs), and the trigger voltage is applied between the electrodes of the flash lamp 1. Then, a part of the xenon gas sealed inside the arc tube 2 is ionized to cause seed discharge, and the electric charge stored in the capacitor 16 flows at once, and a high-intensity light pulse is instantaneously emitted. . The current is controlled by the waveform adjusting coil 18, but the peak current in this life test was 800A.
[0027]
With this lighting circuit, the flash lamp 1 is turned on at a frequency of 2 times per second, and a jelly substance packaging container (caliber 60 mm, depth 45 mm) continuously conveyed in the longitudinal direction of the lamp by a conveyor at a speed of 30 m / min. When the sterilization treatment is performed at a rate of 480 pieces per minute at an irradiation distance of 10 mm, the temperature of the electrode composed of the sintered body 9 rises. Will operate at 1200 ° C.
[0028]
Although the sintered body 9 is easily decomposed by the presence of moisture or hydrogen, the flash lamp 1 according to the present invention has a structure in which the sintered body 9 is free from moisture and moisture from the inside even if the electrode composed of the sintered body 9 operates at a high temperature. It does not decompose due to the release of hydrogen gas. Therefore, some of the conventional flash lamps 40 shown in FIG. 5 are not turned on after being turned on 1 million times, and the probability of being turned off after turning on 2 million times reaches about 5%. The flash lamp 1 of the invention did not turn off even after lighting 10 million times, and showed stable lighting characteristics.
[0029]
Then, after the lighting operation (aging) of the conventional flash lamp 40 and the flash lamp 1 of the present invention each having a difference in lamp life as described above is performed 10,000 times each, the arc tube is placed in the vacuum chamber. As a result of determining the amount of moisture and hydrogen gas mixed in the arc tube from the impure gas partial pressure in the total pressure of the enclosed gas by the mass spectrum analyzer, as shown in Table 1, the product of the present invention is It was confirmed that the amount of water and hydrogen mixed per lamp was much smaller than that of the conventional product.
[0030]
[Table 1]
Figure 0004259090
[0031]
The experimental data in Table 1 shows that the amounts of moisture and hydrogen adsorbed on the sintered body 9 of the flash lamp 1 shown in FIG. 1 are different from the amounts adsorbed on the sintered body 49 of the conventional flash lamp 40 shown in FIG. It shows that there are few steps. As a result, the flash lamp 1 of the present invention does not decompose moisture and hydrogen gas from the inside of the sintered body 9 during the lighting operation, and the sintered body 9 is not decomposed, and the lamp life is dramatically improved. It has been proven.
[0032]
In order to efficiently evaporate gas components such as moisture and hydrogen adsorbed on the surface of the sintered body 9 during the manufacturing process of the flash lamp 1, it is necessary to heat the sintered body 9 to a high temperature of about 800 ° C. Although it is desirable, when the coil 11 for heating the sintered body 9 is wound at an intermediate position between the sintered body 9 and the sealing glass 10 as in the electrode unit 4 shown in FIG. While the heating efficiency of the bonded body 9 is not good, the temperature of the sealing glass 10 that seals the end of the glass arc tube 2 exceeds 500 ° C., and there is a risk that thermal distortion, cracks, or the like may occur in the sealing part. There is.
[0033]
Therefore, the electrode unit 4 shown in FIG. 3B increases the heating efficiency of the sintered body 9 to promote the evaporation of moisture and hydrogen adsorbed on the sintered body, and at the same time, the temperature of the sealing glass 10. The coil 11 is wound away from the sealing glass 10 and close to the sintered body 9 in order to keep the temperature at 500 ° C. or lower so as not to cause cracks or the like in the sealing portion. Further, in the electrode unit 4 shown in FIG. 3C, the coil 11 is wound away from the sealing glass 10 and close to the sintered body 9 in order to further increase the heating efficiency of the sintered body 9. At the same time, the coil 11 is a double coil wound around the outer periphery of the electrode lead bar 8.
[0034]
Further, in order to prevent the coil 11 wound around the outer periphery of the electrode lead bar 8 from rubbing from a fixed position, the inner diameter of the coil 11 is selected to be slightly smaller than the outer diameter of the electrode lead bar 8. Yes. Note that the coil 11 may be, for example, a molybdenum coil formed of a conductive heat-resistant material other than tungsten.
[0035]
【The invention's effect】
According to the present invention, even if the flash lamp used for light pulse sterilization is continuously turned on in a short interval, the sintered body of the electron-emitting substance that becomes the electrode is not decomposed and inactivated in a short period of time, Since the lamp life of the flash lamp is drastically improved, there is an excellent effect that it can contribute to the practical application and spread of the light pulse sterilization technology.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a flash lamp according to the present invention. FIG. 2 is an enlarged cross-sectional view of an end portion showing a method for manufacturing a flash lamp according to the present invention. FIG. 4 is a diagram showing a lighting circuit of a flash lamp. FIG. 5 is a sectional view showing a conventional flash lamp.
1 …………… Flash lamp 10 …………… Seal glass 2 …………… Glass arc tube 11 …………… Coil 4 …………… Electrode unit 12 …………… Noble Gas filling port 8 ......... Electrode lead rod 9 ......... Sintered body of electron emitting material

Claims (2)

希ガスが封入されるガラス製発光管の両端に、その端部を夫々電極リード棒の外周に溶着された封止用ガラスで気密に封止する一対の電極ユニットが対向して配置されたフラッシュランプの製造方法において、ガラス製発光管(2)の片端側に、一方の電極ユニット(3)を配置すると共に、ガラス製発光管(2)の他端側に、電極リード棒(8)の先端に電極となる電子放出性物質の焼結体(9)が固着され、該焼結体(9)と前記封止用ガラス(10)との間における電極リード棒(8)の外周部分に導電性耐熱材料で成るコイル(11)が巻装された他方の電極ユニット(4)を配置して、それら両電極ユニット(3、4)の電極リード棒(5、8)の外周に溶着された封止用ガラス(7、10)でガラス製発光管(2)の両端を封止し、次いで、該発光管(2)の管外から前記コイル(11)を誘導加熱し、その熱で前記焼結体(9)を加熱して該焼結体(9)に吸着された水分やガス成分を蒸発させ、その蒸発成分を発光管(2)の希ガス封入口(12)から管外へ吸引排出した後、該希ガス封入口(12)から発光管(2)の管内に希ガスを封入することを特徴とするフラッシュランプの製造方法。A flash in which a pair of electrode units are arranged opposite to each other at both ends of a glass arc tube filled with a rare gas, and the ends thereof are hermetically sealed with sealing glass welded to the outer periphery of each electrode lead rod. In the lamp manufacturing method, one electrode unit (3) is disposed on one end side of the glass arc tube (2), and the electrode lead rod (8) is disposed on the other end side of the glass arc tube (2). A sintered body (9) of an electron-emitting substance to be an electrode is fixed to the tip, and is placed on the outer peripheral portion of the electrode lead rod (8) between the sintered body (9) and the sealing glass (10). The other electrode unit (4) around which the coil (11) made of a conductive heat-resistant material is wound is disposed and welded to the outer periphery of the electrode lead rods (5, 8) of both electrode units (3, 4). Seal both ends of glass arc tube (2) with sealed glass (7, 10) Then, the coil (11) is induction-heated from the outside of the arc tube (2), and the sintered body (9) is heated by the heat to absorb the moisture adsorbed on the sintered body (9). After the gas component is evaporated and the evaporated component is sucked and discharged from the rare gas filling port (12) of the arc tube (2) to the outside of the tube, the vapor component is diluted into the tube of the arc tube (2) from the rare gas filling port (12). A method of manufacturing a flash lamp, wherein a gas is sealed. 前記コイル(11)が、前記封止用ガラス(10)から遠ざけられて前記焼結体(9)に近い所に巻装されている請求項1記載のフラッシュランプの製造方法The method of manufacturing a flash lamp according to claim 1, wherein the coil (11) is wound away from the sealing glass (10) and close to the sintered body (9).
JP2002315377A 2002-10-30 2002-10-30 Manufacturing method of flash lamp Expired - Fee Related JP4259090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002315377A JP4259090B2 (en) 2002-10-30 2002-10-30 Manufacturing method of flash lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002315377A JP4259090B2 (en) 2002-10-30 2002-10-30 Manufacturing method of flash lamp

Publications (2)

Publication Number Publication Date
JP2004152568A JP2004152568A (en) 2004-05-27
JP4259090B2 true JP4259090B2 (en) 2009-04-30

Family

ID=32459399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002315377A Expired - Fee Related JP4259090B2 (en) 2002-10-30 2002-10-30 Manufacturing method of flash lamp

Country Status (1)

Country Link
JP (1) JP4259090B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007122908A (en) * 2005-10-25 2007-05-17 Ushio Inc Flash lamp
KR100818944B1 (en) * 2006-11-03 2008-04-04 김성일 A heating apparatus and luminous apparatus using induction heating

Also Published As

Publication number Publication date
JP2004152568A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
JP4647745B2 (en) Water sterilizer
SU1055347A3 (en) Device for generating high-intensity ultraviolet radiation
JP4259090B2 (en) Manufacturing method of flash lamp
JP2017004702A (en) Excimer lamp
JP2010056008A (en) Non-mercury bactericidal lamp and bactericidal device
KR100725763B1 (en) Electric field ultraviolet rays lamp
JP4140279B2 (en) Flash lamp device and flash radiation device
CN2783532Y (en) Ultraviolet ray lamp
JP4093016B2 (en) Electrode unit for flash lamp and manufacturing method thereof
KR100687946B1 (en) A flash discharge lamp and a light energy irradiation apparatus
JP4258313B2 (en) Flash lamp
JP2004152566A (en) Flash lamp and electrode unit of the same
JP4280866B2 (en) Flash lamp and its electrode unit
CN104505329A (en) Electrodeless ultraviolet lamp
JP6800433B2 (en) Xenon flash lamp for container sterilization
JPH1021885A (en) No-electrode discharge lamp
JP3509256B2 (en) Low pressure mercury discharge lamp for ultraviolet sterilization and method for producing the same
CN114992761B (en) Biological safety ventilation sterilization device based on electromagnetic coupling excitation xenon light
CN114464522B (en) Microwave electrodeless ultraviolet light source, system and application
JP2001155890A (en) Method of lighting rare gas flash discharge lamp
KR200144992Y1 (en) Electrodeless UV Discharge Tube for Microwave Oven
JP2006026253A (en) Sterilizer
JP2005158622A (en) Flash discharge lamp and light irradiation device
JP2002251983A (en) Electrodeless discharge lamp device and black light
JP2012064382A (en) External electrode-type lamp and irradiation device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees